diff options
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Target/ARM/ARMFrameLowering.cpp')
-rw-r--r-- | contrib/llvm-project/llvm/lib/Target/ARM/ARMFrameLowering.cpp | 3437 |
1 files changed, 3437 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Target/ARM/ARMFrameLowering.cpp b/contrib/llvm-project/llvm/lib/Target/ARM/ARMFrameLowering.cpp new file mode 100644 index 000000000000..40354f995598 --- /dev/null +++ b/contrib/llvm-project/llvm/lib/Target/ARM/ARMFrameLowering.cpp @@ -0,0 +1,3437 @@ +//===- ARMFrameLowering.cpp - ARM Frame Information -----------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file contains the ARM implementation of TargetFrameLowering class. +// +//===----------------------------------------------------------------------===// +// +// This file contains the ARM implementation of TargetFrameLowering class. +// +// On ARM, stack frames are structured as follows: +// +// The stack grows downward. +// +// All of the individual frame areas on the frame below are optional, i.e. it's +// possible to create a function so that the particular area isn't present +// in the frame. +// +// At function entry, the "frame" looks as follows: +// +// | | Higher address +// |-----------------------------------| +// | | +// | arguments passed on the stack | +// | | +// |-----------------------------------| <- sp +// | | Lower address +// +// +// After the prologue has run, the frame has the following general structure. +// Technically the last frame area (VLAs) doesn't get created until in the +// main function body, after the prologue is run. However, it's depicted here +// for completeness. +// +// | | Higher address +// |-----------------------------------| +// | | +// | arguments passed on the stack | +// | | +// |-----------------------------------| <- (sp at function entry) +// | | +// | varargs from registers | +// | | +// |-----------------------------------| +// | | +// | prev_lr | +// | prev_fp | +// | (a.k.a. "frame record") | +// | | +// |- - - - - - - - - - - - - - - - - -| <- fp (r7 or r11) +// | | +// | callee-saved gpr registers | +// | | +// |-----------------------------------| +// | | +// | callee-saved fp/simd regs | +// | | +// |-----------------------------------| +// |.empty.space.to.make.part.below....| +// |.aligned.in.case.it.needs.more.than| (size of this area is unknown at +// |.the.standard.8-byte.alignment.....| compile time; if present) +// |-----------------------------------| +// | | +// | local variables of fixed size | +// | including spill slots | +// |-----------------------------------| <- base pointer (not defined by ABI, +// |.variable-sized.local.variables....| LLVM chooses r6) +// |.(VLAs)............................| (size of this area is unknown at +// |...................................| compile time) +// |-----------------------------------| <- sp +// | | Lower address +// +// +// To access the data in a frame, at-compile time, a constant offset must be +// computable from one of the pointers (fp, bp, sp) to access it. The size +// of the areas with a dotted background cannot be computed at compile-time +// if they are present, making it required to have all three of fp, bp and +// sp to be set up to be able to access all contents in the frame areas, +// assuming all of the frame areas are non-empty. +// +// For most functions, some of the frame areas are empty. For those functions, +// it may not be necessary to set up fp or bp: +// * A base pointer is definitely needed when there are both VLAs and local +// variables with more-than-default alignment requirements. +// * A frame pointer is definitely needed when there are local variables with +// more-than-default alignment requirements. +// +// In some cases when a base pointer is not strictly needed, it is generated +// anyway when offsets from the frame pointer to access local variables become +// so large that the offset can't be encoded in the immediate fields of loads +// or stores. +// +// The frame pointer might be chosen to be r7 or r11, depending on the target +// architecture and operating system. See ARMSubtarget::getFramePointerReg for +// details. +// +// Outgoing function arguments must be at the bottom of the stack frame when +// calling another function. If we do not have variable-sized stack objects, we +// can allocate a "reserved call frame" area at the bottom of the local +// variable area, large enough for all outgoing calls. If we do have VLAs, then +// the stack pointer must be decremented and incremented around each call to +// make space for the arguments below the VLAs. +// +//===----------------------------------------------------------------------===// + +#include "ARMFrameLowering.h" +#include "ARMBaseInstrInfo.h" +#include "ARMBaseRegisterInfo.h" +#include "ARMConstantPoolValue.h" +#include "ARMMachineFunctionInfo.h" +#include "ARMSubtarget.h" +#include "MCTargetDesc/ARMAddressingModes.h" +#include "MCTargetDesc/ARMBaseInfo.h" +#include "Utils/ARMBaseInfo.h" +#include "llvm/ADT/BitVector.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/CodeGen/MachineBasicBlock.h" +#include "llvm/CodeGen/MachineConstantPool.h" +#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineInstr.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineJumpTableInfo.h" +#include "llvm/CodeGen/MachineModuleInfo.h" +#include "llvm/CodeGen/MachineOperand.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/RegisterScavenging.h" +#include "llvm/CodeGen/TargetInstrInfo.h" +#include "llvm/CodeGen/TargetOpcodes.h" +#include "llvm/CodeGen/TargetRegisterInfo.h" +#include "llvm/CodeGen/TargetSubtargetInfo.h" +#include "llvm/IR/Attributes.h" +#include "llvm/IR/CallingConv.h" +#include "llvm/IR/DebugLoc.h" +#include "llvm/IR/Function.h" +#include "llvm/MC/MCAsmInfo.h" +#include "llvm/MC/MCContext.h" +#include "llvm/MC/MCDwarf.h" +#include "llvm/MC/MCInstrDesc.h" +#include "llvm/MC/MCRegisterInfo.h" +#include "llvm/Support/CodeGen.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Target/TargetMachine.h" +#include "llvm/Target/TargetOptions.h" +#include <algorithm> +#include <cassert> +#include <cstddef> +#include <cstdint> +#include <iterator> +#include <utility> +#include <vector> + +#define DEBUG_TYPE "arm-frame-lowering" + +using namespace llvm; + +static cl::opt<bool> +SpillAlignedNEONRegs("align-neon-spills", cl::Hidden, cl::init(true), + cl::desc("Align ARM NEON spills in prolog and epilog")); + +static MachineBasicBlock::iterator +skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI, + unsigned NumAlignedDPRCS2Regs); + +ARMFrameLowering::ARMFrameLowering(const ARMSubtarget &sti) + : TargetFrameLowering(StackGrowsDown, sti.getStackAlignment(), 0, Align(4)), + STI(sti) {} + +bool ARMFrameLowering::keepFramePointer(const MachineFunction &MF) const { + // iOS always has a FP for backtracking, force other targets to keep their FP + // when doing FastISel. The emitted code is currently superior, and in cases + // like test-suite's lencod FastISel isn't quite correct when FP is eliminated. + return MF.getSubtarget<ARMSubtarget>().useFastISel(); +} + +/// Returns true if the target can safely skip saving callee-saved registers +/// for noreturn nounwind functions. +bool ARMFrameLowering::enableCalleeSaveSkip(const MachineFunction &MF) const { + assert(MF.getFunction().hasFnAttribute(Attribute::NoReturn) && + MF.getFunction().hasFnAttribute(Attribute::NoUnwind) && + !MF.getFunction().hasFnAttribute(Attribute::UWTable)); + + // Frame pointer and link register are not treated as normal CSR, thus we + // can always skip CSR saves for nonreturning functions. + return true; +} + +/// hasFP - Return true if the specified function should have a dedicated frame +/// pointer register. This is true if the function has variable sized allocas +/// or if frame pointer elimination is disabled. +bool ARMFrameLowering::hasFP(const MachineFunction &MF) const { + const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); + const MachineFrameInfo &MFI = MF.getFrameInfo(); + + // ABI-required frame pointer. + if (MF.getTarget().Options.DisableFramePointerElim(MF)) + return true; + + // Frame pointer required for use within this function. + return (RegInfo->hasStackRealignment(MF) || MFI.hasVarSizedObjects() || + MFI.isFrameAddressTaken()); +} + +/// isFPReserved - Return true if the frame pointer register should be +/// considered a reserved register on the scope of the specified function. +bool ARMFrameLowering::isFPReserved(const MachineFunction &MF) const { + return hasFP(MF) || MF.getTarget().Options.FramePointerIsReserved(MF); +} + +/// hasReservedCallFrame - Under normal circumstances, when a frame pointer is +/// not required, we reserve argument space for call sites in the function +/// immediately on entry to the current function. This eliminates the need for +/// add/sub sp brackets around call sites. Returns true if the call frame is +/// included as part of the stack frame. +bool ARMFrameLowering::hasReservedCallFrame(const MachineFunction &MF) const { + const MachineFrameInfo &MFI = MF.getFrameInfo(); + unsigned CFSize = MFI.getMaxCallFrameSize(); + // It's not always a good idea to include the call frame as part of the + // stack frame. ARM (especially Thumb) has small immediate offset to + // address the stack frame. So a large call frame can cause poor codegen + // and may even makes it impossible to scavenge a register. + if (CFSize >= ((1 << 12) - 1) / 2) // Half of imm12 + return false; + + return !MFI.hasVarSizedObjects(); +} + +/// canSimplifyCallFramePseudos - If there is a reserved call frame, the +/// call frame pseudos can be simplified. Unlike most targets, having a FP +/// is not sufficient here since we still may reference some objects via SP +/// even when FP is available in Thumb2 mode. +bool +ARMFrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const { + return hasReservedCallFrame(MF) || MF.getFrameInfo().hasVarSizedObjects(); +} + +// Returns how much of the incoming argument stack area we should clean up in an +// epilogue. For the C calling convention this will be 0, for guaranteed tail +// call conventions it can be positive (a normal return or a tail call to a +// function that uses less stack space for arguments) or negative (for a tail +// call to a function that needs more stack space than us for arguments). +static int getArgumentStackToRestore(MachineFunction &MF, + MachineBasicBlock &MBB) { + MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr(); + bool IsTailCallReturn = false; + if (MBB.end() != MBBI) { + unsigned RetOpcode = MBBI->getOpcode(); + IsTailCallReturn = RetOpcode == ARM::TCRETURNdi || + RetOpcode == ARM::TCRETURNri || + RetOpcode == ARM::TCRETURNrinotr12; + } + ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); + + int ArgumentPopSize = 0; + if (IsTailCallReturn) { + MachineOperand &StackAdjust = MBBI->getOperand(1); + + // For a tail-call in a callee-pops-arguments environment, some or all of + // the stack may actually be in use for the call's arguments, this is + // calculated during LowerCall and consumed here... + ArgumentPopSize = StackAdjust.getImm(); + } else { + // ... otherwise the amount to pop is *all* of the argument space, + // conveniently stored in the MachineFunctionInfo by + // LowerFormalArguments. This will, of course, be zero for the C calling + // convention. + ArgumentPopSize = AFI->getArgumentStackToRestore(); + } + + return ArgumentPopSize; +} + +static bool needsWinCFI(const MachineFunction &MF) { + const Function &F = MF.getFunction(); + return MF.getTarget().getMCAsmInfo()->usesWindowsCFI() && + F.needsUnwindTableEntry(); +} + +// Given a load or a store instruction, generate an appropriate unwinding SEH +// code on Windows. +static MachineBasicBlock::iterator insertSEH(MachineBasicBlock::iterator MBBI, + const TargetInstrInfo &TII, + unsigned Flags) { + unsigned Opc = MBBI->getOpcode(); + MachineBasicBlock *MBB = MBBI->getParent(); + MachineFunction &MF = *MBB->getParent(); + DebugLoc DL = MBBI->getDebugLoc(); + MachineInstrBuilder MIB; + const ARMSubtarget &Subtarget = MF.getSubtarget<ARMSubtarget>(); + const ARMBaseRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); + + Flags |= MachineInstr::NoMerge; + + switch (Opc) { + default: + report_fatal_error("No SEH Opcode for instruction " + TII.getName(Opc)); + break; + case ARM::t2ADDri: // add.w r11, sp, #xx + case ARM::t2ADDri12: // add.w r11, sp, #xx + case ARM::t2MOVTi16: // movt r4, #xx + case ARM::tBL: // bl __chkstk + // These are harmless if used for just setting up a frame pointer, + // but that frame pointer can't be relied upon for unwinding, unless + // set up with SEH_SaveSP. + MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop)) + .addImm(/*Wide=*/1) + .setMIFlags(Flags); + break; + + case ARM::t2MOVi16: { // mov(w) r4, #xx + bool Wide = MBBI->getOperand(1).getImm() >= 256; + if (!Wide) { + MachineInstrBuilder NewInstr = + BuildMI(MF, DL, TII.get(ARM::tMOVi8)).setMIFlags(MBBI->getFlags()); + NewInstr.add(MBBI->getOperand(0)); + NewInstr.add(t1CondCodeOp(/*isDead=*/true)); + for (MachineOperand &MO : llvm::drop_begin(MBBI->operands())) + NewInstr.add(MO); + MachineBasicBlock::iterator NewMBBI = MBB->insertAfter(MBBI, NewInstr); + MBB->erase(MBBI); + MBBI = NewMBBI; + } + MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop)).addImm(Wide).setMIFlags(Flags); + break; + } + + case ARM::tBLXr: // blx r12 (__chkstk) + MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop)) + .addImm(/*Wide=*/0) + .setMIFlags(Flags); + break; + + case ARM::t2MOVi32imm: // movw+movt + // This pseudo instruction expands into two mov instructions. If the + // second operand is a symbol reference, this will stay as two wide + // instructions, movw+movt. If they're immediates, the first one can + // end up as a narrow mov though. + // As two SEH instructions are appended here, they won't get interleaved + // between the two final movw/movt instructions, but it doesn't make any + // practical difference. + MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop)) + .addImm(/*Wide=*/1) + .setMIFlags(Flags); + MBB->insertAfter(MBBI, MIB); + MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop)) + .addImm(/*Wide=*/1) + .setMIFlags(Flags); + break; + + case ARM::t2STR_PRE: + if (MBBI->getOperand(0).getReg() == ARM::SP && + MBBI->getOperand(2).getReg() == ARM::SP && + MBBI->getOperand(3).getImm() == -4) { + unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg()); + MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveRegs)) + .addImm(1ULL << Reg) + .addImm(/*Wide=*/1) + .setMIFlags(Flags); + } else { + report_fatal_error("No matching SEH Opcode for t2STR_PRE"); + } + break; + + case ARM::t2LDR_POST: + if (MBBI->getOperand(1).getReg() == ARM::SP && + MBBI->getOperand(2).getReg() == ARM::SP && + MBBI->getOperand(3).getImm() == 4) { + unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg()); + MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveRegs)) + .addImm(1ULL << Reg) + .addImm(/*Wide=*/1) + .setMIFlags(Flags); + } else { + report_fatal_error("No matching SEH Opcode for t2LDR_POST"); + } + break; + + case ARM::t2LDMIA_RET: + case ARM::t2LDMIA_UPD: + case ARM::t2STMDB_UPD: { + unsigned Mask = 0; + bool Wide = false; + for (unsigned i = 4, NumOps = MBBI->getNumOperands(); i != NumOps; ++i) { + const MachineOperand &MO = MBBI->getOperand(i); + if (!MO.isReg() || MO.isImplicit()) + continue; + unsigned Reg = RegInfo->getSEHRegNum(MO.getReg()); + if (Reg == 15) + Reg = 14; + if (Reg >= 8 && Reg <= 13) + Wide = true; + else if (Opc == ARM::t2LDMIA_UPD && Reg == 14) + Wide = true; + Mask |= 1 << Reg; + } + if (!Wide) { + unsigned NewOpc; + switch (Opc) { + case ARM::t2LDMIA_RET: + NewOpc = ARM::tPOP_RET; + break; + case ARM::t2LDMIA_UPD: + NewOpc = ARM::tPOP; + break; + case ARM::t2STMDB_UPD: + NewOpc = ARM::tPUSH; + break; + default: + llvm_unreachable(""); + } + MachineInstrBuilder NewInstr = + BuildMI(MF, DL, TII.get(NewOpc)).setMIFlags(MBBI->getFlags()); + for (unsigned i = 2, NumOps = MBBI->getNumOperands(); i != NumOps; ++i) + NewInstr.add(MBBI->getOperand(i)); + MachineBasicBlock::iterator NewMBBI = MBB->insertAfter(MBBI, NewInstr); + MBB->erase(MBBI); + MBBI = NewMBBI; + } + unsigned SEHOpc = + (Opc == ARM::t2LDMIA_RET) ? ARM::SEH_SaveRegs_Ret : ARM::SEH_SaveRegs; + MIB = BuildMI(MF, DL, TII.get(SEHOpc)) + .addImm(Mask) + .addImm(Wide ? 