aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Target/ARM/ARMFrameLowering.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Target/ARM/ARMFrameLowering.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/Target/ARM/ARMFrameLowering.cpp3437
1 files changed, 3437 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Target/ARM/ARMFrameLowering.cpp b/contrib/llvm-project/llvm/lib/Target/ARM/ARMFrameLowering.cpp
new file mode 100644
index 000000000000..40354f995598
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/Target/ARM/ARMFrameLowering.cpp
@@ -0,0 +1,3437 @@
+//===- ARMFrameLowering.cpp - ARM Frame Information -----------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the ARM implementation of TargetFrameLowering class.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the ARM implementation of TargetFrameLowering class.
+//
+// On ARM, stack frames are structured as follows:
+//
+// The stack grows downward.
+//
+// All of the individual frame areas on the frame below are optional, i.e. it's
+// possible to create a function so that the particular area isn't present
+// in the frame.
+//
+// At function entry, the "frame" looks as follows:
+//
+// | | Higher address
+// |-----------------------------------|
+// | |
+// | arguments passed on the stack |
+// | |
+// |-----------------------------------| <- sp
+// | | Lower address
+//
+//
+// After the prologue has run, the frame has the following general structure.
+// Technically the last frame area (VLAs) doesn't get created until in the
+// main function body, after the prologue is run. However, it's depicted here
+// for completeness.
+//
+// | | Higher address
+// |-----------------------------------|
+// | |
+// | arguments passed on the stack |
+// | |
+// |-----------------------------------| <- (sp at function entry)
+// | |
+// | varargs from registers |
+// | |
+// |-----------------------------------|
+// | |
+// | prev_lr |
+// | prev_fp |
+// | (a.k.a. "frame record") |
+// | |
+// |- - - - - - - - - - - - - - - - - -| <- fp (r7 or r11)
+// | |
+// | callee-saved gpr registers |
+// | |
+// |-----------------------------------|
+// | |
+// | callee-saved fp/simd regs |
+// | |
+// |-----------------------------------|
+// |.empty.space.to.make.part.below....|
+// |.aligned.in.case.it.needs.more.than| (size of this area is unknown at
+// |.the.standard.8-byte.alignment.....| compile time; if present)
+// |-----------------------------------|
+// | |
+// | local variables of fixed size |
+// | including spill slots |
+// |-----------------------------------| <- base pointer (not defined by ABI,
+// |.variable-sized.local.variables....| LLVM chooses r6)
+// |.(VLAs)............................| (size of this area is unknown at
+// |...................................| compile time)
+// |-----------------------------------| <- sp
+// | | Lower address
+//
+//
+// To access the data in a frame, at-compile time, a constant offset must be
+// computable from one of the pointers (fp, bp, sp) to access it. The size
+// of the areas with a dotted background cannot be computed at compile-time
+// if they are present, making it required to have all three of fp, bp and
+// sp to be set up to be able to access all contents in the frame areas,
+// assuming all of the frame areas are non-empty.
+//
+// For most functions, some of the frame areas are empty. For those functions,
+// it may not be necessary to set up fp or bp:
+// * A base pointer is definitely needed when there are both VLAs and local
+// variables with more-than-default alignment requirements.
+// * A frame pointer is definitely needed when there are local variables with
+// more-than-default alignment requirements.
+//
+// In some cases when a base pointer is not strictly needed, it is generated
+// anyway when offsets from the frame pointer to access local variables become
+// so large that the offset can't be encoded in the immediate fields of loads
+// or stores.
+//
+// The frame pointer might be chosen to be r7 or r11, depending on the target
+// architecture and operating system. See ARMSubtarget::getFramePointerReg for
+// details.
+//
+// Outgoing function arguments must be at the bottom of the stack frame when
+// calling another function. If we do not have variable-sized stack objects, we
+// can allocate a "reserved call frame" area at the bottom of the local
+// variable area, large enough for all outgoing calls. If we do have VLAs, then
+// the stack pointer must be decremented and incremented around each call to
+// make space for the arguments below the VLAs.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ARMFrameLowering.h"
+#include "ARMBaseInstrInfo.h"
+#include "ARMBaseRegisterInfo.h"
+#include "ARMConstantPoolValue.h"
+#include "ARMMachineFunctionInfo.h"
+#include "ARMSubtarget.h"
+#include "MCTargetDesc/ARMAddressingModes.h"
+#include "MCTargetDesc/ARMBaseInfo.h"
+#include "Utils/ARMBaseInfo.h"
+#include "llvm/ADT/BitVector.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/CodeGen/MachineConstantPool.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineJumpTableInfo.h"
+#include "llvm/CodeGen/MachineModuleInfo.h"
+#include "llvm/CodeGen/MachineOperand.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/RegisterScavenging.h"
+#include "llvm/CodeGen/TargetInstrInfo.h"
+#include "llvm/CodeGen/TargetOpcodes.h"
+#include "llvm/CodeGen/TargetRegisterInfo.h"
+#include "llvm/CodeGen/TargetSubtargetInfo.h"
+#include "llvm/IR/Attributes.h"
+#include "llvm/IR/CallingConv.h"
+#include "llvm/IR/DebugLoc.h"
+#include "llvm/IR/Function.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCDwarf.h"
+#include "llvm/MC/MCInstrDesc.h"
+#include "llvm/MC/MCRegisterInfo.h"
+#include "llvm/Support/CodeGen.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetOptions.h"
+#include <algorithm>
+#include <cassert>
+#include <cstddef>
+#include <cstdint>
+#include <iterator>
+#include <utility>
+#include <vector>
+
+#define DEBUG_TYPE "arm-frame-lowering"
+
+using namespace llvm;
+
+static cl::opt<bool>
+SpillAlignedNEONRegs("align-neon-spills", cl::Hidden, cl::init(true),
+ cl::desc("Align ARM NEON spills in prolog and epilog"));
+
+static MachineBasicBlock::iterator
+skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI,
+ unsigned NumAlignedDPRCS2Regs);
+
+ARMFrameLowering::ARMFrameLowering(const ARMSubtarget &sti)
+ : TargetFrameLowering(StackGrowsDown, sti.getStackAlignment(), 0, Align(4)),
+ STI(sti) {}
+
+bool ARMFrameLowering::keepFramePointer(const MachineFunction &MF) const {
+ // iOS always has a FP for backtracking, force other targets to keep their FP
+ // when doing FastISel. The emitted code is currently superior, and in cases
+ // like test-suite's lencod FastISel isn't quite correct when FP is eliminated.
+ return MF.getSubtarget<ARMSubtarget>().useFastISel();
+}
+
+/// Returns true if the target can safely skip saving callee-saved registers
+/// for noreturn nounwind functions.
+bool ARMFrameLowering::enableCalleeSaveSkip(const MachineFunction &MF) const {
+ assert(MF.getFunction().hasFnAttribute(Attribute::NoReturn) &&
+ MF.getFunction().hasFnAttribute(Attribute::NoUnwind) &&
+ !MF.getFunction().hasFnAttribute(Attribute::UWTable));
+
+ // Frame pointer and link register are not treated as normal CSR, thus we
+ // can always skip CSR saves for nonreturning functions.
+ return true;
+}
+
+/// hasFP - Return true if the specified function should have a dedicated frame
+/// pointer register. This is true if the function has variable sized allocas
+/// or if frame pointer elimination is disabled.
+bool ARMFrameLowering::hasFP(const MachineFunction &MF) const {
+ const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
+ const MachineFrameInfo &MFI = MF.getFrameInfo();
+
+ // ABI-required frame pointer.
+ if (MF.getTarget().Options.DisableFramePointerElim(MF))
+ return true;
+
+ // Frame pointer required for use within this function.
+ return (RegInfo->hasStackRealignment(MF) || MFI.hasVarSizedObjects() ||
+ MFI.isFrameAddressTaken());
+}
+
+/// isFPReserved - Return true if the frame pointer register should be
+/// considered a reserved register on the scope of the specified function.
+bool ARMFrameLowering::isFPReserved(const MachineFunction &MF) const {
+ return hasFP(MF) || MF.getTarget().Options.FramePointerIsReserved(MF);
+}
+
+/// hasReservedCallFrame - Under normal circumstances, when a frame pointer is
+/// not required, we reserve argument space for call sites in the function
+/// immediately on entry to the current function. This eliminates the need for
+/// add/sub sp brackets around call sites. Returns true if the call frame is
+/// included as part of the stack frame.
+bool ARMFrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
+ const MachineFrameInfo &MFI = MF.getFrameInfo();
+ unsigned CFSize = MFI.getMaxCallFrameSize();
+ // It's not always a good idea to include the call frame as part of the
+ // stack frame. ARM (especially Thumb) has small immediate offset to
+ // address the stack frame. So a large call frame can cause poor codegen
+ // and may even makes it impossible to scavenge a register.
+ if (CFSize >= ((1 << 12) - 1) / 2) // Half of imm12
+ return false;
+
+ return !MFI.hasVarSizedObjects();
+}
+
+/// canSimplifyCallFramePseudos - If there is a reserved call frame, the
+/// call frame pseudos can be simplified. Unlike most targets, having a FP
+/// is not sufficient here since we still may reference some objects via SP
+/// even when FP is available in Thumb2 mode.
+bool
+ARMFrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const {
+ return hasReservedCallFrame(MF) || MF.getFrameInfo().hasVarSizedObjects();
+}
+
+// Returns how much of the incoming argument stack area we should clean up in an
+// epilogue. For the C calling convention this will be 0, for guaranteed tail
+// call conventions it can be positive (a normal return or a tail call to a
+// function that uses less stack space for arguments) or negative (for a tail
+// call to a function that needs more stack space than us for arguments).
+static int getArgumentStackToRestore(MachineFunction &MF,
+ MachineBasicBlock &MBB) {
+ MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
+ bool IsTailCallReturn = false;
+ if (MBB.end() != MBBI) {
+ unsigned RetOpcode = MBBI->getOpcode();
+ IsTailCallReturn = RetOpcode == ARM::TCRETURNdi ||
+ RetOpcode == ARM::TCRETURNri ||
+ RetOpcode == ARM::TCRETURNrinotr12;
+ }
+ ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
+
+ int ArgumentPopSize = 0;
+ if (IsTailCallReturn) {
+ MachineOperand &StackAdjust = MBBI->getOperand(1);
+
+ // For a tail-call in a callee-pops-arguments environment, some or all of
+ // the stack may actually be in use for the call's arguments, this is
+ // calculated during LowerCall and consumed here...
+ ArgumentPopSize = StackAdjust.getImm();
+ } else {
+ // ... otherwise the amount to pop is *all* of the argument space,
+ // conveniently stored in the MachineFunctionInfo by
+ // LowerFormalArguments. This will, of course, be zero for the C calling
+ // convention.