1 : 0) + .setMIFlags(Flags); + break; + } + case ARM::VSTMDDB_UPD: + case ARM::VLDMDIA_UPD: { + int First = -1, Last = 0; + for (const MachineOperand &MO : llvm::drop_begin(MBBI->operands(), 4)) { + unsigned Reg = RegInfo->getSEHRegNum(MO.getReg()); + if (First == -1) + First = Reg; + Last = Reg; + } + MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveFRegs)) + .addImm(First) + .addImm(Last) + .setMIFlags(Flags); + break; + } + case ARM::tSUBspi: + case ARM::tADDspi: + MIB = BuildMI(MF, DL, TII.get(ARM::SEH_StackAlloc)) + .addImm(MBBI->getOperand(2).getImm() * 4) + .addImm(/*Wide=*/0) + .setMIFlags(Flags); + break; + case ARM::t2SUBspImm: + case ARM::t2SUBspImm12: + case ARM::t2ADDspImm: + case ARM::t2ADDspImm12: + MIB = BuildMI(MF, DL, TII.get(ARM::SEH_StackAlloc)) + .addImm(MBBI->getOperand(2).getImm()) + .addImm(/*Wide=*/1) + .setMIFlags(Flags); + break; + + case ARM::tMOVr: + if (MBBI->getOperand(1).getReg() == ARM::SP && + (Flags & MachineInstr::FrameSetup)) { + unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg()); + MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveSP)) + .addImm(Reg) + .setMIFlags(Flags); + } else if (MBBI->getOperand(0).getReg() == ARM::SP && + (Flags & MachineInstr::FrameDestroy)) { + unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg()); + MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveSP)) + .addImm(Reg) + .setMIFlags(Flags); + } else { + report_fatal_error("No SEH Opcode for MOV"); + } + break; + + case ARM::tBX_RET: + case ARM::TCRETURNri: + case ARM::TCRETURNrinotr12: + MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop_Ret)) + .addImm(/*Wide=*/0) + .setMIFlags(Flags); + break; + + case ARM::TCRETURNdi: + MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop_Ret)) + .addImm(/*Wide=*/1) + .setMIFlags(Flags); + break; + } + return MBB->insertAfter(MBBI, MIB); +} + +static MachineBasicBlock::iterator +initMBBRange(MachineBasicBlock &MBB, const MachineBasicBlock::iterator &MBBI) { + if (MBBI == MBB.begin()) + return MachineBasicBlock::iterator(); + return std::prev(MBBI); +} + +static void insertSEHRange(MachineBasicBlock &MBB, + MachineBasicBlock::iterator Start, + const MachineBasicBlock::iterator &End, + const ARMBaseInstrInfo &TII, unsigned MIFlags) { + if (Start.isValid()) + Start = std::next(Start); + else + Start = MBB.begin(); + + for (auto MI = Start; MI != End;) { + auto Next = std::next(MI); + // Check if this instruction already has got a SEH opcode added. In that + // case, don't do this generic mapping. + if (Next != End && isSEHInstruction(*Next)) { + MI = std::next(Next); + while (MI != End && isSEHInstruction(*MI)) + ++MI; + continue; + } + insertSEH(MI, TII, MIFlags); + MI = Next; + } +} + +static void emitRegPlusImmediate( + bool isARM, MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, + const DebugLoc &dl, const ARMBaseInstrInfo &TII, unsigned DestReg, + unsigned SrcReg, int NumBytes, unsigned MIFlags = MachineInstr::NoFlags, + ARMCC::CondCodes Pred = ARMCC::AL, unsigned PredReg = 0) { + if (isARM) + emitARMRegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes, + Pred, PredReg, TII, MIFlags); + else + emitT2RegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes, + Pred, PredReg, TII, MIFlags); +} + +static void emitSPUpdate(bool isARM, MachineBasicBlock &MBB, + MachineBasicBlock::iterator &MBBI, const DebugLoc &dl, + const ARMBaseInstrInfo &TII, int NumBytes, + unsigned MIFlags = MachineInstr::NoFlags, + ARMCC::CondCodes Pred = ARMCC::AL, + unsigned PredReg = 0) { + emitRegPlusImmediate(isARM, MBB, MBBI, dl, TII, ARM::SP, ARM::SP, NumBytes, + MIFlags, Pred, PredReg); +} + +static int sizeOfSPAdjustment(const MachineInstr &MI) { + int RegSize; + switch (MI.getOpcode()) { + case ARM::VSTMDDB_UPD: + RegSize = 8; + break; + case ARM::STMDB_UPD: + case ARM::t2STMDB_UPD: + RegSize = 4; + break; + case ARM::t2STR_PRE: + case ARM::STR_PRE_IMM: + return 4; + default: + llvm_unreachable("Unknown push or pop like instruction"); + } + + int count = 0; + // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+ + // pred) so the list starts at 4. + for (int i = MI.getNumOperands() - 1; i >= 4; --i) + count += RegSize; + return count; +} + +static bool WindowsRequiresStackProbe(const MachineFunction &MF, + size_t StackSizeInBytes) { + const MachineFrameInfo &MFI = MF.getFrameInfo(); + const Function &F = MF.getFunction(); + unsigned StackProbeSize = (MFI.getStackProtectorIndex() > 0) ? 4080 : 4096; + + StackProbeSize = + F.getFnAttributeAsParsedInteger("stack-probe-size", StackProbeSize); + return (StackSizeInBytes >= StackProbeSize) && + !F.hasFnAttribute("no-stack-arg-probe"); +} + +namespace { + +struct StackAdjustingInsts { + struct InstInfo { + MachineBasicBlock::iterator I; + unsigned SPAdjust; + bool BeforeFPSet; + }; + + SmallVector<InstInfo, 4> Insts; + + void addInst(MachineBasicBlock::iterator I, unsigned SPAdjust, + bool BeforeFPSet = false) { + InstInfo Info = {I, SPAdjust, BeforeFPSet}; + Insts.push_back(Info); + } + + void addExtraBytes(const MachineBasicBlock::iterator I, unsigned ExtraBytes) { + auto Info = + llvm::find_if(Insts, [&](InstInfo &Info) { return Info.I == I; }); + assert(Info != Insts.end() && "invalid sp adjusting instruction"); + Info->SPAdjust += ExtraBytes; + } + + void emitDefCFAOffsets(MachineBasicBlock &MBB, const DebugLoc &dl, + const ARMBaseInstrInfo &TII, bool HasFP) { + MachineFunction &MF = *MBB.getParent(); + unsigned CFAOffset = 0; + for (auto &Info : Insts) { + if (HasFP && !Info.BeforeFPSet) + return; + + CFAOffset += Info.SPAdjust; + unsigned CFIIndex = MF.addFrameInst( + MCCFIInstruction::cfiDefCfaOffset(nullptr, CFAOffset)); + BuildMI(MBB, std::next(Info.I), dl, + TII.get(TargetOpcode::CFI_INSTRUCTION)) + .addCFIIndex(CFIIndex) + .setMIFlags(MachineInstr::FrameSetup); + } + } +}; + +} // end anonymous namespace + +/// Emit an instruction sequence that will align the address in +/// register Reg by zero-ing out the lower bits. For versions of the +/// architecture that support Neon, this must be done in a single +/// instruction, since skipAlignedDPRCS2Spills assumes it is done in a +/// single instruction. That function only gets called when optimizing +/// spilling of D registers on a core with the Neon instruction set +/// present. +static void emitAligningInstructions(MachineFunction &MF, ARMFunctionInfo *AFI, + const TargetInstrInfo &TII, + MachineBasicBlock &MBB, + MachineBasicBlock::iterator MBBI, + const DebugLoc &DL, const unsigned Reg, + const Align Alignment, + const bool MustBeSingleInstruction) { + const ARMSubtarget &AST = MF.getSubtarget<ARMSubtarget>(); + const bool CanUseBFC = AST.hasV6T2Ops() || AST.hasV7Ops(); + const unsigned AlignMask = Alignment.value() - 1U; + const unsigned NrBitsToZero = Log2(Alignment); + assert(!AFI->isThumb1OnlyFunction() && "Thumb1 not supported"); + if (!AFI->isThumbFunction()) { + // if the BFC instruction is available, use that to zero the lower + // bits: + // bfc Reg, #0, log2(Alignment) + // otherwise use BIC, if the mask to zero the required number of bits + // can be encoded in the bic immediate field + // bic Reg, Reg, Alignment-1 + // otherwise, emit + // lsr Reg, Reg, log2(Alignment) + // lsl Reg, Reg, log2(Alignment) + if (CanUseBFC) { + BuildMI(MBB, MBBI, DL, TII.get(ARM::BFC), Reg) + .addReg(Reg, RegState::Kill) + .addImm(~AlignMask) + .add(predOps(ARMCC::AL)); + } else if (AlignMask <= 255) { + BuildMI(MBB, MBBI, DL, TII.get(ARM::BICri), Reg) + .addReg(Reg, RegState::Kill) + .addImm(AlignMask) + .add(predOps(ARMCC::AL)) + .add(condCodeOp()); + } else { + assert(!MustBeSingleInstruction && + "Shouldn't call emitAligningInstructions demanding a single " + "instruction to be emitted for large stack alignment for a target " + "without BFC."); + BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg) + .addReg(Reg, RegState::Kill) + .addImm(ARM_AM::getSORegOpc(ARM_AM::lsr, NrBitsToZero)) + .add(predOps(ARMCC::AL)) + .add(condCodeOp()); + BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg) + .addReg(Reg, RegState::Kill) + .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, NrBitsToZero)) + .add(predOps(ARMCC::AL)) + .add(condCodeOp()); + } + } else { + // Since this is only reached for Thumb-2 targets, the BFC instruction + // should always be available. + assert(CanUseBFC); + BuildMI(MBB, MBBI, DL, TII.get(ARM::t2BFC), Reg) + .addReg(Reg, RegState::Kill) + .addImm(~AlignMask) + .add(predOps(ARMCC::AL)); + } +} + +/// We need the offset of the frame pointer relative to other MachineFrameInfo +/// offsets which are encoded relative to SP at function begin. +/// See also emitPrologue() for how the FP is set up. +/// Unfortunately we cannot determine this value in determineCalleeSaves() yet +/// as assignCalleeSavedSpillSlots() hasn't run at this point. Instead we use +/// this to produce a conservative estimate that we check in an assert() later. +static int getMaxFPOffset(const ARMSubtarget &STI, const ARMFunctionInfo &AFI, + const MachineFunction &MF) { + // For Thumb1, push.w isn't available, so the first push will always push + // r7 and lr onto the stack first. + if (AFI.isThumb1OnlyFunction()) + return -AFI.getArgRegsSaveSize() - (2 * 4); + // This is a conservative estimation: Assume the frame pointer being r7 and + // pc("r15") up to r8 getting spilled before (= 8 registers). + int MaxRegBytes = 8 * 4; + if (STI.splitFramePointerPush(MF)) { + // Here, r11 can be stored below all of r4-r15 (3 registers more than + // above), plus d8-d15. + MaxRegBytes = 11 * 4 + 8 * 8; + } + int FPCXTSaveSize = + (STI.hasV8_1MMainlineOps() && AFI.isCmseNSEntryFunction()) ? 4 : 0; + return -FPCXTSaveSize - AFI.getArgRegsSaveSize() - MaxRegBytes; +} + +void ARMFrameLowering::emitPrologue(MachineFunction &MF, + MachineBasicBlock &MBB) const { + MachineBasicBlock::iterator MBBI = MBB.begin(); + MachineFrameInfo &MFI = MF.getFrameInfo(); + ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); + MCContext &Context = MF.getContext(); + const TargetMachine &TM = MF.getTarget(); + const MCRegisterInfo *MRI = Context.getRegisterInfo(); + const ARMBaseRegisterInfo *RegInfo = STI.getRegisterInfo(); + const ARMBaseInstrInfo &TII = *STI.getInstrInfo(); + assert(!AFI->isThumb1OnlyFunction() && + "This emitPrologue does not support Thumb1!"); + bool isARM = !AFI->isThumbFunction(); + Align Alignment = STI.getFrameLowering()->getStackAlign(); + unsigned ArgRegsSaveSize = AFI->getArgRegsSaveSize(); + unsigned NumBytes = MFI.getStackSize(); + const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); + int FPCXTSaveSize = 0; + bool NeedsWinCFI = needsWinCFI(MF); + + // Debug location must be unknown since the first debug location is used + // to determine the end of the prologue. + DebugLoc dl; + + Register FramePtr = RegInfo->getFrameRegister(MF); + + // Determine the sizes of each callee-save spill areas and record which frame + // belongs to which callee-save spill areas. + unsigned GPRCS1Size = 0, GPRCS2Size = 0, DPRCSSize = 0; + int FramePtrSpillFI = 0; + int D8SpillFI = 0; + + // All calls are tail calls in GHC calling conv, and functions have no + // prologue/epilogue. + if (MF.getFunction().getCallingConv() == CallingConv::GHC) + return; + + StackAdjustingInsts DefCFAOffsetCandidates; + bool HasFP = hasFP(MF); + + if (!AFI->hasStackFrame() && + (!STI.isTargetWindows() || !WindowsRequiresStackProbe(MF, NumBytes))) { + if (NumBytes != 0) { + emitSPUpdate(isARM, MBB, MBBI, dl, TII, -NumBytes, + MachineInstr::FrameSetup); + DefCFAOffsetCandidates.addInst(std::prev(MBBI), NumBytes, true); + } + if (!NeedsWinCFI) + DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP); + if (NeedsWinCFI && MBBI != MBB.begin()) { + insertSEHRange(MBB, {}, MBBI, TII, MachineInstr::FrameSetup); + BuildMI(MBB, MBBI, dl, TII.get(ARM::SEH_PrologEnd)) + .setMIFlag(MachineInstr::FrameSetup); + MF.setHasWinCFI(true); + } + return; + } + + // Determine spill area sizes. + if (STI.splitFramePointerPush(MF)) { + for (const CalleeSavedInfo &I : CSI) { + Register Reg = I.getReg(); + int FI = I.getFrameIdx(); + switch (Reg) { + case ARM::R11: + case ARM::LR: + if (Reg == FramePtr) + FramePtrSpillFI = FI; + GPRCS2Size += 4; + break; + case ARM::R0: + case ARM::R1: + case ARM::R2: + case ARM::R3: + case ARM::R4: + case ARM::R5: + case ARM::R6: + case ARM::R7: + case ARM::R8: + case ARM::R9: + case ARM::R10: + case ARM::R12: + GPRCS1Size += 4; + break; + case ARM::FPCXTNS: + FPCXTSaveSize = 4; + break; + default: + // This is a DPR. Exclude the aligned DPRCS2 spills. + if (Reg == ARM::D8) + D8SpillFI = FI; + if (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs()) + DPRCSSize += 8; + } + } + } else { + for (const CalleeSavedInfo &I : CSI) { + Register Reg = I.getReg(); + int FI = I.getFrameIdx(); + switch (Reg) { + case ARM::R8: + case ARM::R9: + case ARM::R10: + case ARM::R11: + case ARM::R12: + if (STI.splitFramePushPop(MF)) { + GPRCS2Size += 4; + break; + } + [[fallthrough]]; + case ARM::R0: + case ARM::R1: + case ARM::R2: + case ARM::R3: + case ARM::R4: + case ARM::R5: + case ARM::R6: + case ARM::R7: + case ARM::LR: + if (Reg == FramePtr) + FramePtrSpillFI = FI; + GPRCS1Size += 4; + break; + case ARM::FPCXTNS: + FPCXTSaveSize = 4; + break; + default: + // This is a DPR. Exclude the aligned DPRCS2 spills. + if (Reg == ARM::D8) + D8SpillFI = FI; + if (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs()) + DPRCSSize += 8; + } + } + } + + MachineBasicBlock::iterator LastPush = MBB.end(), GPRCS1Push, GPRCS2Push; + + // Move past the PAC computation. + if (AFI->shouldSignReturnAddress()) + LastPush = MBBI++; + + // Move past FPCXT area. + if (FPCXTSaveSize > 0) { + LastPush = MBBI++; + DefCFAOffsetCandidates.addInst(LastPush, FPCXTSaveSize, true); + } + + // Allocate the vararg register save area. + if (ArgRegsSaveSize) { + emitSPUpdate(isARM, MBB, MBBI, dl, TII, -ArgRegsSaveSize, + MachineInstr::FrameSetup); + LastPush = std::prev(MBBI); + DefCFAOffsetCandidates.addInst(LastPush, ArgRegsSaveSize, true); + } + + // Move past area 1. + if (GPRCS1Size > 0) { + GPRCS1Push = LastPush = MBBI++; + DefCFAOffsetCandidates.addInst(LastPush, GPRCS1Size, true); + } + + // Determine starting offsets of spill areas. + unsigned FPCXTOffset = NumBytes - ArgRegsSaveSize - FPCXTSaveSize; + unsigned GPRCS1Offset = FPCXTOffset - GPRCS1Size; + unsigned GPRCS2Offset = GPRCS1Offset - GPRCS2Size; + Align DPRAlign = DPRCSSize ? std::min(Align(8), Alignment) : Align(4); + unsigned DPRGapSize = GPRCS1Size + FPCXTSaveSize + ArgRegsSaveSize; + if (!STI.splitFramePointerPush(MF)) { + DPRGapSize += GPRCS2Size; + } + DPRGapSize %= DPRAlign.value(); + + unsigned DPRCSOffset; + if (STI.splitFramePointerPush(MF)) { + DPRCSOffset = GPRCS1Offset - DPRGapSize - DPRCSSize; + GPRCS2Offset = DPRCSOffset - GPRCS2Size; + } else { + DPRCSOffset = GPRCS2Offset - DPRGapSize - DPRCSSize; + } + int FramePtrOffsetInPush = 0; + if (HasFP) { + int FPOffset = MFI.getObjectOffset(FramePtrSpillFI); + assert(getMaxFPOffset(STI, *AFI, MF) <= FPOffset && + "Max FP estimation is wrong"); + FramePtrOffsetInPush = FPOffset + ArgRegsSaveSize + FPCXTSaveSize; + AFI->setFramePtrSpillOffset(MFI.getObjectOffset(FramePtrSpillFI) + + NumBytes); + } + AFI->setGPRCalleeSavedArea1Offset(GPRCS1Offset); + AFI->setGPRCalleeSavedArea2Offset(GPRCS2Offset); + AFI->setDPRCalleeSavedAreaOffset(DPRCSOffset); + + // Move past area 2. + if (GPRCS2Size > 0 && !STI.splitFramePointerPush(MF)) { + GPRCS2Push = LastPush = MBBI++; + DefCFAOffsetCandidates.addInst(LastPush, GPRCS2Size); + } + + // Prolog/epilog inserter assumes we correctly align DPRs on the stack, so our + // .cfi_offset operations will reflect that. + if (DPRGapSize) { + assert(DPRGapSize == 4 && "unexpected alignment requirements for DPRs"); + if (LastPush != MBB.end() && + tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, DPRGapSize)) + DefCFAOffsetCandidates.addExtraBytes(LastPush, DPRGapSize); + else { + emitSPUpdate(isARM, MBB, MBBI, dl, TII, -DPRGapSize, + MachineInstr::FrameSetup); + DefCFAOffsetCandidates.addInst(std::prev(MBBI), DPRGapSize); + } + } + + // Move past area 3. + if (DPRCSSize > 0) { + // Since vpush register list cannot have gaps, there may be multiple vpush + // instructions in the prologue. + while (MBBI != MBB.end() && MBBI->getOpcode() == ARM::VSTMDDB_UPD) { + DefCFAOffsetCandidates.addInst(MBBI, sizeOfSPAdjustment(*MBBI)); + LastPush = MBBI++; + } + } + + // Move past the aligned DPRCS2 area. + if (AFI->getNumAlignedDPRCS2Regs() > 0) { + MBBI = skipAlignedDPRCS2Spills(MBBI, AFI->getNumAlignedDPRCS2Regs()); + // The code inserted by emitAlignedDPRCS2Spills realigns the stack, and + // leaves the stack pointer pointing to the DPRCS2 area. + // + // Adjust NumBytes to represent the stack slots below the DPRCS2 area. + NumBytes += MFI.getObjectOffset(D8SpillFI); + } else + NumBytes = DPRCSOffset; + + if (GPRCS2Size > 0 && STI.splitFramePointerPush(MF)) { + GPRCS2Push = LastPush = MBBI++; + DefCFAOffsetCandidates.addInst(LastPush, GPRCS2Size); + } + + bool NeedsWinCFIStackAlloc = NeedsWinCFI; + if (STI.splitFramePointerPush(MF) && HasFP) + NeedsWinCFIStackAlloc = false; + + if (STI.isTargetWindows() && WindowsRequiresStackProbe(MF, NumBytes)) { + uint32_t NumWords = NumBytes >> 2; + + if (NumWords < 65536) { + BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi16), ARM::R4) + .addImm(NumWords) + .setMIFlags(MachineInstr::FrameSetup) + .add(predOps(ARMCC::AL)); + } else { + // Split into two instructions here, instead of using t2MOVi32imm, + // to allow inserting accurate SEH instructions (including accurate + // instruction size for each of them). + BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi16), ARM::R4) + .addImm(NumWords & 0xffff) + .setMIFlags(MachineInstr::FrameSetup) + .add(predOps(ARMCC::AL)); + BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVTi16), ARM::R4) + .addReg(ARM::R4) + .addImm(NumWords >> 16) + .setMIFlags(MachineInstr::FrameSetup) + .add(predOps(ARMCC::AL)); + } + + switch (TM.getCodeModel()) { + case CodeModel::Tiny: + llvm_unreachable("Tiny code model not available on ARM."); + case CodeModel::Small: + case CodeModel::Medium: + case CodeModel::Kernel: + BuildMI(MBB, MBBI, dl, TII.get(ARM::tBL)) + .add(predOps(ARMCC::AL)) + .addExternalSymbol("__chkstk") + .addReg(ARM::R4, RegState::Implicit) + .setMIFlags(MachineInstr::FrameSetup); + break; + case CodeModel::Large: + BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi32imm), ARM::R12) + .addExternalSymbol("__chkstk") + .setMIFlags(MachineInstr::FrameSetup); + + BuildMI(MBB, MBBI, dl, TII.get(ARM::tBLXr)) + .add(predOps(ARMCC::AL)) + .addReg(ARM::R12, RegState::Kill) + .addReg(ARM::R4, RegState::Implicit) + .setMIFlags(MachineInstr::FrameSetup); + break; + } + + MachineInstrBuilder Instr, SEH; + Instr = BuildMI(MBB, MBBI, dl, TII.get(ARM::t2SUBrr), ARM::SP) + .addReg(ARM::SP, RegState::Kill) + .addReg(ARM::R4, RegState::Kill) + .setMIFlags(MachineInstr::FrameSetup) + .add(predOps(ARMCC::AL)) + .add(condCodeOp()); + if (NeedsWinCFIStackAlloc) { + SEH = BuildMI(MF, dl, TII.get(ARM::SEH_StackAlloc)) + .addImm(NumBytes) + .addImm(/*Wide=*/1) + .setMIFlags(MachineInstr::FrameSetup); + MBB.insertAfter(Instr, SEH); + } + NumBytes = 0; + } + + if (NumBytes) { + // Adjust SP after all the callee-save spills. + if (AFI->getNumAlignedDPRCS2Regs() == 0 && + tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, NumBytes)) + DefCFAOffsetCandidates.addExtraBytes(LastPush, NumBytes); + else { + emitSPUpdate(isARM, MBB, MBBI, dl, TII, -NumBytes, + MachineInstr::FrameSetup); + DefCFAOffsetCandidates.addInst(std::prev(MBBI), NumBytes); + } + + if (HasFP && isARM) + // Restore from fp only in ARM mode: e.g. sub sp, r7, #24 + // Note it's not safe to do this in Thumb2 mode because it would have + // taken two instructions: + // mov sp, r7 + // sub sp, #24 + // If an interrupt is taken between the two instructions, then sp is in + // an inconsistent state (pointing to the middle of callee-saved area). + // The interrupt handler can end up clobbering the registers. + AFI->setShouldRestoreSPFromFP(true); + } + + // Set FP to point to the stack slot that contains the previous FP. + // For iOS, FP is R7, which has now been stored in spill area 1. + // Otherwise, if this is not iOS, all the callee-saved registers go + // into spill area 1, including the FP in R11. In either case, it + // is in area one and the adjustment needs to take place just after + // that push. + // FIXME: The above is not necessary true when PACBTI is enabled. + // AAPCS requires use of R11, and PACBTI gets in the way of regular pushes, + // so FP ends up on area two. + MachineBasicBlock::iterator AfterPush; + if (HasFP) { + AfterPush = std::next(GPRCS1Push); + unsigned PushSize = sizeOfSPAdjustment(*GPRCS1Push); + int FPOffset = PushSize + FramePtrOffsetInPush; + if (STI.splitFramePointerPush(MF)) { + AfterPush = std::next(GPRCS2Push); + emitRegPlusImmediate(!AFI->isThumbFunction(), MBB, AfterPush, dl, TII, + FramePtr, ARM::SP, 0, MachineInstr::FrameSetup); + } else { + emitRegPlusImmediate(!AFI->isThumbFunction(), MBB, AfterPush, dl, TII, + FramePtr, ARM::SP, FPOffset, + MachineInstr::FrameSetup); + } + if (!NeedsWinCFI) { + if (FramePtrOffsetInPush + PushSize != 0) { + unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfa( + nullptr, MRI->getDwarfRegNum(FramePtr, true), + FPCXTSaveSize + ArgRegsSaveSize - FramePtrOffsetInPush)); + BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) + .addCFIIndex(CFIIndex) + .setMIFlags(MachineInstr::FrameSetup); + } else { + unsigned CFIIndex = + MF.addFrameInst(MCCFIInstruction::createDefCfaRegister( + nullptr, MRI->getDwarfRegNum(FramePtr, true))); + BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) + .addCFIIndex(CFIIndex) + .setMIFlags(MachineInstr::FrameSetup); + } + } + } + + // Emit a SEH opcode indicating the prologue end. The rest of the prologue + // instructions below don't need to be replayed to unwind the stack. + if (NeedsWinCFI && MBBI != MBB.begin()) { + MachineBasicBlock::iterator End = MBBI; + if (HasFP && STI.splitFramePointerPush(MF)) + End = AfterPush; + insertSEHRange(MBB, {}, End, TII, MachineInstr::FrameSetup); + BuildMI(MBB, End, dl, TII.get(ARM::SEH_PrologEnd)) + .setMIFlag(MachineInstr::FrameSetup); + MF.setHasWinCFI(true); + } + + // Now that the prologue's actual instructions are finalised, we can insert + // the necessary DWARF cf instructions to describe the situation. Start by + // recording where each register ended up: + if (GPRCS1Size > 0 && !NeedsWinCFI) { + MachineBasicBlock::iterator Pos = std::next(GPRCS1Push); + int CFIIndex; + for (const auto &Entry : CSI) { + Register Reg = Entry.getReg(); + int FI = Entry.getFrameIdx(); + switch (Reg) { + case ARM::R8: + case ARM::R9: + case ARM::R10: + case ARM::R11: + case ARM::R12: + if (STI.splitFramePushPop(MF)) + break; + [[fallthrough]]; + case ARM::R0: + case ARM::R1: + case ARM::R2: + case ARM::R3: + case ARM::R4: + case ARM::R5: + case ARM::R6: + case ARM::R7: + case ARM::LR: + CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( + nullptr, MRI->getDwarfRegNum(Reg, true), MFI.getObjectOffset(FI))); + BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) + .addCFIIndex(CFIIndex) + .setMIFlags(MachineInstr::FrameSetup); + break; + } + } + } + + if (GPRCS2Size > 0 && !NeedsWinCFI) { + MachineBasicBlock::iterator Pos = std::next(GPRCS2Push); + for (const auto &Entry : CSI) { + Register Reg = Entry.getReg(); + int FI = Entry.getFrameIdx(); + switch (Reg) { + case ARM::R8: + case ARM::R9: + case ARM::R10: + case ARM::R11: + case ARM::R12: + if (STI.splitFramePushPop(MF)) { + unsigned DwarfReg = MRI->getDwarfRegNum( + Reg == ARM::R12 ? ARM::RA_AUTH_CODE : Reg, true); + int64_t Offset = MFI.getObjectOffset(FI); + unsigned CFIIndex = MF.addFrameInst( + MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset)); + BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) + .addCFIIndex(CFIIndex) + .setMIFlags(MachineInstr::FrameSetup); + } + break; + } + } + } + + if (DPRCSSize > 0 && !NeedsWinCFI) { + // Since vpush register list cannot have gaps, there may be multiple vpush + // instructions in the prologue. + MachineBasicBlock::iterator Pos = std::next(LastPush); + for (const auto &Entry : CSI) { + Register Reg = Entry.getReg(); + int FI = Entry.getFrameIdx(); + if ((Reg >= ARM::D0 && Reg <= ARM::D31) && + (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs())) { + unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true); + int64_t Offset = MFI.getObjectOffset(FI); + unsigned CFIIndex = MF.addFrameInst( + MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset)); + BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) + .addCFIIndex(CFIIndex) + .setMIFlags(MachineInstr::FrameSetup); + } + } + } + + // Now we can emit descriptions of where the canonical frame address was + // throughout the process. If we have a frame pointer, it takes over the job + // half-way through, so only the first few .cfi_def_cfa_offset instructions + // actually get emitted. + if (!NeedsWinCFI) + DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP); + + if (STI.isTargetELF() && hasFP(MF)) + MFI.setOffsetAdjustment(MFI.getOffsetAdjustment() - + AFI->getFramePtrSpillOffset()); + + AFI->setFPCXTSaveAreaSize(FPCXTSaveSize); + AFI->setGPRCalleeSavedArea1Size(GPRCS1Size); + AFI->setGPRCalleeSavedArea2Size(GPRCS2Size); + AFI->setDPRCalleeSavedGapSize(DPRGapSize); + AFI->setDPRCalleeSavedAreaSize(DPRCSSize); + + // If we need dynamic stack realignment, do it here. Be paranoid and make + // sure if we also have VLAs, we have a base pointer for frame access. + // If aligned NEON registers were spilled, the stack has already been + // realigned. + if (!AFI->getNumAlignedDPRCS2Regs() && RegInfo->hasStackRealignment(MF)) { + Align MaxAlign = MFI.getMaxAlign(); + assert(!AFI->isThumb1OnlyFunction()); + if (!AFI->isThumbFunction()) { + emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::SP, MaxAlign, + false); + } else { + // We cannot use sp as source/dest register here, thus we're using r4 to + // perform the calculations. We're emitting the following sequence: + // mov r4, sp + // -- use emitAligningInstructions to produce best sequence to zero + // -- out lower bits in r4 + // mov sp, r4 + // FIXME: It will be better just to find spare register here. + BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::R4) + .addReg(ARM::SP, RegState::Kill) + .add(predOps(ARMCC::AL)); + emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::R4, MaxAlign, + false); + BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP) + .addReg(ARM::R4, RegState::Kill) + .add(predOps(ARMCC::AL)); + } + + AFI->setShouldRestoreSPFromFP(true); + } + + // If we need a base pointer, set it up here. It's whatever the value + // of the stack pointer is at this point. Any variable size objects + // will be allocated after this, so we can still use the base pointer + // to reference locals. + // FIXME: Clarify FrameSetup flags here. + if (RegInfo->hasBasePointer(MF)) { + if (isARM) + BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), RegInfo->getBaseRegister()) + .addReg(ARM::SP) + .add(predOps(ARMCC::AL)) + .add(condCodeOp()); + else + BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), RegInfo->getBaseRegister()) + .addReg(ARM::SP) + .add(predOps(ARMCC::AL)); + } + + // If the frame has variable sized objects then the epilogue must restore + // the sp from fp. We can assume there's an FP here since hasFP already + // checks for hasVarSizedObjects. + if (MFI.hasVarSizedObjects()) + AFI->setShouldRestoreSPFromFP(true); +} + +void ARMFrameLowering::emitEpilogue(MachineFunction &MF, + MachineBasicBlock &MBB) const { + MachineFrameInfo &MFI = MF.getFrameInfo(); + ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); + const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); + const ARMBaseInstrInfo &TII = + *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); + assert(!AFI->isThumb1OnlyFunction() && + "This emitEpilogue does not support Thumb1!"); + bool isARM = !AFI->isThumbFunction(); + + // Amount of stack space we reserved next to incoming args for either + // varargs registers or stack arguments in tail calls made by this function. + unsigned ReservedArgStack = AFI->getArgRegsSaveSize(); + + // How much of the stack used by incoming arguments this function is expected + // to restore in this particular epilogue. + int IncomingArgStackToRestore = getArgumentStackToRestore(MF, MBB); + int NumBytes = (int)MFI.getStackSize(); + Register FramePtr = RegInfo->getFrameRegister(MF); + + // All calls are tail calls in GHC calling conv, and functions have no + // prologue/epilogue. + if (MF.getFunction().getCallingConv() == CallingConv::GHC) + return; + + // First put ourselves on the first (from top) terminator instructions. + MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator(); + DebugLoc dl = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc(); + + MachineBasicBlock::iterator