+ ArgumentPopSize = AFI->getArgumentStackToRestore();
+ }
+
+ return ArgumentPopSize;
+}
+
+static bool needsWinCFI(const MachineFunction &MF) {
+ const Function &F = MF.getFunction();
+ return MF.getTarget().getMCAsmInfo()->usesWindowsCFI() &&
+ F.needsUnwindTableEntry();
+}
+
+// Given a load or a store instruction, generate an appropriate unwinding SEH
+// code on Windows.
+static MachineBasicBlock::iterator insertSEH(MachineBasicBlock::iterator MBBI,
+ const TargetInstrInfo &TII,
+ unsigned Flags) {
+ unsigned Opc = MBBI->getOpcode();
+ MachineBasicBlock *MBB = MBBI->getParent();
+ MachineFunction &MF = *MBB->getParent();
+ DebugLoc DL = MBBI->getDebugLoc();
+ MachineInstrBuilder MIB;
+ const ARMSubtarget &Subtarget = MF.getSubtarget<ARMSubtarget>();
+ const ARMBaseRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
+
+ Flags |= MachineInstr::NoMerge;
+
+ switch (Opc) {
+ default:
+ report_fatal_error("No SEH Opcode for instruction " + TII.getName(Opc));
+ break;
+ case ARM::t2ADDri: // add.w r11, sp, #xx
+ case ARM::t2ADDri12: // add.w r11, sp, #xx
+ case ARM::t2MOVTi16: // movt r4, #xx
+ case ARM::tBL: // bl __chkstk
+ // These are harmless if used for just setting up a frame pointer,
+ // but that frame pointer can't be relied upon for unwinding, unless
+ // set up with SEH_SaveSP.
+ MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop))
+ .addImm(/*Wide=*/1)
+ .setMIFlags(Flags);
+ break;
+
+ case ARM::t2MOVi16: { // mov(w) r4, #xx
+ bool Wide = MBBI->getOperand(1).getImm() >= 256;
+ if (!Wide) {
+ MachineInstrBuilder NewInstr =
+ BuildMI(MF, DL, TII.get(ARM::tMOVi8)).setMIFlags(MBBI->getFlags());
+ NewInstr.add(MBBI->getOperand(0));
+ NewInstr.add(t1CondCodeOp(/*isDead=*/true));
+ for (MachineOperand &MO : llvm::drop_begin(MBBI->operands()))
+ NewInstr.add(MO);
+ MachineBasicBlock::iterator NewMBBI = MBB->insertAfter(MBBI, NewInstr);
+ MBB->erase(MBBI);
+ MBBI = NewMBBI;
+ }
+ MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop)).addImm(Wide).setMIFlags(Flags);
+ break;
+ }
+
+ case ARM::tBLXr: // blx r12 (__chkstk)
+ MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop))
+ .addImm(/*Wide=*/0)
+ .setMIFlags(Flags);
+ break;
+
+ case ARM::t2MOVi32imm: // movw+movt
+ // This pseudo instruction expands into two mov instructions. If the
+ // second operand is a symbol reference, this will stay as two wide
+ // instructions, movw+movt. If they're immediates, the first one can
+ // end up as a narrow mov though.
+ // As two SEH instructions are appended here, they won't get interleaved
+ // between the two final movw/movt instructions, but it doesn't make any
+ // practical difference.
+ MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop))
+ .addImm(/*Wide=*/1)
+ .setMIFlags(Flags);
+ MBB->insertAfter(MBBI, MIB);
+ MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop))
+ .addImm(/*Wide=*/1)
+ .setMIFlags(Flags);
+ break;
+
+ case ARM::t2STR_PRE:
+ if (MBBI->getOperand(0).getReg() == ARM::SP &&
+ MBBI->getOperand(2).getReg() == ARM::SP &&
+ MBBI->getOperand(3).getImm() == -4) {
+ unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
+ MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveRegs))
+ .addImm(1ULL << Reg)
+ .addImm(/*Wide=*/1)
+ .setMIFlags(Flags);
+ } else {
+ report_fatal_error("No matching SEH Opcode for t2STR_PRE");
+ }
+ break;
+
+ case ARM::t2LDR_POST:
+ if (MBBI->getOperand(1).getReg() == ARM::SP &&
+ MBBI->getOperand(2).getReg() == ARM::SP &&
+ MBBI->getOperand(3).getImm() == 4) {
+ unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg());
+ MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveRegs))
+ .addImm(1ULL << Reg)
+ .addImm(/*Wide=*/1)
+ .setMIFlags(Flags);
+ } else {
+ report_fatal_error("No matching SEH Opcode for t2LDR_POST");
+ }
+ break;
+
+ case ARM::t2LDMIA_RET:
+ case ARM::t2LDMIA_UPD:
+ case ARM::t2STMDB_UPD: {
+ unsigned Mask = 0;
+ bool Wide = false;
+ for (unsigned i = 4, NumOps = MBBI->getNumOperands(); i != NumOps; ++i) {
+ const MachineOperand &MO = MBBI->getOperand(i);
+ if (!MO.isReg() || MO.isImplicit())
+ continue;
+ unsigned Reg = RegInfo->getSEHRegNum(MO.getReg());
+ if (Reg == 15)
+ Reg = 14;
+ if (Reg >= 8 && Reg <= 13)
+ Wide = true;
+ else if (Opc == ARM::t2LDMIA_UPD && Reg == 14)
+ Wide = true;
+ Mask |= 1 << Reg;
+ }
+ if (!Wide) {
+ unsigned NewOpc;
+ switch (Opc) {
+ case ARM::t2LDMIA_RET:
+ NewOpc = ARM::tPOP_RET;
+ break;
+ case ARM::t2LDMIA_UPD:
+ NewOpc = ARM::tPOP;
+ break;
+ case ARM::t2STMDB_UPD:
+ NewOpc = ARM::tPUSH;
+ break;
+ default:
+ llvm_unreachable("");
+ }
+ MachineInstrBuilder NewInstr =
+ BuildMI(MF, DL, TII.get(NewOpc)).setMIFlags(MBBI->getFlags());
+ for (unsigned i = 2, NumOps = MBBI->getNumOperands(); i != NumOps; ++i)
+ NewInstr.add(MBBI->getOperand(i));
+ MachineBasicBlock::iterator NewMBBI = MBB->insertAfter(MBBI, NewInstr);
+ MBB->erase(MBBI);
+ MBBI = NewMBBI;
+ }
+ unsigned SEHOpc =
+ (Opc == ARM::t2LDMIA_RET) ? ARM::SEH_SaveRegs_Ret : ARM::SEH_SaveRegs;
+ MIB = BuildMI(MF, DL, TII.get(SEHOpc))
+ .addImm(Mask)
+ .addImm(Wide ? 1 : 0)
+ .setMIFlags(Flags);
+ break;
+ }
+ case ARM::VSTMDDB_UPD:
+ case ARM::VLDMDIA_UPD: {
+ int First = -1, Last = 0;
+ for (const MachineOperand &MO : llvm::drop_begin(MBBI->operands(), 4)) {
+ unsigned Reg = RegInfo->getSEHRegNum(MO.getReg());
+ if (First == -1)
+ First = Reg;
+ Last = Reg;
+ }
+ MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveFRegs))
+ .addImm(First)
+ .addImm(Last)
+ .setMIFlags(Flags);
+ break;
+ }
+ case ARM::tSUBspi:
+ case ARM::tADDspi:
+ MIB = BuildMI(MF, DL, TII.get(ARM::SEH_StackAlloc))
+ .addImm(MBBI->getOperand(2).getImm() * 4)
+ .addImm(/*Wide=*/0)
+ .setMIFlags(Flags);
+ break;
+ case ARM::t2SUBspImm:
+ case ARM::t2SUBspImm12:
+ case ARM::t2ADDspImm:
+ case ARM::t2ADDspImm12:
+ MIB = BuildMI(MF, DL, TII.get(ARM::SEH_StackAlloc))
+ .addImm(MBBI->getOperand(2).getImm())
+ .addImm(/*Wide=*/1)
+ .setMIFlags(Flags);
+ break;
+
+ case ARM::tMOVr:
+ if (MBBI->getOperand(1).getReg() == ARM::SP &&
+ (Flags & MachineInstr::FrameSetup)) {
+ unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg());
+ MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveSP))
+ .addImm(Reg)
+ .setMIFlags(Flags);
+ } else if (MBBI->getOperand(0).getReg() == ARM::SP &&
+ (Flags & MachineInstr::FrameDestroy)) {
+ unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
+ MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveSP))
+ .addImm(Reg)
+ .setMIFlags(Flags);
+ } else {
+ report_fatal_error("No SEH Opcode for MOV");
+ }
+ break;
+
+ case ARM::tBX_RET:
+ case ARM::TCRETURNri:
+ case ARM::TCRETURNrinotr12:
+ MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop_Ret))
+ .addImm(/*Wide=*/0)
+ .setMIFlags(Flags);
+ break;
+
+ case ARM::TCRETURNdi:
+ MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop_Ret))
+ .addImm(/*Wide=*/1)
+ .setMIFlags(Flags);
+ break;
+ }
+ return MBB->insertAfter(MBBI, MIB);
+}
+
+static MachineBasicBlock::iterator
+initMBBRange(MachineBasicBlock &MBB, const MachineBasicBlock::iterator &MBBI) {
+ if (MBBI == MBB.begin())
+ return MachineBasicBlock::iterator();
+ return std::prev(MBBI);
+}
+
+static void insertSEHRange(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator Start,
+ const MachineBasicBlock::iterator &End,
+ const ARMBaseInstrInfo &TII, unsigned MIFlags) {
+ if (Start.isValid())
+ Start = std::next(Start);
+ else
+ Start = MBB.begin();
+
+ for (auto MI = Start; MI != End;) {
+ auto Next = std::next(MI);
+ // Check if this instruction already has got a SEH opcode added. In that
+ // case, don't do this generic mapping.
+ if (Next != End && isSEHInstruction(*Next)) {
+ MI = std::next(Next);
+ while (MI != End && isSEHInstruction(*MI))
+ ++MI;
+ continue;
+ }
+ insertSEH(MI, TII, MIFlags);
+ MI = Next;
+ }
+}
+
+static void emitRegPlusImmediate(
+ bool isARM, MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
+ const DebugLoc &dl, const ARMBaseInstrInfo &TII, unsigned DestReg,
+ unsigned SrcReg, int NumBytes, unsigned MIFlags = MachineInstr::NoFlags,
+ ARMCC::CondCodes Pred = ARMCC::AL, unsigned PredReg = 0) {
+ if (isARM)
+ emitARMRegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes,
+ Pred, PredReg, TII, MIFlags);
+ else
+ emitT2RegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes,
+ Pred, PredReg, TII, MIFlags);
+}
+
+static void emitSPUpdate(bool isARM, MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator &MBBI, const DebugLoc &dl,
+ const ARMBaseInstrInfo &TII, int NumBytes,
+ unsigned MIFlags = MachineInstr::NoFlags,
+ ARMCC::CondCodes Pred = ARMCC::AL,
+ unsigned PredReg = 0) {
+ emitRegPlusImmediate(isARM, MBB, MBBI, dl, TII, ARM::SP, ARM::SP, NumBytes,
+ MIFlags, Pred, PredReg);
+}
+
+static int sizeOfSPAdjustment(const MachineInstr &MI) {
+ int RegSize;
+ switch (MI.getOpcode()) {
+ case ARM::VSTMDDB_UPD:
+ RegSize = 8;
+ break;
+ case ARM::STMDB_UPD:
+ case ARM::t2STMDB_UPD:
+ RegSize = 4;
+ break;
+ case ARM::t2STR_PRE:
+ case ARM::STR_PRE_IMM:
+ return 4;
+ default:
+ llvm_unreachable("Unknown push or pop like instruction");
+ }
+
+ int count = 0;
+ // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+
+ // pred) so the list starts at 4.