RangeStart; + if (!AFI->hasStackFrame()) { + if (MF.hasWinCFI()) { + BuildMI(MBB, MBBI, dl, TII.get(ARM::SEH_EpilogStart)) + .setMIFlag(MachineInstr::FrameDestroy); + RangeStart = initMBBRange(MBB, MBBI); + } + + if (NumBytes + IncomingArgStackToRestore != 0) + emitSPUpdate(isARM, MBB, MBBI, dl, TII, + NumBytes + IncomingArgStackToRestore, + MachineInstr::FrameDestroy); + } else { + // Unwind MBBI to point to first LDR / VLDRD. + if (MBBI != MBB.begin()) { + do { + --MBBI; + } while (MBBI != MBB.begin() && + MBBI->getFlag(MachineInstr::FrameDestroy)); + if (!MBBI->getFlag(MachineInstr::FrameDestroy)) + ++MBBI; + } + + if (MF.hasWinCFI()) { + BuildMI(MBB, MBBI, dl, TII.get(ARM::SEH_EpilogStart)) + .setMIFlag(MachineInstr::FrameDestroy); + RangeStart = initMBBRange(MBB, MBBI); + } + + // Move SP to start of FP callee save spill area. + NumBytes -= (ReservedArgStack + + AFI->getFPCXTSaveAreaSize() + + AFI->getGPRCalleeSavedArea1Size() + + AFI->getGPRCalleeSavedArea2Size() + + AFI->getDPRCalleeSavedGapSize() + + AFI->getDPRCalleeSavedAreaSize()); + + // Reset SP based on frame pointer only if the stack frame extends beyond + // frame pointer stack slot or target is ELF and the function has FP. + if (AFI->shouldRestoreSPFromFP()) { + NumBytes = AFI->getFramePtrSpillOffset() - NumBytes; + if (NumBytes) { + if (isARM) + emitARMRegPlusImmediate(MBB, MBBI, dl, ARM::SP, FramePtr, -NumBytes, + ARMCC::AL, 0, TII, + MachineInstr::FrameDestroy); + else { + // It's not possible to restore SP from FP in a single instruction. + // For iOS, this looks like: + // mov sp, r7 + // sub sp, #24 + // This is bad, if an interrupt is taken after the mov, sp is in an + // inconsistent state. + // Use the first callee-saved register as a scratch register. + assert(!MFI.getPristineRegs(MF).test(ARM::R4) && + "No scratch register to restore SP from FP!"); + emitT2RegPlusImmediate(MBB, MBBI, dl, ARM::R4, FramePtr, -NumBytes, + ARMCC::AL, 0, TII, MachineInstr::FrameDestroy); + BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP) + .addReg(ARM::R4) + .add(predOps(ARMCC::AL)) + .setMIFlag(MachineInstr::FrameDestroy); + } + } else { + // Thumb2 or ARM. + if (isARM) + BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), ARM::SP) + .addReg(FramePtr) + .add(predOps(ARMCC::AL)) + .add(condCodeOp()) + .setMIFlag(MachineInstr::FrameDestroy); + else + BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP) + .addReg(FramePtr) + .add(predOps(ARMCC::AL)) + .setMIFlag(MachineInstr::FrameDestroy); + } + } else if (NumBytes && + !tryFoldSPUpdateIntoPushPop(STI, MF, &*MBBI, NumBytes)) + emitSPUpdate(isARM, MBB, MBBI, dl, TII, NumBytes, + MachineInstr::FrameDestroy); + + // Increment past our save areas. + if (AFI->getGPRCalleeSavedArea2Size() && STI.splitFramePointerPush(MF)) + MBBI++; + + if (MBBI != MBB.end() && AFI->getDPRCalleeSavedAreaSize()) { + MBBI++; + // Since vpop register list cannot have gaps, there may be multiple vpop + // instructions in the epilogue. + while (MBBI != MBB.end() && MBBI->getOpcode() == ARM::VLDMDIA_UPD) + MBBI++; + } + if (AFI->getDPRCalleeSavedGapSize()) { + assert(AFI->getDPRCalleeSavedGapSize() == 4 && + "unexpected DPR alignment gap"); + emitSPUpdate(isARM, MBB, MBBI, dl, TII, AFI->getDPRCalleeSavedGapSize(), + MachineInstr::FrameDestroy); + } + + if (AFI->getGPRCalleeSavedArea2Size() && !STI.splitFramePointerPush(MF)) + MBBI++; + if (AFI->getGPRCalleeSavedArea1Size()) MBBI++; + + if (ReservedArgStack || IncomingArgStackToRestore) { + assert((int)ReservedArgStack + IncomingArgStackToRestore >= 0 && + "attempting to restore negative stack amount"); + emitSPUpdate(isARM, MBB, MBBI, dl, TII, + ReservedArgStack + IncomingArgStackToRestore, + MachineInstr::FrameDestroy); + } + + // Validate PAC, It should have been already popped into R12. For CMSE entry + // function, the validation instruction is emitted during expansion of the + // tBXNS_RET, since the validation must use the value of SP at function + // entry, before saving, resp. after restoring, FPCXTNS. + if (AFI->shouldSignReturnAddress() && !AFI->isCmseNSEntryFunction()) + BuildMI(MBB, MBBI, DebugLoc(), STI.getInstrInfo()->get(ARM::t2AUT)); + } + + if (MF.hasWinCFI()) { + insertSEHRange(MBB, RangeStart, MBB.end(), TII, MachineInstr::FrameDestroy); + BuildMI(MBB, MBB.end(), dl, TII.get(ARM::SEH_EpilogEnd)) + .setMIFlag(MachineInstr::FrameDestroy); + } +} + +/// getFrameIndexReference - Provide a base+offset reference to an FI slot for +/// debug info. It's the same as what we use for resolving the code-gen +/// references for now. FIXME: This can go wrong when references are +/// SP-relative and simple call frames aren't used. +StackOffset ARMFrameLowering::getFrameIndexReference(const MachineFunction &MF, + int FI, + Register &FrameReg) const { + return StackOffset::getFixed(ResolveFrameIndexReference(MF, FI, FrameReg, 0)); +} + +int ARMFrameLowering::ResolveFrameIndexReference(const MachineFunction &MF, + int FI, Register &FrameReg, + int SPAdj) const { + const MachineFrameInfo &MFI = MF.getFrameInfo(); + const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>( + MF.getSubtarget().getRegisterInfo()); + const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); + int Offset = MFI.getObjectOffset(FI) + MFI.getStackSize(); + int FPOffset = Offset - AFI->getFramePtrSpillOffset(); + bool isFixed = MFI.isFixedObjectIndex(FI); + + FrameReg = ARM::SP; + Offset += SPAdj; + + // SP can move around if there are allocas. We may also lose track of SP + // when emergency spilling inside a non-reserved call frame setup. + bool hasMovingSP = !hasReservedCallFrame(MF); + + // When dynamically realigning the stack, use the frame pointer for + // parameters, and the stack/base pointer for locals. + if (RegInfo->hasStackRealignment(MF)) { + assert(hasFP(MF) && "dynamic stack realignment without a FP!"); + if (isFixed) { + FrameReg = RegInfo->getFrameRegister(MF); + Offset = FPOffset; + } else if (hasMovingSP) { + assert(RegInfo->hasBasePointer(MF) && + "VLAs and dynamic stack alignment, but missing base pointer!"); + FrameReg = RegInfo->getBaseRegister(); + Offset -= SPAdj; + } + return Offset; + } + + // If there is a frame pointer, use it when we can. + if (hasFP(MF) && AFI->hasStackFrame()) { + // Use frame pointer to reference fixed objects. Use it for locals if + // there are VLAs (and thus the SP isn't reliable as a base). + if (isFixed || (hasMovingSP && !RegInfo->hasBasePointer(MF))) { + FrameReg = RegInfo->getFrameRegister(MF); + return FPOffset; + } else if (hasMovingSP) { + assert(RegInfo->hasBasePointer(MF) && "missing base pointer!"); + if (AFI->isThumb2Function()) { + // Try to use the frame pointer if we can, else use the base pointer + // since it's available. This is handy for the emergency spill slot, in + // particular. + if (FPOffset >= -255 && FPOffset < 0) { + FrameReg = RegInfo->getFrameRegister(MF); + return FPOffset; + } + } + } else if (AFI->isThumbFunction()) { + // Prefer SP to base pointer, if the offset is suitably aligned and in + // range as the effective range of the immediate offset is bigger when + // basing off SP. + // Use add <rd>, sp, #<imm8> + // ldr <rd>, [sp, #<imm8>] + if (Offset >= 0 && (Offset & 3) == 0 && Offset <= 1020) + return Offset; + // In Thumb2 mode, the negative offset is very limited. Try to avoid + // out of range references. ldr <rt>,[<rn>, #-<imm8>] + if (AFI->isThumb2Function() && FPOffset >= -255 && FPOffset < 0) { + FrameReg = RegInfo->getFrameRegister(MF); + return FPOffset; + } + } else if (Offset > (FPOffset < 0 ? -FPOffset : FPOffset)) { + // Otherwise, use SP or FP, whichever is closer to the stack slot. + FrameReg = RegInfo->getFrameRegister(MF); + return FPOffset; + } + } + // Use the base pointer if we have one. + // FIXME: Maybe prefer sp on Thumb1 if it's legal and the offset is cheaper? + // That can happen if we forced a base pointer for a large call frame. + if (RegInfo->hasBasePointer(MF)) { + FrameReg = RegInfo->getBaseRegister(); + Offset -= SPAdj; + } + return Offset; +} + +void ARMFrameLowering::emitPushInst(MachineBasicBlock &MBB, + MachineBasicBlock::iterator MI, + ArrayRef<CalleeSavedInfo> CSI, + unsigned StmOpc, unsigned StrOpc, + bool NoGap, bool (*Func)(unsigned, bool), + unsigned NumAlignedDPRCS2Regs, + unsigned MIFlags) const { + MachineFunction &MF = *MBB.getParent(); + const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); + const TargetRegisterInfo &TRI = *STI.getRegisterInfo(); + + DebugLoc DL; + + using RegAndKill = std::pair<unsigned, bool>; + + SmallVector<RegAndKill, 4> Regs; + unsigned i = CSI.size(); + while (i != 0) { + unsigned LastReg = 0; + for (; i != 0; --i) { + Register Reg = CSI[i-1].getReg(); + if (!(Func)(Reg, STI.splitFramePushPop(MF))) continue; + + // D-registers in the aligned area DPRCS2 are NOT spilled here. + if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs) + continue; + + const MachineRegisterInfo &MRI = MF.getRegInfo(); + bool isLiveIn = MRI.isLiveIn(Reg); + if (!isLiveIn && !MRI.isReserved(Reg)) + MBB.addLiveIn(Reg); + // If NoGap is true, push consecutive registers and then leave the rest + // for other instructions. e.g. + // vpush {d8, d10, d11} -> vpush {d8}, vpush {d10, d11} + if (NoGap && LastReg && LastReg != Reg-1) + break; + LastReg = Reg; + // Do not set a kill flag on values that are also marked as live-in. This + // happens with the @llvm-returnaddress intrinsic and with arguments + // passed in callee saved registers. + // Omitting the kill flags is conservatively correct even if the live-in + // is not used after all. + Regs.push_back(std::make_pair(Reg, /*isKill=*/!isLiveIn)); + } + + if (Regs.empty()) + continue; + + llvm::sort(Regs, [&](const RegAndKill &LHS, const RegAndKill &RHS) { + return TRI.getEncodingValue(LHS.first) < TRI.getEncodingValue(RHS.first); + }); + + if (Regs.size() > 1 || StrOpc== 0) { + MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StmOpc), ARM::SP) + .addReg(ARM::SP) + .setMIFlags(MIFlags) + .add(predOps(ARMCC::AL)); + for (unsigned i = 0, e = Regs.size(); i < e; ++i) + MIB.addReg(Regs[i].first, getKillRegState(Regs[i].second)); + } else if (Regs.size() == 1) { + BuildMI(MBB, MI, DL, TII.get(StrOpc), ARM::SP) + .addReg(Regs[0].first, getKillRegState(Regs[0].second)) + .addReg(ARM::SP) + .setMIFlags(MIFlags) + .addImm(-4) + .add(predOps(ARMCC::AL)); + } + Regs.clear(); + + // Put any subsequent vpush instructions before this one: they will refer to + // higher register numbers so need to be pushed first in order to preserve + // monotonicity. + if (MI != MBB.begin()) + --MI; + } +} + +void ARMFrameLowering::emitPopInst(MachineBasicBlock &MBB, + MachineBasicBlock::iterator MI, + MutableArrayRef<CalleeSavedInfo> CSI, + unsigned LdmOpc, unsigned LdrOpc, + bool isVarArg, bool NoGap, + bool (*Func)(unsigned, bool), + unsigned NumAlignedDPRCS2Regs) const { + MachineFunction &MF = *MBB.getParent(); + const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); + const TargetRegisterInfo &TRI = *STI.getRegisterInfo(); + ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); + bool hasPAC = AFI->shouldSignReturnAddress(); + DebugLoc DL; + bool isTailCall = false; + bool isInterrupt = false; + bool isTrap = false; + bool isCmseEntry = false; + if (MBB.end() != MI) { + DL = MI->getDebugLoc(); + unsigned RetOpcode = MI->getOpcode(); + isTailCall = + (RetOpcode == ARM::TCRETURNdi || RetOpcode == ARM::TCRETURNri || + RetOpcode == ARM::TCRETURNrinotr12); + isInterrupt = + RetOpcode == ARM::SUBS_PC_LR || RetOpcode == ARM::t2SUBS_PC_LR; + isTrap = + RetOpcode == ARM::TRAP || RetOpcode == ARM::TRAPNaCl || + RetOpcode == ARM::tTRAP; + isCmseEntry = (RetOpcode == ARM::tBXNS || RetOpcode == ARM::tBXNS_RET); + } + + SmallVector<unsigned, 4> Regs; + unsigned i = CSI.size(); + while (i != 0) { + unsigned LastReg = 0; + bool DeleteRet = false; + for (; i != 0; --i) { + CalleeSavedInfo &Info = CSI[i-1]; + Register Reg = Info.getReg(); + if (!(Func)(Reg, STI.splitFramePushPop(MF))) continue; + + // The aligned reloads from area DPRCS2 are not inserted here. + if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs) + continue; + if (Reg == ARM::LR && !isTailCall && !isVarArg && !isInterrupt && + !isCmseEntry && !isTrap && AFI->getArgumentStackToRestore() == 0 && + STI.hasV5TOps() && MBB.succ_empty() && !hasPAC && + !STI.splitFramePointerPush(MF)) { + Reg = ARM::PC; + // Fold the return instruction into the LDM. + DeleteRet = true; + LdmOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_RET : ARM::LDMIA_RET; + } + + // If NoGap is true, pop consecutive registers and then leave the rest + // for other instructions. e.g. + // vpop {d8, d10, d11} -> vpop {d8}, vpop {d10, d11} + if (NoGap && LastReg && LastReg != Reg-1) + break; + + LastReg = Reg; + Regs.push_back(Reg); + } + + if (Regs.empty()) + continue; + + llvm::sort(Regs, [&](unsigned LHS, unsigned RHS) { + return TRI.getEncodingValue(LHS) < TRI.getEncodingValue(RHS); + }); + + if (Regs.size() > 1 || LdrOpc == 0) { + MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(LdmOpc), ARM::SP) + .addReg(ARM::SP) + .add(predOps(ARMCC::AL)) + .setMIFlags(MachineInstr::FrameDestroy); + for (unsigned Reg : Regs) + MIB.addReg(Reg, getDefRegState(true)); + if (DeleteRet) { + if (MI != MBB.end()) { + MIB.copyImplicitOps(*MI); + MI->eraseFromParent(); + } + } + MI = MIB; + } else if (Regs.size() == 1) { + // If we adjusted the reg to PC from LR above, switch it back here. We + // only do that for LDM. + if (Regs[0] == ARM::PC) + Regs[0] = ARM::LR; + MachineInstrBuilder MIB = + BuildMI(MBB, MI, DL, TII.get(LdrOpc), Regs[0]) + .addReg(ARM::SP, RegState::Define) + .addReg(ARM::SP) + .setMIFlags(MachineInstr::FrameDestroy); + // ARM mode needs an extra reg0 here due to addrmode2. Will go away once + // that refactoring is complete (eventually). + if (LdrOpc == ARM::LDR_POST_REG || LdrOpc == ARM::LDR_POST_IMM) { + MIB.addReg(0); + MIB.addImm(ARM_AM::getAM2Opc(ARM_AM::add, 4, ARM_AM::no_shift)); + } else + MIB.addImm(4); + MIB.add(predOps(ARMCC::AL)); + } + Regs.clear(); + + // Put any subsequent vpop instructions after this one: they will refer to + // higher register numbers so need to be popped afterwards. + if (MI != MBB.end()) + ++MI; + } +} + +/// Emit aligned spill instructions for NumAlignedDPRCS2Regs D-registers +/// starting from d8. Also insert stack realignment code and leave the stack +/// pointer pointing to the d8 spill slot. +static void emitAlignedDPRCS2Spills(MachineBasicBlock &MBB, + MachineBasicBlock::iterator MI, + unsigned NumAlignedDPRCS2Regs, + ArrayRef<CalleeSavedInfo> CSI, + const TargetRegisterInfo *TRI) { + MachineFunction &MF = *MBB.getParent(); + ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); + DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc(); + const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); + MachineFrameInfo &MFI = MF.getFrameInfo(); + + // Mark the D-register spill slots as properly aligned. Since MFI computes + // stack slot layout backwards, this can actually mean that the d-reg stack + // slot offsets can be wrong. The offset for d8 will always be correct. + for (const