+ for (int i = MI.getNumOperands() - 1; i >= 4; --i)
+ count += RegSize;
+ return count;
+}
+
+static bool WindowsRequiresStackProbe(const MachineFunction &MF,
+ size_t StackSizeInBytes) {
+ const MachineFrameInfo &MFI = MF.getFrameInfo();
+ const Function &F = MF.getFunction();
+ unsigned StackProbeSize = (MFI.getStackProtectorIndex() > 0) ? 4080 : 4096;
+
+ StackProbeSize =
+ F.getFnAttributeAsParsedInteger("stack-probe-size", StackProbeSize);
+ return (StackSizeInBytes >= StackProbeSize) &&
+ !F.hasFnAttribute("no-stack-arg-probe");
+}
+
+namespace {
+
+struct StackAdjustingInsts {
+ struct InstInfo {
+ MachineBasicBlock::iterator I;
+ unsigned SPAdjust;
+ bool BeforeFPSet;
+ };
+
+ SmallVector<InstInfo, 4> Insts;
+
+ void addInst(MachineBasicBlock::iterator I, unsigned SPAdjust,
+ bool BeforeFPSet = false) {
+ InstInfo Info = {I, SPAdjust, BeforeFPSet};
+ Insts.push_back(Info);
+ }
+
+ void addExtraBytes(const MachineBasicBlock::iterator I, unsigned ExtraBytes) {
+ auto Info =
+ llvm::find_if(Insts, [&](InstInfo &Info) { return Info.I == I; });
+ assert(Info != Insts.end() && "invalid sp adjusting instruction");
+ Info->SPAdjust += ExtraBytes;
+ }
+
+ void emitDefCFAOffsets(MachineBasicBlock &MBB, const DebugLoc &dl,
+ const ARMBaseInstrInfo &TII, bool HasFP) {
+ MachineFunction &MF = *MBB.getParent();
+ unsigned CFAOffset = 0;
+ for (auto &Info : Insts) {
+ if (HasFP && !Info.BeforeFPSet)
+ return;
+
+ CFAOffset += Info.SPAdjust;
+ unsigned CFIIndex = MF.addFrameInst(
+ MCCFIInstruction::cfiDefCfaOffset(nullptr, CFAOffset));
+ BuildMI(MBB, std::next(Info.I), dl,
+ TII.get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex)
+ .setMIFlags(MachineInstr::FrameSetup);
+ }
+ }
+};
+
+} // end anonymous namespace
+
+/// Emit an instruction sequence that will align the address in
+/// register Reg by zero-ing out the lower bits. For versions of the
+/// architecture that support Neon, this must be done in a single
+/// instruction, since skipAlignedDPRCS2Spills assumes it is done in a
+/// single instruction. That function only gets called when optimizing
+/// spilling of D registers on a core with the Neon instruction set
+/// present.
+static void emitAligningInstructions(MachineFunction &MF, ARMFunctionInfo *AFI,
+ const TargetInstrInfo &TII,
+ MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI,
+ const DebugLoc &DL, const unsigned Reg,
+ const Align Alignment,
+ const bool MustBeSingleInstruction) {
+ const ARMSubtarget &AST = MF.getSubtarget<ARMSubtarget>();
+ const bool CanUseBFC = AST.hasV6T2Ops() || AST.hasV7Ops();
+ const unsigned AlignMask = Alignment.value() - 1U;
+ const unsigned NrBitsToZero = Log2(Alignment);
+ assert(!AFI->isThumb1OnlyFunction() && "Thumb1 not supported");
+ if (!AFI->isThumbFunction()) {
+ // if the BFC instruction is available, use that to zero the lower
+ // bits:
+ // bfc Reg, #0, log2(Alignment)
+ // otherwise use BIC, if the mask to zero the required number of bits
+ // can be encoded in the bic immediate field
+ // bic Reg, Reg, Alignment-1
+ // otherwise, emit
+ // lsr Reg, Reg, log2(Alignment)
+ // lsl Reg, Reg, log2(Alignment)
+ if (CanUseBFC) {
+ BuildMI(MBB, MBBI, DL, TII.get(ARM::BFC), Reg)
+ .addReg(Reg, RegState::Kill)
+ .addImm(~AlignMask)
+ .add(predOps(ARMCC::AL));
+ } else if (AlignMask <= 255) {
+ BuildMI(MBB, MBBI, DL, TII.get(ARM::BICri), Reg)
+ .addReg(Reg, RegState::Kill)
+ .addImm(AlignMask)
+ .add(predOps(ARMCC::AL))
+ .add(condCodeOp());
+ } else {
+ assert(!MustBeSingleInstruction &&
+ "Shouldn't call emitAligningInstructions demanding a single "
+ "instruction to be emitted for large stack alignment for a target "
+ "without BFC.");
+ BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg)
+ .addReg(Reg, RegState::Kill)
+ .addImm(ARM_AM::getSORegOpc(ARM_AM::lsr, NrBitsToZero))
+ .add(predOps(ARMCC::AL))
+ .add(condCodeOp());
+ BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg)
+ .addReg(Reg, RegState::Kill)
+ .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, NrBitsToZero))
+ .add(predOps(ARMCC::AL))
+ .add(condCodeOp());
+ }
+ } else {
+ // Since this is only reached for Thumb-2 targets, the BFC instruction
+ // should always be available.
+ assert(CanUseBFC);
+ BuildMI(MBB, MBBI, DL, TII.get(ARM::t2BFC), Reg)
+ .addReg(Reg, RegState::Kill)
+ .addImm(~AlignMask)
+ .add(predOps(ARMCC::AL));
+ }
+}
+
+/// We need the offset of the frame pointer relative to other MachineFrameInfo
+/// offsets which are encoded relative to SP at function begin.
+/// See also emitPrologue() for how the FP is set up.
+/// Unfortunately we cannot determine this value in determineCalleeSaves() yet
+/// as assignCalleeSavedSpillSlots() hasn't run at this point. Instead we use
+/// this to produce a conservative estimate that we check in an assert() later.
+static int getMaxFPOffset(const ARMSubtarget &STI, const ARMFunctionInfo &AFI,
+ const MachineFunction &MF) {
+ // For Thumb1, push.w isn't available, so the first push will always push
+ // r7 and lr onto the stack first.
+ if (AFI.isThumb1OnlyFunction())
+ return -AFI.getArgRegsSaveSize() - (2 * 4);
+ // This is a conservative estimation: Assume the frame pointer being r7 and
+ // pc("r15") up to r8 getting spilled before (= 8 registers).
+ int MaxRegBytes = 8 * 4;
+ if (STI.splitFramePointerPush(MF)) {
+ // Here, r11 can be stored below all of r4-r15 (3 registers more than
+ // above), plus d8-d15.
+ MaxRegBytes = 11 * 4 + 8 * 8;
+ }
+ int FPCXTSaveSize =
+ (STI.hasV8_1MMainlineOps() && AFI.isCmseNSEntryFunction()) ? 4 : 0;
+ return -FPCXTSaveSize - AFI.getArgRegsSaveSize() - MaxRegBytes;
+}
+
+void ARMFrameLowering::emitPrologue(MachineFunction &MF,
+ MachineBasicBlock &MBB) const {
+ MachineBasicBlock::iterator MBBI = MBB.begin();
+ MachineFrameInfo &MFI = MF.getFrameInfo();
+ ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
+ MCContext &Context = MF.getContext();
+ const TargetMachine &TM = MF.getTarget();
+ const MCRegisterInfo *MRI = Context.getRegisterInfo();
+ const ARMBaseRegisterInfo *RegInfo = STI.getRegisterInfo();
+ const ARMBaseInstrInfo &TII = *STI.getInstrInfo();
+ assert(!AFI->isThumb1OnlyFunction() &&
+ "This emitPrologue does not support Thumb1!");
+ bool isARM = !AFI->isThumbFunction();
+ Align Alignment = STI.getFrameLowering()->getStackAlign();
+ unsigned ArgRegsSaveSize = AFI->getArgRegsSaveSize();
+ unsigned NumBytes = MFI.getStackSize();
+ const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
+ int FPCXTSaveSize = 0;
+ bool NeedsWinCFI = needsWinCFI(MF);
+
+ // Debug location must be unknown since the first debug location is used
+ // to determine the end of the prologue.
+ DebugLoc dl;
+
+ Register FramePtr = RegInfo->getFrameRegister(MF);
+
+ // Determine the sizes of each callee-save spill areas and record which frame
+ // belongs to which callee-save spill areas.
+ unsigned GPRCS1Size = 0, GPRCS2Size = 0, DPRCSSize = 0;
+ int FramePtrSpillFI = 0;
+ int D8SpillFI = 0;
+
+ // All calls are tail calls in GHC calling conv, and functions have no
+ // prologue/epilogue.
+ if (MF.getFunction().getCallingConv() == CallingConv::GHC)
+ return;
+
+ StackAdjustingInsts DefCFAOffsetCandidates;
+ bool HasFP = hasFP(MF);
+
+ if (!AFI->hasStackFrame() &&
+ (!STI.isTargetWindows() || !WindowsRequiresStackProbe(MF, NumBytes))) {
+ if (NumBytes != 0) {
+ emitSPUpdate(isARM, MBB, MBBI, dl, TII, -NumBytes,
+ MachineInstr::FrameSetup);
+ DefCFAOffsetCandidates.addInst(std::prev(MBBI), NumBytes, true);
+ }
+ if (!NeedsWinCFI)
+ DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP);
+ if (NeedsWinCFI && MBBI != MBB.begin()) {
+ insertSEHRange(MBB, {}, MBBI, TII, MachineInstr::FrameSetup);
+ BuildMI(MBB, MBBI, dl, TII.get(ARM::SEH_PrologEnd))
+ .setMIFlag(MachineInstr::FrameSetup);
+ MF.setHasWinCFI(true);
+ }
+ return;
+ }
+
+ // Determine spill area sizes.