CalleeSavedInfo &I : CSI) { + unsigned DNum = I.getReg() - ARM::D8; + if (DNum > NumAlignedDPRCS2Regs - 1) + continue; + int FI = I.getFrameIdx(); + // The even-numbered registers will be 16-byte aligned, the odd-numbered + // registers will be 8-byte aligned. + MFI.setObjectAlignment(FI, DNum % 2 ? Align(8) : Align(16)); + + // The stack slot for D8 needs to be maximally aligned because this is + // actually the point where we align the stack pointer. MachineFrameInfo + // computes all offsets relative to the incoming stack pointer which is a + // bit weird when realigning the stack. Any extra padding for this + // over-alignment is not realized because the code inserted below adjusts + // the stack pointer by numregs * 8 before aligning the stack pointer. + if (DNum == 0) + MFI.setObjectAlignment(FI, MFI.getMaxAlign()); + } + + // Move the stack pointer to the d8 spill slot, and align it at the same + // time. Leave the stack slot address in the scratch register r4. + // + // sub r4, sp, #numregs * 8 + // bic r4, r4, #align - 1 + // mov sp, r4 + // + bool isThumb = AFI->isThumbFunction(); + assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1"); + AFI->setShouldRestoreSPFromFP(true); + + // sub r4, sp, #numregs * 8 + // The immediate is <= 64, so it doesn't need any special encoding. + unsigned Opc = isThumb ? ARM::t2SUBri : ARM::SUBri; + BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4) + .addReg(ARM::SP) + .addImm(8 * NumAlignedDPRCS2Regs) + .add(predOps(ARMCC::AL)) + .add(condCodeOp()); + + Align MaxAlign = MF.getFrameInfo().getMaxAlign(); + // We must set parameter MustBeSingleInstruction to true, since + // skipAlignedDPRCS2Spills expects exactly 3 instructions to perform + // stack alignment. Luckily, this can always be done since all ARM + // architecture versions that support Neon also support the BFC + // instruction. + emitAligningInstructions(MF, AFI, TII, MBB, MI, DL, ARM::R4, MaxAlign, true); + + // mov sp, r4 + // The stack pointer must be adjusted before spilling anything, otherwise + // the stack slots could be clobbered by an interrupt handler. + // Leave r4 live, it is used below. + Opc = isThumb ? ARM::tMOVr : ARM::MOVr; + MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(Opc), ARM::SP) + .addReg(ARM::R4) + .add(predOps(ARMCC::AL)); + if (!isThumb) + MIB.add(condCodeOp()); + + // Now spill NumAlignedDPRCS2Regs registers starting from d8. + // r4 holds the stack slot address. + unsigned NextReg = ARM::D8; + + // 16-byte aligned vst1.64 with 4 d-regs and address writeback. + // The writeback is only needed when emitting two vst1.64 instructions. + if (NumAlignedDPRCS2Regs >= 6) { + unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, + &ARM::QQPRRegClass); + MBB.addLiveIn(SupReg); + BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Qwb_fixed), ARM::R4) + .addReg(ARM::R4, RegState::Kill) + .addImm(16) + .addReg(NextReg) + .addReg(SupReg, RegState::ImplicitKill) + .add(predOps(ARMCC::AL)); + NextReg += 4; + NumAlignedDPRCS2Regs -= 4; + } + + // We won't modify r4 beyond this point. It currently points to the next + // register to be spilled. + unsigned R4BaseReg = NextReg; + + // 16-byte aligned vst1.64 with 4 d-regs, no writeback. + if (NumAlignedDPRCS2Regs >= 4) { + unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, + &ARM::QQPRRegClass); + MBB.addLiveIn(SupReg); + BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Q)) + .addReg(ARM::R4) + .addImm(16) + .addReg(NextReg) + .addReg(SupReg, RegState::ImplicitKill) + .add(predOps(ARMCC::AL)); + NextReg += 4; + NumAlignedDPRCS2Regs -= 4; + } + + // 16-byte aligned vst1.64 with 2 d-regs. + if (NumAlignedDPRCS2Regs >= 2) { + unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, + &ARM::QPRRegClass); + MBB.addLiveIn(SupReg); + BuildMI(MBB, MI, DL, TII.get(ARM::VST1q64)) + .addReg(ARM::R4) + .addImm(16) + .addReg(SupReg) + .add(predOps(ARMCC::AL)); + NextReg += 2; + NumAlignedDPRCS2Regs -= 2; + } + + // Finally, use a vanilla vstr.64 for the odd last register. + if (NumAlignedDPRCS2Regs) { + MBB.addLiveIn(NextReg); + // vstr.64 uses addrmode5 which has an offset scale of 4. + BuildMI(MBB, MI, DL, TII.get(ARM::VSTRD)) + .addReg(NextReg) + .addReg(ARM::R4) + .addImm((NextReg - R4BaseReg) * 2) + .add(predOps(ARMCC::AL)); + } + + // The last spill instruction inserted should kill the scratch register r4. + std::prev(MI)->addRegisterKilled(ARM::R4, TRI); +} + +/// Skip past the code inserted by emitAlignedDPRCS2Spills, and return an +/// iterator to the following instruction. +static MachineBasicBlock::iterator +skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI, + unsigned NumAlignedDPRCS2Regs) { + // sub r4, sp, #numregs * 8 + // bic r4, r4, #align - 1 + // mov sp, r4 + ++MI; ++MI; ++MI; + assert(MI->mayStore() && "Expecting spill instruction"); + + // These switches all fall through. + switch(NumAlignedDPRCS2Regs) { + case 7: + ++MI; + assert(MI->mayStore() && "Expecting spill instruction"); + [[fallthrough]]; + default: + ++MI; + assert(MI->mayStore() && "Expecting spill instruction"); + [[fallthrough]]; + case 1: + case 2: + case 4: + assert(MI->killsRegister(ARM::R4, /*TRI=*/nullptr) && "Missed kill flag"); + ++MI; + } + return MI; +} + +/// Emit aligned reload instructions for NumAlignedDPRCS2Regs D-registers +/// starting from d8. These instructions are assumed to execute while the +/// stack is still aligned, unlike the code inserted by emitPopInst. +static void emitAlignedDPRCS2Restores(MachineBasicBlock &MBB, + MachineBasicBlock::iterator MI, + unsigned NumAlignedDPRCS2Regs, + ArrayRef<CalleeSavedInfo> CSI, + const TargetRegisterInfo *TRI) { + MachineFunction &MF = *MBB.getParent(); + ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); + DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc(); + const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); + + // Find the frame index assigned to d8. + int D8SpillFI = 0; + for (const CalleeSavedInfo &I : CSI) + if (I.getReg() == ARM::D8) { + D8SpillFI = I.getFrameIdx(); + break; + } + + // Materialize the address of the d8 spill slot into the scratch register r4. + // This can be fairly complicated if the stack frame is large, so just use + // the normal frame index elimination mechanism to do it. This code runs as + // the initial part of the epilog where the stack and base pointers haven't + // been changed yet. + bool isThumb = AFI->isThumbFunction(); + assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1"); + + unsigned Opc = isThumb ? ARM::t2ADDri : ARM::ADDri; + BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4) + .addFrameIndex(D8SpillFI) + .addImm(0) + .add(predOps(ARMCC::AL)) + .add(condCodeOp()); + + // Now restore NumAlignedDPRCS2Regs registers starting from d8. + unsigned NextReg = ARM::D8; + + // 16-byte aligned vld1.64 with 4 d-regs and writeback. + if (NumAlignedDPRCS2Regs >= 6) { + unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, + &ARM::QQPRRegClass); + BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Qwb_fixed), NextReg) + .addReg(ARM::R4, RegState::Define) + .addReg(ARM::R4, RegState::Kill) + .addImm(16) + .addReg(SupReg, RegState::ImplicitDefine) + .add(predOps(ARMCC::AL)); + NextReg += 4; + NumAlignedDPRCS2Regs -= 4; + } + + // We won't modify r4 beyond this point. It currently points to the next + // register to be spilled. + unsigned R4BaseReg = NextReg; + + // 16-byte aligned vld1.64 with 4 d-regs, no writeback. + if (NumAlignedDPRCS2Regs >= 4) { + unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, + &ARM::QQPRRegClass); + BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Q), NextReg) + .addReg(ARM::R4) + .addImm(16) + .addReg(SupReg, RegState::ImplicitDefine) + .add(predOps(ARMCC::AL)); + NextReg += 4; + NumAlignedDPRCS2Regs -= 4; + } + + // 16-byte aligned vld1.64 with 2 d-regs. + if (NumAlignedDPRCS2Regs >= 2) { + unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, + &ARM::QPRRegClass); + BuildMI(MBB, MI, DL, TII.get(ARM::VLD1q64), SupReg) + .addReg(ARM::R4) + .addImm(16) + .add(predOps(ARMCC::AL)); + NextReg += 2; + NumAlignedDPRCS2Regs -= 2; + } + + // Finally, use a vanilla vldr.64 for the remaining odd register. + if (NumAlignedDPRCS2Regs) + BuildMI(MBB, MI, DL, TII.get(ARM::VLDRD), NextReg) + .addReg(ARM::R4) + .addImm(2 * (NextReg - R4BaseReg)) + .add(predOps(ARMCC::AL)); + + // Last store kills r4. + std::prev(MI)->addRegisterKilled(ARM::R4, TRI); +} + +bool ARMFrameLowering::spillCalleeSavedRegisters( + MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, + ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { + if (CSI.empty()) + return false; + + MachineFunction &MF = *MBB.getParent(); + ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); + + unsigned PushOpc = AFI->isThumbFunction() ? ARM::t2STMDB_UPD : ARM::STMDB_UPD; + unsigned PushOneOpc = AFI->isThumbFunction() ? + ARM::t2STR_PRE : ARM::STR_PRE_IMM; + unsigned FltOpc = ARM::VSTMDDB_UPD; + unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs(); + // Compute PAC in R12. + if (AFI->shouldSignReturnAddress()) { + BuildMI(MBB, MI, DebugLoc(), STI.getInstrInfo()->get(ARM::t2PAC)) + .setMIFlags(MachineInstr::FrameSetup); + } + // Save the non-secure floating point context. + if (llvm::any_of(CSI, [](const CalleeSavedInfo &C) { + return C.getReg() == ARM::FPCXTNS; + })) { + BuildMI(MBB, MI, DebugLoc(), STI.getInstrInfo()->get(ARM::VSTR_FPCXTNS_pre), + ARM::SP) + .addReg(ARM::SP) + .addImm(-4) + .add(predOps(ARMCC::AL)); + } + if (STI.splitFramePointerPush(MF)) { + emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, + &isSplitFPArea1Register, 0, MachineInstr::FrameSetup); + emitPushInst(MBB, MI, CSI, FltOpc, 0, true, &isARMArea3Register, + NumAlignedDPRCS2Regs, MachineInstr::FrameSetup); + emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, + &isSplitFPArea2Register, 0, MachineInstr::FrameSetup); + } else { + emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, &isARMArea1Register, + 0, MachineInstr::FrameSetup); + emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, &isARMArea2Register, + 0, MachineInstr::FrameSetup); + emitPushInst(MBB, MI, CSI, FltOpc, 0, true, &isARMArea3Register, + NumAlignedDPRCS2Regs, MachineInstr::FrameSetup); + } + + // The code above does not insert spill code for the aligned DPRCS2 registers. + // The stack realignment code will be inserted between the push instructions + // and these spills. + if (NumAlignedDPRCS2Regs) + emitAlignedDPRCS2Spills(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI); + + return true; +} + +bool ARMFrameLowering::restoreCalleeSavedRegisters( + MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, + MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { + if (CSI.empty()) + return false; + + MachineFunction &MF = *MBB.getParent(); + ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); + bool isVarArg = AFI->getArgRegsSaveSize() > 0; + unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs(); + + // The emitPopInst calls below do not insert reloads for the aligned DPRCS2 + // registers. Do that here instead. + if (NumAlignedDPRCS2Regs) + emitAlignedDPRCS2Restores(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI); + + unsigned PopOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_UPD : ARM::LDMIA_UPD; + unsigned LdrOpc = + AFI->isThumbFunction() ? ARM::t2LDR_POST : ARM::LDR_POST_IMM; + unsigned FltOpc = ARM::VLDMDIA_UPD; + if (STI.splitFramePointerPush(MF)) { + emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false, + &isSplitFPArea2Register, 0); + emitPopInst(MBB, MI, CSI, FltOpc, 0, isVarArg, true, &isARMArea3Register, + NumAlignedDPRCS2Regs); + emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false, + &isSplitFPArea1Register, 0); + } else { + emitPopInst(MBB, MI, CSI, FltOpc, 0, isVarArg, true, &isARMArea3Register, + NumAlignedDPRCS2Regs); + emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false, + &isARMArea2Register, 0); + emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false, + &isARMArea1Register, 0); + } + + return true; +} + +// FIXME: Make generic? +static unsigned EstimateFunctionSizeInBytes(const MachineFunction &MF, + const ARMBaseInstrInfo &TII) { + unsigned FnSize = 0; + for (auto &MBB : MF) { + for (auto &MI : MBB) + FnSize += TII.getInstSizeInBytes(MI); + } + if (MF.getJumpTableInfo()) + for (auto &Table: MF.getJumpTableInfo()->getJumpTables()) + FnSize += Table.MBBs.size() * 4; + FnSize += MF.getConstantPool()->getConstants().size() * 4; + return FnSize; +} + +/// estimateRSStackSizeLimit - Look at each instruction that references stack +/// frames and return the stack size limit beyond which some of these +/// instructions will require a scratch register during their expansion later. +// FIXME: Move to TII? +static unsigned estimateRSStackSizeLimit(MachineFunction &MF, + const TargetFrameLowering *TFI, + bool &HasNonSPFrameIndex) { + const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); + const ARMBaseInstrInfo &TII = + *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); + const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); + unsigned Limit = (1 << 12) - 1; + for (auto &MBB : MF) { + for (auto &MI : MBB) { + if (MI.isDebugInstr()) + continue; + for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { + if (!MI.getOperand(i).isFI()) + continue; + + // When using ADDri to get the address of a stack object, 255 is the + // largest offset guaranteed to fit in the immediate offset. + if (MI.getOpcode() == ARM::ADDri) { + Limit = std::min(Limit, (1U << 8) - 1); + break; + } + // t2ADDri will not require an extra register, it can reuse the + // destination. + if (MI.getOpcode() == ARM::t2ADDri || MI.getOpcode() == ARM::t2ADDri12) + break; + + const MCInstrDesc &MCID = MI.getDesc(); + const TargetRegisterClass *RegClass = TII.getRegClass(MCID, i, TRI, MF); + if (RegClass && !RegClass->contains(ARM::SP)) + HasNonSPFrameIndex = true; + + // Otherwise check the addressing mode. + switch (MI.getDesc().TSFlags & ARMII::AddrModeMask) { + case ARMII::AddrMode_i12: + case ARMII::AddrMode2: + // Default 12 bit limit. + break; + case ARMII::AddrMode3: + case ARMII::AddrModeT2_i8neg: + Limit = std::min(Limit, (1U << 8) - 1); + break; + case ARMII::AddrMode5FP16: + Limit = std::min(Limit, ((1U << 8) - 1) * 2); + break; + case ARMII::AddrMode5: + case ARMII::AddrModeT2_i8s4: + case ARMII::AddrModeT2_ldrex: + Limit = std::min(Limit, ((1U << 8) - 1) * 4); + break; + case ARMII::AddrModeT2_i12: + // i12 supports only positive offset so these will be converted to + // i8 opcodes. See llvm::rewriteT2FrameIndex. + if (TFI->hasFP(MF) && AFI->hasStackFrame()) + Limit = std::min(Limit, (1U << 8) - 1); + break; + case ARMII::AddrMode4: + case ARMII::AddrMode6: + // Addressing modes 4 & 6 (load/store) instructions can't encode an + // immediate offset for stack references. + return 0; + case ARMII::AddrModeT2_i7: + Limit = std::min(Limit, ((1U << 7) - 1) * 1); + break; + case ARMII::AddrModeT2_i7s2: + Limit = std::min(Limit, ((1U << 7) - 1) * 2); + break; + case ARMII::AddrModeT2_i7s4: + Limit = std::min(Limit, ((1U << 7) - 1) * 4); + break; + default: + llvm_unreachable("Unhandled addressing mode in stack size limit calculation"); + } + break; // At most one FI per instruction + } + } + } + + return Limit; +} + +// In functions that realign the stack, it can be an advantage to spill the +// callee-saved vector registers after realigning the stack. The vst1 and vld1 +// instructions take alignment hints that can improve performance. +static void +checkNumAlignedDPRCS2Regs(MachineFunction &MF, BitVector &SavedRegs) { + MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(0); + if (!SpillAlignedNEONRegs) + return; + + // Naked functions don't spill callee-saved registers. + if (MF.getFunction().hasFnAttribute(Attribute::Naked)) + return; + + // We are planning to use NEON instructions vst1 / vld1. + if (!MF.getSubtarget<ARMSubtarget>().hasNEON()) + return; + + // Don't bother if the default stack alignment is sufficiently high. + if (MF.getSubtarget().getFrameLowering()->getStackAlign() >= Align(8)) + return; + + // Aligned spills require stack realignment. + if (!static_cast<const ARMBaseRegisterInfo *>( + MF.getSubtarget().getRegisterInfo())->canRealignStack(MF)) + return; + + // We always spill contiguous d-registers starting from d8. Count how many + // needs spilling. The register allocator will almost always use the + // callee-saved registers in order, but it can happen that there are holes in + // the range. Registers above the hole will be spilled to the standard DPRCS + // area. + unsigned NumSpills = 0; + for (; NumSpills < 8; ++NumSpills) + if (!SavedRegs.test(ARM::D8 + NumSpills)) + break; + + // Don't do this for just one d-register. It's not worth it. + if (NumSpills < 2) + return; + + // Spill the first NumSpills D-registers after realigning the stack. + MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(NumSpills); + + // A scratch register is required for the vst1 / vld1 instructions. + SavedRegs.set(ARM::R4); +} + +bool ARMFrameLowering::enableShrinkWrapping(const MachineFunction &MF) const { + // For CMSE entry functions, we want to save the FPCXT_NS immediately + // upon function entry (resp. restore it immmediately before return) + if (STI.hasV8_1MMainlineOps() && + MF.getInfo<ARMFunctionInfo>()->isCmseNSEntryFunction()) + return false; + + // We are disabling shrinkwrapping for now when PAC is enabled, as + // shrinkwrapping can cause clobbering of r12 when the PAC code is + // generated. A follow-up patch will fix this in a more performant manner. + if (MF.getInfo<ARMFunctionInfo>()->shouldSignReturnAddress( + true /* SpillsLR */)) + return false; + + return true; +} + +bool ARMFrameLowering::requiresAAPCSFrameRecord( + const MachineFunction &MF) const { + const auto &Subtarget = MF.getSubtarget<ARMSubtarget>(); + return Subtarget.createAAPCSFrameChain() && hasFP(MF); +} + +// Thumb1 may require a spill when storing to a frame index through FP (or any +// access with execute-only), for cases where FP is a high register (R11). This +// scans the function for cases where this may happen. +static bool canSpillOnFrameIndexAccess(const MachineFunction &MF, + const TargetFrameLowering &TFI) { + const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); + if (!AFI->isThumb1OnlyFunction()) + return false; + + const ARMSubtarget &STI = MF.getSubtarget<ARMSubtarget>(); + for (const auto &MBB : MF) + for (const auto &MI : MBB) + if (MI.getOpcode() == ARM::tSTRspi || MI.getOpcode() == ARM::tSTRi || + STI.genExecuteOnly()) + for (const auto &Op : MI.operands()) + if (Op.isFI()) { + Register Reg; + TFI.getFrameIndexReference(MF, Op.getIndex(), Reg); + if (ARM::hGPRRegClass.contains(Reg) && Reg != ARM::SP) + return true; + } + return false; +} + +void ARMFrameLowering::determineCalleeSaves(MachineFunction &MF, + BitVector &SavedRegs, + RegScavenger *RS) const { + TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS); + // This tells PEI to spill the FP as if it is any other callee-save register + // to take advantage the eliminateFrameIndex machinery. This also ensures it + // is spilled in the order specified by getCalleeSavedRegs() to make it easier + // to combine multiple loads / stores. + bool CanEliminateFrame = !(requiresAAPCSFrameRecord(MF) && hasFP(MF)); + bool CS1Spilled = false; + bool LRSpilled = false; + unsigned NumGPRSpills = 0; + unsigned NumFPRSpills = 0; + SmallVector<unsigned, 4> UnspilledCS1GPRs; + SmallVector<unsigned, 4> UnspilledCS2GPRs; + const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>( + MF.getSubtarget().getRegisterInfo()); + const ARMBaseInstrInfo &TII = + *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); + ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); + MachineFrameInfo &MFI = MF.getFrameInfo(); + MachineRegisterInfo &MRI = MF.getRegInfo(); + const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); + (void)TRI; // Silence unused warning in non-assert builds. + Register FramePtr = RegInfo->getFrameRegister(MF); + + // Spill R4 if Thumb2 function requires stack realignment - it will be used as + // scratch register. Also spill R4 if Thumb2 function has varsized objects, + // since it's not always possible to restore sp from fp in a single + // instruction. + // FIXME: It will be better just to find spare register here. + if (AFI->isThumb2Function() && + (MFI.hasVarSizedObjects() || RegInfo->hasStackRealignment(MF))) + SavedRegs.set(ARM::R4); + + // If a stack probe will be emitted, spill R4 and LR, since they are + // clobbered by the stack probe call. + // This estimate should be a safe, conservative estimate. The actual + // stack probe is enabled based on the size of the local objects; + // this estimate also includes the varargs store size. + if (STI.isTargetWindows() && + WindowsRequiresStackProbe(MF, MFI.estimateStackSize(MF))) { + SavedRegs.set(ARM::R4); + SavedRegs.set(ARM::LR); + } + + if (AFI->isThumb1OnlyFunction()) { + // Spill LR if Thumb1 function uses variable length argument lists. + if (AFI->getArgRegsSaveSize() > 0) + SavedRegs.set(ARM::LR); + + // Spill R4 if Thumb1 epilogue has to restore SP from FP or the function + // requires stack alignment. We don't know for sure what the stack size + // will be, but for this, an estimate is good enough. If there anything + // changes it, it'll be a spill, which implies we've used all the registers + // and so R4 is already used, so not marking it here will be OK. + // FIXME: It will be better just to find spare register here. + if (MFI.hasVarSizedObjects() || RegInfo->hasStackRealignment(MF) || + MFI.estimateStackSize(MF) > 508) + SavedRegs.set(ARM::R4); + } + + // See if we can spill vector registers to aligned stack. + checkNumAlignedDPRCS2Regs(MF, SavedRegs); + + // Spill the BasePtr if it's used. + if (RegInfo->hasBasePointer(MF)) + SavedRegs.set(RegInfo->getBaseRegister()); + + // On v8.1-M.Main CMSE entry functions save/restore FPCXT. + if (STI.hasV8_1MMainlineOps() && AFI->isCmseNSEntryFunction()) + CanEliminateFrame = false; + + // When return address signing is enabled R12 is treated as callee-saved. + if (AFI->shouldSignReturnAddress()) + CanEliminateFrame = false; + + // Don't spill FP if the frame can be eliminated. This is determined + // by scanning the callee-save registers to see if any is modified. + const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF); + for (unsigned i = 0; CSRegs[i]; ++i) { + unsigned Reg = CSRegs[i]; + bool Spilled = false; + if (SavedRegs.test(Reg)) { + Spilled = true; + CanEliminateFrame = false; + } + + if (!ARM::GPRRegClass.contains(Reg)) { + if (Spilled) { + if (ARM::SPRRegClass.contains(Reg)) + NumFPRSpills++; + else if (ARM::DPRRegClass.contains(Reg)) + NumFPRSpills += 2; + else if (ARM::QPRRegClass.contains(Reg)) + NumFPRSpills += 4; + } + continue; + } + + if (Spilled) { + NumGPRSpills++; + + if (!STI.splitFramePushPop(MF)) { + if (Reg == ARM::LR) + LRSpilled = true; + CS1Spilled = true; + continue; + } + + // Keep track if LR and any of R4, R5, R6, and R7 is spilled. + switch (Reg) { + case ARM::LR: + LRSpilled = true; + [[fallthrough]]; + case ARM::R0: case ARM::R1: + case ARM::R2: case ARM::R3: + case ARM::R4: case ARM::R5: + case ARM::R6: case ARM::R7: + CS1Spilled = true; + break; + default: + break; + } + } else { + if (!STI.splitFramePushPop(MF)) { + UnspilledCS1GPRs.push_back(Reg); + continue; + } + + switch (Reg) { + case ARM::R0: case ARM::R1: + case ARM::R2: case ARM::R3: + case ARM::R4: case ARM::R5: + case ARM::R6: case ARM::R7: + case ARM::LR: + UnspilledCS1GPRs.push_back(Reg); + break; + default: + UnspilledCS2GPRs.push_back(Reg); + break; + } + } + } + + bool ForceLRSpill = false; + if (!LRSpilled && AFI->isThumb1OnlyFunction()) { + unsigned FnSize = EstimateFunctionSizeInBytes(MF, TII); + // Force LR to be spilled if the Thumb function size is > 2048. This enables + // use of BL to implement far jump. + if (FnSize >= (1 << 11)) { + CanEliminateFrame = false; + ForceLRSpill = true; + } + } + + // If any of the stack slot references may be out of range of an immediate + // offset, make sure a register (or a spill slot) is available for the + // register scavenger. Note that if we're indexing off the frame pointer, the + // effective stack size is 4 bytes larger since the FP points to the stack + // slot of the previous FP. Also, if we have variable sized objects in the + // function, stack slot references will often be negative, and some of + // our instructions are positive-offset only, so conservatively consider + // that case to want a spill slot (or register) as well. Similarly, if + // the function adjusts the stack pointer during execution and the + // adjustments aren't already part of our stack size estimate, our offset + // calculations may be off, so be conservative. + // FIXME: We could add logic to be more precise about negative offsets + // and which instructions will need a scratch register for them. Is it + // worth the effort and added fragility? + unsigned EstimatedStackSize = + MFI.estimateStackSize(MF) + 4 * (NumGPRSpills + NumFPRSpills); + + // Determine biggest (positive) SP offset in MachineFrameInfo. + int MaxFixedOffset = 0; + for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) { + int MaxObjectOffset = MFI.getObjectOffset(I) + MFI.getObjectSize(I); + MaxFixedOffset = std::max(MaxFixedOffset, MaxObjectOffset); + } + + bool HasFP = hasFP(MF); + if (HasFP) { + if (AFI->hasStackFrame()) + EstimatedStackSize += 4; + } else { + // If FP is not used, SP will be used to access arguments, so count the + // size of arguments into the estimation. + EstimatedStackSize += MaxFixedOffset; + } + EstimatedStackSize += 16; // For possible paddings. + + unsigned EstimatedRSStackSizeLimit, EstimatedRSFixedSizeLimit; + bool HasNonSPFrameIndex = false; + if (AFI->isThumb1OnlyFunction()) { + // For Thumb1, don't bother to iterate over the function. The only + // instruction that requires an emergency spill slot is a store to a + // frame index. + // + // tSTRspi, which is used for sp-relative accesses, has an 8-bit unsigned + // immediate. tSTRi, which is used for bp- and fp-relative accesses, has + // a 5-bit unsigned immediate. + // + // We could try to check if the function actually contains a tSTRspi + // that might need the spill slot, but it's not really important. + // Functions with VLAs or extremely large call frames are rare, and + // if a function is allocating more than 1KB of stack, an extra 4-byte + // slot probably isn't relevant. + // + // A special case is the scenario where r11 is used as FP, where accesses + // to a frame index will require its value to be moved into a low reg. + // This is handled later on, once we are able to determine if we have any + // fp-relative accesses. + if (RegInfo->hasBasePointer(MF)) + EstimatedRSStackSizeLimit = (1U << 5) * 4; + else + EstimatedRSStackSizeLimit = (1U << 8) * 4; + EstimatedRSFixedSizeLimit = (1U << 5) * 4; + } else { + EstimatedRSStackSizeLimit = + estimateRSStackSizeLimit(MF, this, HasNonSPFrameIndex); + EstimatedRSFixedSizeLimit = EstimatedRSStackSizeLimit; + } + // Final estimate of whether sp or bp-relative accesses might require + // scavenging. + bool HasLargeStack = EstimatedStackSize > EstimatedRSStackSizeLimit; + + // If the stack pointer moves and we don't have a base pointer, the + // estimate logic doesn't work. The actual offsets might be larger when + // we're constructing a call frame, or we might need to use negative + // offsets from fp. + bool HasMovingSP = MFI.hasVarSizedObjects() || + (MFI.adjustsStack() && !canSimplifyCallFramePseudos(MF)); + bool HasBPOrFixedSP = RegInfo->hasBasePointer(MF) || !HasMovingSP; + + // If we have a frame pointer, we assume arguments will be accessed + // relative to the frame pointer. Check whether fp-relative accesses to + // arguments require scavenging. + // + // We could do slightly better on Thumb1; in some cases, an sp-relative + // offset would be legal even though an fp-relative offset is not. + int MaxFPOffset = getMaxFPOffset(STI, *AFI, MF); + bool HasLargeArgumentList = + HasFP && (MaxFixedOffset - MaxFPOffset) > (int)EstimatedRSFixedSizeLimit; + + bool BigFrameOffsets = HasLargeStack || !HasBPOrFixedSP || + HasLargeArgumentList || HasNonSPFrameIndex; + LLVM_DEBUG(dbgs() << "EstimatedLimit: " << EstimatedRSStackSizeLimit + << "; EstimatedStack: " << EstimatedStackSize + << "; EstimatedFPStack: " << MaxFixedOffset - MaxFPOffset + << "; BigFrameOffsets: " << BigFrameOffsets << "\n"); + if (BigFrameOffsets || + !CanEliminateFrame || RegInfo->cannotEliminateFrame(MF)) { + AFI->setHasStackFrame(true); + + if (HasFP) { + SavedRegs.set(FramePtr); + // If the frame pointer is required by the ABI, also spill LR so that we + // emit a complete frame record. + if ((requiresAAPCSFrameRecord(MF) || + MF.getTarget().Options.DisableFramePointerElim(MF)) && + !LRSpilled) { + SavedRegs.set(ARM::LR); + LRSpilled = true; + NumGPRSpills++; + auto LRPos = llvm::find(UnspilledCS1GPRs, ARM::LR); + if (LRPos != UnspilledCS1GPRs.end()) + UnspilledCS1GPRs.erase(LRPos); + } + auto FPPos = llvm::find(UnspilledCS1GPRs, FramePtr); + if (FPPos != UnspilledCS1GPRs.end()) + UnspilledCS1GPRs.erase(FPPos); + NumGPRSpills++; + if (FramePtr == ARM::R7) + CS1Spilled = true; + } + + // This is the number of extra spills inserted for callee-save GPRs which + // would not otherwise be used by the function. When greater than zero it + // guaranteees that it is possible to scavenge a register to hold the + // address of a stack slot. On Thumb1, the register must be a valid operand + // to tSTRi, i.e. r4-r7. For other subtargets, this is any GPR, i.e. r4-r11 + // or lr. + // + // If we don't insert a spill, we instead allocate an emergency spill + // slot, which can be used by scavenging to spill an arbitrary register. + // + // We currently don't try to figure out whether any specific instruction + // requires scavening an additional register. + unsigned NumExtraCSSpill = 0; + + if (AFI->isThumb1OnlyFunction()) { + // For Thumb1-only targets, we need some low registers when we save and + // restore the high registers (which aren't allocatable, but could be + // used by inline assembly) because the push/pop