+ if (STI.splitFramePointerPush(MF)) {
+ for (const CalleeSavedInfo &I : CSI) {
+ Register Reg = I.getReg();
+ int FI = I.getFrameIdx();
+ switch (Reg) {
+ case ARM::R11:
+ case ARM::LR:
+ if (Reg == FramePtr)
+ FramePtrSpillFI = FI;
+ GPRCS2Size += 4;
+ break;
+ case ARM::R0:
+ case ARM::R1:
+ case ARM::R2:
+ case ARM::R3:
+ case ARM::R4:
+ case ARM::R5:
+ case ARM::R6:
+ case ARM::R7:
+ case ARM::R8:
+ case ARM::R9:
+ case ARM::R10:
+ case ARM::R12:
+ GPRCS1Size += 4;
+ break;
+ case ARM::FPCXTNS:
+ FPCXTSaveSize = 4;
+ break;
+ default:
+ // This is a DPR. Exclude the aligned DPRCS2 spills.
+ if (Reg == ARM::D8)
+ D8SpillFI = FI;
+ if (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs())
+ DPRCSSize += 8;
+ }
+ }
+ } else {
+ for (const CalleeSavedInfo &I : CSI) {
+ Register Reg = I.getReg();
+ int FI = I.getFrameIdx();
+ switch (Reg) {
+ case ARM::R8:
+ case ARM::R9:
+ case ARM::R10:
+ case ARM::R11:
+ case ARM::R12:
+ if (STI.splitFramePushPop(MF)) {
+ GPRCS2Size += 4;
+ break;
+ }
+ [[fallthrough]];
+ case ARM::R0:
+ case ARM::R1:
+ case ARM::R2:
+ case ARM::R3:
+ case ARM::R4:
+ case ARM::R5:
+ case ARM::R6:
+ case ARM::R7:
+ case ARM::LR:
+ if (Reg == FramePtr)
+ FramePtrSpillFI = FI;
+ GPRCS1Size += 4;
+ break;
+ case ARM::FPCXTNS:
+ FPCXTSaveSize = 4;
+ break;
+ default:
+ // This is a DPR. Exclude the aligned DPRCS2 spills.
+ if (Reg == ARM::D8)
+ D8SpillFI = FI;
+ if (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs())
+ DPRCSSize += 8;
+ }
+ }
+ }
+
+ MachineBasicBlock::iterator LastPush = MBB.end(), GPRCS1Push, GPRCS2Push;
+
+ // Move past the PAC computation.
+ if (AFI->shouldSignReturnAddress())
+ LastPush = MBBI++;
+
+ // Move past FPCXT area.
+ if (FPCXTSaveSize > 0) {
+ LastPush = MBBI++;
+ DefCFAOffsetCandidates.addInst(LastPush, FPCXTSaveSize, true);
+ }
+
+ // Allocate the vararg register save area.
+ if (ArgRegsSaveSize) {
+ emitSPUpdate(isARM, MBB, MBBI, dl, TII, -ArgRegsSaveSize,
+ MachineInstr::FrameSetup);
+ LastPush = std::prev(MBBI);
+ DefCFAOffsetCandidates.addInst(LastPush, ArgRegsSaveSize, true);
+ }
+
+ // Move past area 1.
+ if (GPRCS1Size > 0) {
+ GPRCS1Push = LastPush = MBBI++;
+ DefCFAOffsetCandidates.addInst(LastPush, GPRCS1Size, true);
+ }
+
+ // Determine starting offsets of spill areas.
+ unsigned FPCXTOffset = NumBytes - ArgRegsSaveSize - FPCXTSaveSize;
+ unsigned GPRCS1Offset = FPCXTOffset - GPRCS1Size;
+ unsigned GPRCS2Offset = GPRCS1Offset - GPRCS2Size;
+ Align DPRAlign = DPRCSSize ? std::min(Align(8), Alignment) : Align(4);
+ unsigned DPRGapSize = GPRCS1Size + FPCXTSaveSize + ArgRegsSaveSize;
+ if (!STI.splitFramePointerPush(MF)) {
+ DPRGapSize += GPRCS2Size;
+ }
+ DPRGapSize %= DPRAlign.value();
+
+ unsigned DPRCSOffset;
+ if (STI.splitFramePointerPush(MF)) {
+ DPRCSOffset = GPRCS1Offset - DPRGapSize - DPRCSSize;
+ GPRCS2Offset = DPRCSOffset - GPRCS2Size;
+ } else {
+ DPRCSOffset = GPRCS2Offset - DPRGapSize - DPRCSSize;
+ }
+ int FramePtrOffsetInPush = 0;
+ if (HasFP) {
+ int FPOffset = MFI.getObjectOffset(FramePtrSpillFI);
+ assert(getMaxFPOffset(STI, *AFI, MF) <= FPOffset &&
+ "Max FP estimation is wrong");
+ FramePtrOffsetInPush = FPOffset + ArgRegsSaveSize + FPCXTSaveSize;
+ AFI->setFramePtrSpillOffset(MFI.getObjectOffset(FramePtrSpillFI) +
+ NumBytes);
+ }
+ AFI->setGPRCalleeSavedArea1Offset(GPRCS1Offset);
+ AFI->setGPRCalleeSavedArea2Offset(GPRCS2Offset);
+ AFI->setDPRCalleeSavedAreaOffset(DPRCSOffset);
+
+ // Move past area 2.
+ if (GPRCS2Size > 0 && !STI.splitFramePointerPush(MF)) {
+ GPRCS2Push = LastPush = MBBI++;
+ DefCFAOffsetCandidates.addInst(LastPush, GPRCS2Size);
+ }
+
+ // Prolog/epilog inserter assumes we correctly align DPRs on the stack, so our
+ // .cfi_offset operations will reflect that.
+ if (DPRGapSize) {
+ assert(DPRGapSize == 4 && "unexpected alignment requirements for DPRs");
+ if (LastPush != MBB.end() &&
+ tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, DPRGapSize))
+ DefCFAOffsetCandidates.addExtraBytes(LastPush, DPRGapSize);
+ else {
+ emitSPUpdate(isARM, MBB, MBBI, dl, TII, -DPRGapSize,
+ MachineInstr::FrameSetup);
+ DefCFAOffsetCandidates.addInst(std::prev(MBBI), DPRGapSize);
+ }
+ }
+
+ // Move past area 3.
+ if (DPRCSSize > 0) {
+ // Since vpush register list cannot have gaps, there may be multiple vpush
+ // instructions in the prologue.
+ while (MBBI != MBB.end() && MBBI->getOpcode() == ARM::VSTMDDB_UPD) {
+ DefCFAOffsetCandidates.addInst(MBBI, sizeOfSPAdjustment(*MBBI));
+ LastPush = MBBI++;
+ }
+ }
+
+ // Move past the aligned DPRCS2 area.
+ if (AFI->getNumAlignedDPRCS2Regs() > 0) {
+ MBBI = skipAlignedDPRCS2Spills(MBBI, AFI->getNumAlignedDPRCS2Regs());
+ // The code inserted by emitAlignedDPRCS2Spills realigns the stack, and
+ // leaves the stack pointer pointing to the DPRCS2 area.
+ //
+ // Adjust NumBytes to represent the stack slots below the DPRCS2 area.
+ NumBytes += MFI.getObjectOffset(D8SpillFI);
+ } else
+ NumBytes = DPRCSOffset;
+
+ if (GPRCS2Size > 0 && STI.splitFramePointerPush(MF)) {
+ GPRCS2Push = LastPush = MBBI++;
+ DefCFAOffsetCandidates.addInst(LastPush, GPRCS2Size);
+ }
+
+ bool NeedsWinCFIStackAlloc = NeedsWinCFI;
+ if (STI.splitFramePointerPush(MF) && HasFP)
+ NeedsWinCFIStackAlloc = false;
+
+ if (STI.isTargetWindows() && WindowsRequiresStackProbe(MF, NumBytes)) {
+ uint32_t NumWords = NumBytes >> 2;
+
+ if (NumWords < 65536) {
+ BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi16), ARM::R4)
+ .addImm(NumWords)
+ .setMIFlags(MachineInstr::FrameSetup)
+ .add(predOps(ARMCC::AL));
+ } else {
+ // Split into two instructions here, instead of using t2MOVi32imm,
+ // to allow inserting accurate SEH instructions (including accurate
+ // instruction size for each of them).
+ BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi16), ARM::R4)
+ .addImm(NumWords & 0xffff)
+ .setMIFlags(MachineInstr::FrameSetup)
+ .add(predOps(ARMCC::AL));
+ BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVTi16), ARM::R4)
+ .addReg(ARM::R4)
+ .addImm(NumWords >> 16)
+ .setMIFlags(MachineInstr::FrameSetup)
+ .add(predOps(ARMCC::AL));
+ }
+
+ switch (TM.getCodeModel()) {
+ case CodeModel::Tiny:
+ llvm_unreachable("Tiny code model not available on ARM.");
+ case CodeModel::Small:
+ case CodeModel::Medium:
+ case CodeModel::Kernel:
+ BuildMI(MBB, MBBI, dl, TII.get(ARM::tBL))
+ .add(predOps(ARMCC::AL))
+ .addExternalSymbol("__chkstk")
+ .addReg(ARM::R4, RegState::Implicit)
+ .setMIFlags(MachineInstr::FrameSetup);
+ break;
+ case CodeModel::Large:
+ BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi32imm), ARM::R12)
+ .addExternalSymbol("__chkstk")
+ .setMIFlags(MachineInstr::FrameSetup);
+
+ BuildMI(MBB, MBBI, dl, TII.get(ARM::tBLXr))
+ .add(predOps(ARMCC::AL))
+ .addReg(ARM::R12, RegState::Kill)
+ .addReg(ARM::R4, RegState::Implicit)
+ .setMIFlags(MachineInstr::FrameSetup);
+ break;
+ }
+
+ MachineInstrBuilder Instr, SEH;
+ Instr = BuildMI(MBB, MBBI, dl, TII.get(ARM::t2SUBrr), ARM::SP)
+ .addReg(ARM::SP, RegState::Kill)
+ .addReg(ARM::R4, RegState::Kill)
+ .setMIFlags(MachineInstr::FrameSetup)
+ .add(predOps(ARMCC::AL))
+ .add(condCodeOp());
+ if (NeedsWinCFIStackAlloc) {
+ SEH = BuildMI(MF, dl, TII.get(ARM::SEH_StackAlloc))
+ .addImm(NumBytes)
+ .addImm(/*Wide=*/1)
+ .setMIFlags(MachineInstr::FrameSetup);
+ MBB.insertAfter(Instr, SEH);
+ }
+ NumBytes = 0;
+ }
+
+ if (NumBytes) {
+ // Adjust SP after all the callee-save spills.
+ if (AFI->getNumAlignedDPRCS2Regs() == 0 &&
+ tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, NumBytes))
+ DefCFAOffsetCandidates.addExtraBytes(LastPush, NumBytes);
+ else {
+ emitSPUpdate(isARM, MBB, MBBI, dl, TII, -NumBytes,
+ MachineInstr::FrameSetup);
+ DefCFAOffsetCandidates.addInst(std::prev(MBBI), NumBytes);
+ }
+
+ if (HasFP && isARM)
+ // Restore from fp only in ARM mode: e.g. sub sp, r7, #24
+ // Note it's not safe to do this in Thumb2 mode because it would have
+ // taken two instructions:
+ // mov sp, r7
+ // sub sp, #24
+ // If an interrupt is taken between the two instructions, then sp is in
+ // an inconsistent state (pointing to the middle of callee-saved area).
+ // The interrupt handler can end up clobbering the registers.
+ AFI->setShouldRestoreSPFromFP(true);
+ }
+
+ // Set FP to point to the stack slot that contains the previous FP.
+ // For iOS, FP is R7, which has now been stored in spill area 1.
+ // Otherwise, if this is not iOS, all the callee-saved registers go
+ // into spill area 1, including the FP in R11. In either case, it
+ // is in area one and the adjustment needs to take place just after
+ // that push.
+ // FIXME: The above is not necessary true when PACBTI is enabled.
+ // AAPCS requires use of R11, and PACBTI gets in the way of regular pushes,
+ // so FP ends up on area two.
+ MachineBasicBlock::iterator AfterPush;
+ if (HasFP) {
+ AfterPush = std::next(GPRCS1Push);
+ unsigned PushSize = sizeOfSPAdjustment(*GPRCS1Push);
+ int FPOffset = PushSize + FramePtrOffsetInPush;
+ if (STI.splitFramePointerPush(MF)) {
+ AfterPush = std::next(GPRCS2Push);
+ emitRegPlusImmediate(!AFI->isThumbFunction(), MBB, AfterPush, dl, TII,
+ FramePtr, ARM::SP, 0, MachineInstr::FrameSetup);
+ } else {
+ emitRegPlusImmediate(!AFI->isThumbFunction(), MBB, AfterPush, dl, TII,
+ FramePtr, ARM::SP, FPOffset,
+ MachineInstr::FrameSetup);
+ }
+ if (!NeedsWinCFI) {
+ if (FramePtrOffsetInPush + PushSize != 0) {
+ unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfa(
+ nullptr, MRI->getDwarfRegNum(FramePtr, true),
+ FPCXTSaveSize + ArgRegsSaveSize - FramePtrOffsetInPush));
+ BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex)
+ .setMIFlags(MachineInstr::FrameSetup);
+ } else {
+ unsigned CFIIndex =
+ MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(
+ nullptr, MRI->getDwarfRegNum(FramePtr, true)));
+ BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex)
+ .setMIFlags(MachineInstr::FrameSetup);
+ }
+ }
+ }
+
+ // Emit a SEH opcode indicating the prologue end. The rest of the prologue
+ // instructions below don't need to be replayed to unwind the stack.
+ if (NeedsWinCFI && MBBI != MBB.begin()) {
+ MachineBasicBlock::iterator End = MBBI;
+ if (HasFP && STI.splitFramePointerPush(MF))
+ End = AfterPush;
+ insertSEHRange(MBB, {}, End, TII, MachineInstr::FrameSetup);
+ BuildMI(MBB, End, dl, TII.get(ARM::SEH_PrologEnd))
+ .setMIFlag(MachineInstr::FrameSetup);
+ MF.setHasWinCFI(true);
+ }
+
+ // Now that the prologue's actual instructions are finalised, we can insert
+ // the necessary DWARF cf instructions to describe the situation. Start by
+ // recording where each register ended up:
+ if (GPRCS1Size > 0 && !NeedsWinCFI) {
+ MachineBasicBlock::iterator Pos = std::next(GPRCS1Push);
+ int CFIIndex;
+ for (const auto &Entry : CSI) {
+ Register Reg = Entry.getReg();
+ int FI = Entry.getFrameIdx();
+ switch (Reg) {
+ case ARM::R8:
+ case ARM::R9:
+ case ARM::R10:
+ case ARM::R11:
+ case ARM::R12:
+ if (STI.splitFramePushPop(MF))
+ break;
+ [[fallthrough]];
+ case ARM::R0:
+ case ARM::R1:
+ case ARM::R2:
+ case ARM::R3:
+ case ARM::R4:
+ case ARM::R5:
+ case ARM::R6:
+ case ARM::R7:
+ case ARM::LR:
+ CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
+ nullptr, MRI->getDwarfRegNum(Reg, true), MFI.getObjectOffset(FI)));
+ BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex)
+ .setMIFlags(MachineInstr::FrameSetup);
+ break;
+ }
+ }
+ }
+
+ if (GPRCS2Size > 0 && !NeedsWinCFI) {
+ MachineBasicBlock::iterator Pos = std::next(GPRCS2Push);
+ for (const auto &Entry : CSI) {
+ Register Reg = Entry.getReg();
+ int FI = Entry.getFrameIdx();
+ switch (Reg) {
+ case ARM::R8:
+ case ARM::R9:
+ case ARM::R10:
+ case ARM::R11:
+ case ARM::R12:
+ if (STI.splitFramePushPop(MF)) {
+ unsigned DwarfReg = MRI->getDwarfRegNum(
+ Reg == ARM::R12 ? ARM::RA_AUTH_CODE : Reg, true);
+ int64_t Offset = MFI.getObjectOffset(FI);
+ unsigned CFIIndex = MF.addFrameInst(
+ MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
+ BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex)
+ .setMIFlags(MachineInstr::FrameSetup);
+ }
+ break;
+ }
+ }
+ }
+
+ if (DPRCSSize > 0 && !NeedsWinCFI) {
+ // Since vpush register list cannot have gaps, there may be multiple vpush
+ // instructions in the prologue.
+ MachineBasicBlock::iterator Pos = std::next(LastPush);
+ for (const auto &Entry : CSI) {
+ Register Reg = Entry.getReg();
+ int FI = Entry.getFrameIdx();
+ if ((Reg >= ARM::D0 && Reg <= ARM::D31) &&
+ (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs())) {
+ unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
+ int64_t Offset = MFI.getObjectOffset(FI);
+ unsigned CFIIndex = MF.addFrameInst(
+ MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
+ BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex)
+ .setMIFlags(MachineInstr::FrameSetup);
+ }
+ }
+ }
+
+ // Now we can emit descriptions of where the canonical frame address was
+ // throughout the process. If we have a frame pointer, it takes over the job
+ // half-way through, so only the first few .cfi_def_cfa_offset instructions
+ // actually get emitted.
+ if (!NeedsWinCFI)
+ DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP);
+
+ if (STI.isTargetELF() && hasFP(MF))
+ MFI.setOffsetAdjustment(MFI.getOffsetAdjustment() -
+ AFI->getFramePtrSpillOffset());
+
+ AFI->setFPCXTSaveAreaSize(FPCXTSaveSize);
+ AFI->setGPRCalleeSavedArea1Size(GPRCS1Size);
+ AFI->setGPRCalleeSavedArea2Size(GPRCS2Size);
+ AFI->setDPRCalleeSavedGapSize(DPRGapSize);
+ AFI->setDPRCalleeSavedAreaSize(DPRCSSize);
+
+ // If we need dynamic stack realignment, do it here. Be paranoid and make
+ // sure if we also have VLAs, we have a base pointer for frame access.
+ // If aligned NEON registers were spilled, the stack has already been
+ // realigned.
+ if (!AFI->getNumAlignedDPRCS2Regs() && RegInfo->hasStackRealignment(MF)) {
+ Align MaxAlign = MFI.getMaxAlign();
+ assert(!AFI->isThumb1OnlyFunction());
+ if (!AFI->isThumbFunction()) {
+ emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::SP, MaxAlign,
+ false);
+ } else {
+ // We cannot use sp as source/dest register here, thus we're using r4 to
+ // perform the calculations. We're emitting the following sequence:
+ // mov r4, sp
+ // -- use emitAligningInstructions to produce best sequence to zero
+ // -- out lower bits in r4
+ // mov sp, r4
+ // FIXME: It will be better just to find spare register here.
+ BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::R4)
+ .addReg(ARM::SP, RegState::Kill)
+ .add(predOps(ARMCC::AL));
+ emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::R4, MaxAlign,
+ false);
+ BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP)
+ .addReg(ARM::R4, RegState::Kill)
+ .add(predOps(ARMCC::AL));
+ }
+
+ AFI->setShouldRestoreSPFromFP(true);
+ }
+
+ // If we need a base pointer, set it up here. It's whatever the value
+ // of the stack pointer is at this point. Any variable size objects
+ // will be allocated after this, so we can still use the base pointer
+ // to reference locals.
+ // FIXME: Clarify FrameSetup flags here.
+ if (RegInfo->hasBasePointer(MF)) {
+ if (isARM)
+ BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), RegInfo->getBaseRegister())
+ .addReg(ARM::SP)
+ .add(predOps(ARMCC::AL))
+ .add(condCodeOp());
+ else
+ BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), RegInfo->getBaseRegister())
+ .addReg(ARM::SP)
+ .add(predOps(ARMCC::AL));
+ }
+
+ // If the frame has variable sized objects then the epilogue must restore
+ // the sp from fp. We can assume there's an FP here since hasFP already
+ // checks for hasVarSizedObjects.
+ if (MFI.hasVarSizedObjects())
+ AFI->setShouldRestoreSPFromFP(true);
+}
+
+void ARMFrameLowering::emitEpilogue(MachineFunction &MF,
+ MachineBasicBlock &MBB) const {
+ MachineFrameInfo &MFI = MF.getFrameInfo();
+ ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
+ const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
+ const ARMBaseInstrInfo &TII =
+ *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
+ assert(!AFI->isThumb1OnlyFunction() &&
+ "This emitEpilogue does not support Thumb1!");
+ bool isARM = !AFI->isThumbFunction();
+
+ // Amount of stack space we reserved next to incoming args for either
+ // varargs registers or stack arguments in tail calls made by this function.
+ unsigned ReservedArgStack = AFI->getArgRegsSaveSize();
+
+ // How much of the stack used by incoming arguments this function is expected
+ // to restore in this particular epilogue.
+ int IncomingArgStackToRestore = getArgumentStackToRestore(MF, MBB);
+ int NumBytes = (int)MFI.getStackSize();
+ Register FramePtr = RegInfo->getFrameRegister(MF);
+
+ // All calls are tail calls in GHC calling conv, and functions have no
+ // prologue/epilogue.
+ if (MF.getFunction().getCallingConv() == CallingConv::GHC)
+ return;
+
+ // First put ourselves on the first (from top) terminator instructions.
+ MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
+ DebugLoc dl = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
+
+ MachineBasicBlock::iterator RangeStart;
+ if (!AFI->hasStackFrame()) {
+ if (MF.hasWinCFI()) {
+ BuildMI(MBB, MBBI, dl, TII.get(ARM::SEH_EpilogStart))
+ .setMIFlag(MachineInstr::FrameDestroy);
+ RangeStart = initMBBRange(MBB, MBBI);
+ }
+
+ if (NumBytes + IncomingArgStackToRestore != 0)
+ emitSPUpdate(isARM, MBB, MBBI, dl, TII,
+ NumBytes + IncomingArgStackToRestore,
+ MachineInstr::FrameDestroy);
+ } else {
+ // Unwind MBBI to point to first LDR / VLDRD.