instructions can not + // access high registers. If necessary, we might need to push more low + // registers to ensure that there is at least one free that can be used + // for the saving & restoring, and preferably we should ensure that as + // many as are needed are available so that fewer push/pop instructions + // are required. + + // Low registers which are not currently pushed, but could be (r4-r7). + SmallVector<unsigned, 4> AvailableRegs; + + // Unused argument registers (r0-r3) can be clobbered in the prologue for + // free. + int EntryRegDeficit = 0; + for (unsigned Reg : {ARM::R0, ARM::R1, ARM::R2, ARM::R3}) { + if (!MF.getRegInfo().isLiveIn(Reg)) { + --EntryRegDeficit; + LLVM_DEBUG(dbgs() + << printReg(Reg, TRI) + << " is unused argument register, EntryRegDeficit = " + << EntryRegDeficit << "\n"); + } + } + + // Unused return registers can be clobbered in the epilogue for free. + int ExitRegDeficit = AFI->getReturnRegsCount() - 4; + LLVM_DEBUG(dbgs() << AFI->getReturnRegsCount() + << " return regs used, ExitRegDeficit = " + << ExitRegDeficit << "\n"); + + int RegDeficit = std::max(EntryRegDeficit, ExitRegDeficit); + LLVM_DEBUG(dbgs() << "RegDeficit = " << RegDeficit << "\n"); + + // r4-r6 can be used in the prologue if they are pushed by the first push + // instruction. + for (unsigned Reg : {ARM::R4, ARM::R5, ARM::R6}) { + if (SavedRegs.test(Reg)) { + --RegDeficit; + LLVM_DEBUG(dbgs() << printReg(Reg, TRI) + << " is saved low register, RegDeficit = " + << RegDeficit << "\n"); + } else { + AvailableRegs.push_back(Reg); + LLVM_DEBUG( + dbgs() + << printReg(Reg, TRI) + << " is non-saved low register, adding to AvailableRegs\n"); + } + } + + // r7 can be used if it is not being used as the frame pointer. + if (!HasFP || FramePtr != ARM::R7) { + if (SavedRegs.test(ARM::R7)) { + --RegDeficit; + LLVM_DEBUG(dbgs() << "%r7 is saved low register, RegDeficit = " + << RegDeficit << "\n"); + } else { + AvailableRegs.push_back(ARM::R7); + LLVM_DEBUG( + dbgs() + << "%r7 is non-saved low register, adding to AvailableRegs\n"); + } + } + + // Each of r8-r11 needs to be copied to a low register, then pushed. + for (unsigned Reg : {ARM::R8, ARM::R9, ARM::R10, ARM::R11}) { + if (SavedRegs.test(Reg)) { + ++RegDeficit; + LLVM_DEBUG(dbgs() << printReg(Reg, TRI) + << " is saved high register, RegDeficit = " + << RegDeficit << "\n"); + } + } + + // LR can only be used by PUSH, not POP, and can't be used at all if the + // llvm.returnaddress intrinsic is used. This is only worth doing if we + // are more limited at function entry than exit. + if ((EntryRegDeficit > ExitRegDeficit) && + !(MF.getRegInfo().isLiveIn(ARM::LR) && + MF.getFrameInfo().isReturnAddressTaken())) { + if (SavedRegs.test(ARM::LR)) { + --RegDeficit; + LLVM_DEBUG(dbgs() << "%lr is saved register, RegDeficit = " + << RegDeficit << "\n"); + } else { + AvailableRegs.push_back(ARM::LR); + LLVM_DEBUG(dbgs() << "%lr is not saved, adding to AvailableRegs\n"); + } + } + + // If there are more high registers that need pushing than low registers + // available, push some more low registers so that we can use fewer push + // instructions. This might not reduce RegDeficit all the way to zero, + // because we can only guarantee that r4-r6 are available, but r8-r11 may + // need saving. + LLVM_DEBUG(dbgs() << "Final RegDeficit = " << RegDeficit << "\n"); + for (; RegDeficit > 0 && !AvailableRegs.empty(); --RegDeficit) { + unsigned Reg = AvailableRegs.pop_back_val(); + LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI) + << " to make up reg deficit\n"); + SavedRegs.set(Reg); + NumGPRSpills++; + CS1Spilled = true; + assert(!MRI.isReserved(Reg) && "Should not be reserved"); + if (Reg != ARM::LR && !MRI.isPhysRegUsed(Reg)) + NumExtraCSSpill++; + UnspilledCS1GPRs.erase(llvm::find(UnspilledCS1GPRs, Reg)); + if (Reg == ARM::LR) + LRSpilled = true; + } + LLVM_DEBUG(dbgs() << "After adding spills, RegDeficit = " << RegDeficit + << "\n"); + } + + // Avoid spilling LR in Thumb1 if there's a tail call: it's expensive to + // restore LR in that case. + bool ExpensiveLRRestore = AFI->isThumb1OnlyFunction() && MFI.hasTailCall(); + + // If LR is not spilled, but at least one of R4, R5, R6, and R7 is spilled. + // Spill LR as well so we can fold BX_RET to the registers restore (LDM). + if (!LRSpilled && CS1Spilled && !ExpensiveLRRestore) { + SavedRegs.set(ARM::LR); + NumGPRSpills++; + SmallVectorImpl<unsigned>::iterator LRPos; + LRPos = llvm::find(UnspilledCS1GPRs, (unsigned)ARM::LR); + if (LRPos != UnspilledCS1GPRs.end()) + UnspilledCS1GPRs.erase(LRPos); + + ForceLRSpill = false; + if (!MRI.isReserved(ARM::LR) && !MRI.isPhysRegUsed(ARM::LR) && + !AFI->isThumb1OnlyFunction()) + NumExtraCSSpill++; + } + + // If stack and double are 8-byte aligned and we are spilling an odd number + // of GPRs, spill one extra callee save GPR so we won't have to pad between + // the integer and double callee save areas. + LLVM_DEBUG(dbgs() << "NumGPRSpills = " << NumGPRSpills << "\n"); + const Align TargetAlign = getStackAlign(); + if (TargetAlign >= Align(8) && (NumGPRSpills & 1)) { + if (CS1Spilled && !UnspilledCS1GPRs.empty()) { + for (unsigned Reg : UnspilledCS1GPRs) { + // Don't spill high register if the function is thumb. In the case of + // Windows on ARM, accept R11 (frame pointer) + if (!AFI->isThumbFunction() || + (STI.isTargetWindows() && Reg == ARM::R11) || + isARMLowRegister(Reg) || + (Reg == ARM::LR && !ExpensiveLRRestore)) { + SavedRegs.set(Reg); + LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI) + << " to make up alignment\n"); + if (!MRI.isReserved(Reg) && !MRI.isPhysRegUsed(Reg) && + !(Reg == ARM::LR && AFI->isThumb1OnlyFunction())) + NumExtraCSSpill++; + break; + } + } + } else if (!UnspilledCS2GPRs.empty() && !AFI->isThumb1OnlyFunction()) { + unsigned Reg = UnspilledCS2GPRs.front(); + SavedRegs.set(Reg); + LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI) + << " to make up alignment\n"); + if (!MRI.isReserved(Reg) && !MRI.isPhysRegUsed(Reg)) + NumExtraCSSpill++; + } + } + + // Estimate if we might need to scavenge registers at some point in order + // to materialize a stack offset. If so, either spill one additional + // callee-saved register or reserve a special spill slot to facilitate + // register scavenging. Thumb1 needs a spill slot for stack pointer + // adjustments and for frame index accesses when FP is high register, + // even when the frame itself is small. + unsigned RegsNeeded = 0; + if (BigFrameOffsets || canSpillOnFrameIndexAccess(MF, *this)) { + RegsNeeded++; + // With thumb1 execute-only we may need an additional register for saving + // and restoring the CPSR. + if (AFI->isThumb1OnlyFunction() && STI.genExecuteOnly() && !STI.useMovt()) + RegsNeeded++; + } + + if (RegsNeeded > NumExtraCSSpill) { + // If any non-reserved CS register isn't spilled, just spill one or two + // extra. That should take care of it! + unsigned NumExtras = TargetAlign.value() / 4; + SmallVector<unsigned, 2> Extras; + while (NumExtras && !UnspilledCS1GPRs.empty()) { + unsigned Reg = UnspilledCS1GPRs.pop_back_val(); + if (!MRI.isReserved(Reg) && + (!AFI->isThumb1OnlyFunction() || isARMLowRegister(Reg))) { + Extras.push_back(Reg); + NumExtras--; + } + } + // For non-Thumb1 functions, also check for hi-reg CS registers + if (!AFI->isThumb1OnlyFunction()) { + while (NumExtras && !UnspilledCS2GPRs.empty()) { + unsigned Reg = UnspilledCS2GPRs.pop_back_val(); + if (!MRI.isReserved(Reg)) { + Extras.push_back(Reg); + NumExtras--; + } + } + } + if (NumExtras == 0) { + for (unsigned Reg : Extras) { + SavedRegs.set(Reg); + if (!MRI.isPhysRegUsed(Reg)) + NumExtraCSSpill++; + } + } + while ((RegsNeeded > NumExtraCSSpill) && RS) { + // Reserve a slot closest to SP or frame pointer. + LLVM_DEBUG(dbgs() << "Reserving emergency spill slot\n"); + const TargetRegisterClass &RC = ARM::GPRRegClass; + unsigned Size = TRI->getSpillSize(RC); + Align Alignment = TRI->getSpillAlign(RC); + RS->addScavengingFrameIndex( + MFI.CreateStackObject(Size, Alignment, false)); + --RegsNeeded; + } + } + } + + if (ForceLRSpill) + SavedRegs.set(ARM::LR); + AFI->setLRIsSpilled(SavedRegs.test(ARM::LR)); +} + +void ARMFrameLowering::updateLRRestored(MachineFunction &MF) { + MachineFrameInfo &MFI = MF.getFrameInfo(); + if (!MFI.isCalleeSavedInfoValid()) + return; + + // Check if all terminators do not implicitly use LR. Then we can 'restore' LR + // into PC so it is not live out of the return block: Clear the Restored bit + // in that case. + for (CalleeSavedInfo &Info : MFI.getCalleeSavedInfo()) { + if (Info.getReg() != ARM::LR) + continue; + if (all_of(MF, [](const MachineBasicBlock &MBB) { + return all_of(MBB.terminators(), [](const MachineInstr &Term) { + return !Term.isReturn() || Term.getOpcode() == ARM::LDMIA_RET || + Term.getOpcode() == ARM::t2LDMIA_RET || + Term.getOpcode() == ARM::tPOP_RET; + }); + })) { + Info.setRestored(false); + break; + } + } +} + +void ARMFrameLowering::processFunctionBeforeFrameFinalized( + MachineFunction &MF, RegScavenger *RS) const { + TargetFrameLowering::processFunctionBeforeFrameFinalized(MF, RS); + updateLRRestored(MF); +} + +void ARMFrameLowering::getCalleeSaves(const MachineFunction &MF, + BitVector &SavedRegs) const { + TargetFrameLowering::getCalleeSaves(MF, SavedRegs); + + // If we have the "returned" parameter attribute which guarantees that we + // return the value which was passed in r0 unmodified (e.g. C++ 'structors), + // record that fact for IPRA. + const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); + if (AFI->getPreservesR0()) + SavedRegs.set(ARM::R0); +} + +bool ARMFrameLowering::assignCalleeSavedSpillSlots( + MachineFunction &MF, const TargetRegisterInfo *TRI, + std::vector<CalleeSavedInfo> &CSI) const { + // For CMSE entry functions, handle floating-point context as if it was a + // callee-saved register. + if (STI.hasV8_1MMainlineOps() && + MF.getInfo<ARMFunctionInfo>()->isCmseNSEntryFunction()) { + CSI.emplace_back(ARM::FPCXTNS); + CSI.back().setRestored(false); + } + + // For functions, which sign their return address, upon function entry, the + // return address PAC is computed in R12. Treat R12 as a callee-saved register + // in this case. + const auto &AFI = *MF.getInfo<ARMFunctionInfo>(); + if (AFI.shouldSignReturnAddress()) { + // The order of register must match the order we push them, because the + // PEI assigns frame indices in that order. When compiling for return + // address sign and authenication, we use split push, therefore the orders + // we want are: + // LR, R7, R6, R5, R4, <R12>, R11, R10, R9, R8, D15-D8 + CSI.insert(find_if(CSI, + [=](const auto &CS) { + Register Reg = CS.getReg(); + return Reg == ARM::R10 || Reg == ARM::R11 || + Reg == ARM::R8 || Reg == ARM::R9 || + ARM::DPRRegClass.contains(Reg); + }), + CalleeSavedInfo(ARM::R12)); + } + + return false; +} + +const TargetFrameLowering::SpillSlot * +ARMFrameLowering::getCalleeSavedSpillSlots(unsigned &NumEntries) const { + static const SpillSlot FixedSpillOffsets[] = {{ARM::FPCXTNS, -4}}; + NumEntries = std::size(FixedSpillOffsets); + return FixedSpillOffsets; +} + +MachineBasicBlock::iterator ARMFrameLowering::eliminateCallFramePseudoInstr( + MachineFunction &MF, MachineBasicBlock &MBB, + MachineBasicBlock::iterator I) const { + const ARMBaseInstrInfo &TII = + *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); + ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); + bool isARM = !AFI->isThumbFunction(); + DebugLoc dl = I->getDebugLoc(); + unsigned Opc = I->getOpcode(); + bool IsDestroy = Opc == TII.getCallFrameDestroyOpcode(); + unsigned CalleePopAmount = IsDestroy ? I->getOperand(1).getImm() : 0; + + assert(!AFI->isThumb1OnlyFunction() && + "This eliminateCallFramePseudoInstr does not support Thumb1!"); + + int PIdx = I->findFirstPredOperandIdx(); + ARMCC::CondCodes Pred = (PIdx == -1) + ? ARMCC::AL + : (ARMCC::CondCodes)I->getOperand(PIdx).getImm(); + unsigned PredReg = TII.getFramePred(*I); + + if (!hasReservedCallFrame(MF)) { + // Bail early if the callee is expected to do the adjustment. + if (IsDestroy && CalleePopAmount != -1U) + return MBB.erase(I); + + // If we have alloca, convert as follows: + // ADJCALLSTACKDOWN -> sub, sp, sp, amount + // ADJCALLSTACKUP -> add, sp, sp, amount + unsigned Amount = TII.getFrameSize(*I); + if (Amount != 0) { + // We need to keep the stack aligned properly. To do this, we round the + // amount of space needed for the outgoing arguments up to the next + // alignment boundary. + Amount = alignSPAdjust(Amount); + + if (Opc == ARM::ADJCALLSTACKDOWN || Opc == ARM::tADJCALLSTACKDOWN) { + emitSPUpdate(isARM, MBB, I, dl, TII, -Amount, MachineInstr::NoFlags, + Pred, PredReg); + } else { + assert(Opc == ARM::ADJCALLSTACKUP || Opc == ARM::tADJCALLSTACKUP); + emitSPUpdate(isARM, MBB, I, dl, TII, Amount, MachineInstr::NoFlags, + Pred, PredReg); + } + } + } else if (CalleePopAmount != -1U) { + // If the calling convention demands that the callee pops arguments from the + // stack, we want to add it back if we have a reserved call frame. + emitSPUpdate(isARM, MBB, I, dl, TII, -CalleePopAmount, + MachineInstr::NoFlags, Pred, PredReg); + } + return MBB.erase(I); +} + +/// Get the minimum constant for ARM that is greater than or equal to the +/// argument. In ARM, constants can have any value that can be produced by +/// rotating an 8-bit value to the right by an even number of bits within a +/// 32-bit word. +static uint32_t alignToARMConstant(uint32_t Value) { + unsigned Shifted = 0; + + if (Value == 0) + return 0; + + while (!