+ if (MBBI != MBB.begin()) {
+ do {
+ --MBBI;
+ } while (MBBI != MBB.begin() &&
+ MBBI->getFlag(MachineInstr::FrameDestroy));
+ if (!MBBI->getFlag(MachineInstr::FrameDestroy))
+ ++MBBI;
+ }
+
+ if (MF.hasWinCFI()) {
+ BuildMI(MBB, MBBI, dl, TII.get(ARM::SEH_EpilogStart))
+ .setMIFlag(MachineInstr::FrameDestroy);
+ RangeStart = initMBBRange(MBB, MBBI);
+ }
+
+ // Move SP to start of FP callee save spill area.
+ NumBytes -= (ReservedArgStack +
+ AFI->getFPCXTSaveAreaSize() +
+ AFI->getGPRCalleeSavedArea1Size() +
+ AFI->getGPRCalleeSavedArea2Size() +
+ AFI->getDPRCalleeSavedGapSize() +
+ AFI->getDPRCalleeSavedAreaSize());
+
+ // Reset SP based on frame pointer only if the stack frame extends beyond
+ // frame pointer stack slot or target is ELF and the function has FP.
+ if (AFI->shouldRestoreSPFromFP()) {
+ NumBytes = AFI->getFramePtrSpillOffset() - NumBytes;
+ if (NumBytes) {
+ if (isARM)
+ emitARMRegPlusImmediate(MBB, MBBI, dl, ARM::SP, FramePtr, -NumBytes,
+ ARMCC::AL, 0, TII,
+ MachineInstr::FrameDestroy);
+ else {
+ // It's not possible to restore SP from FP in a single instruction.
+ // For iOS, this looks like:
+ // mov sp, r7
+ // sub sp, #24
+ // This is bad, if an interrupt is taken after the mov, sp is in an
+ // inconsistent state.
+ // Use the first callee-saved register as a scratch register.
+ assert(!MFI.getPristineRegs(MF).test(ARM::R4) &&
+ "No scratch register to restore SP from FP!");
+ emitT2RegPlusImmediate(MBB, MBBI, dl, ARM::R4, FramePtr, -NumBytes,
+ ARMCC::AL, 0, TII, MachineInstr::FrameDestroy);
+ BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP)
+ .addReg(ARM::R4)
+ .add(predOps(ARMCC::AL))
+ .setMIFlag(MachineInstr::FrameDestroy);
+ }
+ } else {
+ // Thumb2 or ARM.
+ if (isARM)
+ BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), ARM::SP)
+ .addReg(FramePtr)
+ .add(predOps(ARMCC::AL))
+ .add(condCodeOp())
+ .setMIFlag(MachineInstr::FrameDestroy);
+ else
+ BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP)
+ .addReg(FramePtr)
+ .add(predOps(ARMCC::AL))
+ .setMIFlag(MachineInstr::FrameDestroy);
+ }
+ } else if (NumBytes &&
+ !tryFoldSPUpdateIntoPushPop(STI, MF, &*MBBI, NumBytes))
+ emitSPUpdate(isARM, MBB, MBBI, dl, TII, NumBytes,
+ MachineInstr::FrameDestroy);
+
+ // Increment past our save areas.
+ if (AFI->getGPRCalleeSavedArea2Size() && STI.splitFramePointerPush(MF))
+ MBBI++;
+
+ if (MBBI != MBB.end() && AFI->getDPRCalleeSavedAreaSize()) {
+ MBBI++;
+ // Since vpop register list cannot have gaps, there may be multiple vpop
+ // instructions in the epilogue.
+ while (MBBI != MBB.end() && MBBI->getOpcode() == ARM::VLDMDIA_UPD)
+ MBBI++;
+ }
+ if (AFI->getDPRCalleeSavedGapSize()) {
+ assert(AFI->getDPRCalleeSavedGapSize() == 4 &&
+ "unexpected DPR alignment gap");
+ emitSPUpdate(isARM, MBB, MBBI, dl, TII, AFI->getDPRCalleeSavedGapSize(),
+ MachineInstr::FrameDestroy);
+ }
+
+ if (AFI->getGPRCalleeSavedArea2Size() && !STI.splitFramePointerPush(MF))
+ MBBI++;
+ if (AFI->getGPRCalleeSavedArea1Size()) MBBI++;
+
+ if (ReservedArgStack || IncomingArgStackToRestore) {
+ assert((int)ReservedArgStack + IncomingArgStackToRestore >= 0 &&
+ "attempting to restore negative stack amount");
+ emitSPUpdate(isARM, MBB, MBBI, dl, TII,
+ ReservedArgStack + IncomingArgStackToRestore,
+ MachineInstr::FrameDestroy);
+ }
+
+ // Validate PAC, It should have been already popped into R12. For CMSE entry
+ // function, the validation instruction is emitted during expansion of the
+ // tBXNS_RET, since the validation must use the value of SP at function
+ // entry, before saving, resp. after restoring, FPCXTNS.
+ if (AFI->shouldSignReturnAddress() && !AFI->isCmseNSEntryFunction())
+ BuildMI(MBB, MBBI, DebugLoc(), STI.getInstrInfo()->get(ARM::t2AUT));
+ }
+
+ if (MF.hasWinCFI()) {
+ insertSEHRange(MBB, RangeStart, MBB.end(), TII, MachineInstr::FrameDestroy);
+ BuildMI(MBB, MBB.end(), dl, TII.get(ARM::SEH_EpilogEnd))
+ .setMIFlag(MachineInstr::FrameDestroy);
+ }
+}
+
+/// getFrameIndexReference - Provide a base+offset reference to an FI slot for
+/// debug info. It's the same as what we use for resolving the code-gen
+/// references for now. FIXME: This can go wrong when references are
+/// SP-relative and simple call frames aren't used.
+StackOffset ARMFrameLowering::getFrameIndexReference(const MachineFunction &MF,
+ int FI,
+ Register &FrameReg) const {
+ return StackOffset::getFixed(ResolveFrameIndexReference(MF, FI, FrameReg, 0));
+}
+
+int ARMFrameLowering::ResolveFrameIndexReference(const MachineFunction &MF,
+ int FI, Register &FrameReg,
+ int SPAdj) const {
+ const MachineFrameInfo &MFI = MF.getFrameInfo();
+ const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>(
+ MF.getSubtarget().getRegisterInfo());
+ const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
+ int Offset = MFI.getObjectOffset(FI) + MFI.getStackSize();
+ int FPOffset = Offset - AFI->getFramePtrSpillOffset();
+ bool isFixed = MFI.isFixedObjectIndex(FI);
+
+ FrameReg = ARM::SP;
+ Offset += SPAdj;
+
+ // SP can move around if there are allocas. We may also lose track of SP
+ // when emergency spilling inside a non-reserved call frame setup.
+ bool hasMovingSP = !hasReservedCallFrame(MF);
+
+ // When dynamically realigning the stack, use the frame pointer for
+ // parameters, and the stack/base pointer for locals.
+ if (RegInfo->hasStackRealignment(MF)) {
+ assert(hasFP(MF) && "dynamic stack realignment without a FP!");
+ if (isFixed) {
+ FrameReg = RegInfo->getFrameRegister(MF);
+ Offset = FPOffset;
+ } else if (hasMovingSP) {
+ assert(RegInfo->hasBasePointer(MF) &&
+ "VLAs and dynamic stack alignment, but missing base pointer!");
+ FrameReg = RegInfo->getBaseRegister();
+ Offset -= SPAdj;
+ }
+ return Offset;
+ }
+
+ // If there is a frame pointer, use it when we can.
+ if (hasFP(MF) && AFI->hasStackFrame()) {
+ // Use frame pointer to reference fixed objects. Use it for locals if
+ // there are VLAs (and thus the SP isn't reliable as a base).
+ if (isFixed || (hasMovingSP && !RegInfo->hasBasePointer(MF))) {
+ FrameReg = RegInfo->getFrameRegister(MF);
+ return FPOffset;
+ } else if (hasMovingSP) {
+ assert(RegInfo->hasBasePointer(MF) && "missing base pointer!");
+ if (AFI->isThumb2Function()) {
+ // Try to use the frame pointer if we can, else use the base pointer
+ // since it's available. This is handy for the emergency spill slot, in
+ // particular.
+ if (FPOffset >= -255 && FPOffset < 0) {
+ FrameReg = RegInfo->getFrameRegister(MF);
+ return FPOffset;
+ }
+ }
+ } else if (AFI->isThumbFunction()) {
+ // Prefer SP to base pointer, if the offset is suitably aligned and in
+ // range as the effective range of the immediate offset is bigger when
+ // basing off SP.
+ // Use add <rd>, sp, #<imm8>
+ // ldr <rd>, [sp, #<imm8>]
+ if (Offset >= 0 && (Offset & 3) == 0 && Offset <= 1020)
+ return Offset;
+ // In Thumb2 mode, the negative offset is very limited. Try to avoid
+ // out of range references. ldr <rt>,[<rn>, #-<imm8>]
+ if (AFI->isThumb2Function() && FPOffset >= -255 && FPOffset < 0) {
+ FrameReg = RegInfo->getFrameRegister(MF);
+ return FPOffset;
+ }
+ } else if (Offset > (FPOffset < 0 ? -FPOffset : FPOffset)) {
+ // Otherwise, use SP or FP, whichever is closer to the stack slot.
+ FrameReg = RegInfo->getFrameRegister(MF);
+ return FPOffset;
+ }
+ }
+ // Use the base pointer if we have one.
+ // FIXME: Maybe prefer sp on Thumb1 if it's legal and the offset is cheaper?
+ // That can happen if we forced a base pointer for a large call frame.
+ if (RegInfo->hasBasePointer(MF)) {
+ FrameReg = RegInfo->getBaseRegister();
+ Offset -= SPAdj;
+ }
+ return Offset;
+}
+
+void ARMFrameLowering::emitPushInst(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ ArrayRef<CalleeSavedInfo> CSI,
+ unsigned StmOpc, unsigned StrOpc,
+ bool NoGap, bool (*Func)(unsigned, bool),
+ unsigned NumAlignedDPRCS2Regs,
+ unsigned MIFlags) const {
+ MachineFunction &MF = *MBB.getParent();
+ const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
+ const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
+
+ DebugLoc DL;
+
+ using RegAndKill = std::pair<unsigned, bool>;
+
+ SmallVector<RegAndKill, 4> Regs;
+ unsigned i = CSI.size();
+ while (i != 0) {
+ unsigned LastReg = 0;
+ for (; i != 0; --i) {
+ Register Reg = CSI[i-1].getReg();
+ if (!(Func)(Reg, STI.splitFramePushPop(MF))) continue;
+
+ // D-registers in the aligned area DPRCS2 are NOT spilled here.
+ if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs)
+ continue;
+
+ const MachineRegisterInfo &MRI = MF.getRegInfo();
+ bool isLiveIn = MRI.isLiveIn(Reg);
+ if (!isLiveIn && !MRI.isReserved(Reg))
+ MBB.addLiveIn(Reg);
+ // If NoGap is true, push consecutive registers and then leave the rest
+ // for other instructions. e.g.
+ // vpush {d8, d10, d11} -> vpush {d8}, vpush {d10, d11}
+ if (NoGap && LastReg && LastReg != Reg-1)
+ break;
+ LastReg = Reg;
+ // Do not set a kill flag on values that are also marked as live-in. This
+ // happens with the @llvm-returnaddress intrinsic and with arguments
+ // passed in callee saved registers.
+ // Omitting the kill flags is conservatively correct even if the live-in
+ // is not used after all.
+ Regs.push_back(std::make_pair(Reg, /*isKill=*/!isLiveIn));
+ }
+
+ if (Regs.empty())
+ continue;
+
+ llvm::sort(Regs, [&](const RegAndKill &LHS, const RegAndKill &RHS) {
+ return TRI.getEncodingValue(LHS.first) < TRI.getEncodingValue(RHS.first);
+ });
+
+ if (Regs.size() > 1 || StrOpc== 0) {
+ MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StmOpc), ARM::SP)
+ .addReg(ARM::SP)
+ .setMIFlags(MIFlags)
+ .add(predOps(ARMCC::AL));
+ for (unsigned i = 0, e = Regs.size(); i < e; ++i)
+ MIB.addReg(Regs[i].first, getKillRegState(Regs[i].second));
+ } else if (Regs.size() == 1) {
+ BuildMI(MBB, MI, DL, TII.get(StrOpc), ARM::SP)
+ .addReg(Regs[0].first, getKillRegState(Regs[0].second))
+ .addReg(ARM::SP)
+ .setMIFlags(MIFlags)
+ .addImm(-4)
+ .add(predOps(ARMCC::AL));
+ }
+ Regs.clear();
+
+ // Put any subsequent vpush instructions before this one: they will refer to
+ // higher register numbers so need to be pushed first in order to preserve
+ // monotonicity.
+ if (MI != MBB.begin())
+ --MI;
+ }
+}
+
+void ARMFrameLowering::emitPopInst(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ MutableArrayRef<CalleeSavedInfo> CSI,
+ unsigned LdmOpc, unsigned LdrOpc,
+ bool isVarArg, bool NoGap,
+ bool (*Func)(unsigned, bool),
+ unsigned NumAlignedDPRCS2Regs) const {
+ MachineFunction &MF = *MBB.getParent();
+ const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
+ const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
+ ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
+ bool hasPAC = AFI->shouldSignReturnAddress();
+ DebugLoc DL;
+ bool isTailCall = false;
+ bool isInterrupt = false;
+ bool isTrap = false;
+ bool isCmseEntry = false;
+ if (MBB.end() != MI) {
+ DL = MI->getDebugLoc();
+ unsigned RetOpcode = MI->getOpcode();
+ isTailCall =
+ (RetOpcode == ARM::TCRETURNdi || RetOpcode == ARM::TCRETURNri ||
+ RetOpcode == ARM::TCRETURNrinotr12);
+ isInterrupt =
+ RetOpcode == ARM::SUBS_PC_LR || RetOpcode == ARM::t2SUBS_PC_LR;
+ isTrap =
+ RetOpcode == ARM::TRAP || RetOpcode == ARM::TRAPNaCl ||
+ RetOpcode == ARM::tTRAP;
+ isCmseEntry = (RetOpcode == ARM::tBXNS || RetOpcode == ARM::tBXNS_RET);
+ }
+
+ SmallVector<unsigned, 4> Regs;
+ unsigned i = CSI.size();
+ while (i != 0) {
+ unsigned LastReg = 0;
+ bool DeleteRet = false;
+ for (; i != 0; --i) {
+ CalleeSavedInfo &Info = CSI[i-1];
+ Register Reg = Info.getReg();
+ if (!(Func)(Reg, STI.splitFramePushPop(MF))) continue;
+
+ // The aligned reloads from area DPRCS2 are not inserted here.
+ if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs)
+ continue;
+ if (Reg == ARM::LR && !isTailCall && !isVarArg && !isInterrupt &&
+ !isCmseEntry && !isTrap && AFI->getArgumentStackToRestore() == 0 &&
+ STI.hasV5TOps() && MBB.succ_empty() && !hasPAC &&
+ !STI.splitFramePointerPush(MF)) {
+ Reg = ARM::PC;
+ // Fold the return instruction into the LDM.
+ DeleteRet = true;
+ LdmOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_RET : ARM::LDMIA_RET;
+ }
+
+ // If NoGap is true, pop consecutive registers and then leave the rest
+ // for other instructions. e.g.
+ // vpop {d8, d10, d11} -> vpop {d8}, vpop {d10, d11}
+ if (NoGap && LastReg && LastReg != Reg-1)
+ break;
+
+ LastReg = Reg;
+ Regs.push_back(Reg);
+ }
+
+ if (Regs.empty())
+ continue;
+
+ llvm::sort(Regs, [&](unsigned LHS, unsigned RHS) {
+ return TRI.getEncodingValue(LHS) < TRI.getEncodingValue(RHS);
+ });
+
+ if (Regs.size() > 1 || LdrOpc == 0) {
+ MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(LdmOpc), ARM::SP)
+ .addReg(ARM::SP)
+ .add(predOps(ARMCC::AL))
+ .setMIFlags(MachineInstr::FrameDestroy);
+ for (unsigned Reg : Regs)
+ MIB.addReg(Reg, getDefRegState(true));
+ if (DeleteRet) {
+ if (MI != MBB.end()) {
+ MIB.copyImplicitOps(*MI);
+ MI->eraseFromParent();
+ }
+ }
+ MI = MIB;
+ } else if (Regs.size() == 1) {
+ // If we adjusted the reg to PC from LR above, switch it back here. We
+ // only do that for LDM.
+ if (Regs[0] == ARM::PC)
+ Regs[0] = ARM::LR;
+ MachineInstrBuilder MIB =
+ BuildMI(MBB, MI, DL, TII.get(LdrOpc), Regs[0])
+ .addReg(ARM::SP, RegState::Define)
+ .addReg(ARM::SP)
+ .setMIFlags(MachineInstr::FrameDestroy);
+ // ARM mode needs an extra reg0 here due to addrmode2. Will go away once
+ // that refactoring is complete (eventually).
+ if (LdrOpc == ARM::LDR_POST_REG || LdrOpc == ARM::LDR_POST_IMM) {
+ MIB.addReg(0);
+ MIB.addImm(ARM_AM::getAM2Opc(ARM_AM::add, 4, ARM_AM::no_shift));
+ } else
+ MIB.addImm(4);
+ MIB.add(predOps(ARMCC::AL));
+ }
+ Regs.clear();
+
+ // Put any subsequent vpop instructions after this one: they will refer to
+ // higher register numbers so need to be popped afterwards.
+ if (MI != MBB.end())
+ ++MI;
+ }
+}
+
+/// Emit aligned spill instructions for NumAlignedDPRCS2Regs D-registers
+/// starting from d8. Also insert stack realignment code and leave the stack
+/// pointer pointing to the d8 spill slot.
+static void emitAlignedDPRCS2Spills(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ unsigned NumAlignedDPRCS2Regs,
+ ArrayRef<CalleeSavedInfo> CSI,
+ const TargetRegisterInfo *TRI) {
+ MachineFunction &MF = *MBB.getParent();
+ ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
+ DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc();
+ const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
+ MachineFrameInfo &MFI = MF.getFrameInfo();
+
+ // Mark the D-register spill slots as properly aligned. Since MFI computes
+ // stack slot layout backwards, this can actually mean that the d-reg stack
+ // slot offsets can be wrong. The offset for d8 will always be correct.
+ for (const CalleeSavedInfo &I : CSI) {
+ unsigned DNum = I.getReg() - ARM::D8;
+ if (DNum > NumAlignedDPRCS2Regs - 1)
+ continue;
+ int FI = I.getFrameIdx();
+ // The even-numbered registers will be 16-byte aligned, the odd-numbered
+ // registers will be 8-byte aligned.
+ MFI.setObjectAlignment(FI, DNum % 2 ? Align(8) : Align(16));
+
+ // The stack slot for D8 needs to be maximally aligned because this is
+ // actually the point where we align the stack pointer. MachineFrameInfo
+ // computes all offsets relative to the incoming stack pointer which is a
+ // bit weird when realigning the stack. Any extra padding for this
+ // over-alignment is not realized because the code inserted below adjusts
+ // the stack pointer by numregs * 8 before aligning the stack pointer.
+ if (DNum == 0)
+ MFI.setObjectAlignment(FI, MFI.getMaxAlign());
+ }
+
+ // Move the stack pointer to the d8 spill slot, and align it at the same
+ // time. Leave the stack slot address in the scratch register r4.
+ //
+ // sub r4, sp, #numregs * 8
+ // bic r4, r4, #align - 1
+ // mov sp, r4
+ //
+ bool isThumb = AFI->isThumbFunction();
+ assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1");
+ AFI->setShouldRestoreSPFromFP(true);
+
+ // sub r4, sp, #numregs * 8
+ // The immediate is <= 64, so it doesn't need any special encoding.
+ unsigned Opc = isThumb ? ARM::t2SUBri : ARM::SUBri;
+ BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4)
+ .addReg(ARM::SP)
+ .addImm(8 * NumAlignedDPRCS2Regs)
+ .add(predOps(ARMCC::AL))
+ .add(condCodeOp());
+
+ Align MaxAlign = MF.getFrameInfo().getMaxAlign();
+ // We must set parameter MustBeSingleInstruction to true, since
+ // skipAlignedDPRCS2Spills expects exactly 3 instructions to perform
+ // stack alignment. Luckily, this can always be done since all ARM
+ // architecture versions that support Neon also support the BFC
+ // instruction.
+ emitAligningInstructions(MF, AFI, TII, MBB, MI, DL, ARM::R4, MaxAlign, true);
+
+ // mov sp, r4
+ // The stack pointer must be adjusted before spilling anything, otherwise
+ // the stack slots could be clobbered by an interrupt handler.
+ // Leave r4 live, it is used below.
+ Opc = isThumb ? ARM::tMOVr : ARM::MOVr;
+ MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(Opc), ARM::SP)
+ .addReg(ARM::R4)
+ .add(predOps(ARMCC::AL));
+ if (!isThumb)
+ MIB.add(condCodeOp());
+
+ // Now spill NumAlignedDPRCS2Regs registers starting from d8.
+ // r4 holds the stack slot address.
+ unsigned NextReg = ARM::D8;
+
+ // 16-byte aligned vst1.64 with 4 d-regs and address writeback.
+ // The writeback is only needed when emitting two vst1.64 instructions.