(Value & 0xC0000000)) { + Value = Value << 2; + Shifted += 2; + } + + bool Carry = (Value & 0x00FFFFFF); + Value = ((Value & 0xFF000000) >> 24) + Carry; + + if (Value & 0x0000100) + Value = Value & 0x000001FC; + + if (Shifted > 24) + Value = Value >> (Shifted - 24); + else + Value = Value << (24 - Shifted); + + return Value; +} + +// The stack limit in the TCB is set to this many bytes above the actual +// stack limit. +static const uint64_t kSplitStackAvailable = 256; + +// Adjust the function prologue to enable split stacks. This currently only +// supports android and linux. +// +// The ABI of the segmented stack prologue is a little arbitrarily chosen, but +// must be well defined in order to allow for consistent implementations of the +// __morestack helper function. The ABI is also not a normal ABI in that it +// doesn't follow the normal calling conventions because this allows the +// prologue of each function to be optimized further. +// +// Currently, the ABI looks like (when calling __morestack) +// +// * r4 holds the minimum stack size requested for this function call +// * r5 holds the stack size of the arguments to the function +// * the beginning of the function is 3 instructions after the call to +// __morestack +// +// Implementations of __morestack should use r4 to allocate a new stack, r5 to +// place the arguments on to the new stack, and the 3-instruction knowledge to +// jump directly to the body of the function when working on the new stack. +// +// An old (and possibly no longer compatible) implementation of __morestack for +// ARM can be found at [1]. +// +// [1] - https://github.com/mozilla/rust/blob/86efd9/src/rt/arch/arm/morestack.S +void ARMFrameLowering::adjustForSegmentedStacks( + MachineFunction &MF, MachineBasicBlock &PrologueMBB) const { + unsigned Opcode; + unsigned CFIIndex; + const ARMSubtarget *ST = &MF.getSubtarget<ARMSubtarget>(); + bool Thumb = ST->isThumb(); + bool Thumb2 = ST->isThumb2(); + + // Sadly, this currently doesn't support varargs, platforms other than + // android/linux. Note that thumb1/thumb2 are support for android/linux. + if (MF.getFunction().isVarArg()) + report_fatal_error("Segmented stacks do not support vararg functions."); + if (!ST->isTargetAndroid() && !ST->isTargetLinux()) + report_fatal_error("Segmented stacks not supported on this platform."); + + MachineFrameInfo &MFI = MF.getFrameInfo(); + MCContext &Context = MF.getContext(); + const MCRegisterInfo *MRI = Context.getRegisterInfo(); + const ARMBaseInstrInfo &TII = + *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); + ARMFunctionInfo *ARMFI = MF.getInfo<ARMFunctionInfo>(); + DebugLoc DL; + + if (!MFI.needsSplitStackProlog()) + return; + + uint64_t StackSize = MFI.getStackSize(); + + // Use R4 and R5 as scratch registers. + // We save R4 and R5 before use and restore them before leaving the function. + unsigned ScratchReg0 = ARM::R4; + unsigned ScratchReg1 = ARM::R5; + unsigned MovOp = ST->useMovt() ? ARM::t2MOVi32imm : ARM::tMOVi32imm; + uint64_t AlignedStackSize; + + MachineBasicBlock *PrevStackMBB = MF.CreateMachineBasicBlock(); + MachineBasicBlock *PostStackMBB = MF.CreateMachineBasicBlock(); + MachineBasicBlock *AllocMBB = MF.CreateMachineBasicBlock(); + MachineBasicBlock *GetMBB = MF.CreateMachineBasicBlock(); + MachineBasicBlock *McrMBB = MF.CreateMachineBasicBlock(); + + // Grab everything that reaches PrologueMBB to update there liveness as well. + SmallPtrSet<MachineBasicBlock *, 8> BeforePrologueRegion; + SmallVector<MachineBasicBlock *, 2> WalkList; + WalkList.push_back(&PrologueMBB); + + do { + MachineBasicBlock *CurMBB = WalkList.pop_back_val(); + for (MachineBasicBlock *PredBB : CurMBB->predecessors()) { + if (BeforePrologueRegion.insert(PredBB).second) + WalkList.push_back(PredBB); + } + } while (!WalkList.empty()); + + // The order in that list is important. + // The blocks will all be inserted before PrologueMBB using that order. + // Therefore the block that should appear first in the CFG should appear + // first in the list. + MachineBasicBlock *AddedBlocks[] = {PrevStackMBB, McrMBB, GetMBB, AllocMBB, + PostStackMBB}; + + for (MachineBasicBlock *B : AddedBlocks) + BeforePrologueRegion.insert(B); + + for (const auto &LI : PrologueMBB.liveins()) { + for (MachineBasicBlock *PredBB : BeforePrologueRegion) + PredBB->addLiveIn(LI); + } + + // Remove the newly added blocks from the list, since we know + // we do not have to do the following updates for them. + for (MachineBasicBlock *B : AddedBlocks) { + BeforePrologueRegion.erase(B); + MF.insert(PrologueMBB.getIterator(), B); + } + + for (MachineBasicBlock *MBB : BeforePrologueRegion) { + // Make sure the LiveIns are still sorted and unique. + MBB->sortUniqueLiveIns(); + // Replace the edges to PrologueMBB by edges to the sequences + // we are about to add, but only update for immediate predecessors. + if (MBB->isSuccessor(&PrologueMBB)) + MBB->ReplaceUsesOfBlockWith(&PrologueMBB, AddedBlocks[0]); + } + + // The required stack size that is aligned to ARM constant criterion. + AlignedStackSize = alignToARMConstant(StackSize); + + // When the frame size is less than 256 we just compare the stack + // boundary directly to the value of the stack pointer, per gcc. + bool CompareStackPointer = AlignedStackSize < kSplitStackAvailable; + + // We will use two of the callee save registers as scratch registers so we + // need to save those registers onto the stack. + // We will use SR0 to hold stack limit and SR1 to hold the stack size + // requested and arguments for __morestack(). + // SR0: Scratch Register #0 + // SR1: Scratch Register #1 + // push {SR0, SR1} + if (Thumb) { + BuildMI(PrevStackMBB, DL, TII.get(ARM::tPUSH)) + .add(predOps(ARMCC::AL)) + .addReg(ScratchReg0) + .addReg(ScratchReg1); + } else { + BuildMI(PrevStackMBB, DL, TII.get(ARM::STMDB_UPD)) + .addReg(ARM::SP, RegState::Define) + .addReg(ARM::SP) + .add(predOps(ARMCC::AL)) + .addReg(ScratchReg0) + .addReg(ScratchReg1); + } + + // Emit the relevant DWARF information about the change in stack pointer as + // well as where to find both r4 and r5 (the callee-save registers) + if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) { + CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 8)); + BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) + .addCFIIndex(CFIIndex); + CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( + nullptr, MRI->getDwarfRegNum(ScratchReg1, true), -4)); + BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) + .addCFIIndex(CFIIndex); + CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( + nullptr, MRI->getDwarfRegNum(ScratchReg0, true), -8)); + BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) + .addCFIIndex(CFIIndex); + } + + // mov SR1, sp + if (Thumb) { + BuildMI(McrMBB, DL, TII.get(ARM::tMOVr), ScratchReg1) + .addReg(ARM::SP) + .add(predOps(ARMCC::AL)); + } else if (CompareStackPointer) { + BuildMI(McrMBB, DL, TII.get(ARM::MOVr), ScratchReg1) + .addReg(ARM::SP) + .add(predOps(ARMCC::AL)) + .add(condCodeOp()); + } + + // sub SR1, sp, #StackSize + if (!CompareStackPointer && Thumb) { + if (AlignedStackSize < 256) { + BuildMI(McrMBB, DL, TII.get(ARM::tSUBi8), ScratchReg1) + .add(condCodeOp()) + .addReg(ScratchReg1) + .addImm(AlignedStackSize) + .add(predOps(ARMCC::AL)); + } else { + if (Thumb2 || ST->genExecuteOnly()) { + BuildMI(McrMBB, DL, TII.get(MovOp), ScratchReg0) + .addImm(AlignedStackSize); + } else { + auto MBBI = McrMBB->end(); + auto RegInfo = STI.getRegisterInfo(); + RegInfo->emitLoadConstPool(*McrMBB, MBBI, DL, ScratchReg0, 0, + AlignedStackSize); + } + BuildMI(McrMBB, DL, TII.get(ARM::tSUBrr), ScratchReg1) + .add(condCodeOp()) + .addReg(ScratchReg1) + .addReg(ScratchReg0) + .add(predOps(ARMCC::AL)); + } + } else if (!CompareStackPointer) { + if (AlignedStackSize < 256) { + BuildMI(McrMBB, DL, TII.get(ARM::SUBri), ScratchReg1) + .addReg(ARM::SP) + .addImm(AlignedStackSize) + .add(predOps(ARMCC::AL)) + .add(condCodeOp()); + } else { + auto MBBI = McrMBB->end(); + auto RegInfo = STI.getRegisterInfo(); + RegInfo->emitLoadConstPool(*McrMBB, MBBI, DL, ScratchReg0, 0, + AlignedStackSize); + BuildMI(McrMBB, DL, TII.get(ARM::SUBrr), ScratchReg1) + .addReg(ARM::SP) + .addReg(ScratchReg0) + .add(predOps(ARMCC::AL)) + .add(condCodeOp()); + } + } + + if (Thumb && ST->isThumb1Only()) { + if (ST->genExecuteOnly()) { + BuildMI(GetMBB, DL, TII.get(MovOp), ScratchReg0) + .addExternalSymbol("__STACK_LIMIT"); + } else { + unsigned PCLabelId = ARMFI->createPICLabelUId(); + ARMConstantPoolValue *NewCPV = ARMConstantPoolSymbol::Create( + MF.getFunction().getContext(), "__STACK_LIMIT", PCLabelId, 0); + MachineConstantPool *MCP = MF.getConstantPool(); + unsigned CPI = MCP->getConstantPoolIndex(NewCPV, Align(4)); + + // ldr SR0, [pc, offset(STACK_LIMIT)] + BuildMI(GetMBB, DL, TII.get(ARM::tLDRpci), ScratchReg0) + .addConstantPoolIndex(CPI) + .add(predOps(ARMCC::AL)); + } + + // ldr SR0, [SR0] + BuildMI(GetMBB, DL, TII.get(ARM::tLDRi), ScratchReg0) + .addReg(ScratchReg0) + .addImm(0) + .add(predOps(ARMCC::AL)); + } else { + // Get TLS base address from the coprocessor + // mrc p15, #0, SR0, c13, c0, #3 + BuildMI(McrMBB, DL, TII.get(Thumb ? ARM::t2MRC : ARM::MRC), + ScratchReg0) + .addImm(15) + .addImm(0) + .addImm(13) + .addImm(0) + .addImm(3) + .add(predOps(ARMCC::AL)); + + // Use the last tls slot on android and a private field of the TCP on linux. + assert(ST->isTargetAndroid() || ST->isTargetLinux()); + unsigned TlsOffset = ST->isTargetAndroid() ? 63 : 1; + + // Get the stack limit from the right offset + // ldr SR0, [sr0, #4 * TlsOffset] + BuildMI(GetMBB, DL, TII.get(Thumb ? ARM::t2LDRi12 : ARM::LDRi12), + ScratchReg0) + .addReg(ScratchReg0) + .addImm(4 * TlsOffset) + .add(predOps(ARMCC::AL)); + } + + // Compare stack limit with stack size requested. + // cmp SR0, SR1 + Opcode = Thumb ? ARM::tCMPr : ARM::CMPrr; + BuildMI(GetMBB, DL, TII.get(Opcode)) + .addReg(ScratchReg0) + .addReg(ScratchReg1) + .add(predOps(ARMCC::AL)); + + // This jump is taken if StackLimit <= SP - stack required. + Opcode = Thumb ? ARM::tBcc : ARM::Bcc; + BuildMI(GetMBB, DL, TII.get(Opcode)) + .addMBB(PostStackMBB) + .addImm(ARMCC::LS) + .addReg(ARM::CPSR); + + // Calling __morestack(StackSize, Size of stack arguments). + // __morestack knows that the stack size requested is in SR0(r4) + // and amount size of stack arguments is in SR1(r5). + + // Pass first argument for the __morestack by Scratch Register #0. + // The amount size of stack required + if (Thumb) { + if (AlignedStackSize < 256) { + BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg0) + .add(condCodeOp()) + .addImm(AlignedStackSize) + .add(predOps(ARMCC::AL)); + } else { + if (Thumb2 || ST->genExecuteOnly()) { + BuildMI(AllocMBB, DL, TII.get(MovOp), ScratchReg0) + .addImm(AlignedStackSize); + } else { + auto MBBI = AllocMBB->end(); + auto RegInfo = STI.getRegisterInfo(); + RegInfo->emitLoadConstPool(*AllocMBB, MBBI, DL, ScratchReg0, 0, + AlignedStackSize); + } + } + } else { + if (AlignedStackSize < 256) { + BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg0) + .addImm(AlignedStackSize) + .add(predOps(ARMCC::AL)) + .add(condCodeOp()); + } else { + auto MBBI = AllocMBB->end(); + auto RegInfo = STI.getRegisterInfo(); + RegInfo->emitLoadConstPool(*AllocMBB, MBBI, DL, ScratchReg0, 0, + AlignedStackSize); + } + } + + // Pass second argument for the __morestack by Scratch Register #1. + // The amount size of stack consumed to save function arguments. + if (Thumb) { + if (ARMFI->getArgumentStackSize() < 256) { + BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg1) + .add(condCodeOp()) + .addImm(alignToARMConstant(ARMFI->getArgumentStackSize())) + .add(predOps(ARMCC::AL)); + } else { + if (Thumb2 || ST->genExecuteOnly()) { + BuildMI(AllocMBB, DL, TII.get(MovOp), ScratchReg1) + .addImm(alignToARMConstant(ARMFI->getArgumentStackSize())); + } else { + auto MBBI = AllocMBB->end(); + auto RegInfo = STI.getRegisterInfo(); + RegInfo->emitLoadConstPool( + *AllocMBB, MBBI, DL, ScratchReg1, 0, + alignToARMConstant(ARMFI->getArgumentStackSize())); + } + } + } else { + if (alignToARMConstant(ARMFI->getArgumentStackSize()) < 256) { + BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg1) + .addImm(alignToARMConstant(ARMFI->getArgumentStackSize())) + .add(predOps(ARMCC::AL)) + .add(condCodeOp()); + } else { + auto MBBI = AllocMBB->end(); + auto RegInfo = STI.getRegisterInfo(); + RegInfo->emitLoadConstPool( + *AllocMBB, MBBI, DL, ScratchReg1, 0, + alignToARMConstant(ARMFI->getArgumentStackSize())); + } + } + + // push {lr} - Save return address of this function. + if (Thumb) { + BuildMI(AllocMBB, DL, TII.get(ARM::tPUSH)) + .add(predOps(ARMCC::AL)) + .addReg(ARM::LR); + } else { + BuildMI(AllocMBB, DL, TII.get(ARM::STMDB_UPD)) + .addReg(ARM::SP, RegState::Define) + .addReg(ARM::SP) + .add(predOps(ARMCC::AL)) + .addReg(ARM::LR); + } + + // Emit the DWARF info about the change in stack as well as where to find the + // previous link register + if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) { + CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 12)); + BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) + .addCFIIndex(CFIIndex); + CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( + nullptr, MRI->getDwarfRegNum(ARM::LR, true), -12)); + BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) + .addCFIIndex(CFIIndex); + } + + // Call __morestack(). + if (Thumb) { + BuildMI(AllocMBB, DL, TII.get(ARM::tBL)) + .add(predOps(ARMCC::AL)) + .addExternalSymbol("__morestack"); + } else { + BuildMI(AllocMBB, DL, TII.get(ARM::BL)) + .addExternalSymbol("__morestack"); + } + + // pop {lr} - Restore return address of this original function. + if (Thumb) { + if (ST->isThumb1Only()) { + BuildMI(AllocMBB, DL, TII.get(ARM::tPOP)) + .add(predOps(ARMCC::AL)) + .addReg(ScratchReg0); + BuildMI(AllocMBB, DL, TII.get(ARM::tMOVr), ARM::LR) + .addReg(ScratchReg0) + .add(predOps(ARMCC::AL)); + } else { + BuildMI(AllocMBB, DL, TII.get(ARM::t2LDR_POST)) + .addReg(ARM::LR, RegState::Define) + .addReg(ARM::SP, RegState::Define) + .addReg(ARM::SP) + .addImm(4) + .add(predOps(ARMCC::AL)); + } + } else { + BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD)) + .addReg(ARM::SP, RegState::Define) + .addReg(ARM::SP) + .add(predOps(ARMCC::AL)) + .addReg(ARM::LR); + } + + // Restore SR0 and SR1 in case of __morestack() was called. + // __morestack() will skip PostStackMBB block so we need to restore + // scratch registers from here. + // pop {SR0, SR1} + if (Thumb) { + BuildMI(AllocMBB, DL, TII.get(ARM::tPOP)) + .add(predOps(ARMCC::AL)) + .addReg(ScratchReg0) + .addReg(ScratchReg1); + } else { + BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD)) + .addReg(ARM::SP, RegState::Define) + .addReg(ARM::SP) + .add(predOps(ARMCC::AL)) + .addReg(ScratchReg0) + .addReg(ScratchReg1); + } + + // Update the CFA offset now that we've popped + if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) { + CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 0)); + BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) + .addCFIIndex(CFIIndex); + } + + // Return from this function. + BuildMI(AllocMBB, DL, TII.get(ST->getReturnOpcode())).add(predOps(ARMCC::AL)); + + // Restore SR0 and SR1 in case of __morestack() was not called. + // pop {SR0, SR1} + if (Thumb) { + BuildMI(PostStackMBB, DL, TII.get(ARM::tPOP)) + .add(predOps(ARMCC::AL)) + .addReg(ScratchReg0) + .addReg(ScratchReg1); + } else { + BuildMI(PostStackMBB, DL, TII.get(ARM::LDMIA_UPD)) + .addReg(ARM::SP, RegState::Define) + .addReg(ARM::SP) + .add(predOps(ARMCC::AL)) + .addReg(ScratchReg0) + .addReg(ScratchReg1); + } + + // Update the CFA offset now that we've popped + if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) { + CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 0)); + BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) + .addCFIIndex(CFIIndex); + + // Tell debuggers that r4 and r5 are now the same as they were in the + // previous function, that they're the "Same Value". + CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue( + nullptr, MRI->getDwarfRegNum(ScratchReg0, true))); + BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) + .addCFIIndex(CFIIndex); + CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue( + nullptr, MRI->getDwarfRegNum(ScratchReg1, true))); + BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) + .addCFIIndex(CFIIndex); + } + + // Organizing MBB lists + PostStackMBB->addSuccessor(&PrologueMBB); + + AllocMBB->addSuccessor(PostStackMBB); + + GetMBB->addSuccessor(PostStackMBB); + GetMBB->addSuccessor(AllocMBB); + + McrMBB->addSuccessor(GetMBB); + + PrevStackMBB->addSuccessor(McrMBB); + +#ifdef EXPENSIVE_CHECKS + MF.verify(); +#endif +} |