+ if (NumAlignedDPRCS2Regs >= 6) {
+ unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
+ &ARM::QQPRRegClass);
+ MBB.addLiveIn(SupReg);
+ BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Qwb_fixed), ARM::R4)
+ .addReg(ARM::R4, RegState::Kill)
+ .addImm(16)
+ .addReg(NextReg)
+ .addReg(SupReg, RegState::ImplicitKill)
+ .add(predOps(ARMCC::AL));
+ NextReg += 4;
+ NumAlignedDPRCS2Regs -= 4;
+ }
+
+ // We won't modify r4 beyond this point. It currently points to the next
+ // register to be spilled.
+ unsigned R4BaseReg = NextReg;
+
+ // 16-byte aligned vst1.64 with 4 d-regs, no writeback.
+ if (NumAlignedDPRCS2Regs >= 4) {
+ unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
+ &ARM::QQPRRegClass);
+ MBB.addLiveIn(SupReg);
+ BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Q))
+ .addReg(ARM::R4)
+ .addImm(16)
+ .addReg(NextReg)
+ .addReg(SupReg, RegState::ImplicitKill)
+ .add(predOps(ARMCC::AL));
+ NextReg += 4;
+ NumAlignedDPRCS2Regs -= 4;
+ }
+
+ // 16-byte aligned vst1.64 with 2 d-regs.
+ if (NumAlignedDPRCS2Regs >= 2) {
+ unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
+ &ARM::QPRRegClass);
+ MBB.addLiveIn(SupReg);
+ BuildMI(MBB, MI, DL, TII.get(ARM::VST1q64))
+ .addReg(ARM::R4)
+ .addImm(16)
+ .addReg(SupReg)
+ .add(predOps(ARMCC::AL));
+ NextReg += 2;
+ NumAlignedDPRCS2Regs -= 2;
+ }
+
+ // Finally, use a vanilla vstr.64 for the odd last register.
+ if (NumAlignedDPRCS2Regs) {
+ MBB.addLiveIn(NextReg);
+ // vstr.64 uses addrmode5 which has an offset scale of 4.
+ BuildMI(MBB, MI, DL, TII.get(ARM::VSTRD))
+ .addReg(NextReg)
+ .addReg(ARM::R4)
+ .addImm((NextReg - R4BaseReg) * 2)
+ .add(predOps(ARMCC::AL));
+ }
+
+ // The last spill instruction inserted should kill the scratch register r4.
+ std::prev(MI)->addRegisterKilled(ARM::R4, TRI);
+}
+
+/// Skip past the code inserted by emitAlignedDPRCS2Spills, and return an
+/// iterator to the following instruction.
+static MachineBasicBlock::iterator
+skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI,
+ unsigned NumAlignedDPRCS2Regs) {
+ // sub r4, sp, #numregs * 8
+ // bic r4, r4, #align - 1
+ // mov sp, r4
+ ++MI; ++MI; ++MI;
+ assert(MI->mayStore() && "Expecting spill instruction");
+
+ // These switches all fall through.
+ switch(NumAlignedDPRCS2Regs) {
+ case 7:
+ ++MI;
+ assert(MI->mayStore() && "Expecting spill instruction");
+ [[fallthrough]];
+ default:
+ ++MI;
+ assert(MI->mayStore() && "Expecting spill instruction");
+ [[fallthrough]];
+ case 1:
+ case 2:
+ case 4:
+ assert(MI->killsRegister(ARM::R4, /*TRI=*/nullptr) && "Missed kill flag");
+ ++MI;
+ }
+ return MI;
+}
+
+/// Emit aligned reload instructions for NumAlignedDPRCS2Regs D-registers
+/// starting from d8. These instructions are assumed to execute while the
+/// stack is still aligned, unlike the code inserted by emitPopInst.
+static void emitAlignedDPRCS2Restores(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ unsigned NumAlignedDPRCS2Regs,
+ ArrayRef<CalleeSavedInfo> CSI,
+ const TargetRegisterInfo *TRI) {
+ MachineFunction &MF = *MBB.getParent();
+ ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
+ DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc();
+ const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
+
+ // Find the frame index assigned to d8.
+ int D8SpillFI = 0;
+ for (const CalleeSavedInfo &I : CSI)
+ if (I.getReg() == ARM::D8) {
+ D8SpillFI = I.getFrameIdx();
+ break;
+ }
+
+ // Materialize the address of the d8 spill slot into the scratch register r4.
+ // This can be fairly complicated if the stack frame is large, so just use
+ // the normal frame index elimination mechanism to do it. This code runs as
+ // the initial part of the epilog where the stack and base pointers haven't
+ // been changed yet.
+ bool isThumb = AFI->isThumbFunction();
+ assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1");
+
+ unsigned Opc = isThumb ? ARM::t2ADDri : ARM::ADDri;
+ BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4)
+ .addFrameIndex(D8SpillFI)
+ .addImm(0)
+ .add(predOps(ARMCC::AL))
+ .add(condCodeOp());
+
+ // Now restore NumAlignedDPRCS2Regs registers starting from d8.
+ unsigned NextReg = ARM::D8;
+
+ // 16-byte aligned vld1.64 with 4 d-regs and writeback.
+ if (NumAlignedDPRCS2Regs >= 6) {
+ unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
+ &ARM::QQPRRegClass);
+ BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Qwb_fixed), NextReg)
+ .addReg(ARM::R4, RegState::Define)
+ .addReg(ARM::R4, RegState::Kill)
+ .addImm(16)
+ .addReg(SupReg, RegState::ImplicitDefine)
+ .add(predOps(ARMCC::AL));
+ NextReg += 4;
+ NumAlignedDPRCS2Regs -= 4;
+ }
+
+ // We won't modify r4 beyond this point. It currently points to the next
+ // register to be spilled.
+ unsigned R4BaseReg = NextReg;
+
+ // 16-byte aligned vld1.64 with 4 d-regs, no writeback.
+ if (NumAlignedDPRCS2Regs >= 4) {
+ unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
+ &ARM::QQPRRegClass);
+ BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Q), NextReg)
+ .addReg(ARM::R4)
+ .addImm(16)
+ .addReg(SupReg, RegState::ImplicitDefine)
+ .add(predOps(ARMCC::AL));
+ NextReg += 4;
+ NumAlignedDPRCS2Regs -= 4;
+ }
+
+ // 16-byte aligned vld1.64 with 2 d-regs.
+ if (NumAlignedDPRCS2Regs >= 2) {
+ unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
+ &ARM::QPRRegClass);
+ BuildMI(MBB, MI, DL, TII.get(ARM::VLD1q64), SupReg)
+ .addReg(ARM::R4)
+ .addImm(16)
+ .add(predOps(ARMCC::AL));
+ NextReg += 2;
+ NumAlignedDPRCS2Regs -= 2;
+ }
+
+ // Finally, use a vanilla vldr.64 for the remaining odd register.
+ if (NumAlignedDPRCS2Regs)
+ BuildMI(MBB, MI, DL, TII.get(ARM::VLDRD), NextReg)
+ .addReg(ARM::R4)
+ .addImm(2 * (NextReg - R4BaseReg))
+ .add(predOps(ARMCC::AL));
+
+ // Last store kills r4.
+ std::prev(MI)->addRegisterKilled(ARM::R4, TRI);
+}
+
+bool ARMFrameLowering::spillCalleeSavedRegisters(
+ MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
+ ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
+ if (CSI.empty())
+ return false;
+
+ MachineFunction &MF = *MBB.getParent();
+ ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
+
+ unsigned PushOpc = AFI->isThumbFunction() ? ARM::t2STMDB_UPD : ARM::STMDB_UPD;
+ unsigned PushOneOpc = AFI->isThumbFunction() ?
+ ARM::t2STR_PRE : ARM::STR_PRE_IMM;
+ unsigned FltOpc = ARM::VSTMDDB_UPD;
+ unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs();
+ // Compute PAC in R12.
+ if (AFI->shouldSignReturnAddress()) {
+ BuildMI(MBB, MI, DebugLoc(), STI.getInstrInfo()->get(ARM::t2PAC))
+ .setMIFlags(MachineInstr::FrameSetup);
+ }
+ // Save the non-secure floating point context.
+ if (llvm::any_of(CSI, [](const CalleeSavedInfo &C) {
+ return C.getReg() == ARM::FPCXTNS;
+ })) {
+ BuildMI(MBB, MI, DebugLoc(), STI.getInstrInfo()->get(ARM::VSTR_FPCXTNS_pre),
+ ARM::SP)
+ .addReg(ARM::SP)
+ .addImm(-4)
+ .add(predOps(ARMCC::AL));
+ }
+ if (STI.splitFramePointerPush(MF)) {
+ emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false,
+ &isSplitFPArea1Register, 0, MachineInstr::FrameSetup);
+ emitPushInst(MBB, MI, CSI, FltOpc, 0, true, &isARMArea3Register,
+ NumAlignedDPRCS2Regs, MachineInstr::FrameSetup);
+ emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false,
+ &isSplitFPArea2Register, 0, MachineInstr::FrameSetup);
+ } else {
+ emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, &isARMArea1Register,
+ 0, MachineInstr::FrameSetup);
+ emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, &isARMArea2Register,
+ 0, MachineInstr::FrameSetup);
+ emitPushInst(MBB, MI, CSI, FltOpc, 0, true, &isARMArea3Register,
+ NumAlignedDPRCS2Regs, MachineInstr::FrameSetup);
+ }
+
+ // The code above does not insert spill code for the aligned DPRCS2 registers.
+ // The stack realignment code will be inserted between the push instructions
+ // and these spills.
+ if (NumAlignedDPRCS2Regs)
+ emitAlignedDPRCS2Spills(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI);
+
+ return true;
+}
+
+bool ARMFrameLowering::restoreCalleeSavedRegisters(
+ MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
+ MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
+ if (CSI.empty())
+ return false;
+
+ MachineFunction &MF = *MBB.getParent();
+ ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
+ bool isVarArg = AFI->getArgRegsSaveSize() > 0;
+ unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs();
+
+ // The emitPopInst calls below do not insert reloads for the aligned DPRCS2
+ // registers. Do that here instead.
+ if (NumAlignedDPRCS2Regs)
+ emitAlignedDPRCS2Restores(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI);
+
+ unsigned PopOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_UPD : ARM::LDMIA_UPD;
+ unsigned LdrOpc =
+ AFI->isThumbFunction() ? ARM::t2LDR_POST : ARM::LDR_POST_IMM;
+ unsigned FltOpc = ARM::VLDMDIA_UPD;
+ if (STI.splitFramePointerPush(MF)) {
+ emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false,
+ &isSplitFPArea2Register, 0);
+ emitPopInst(MBB, MI, CSI, FltOpc, 0, isVarArg, true, &isARMArea3Register,
+ NumAlignedDPRCS2Regs);
+ emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false,
+ &isSplitFPArea1Register, 0);
+ } else {
+ emitPopInst(MBB, MI, CSI, FltOpc, 0, isVarArg, true, &isARMArea3Register,
+ NumAlignedDPRCS2Regs);
+ emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false,
+ &isARMArea2Register, 0);
+ emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false,
+ &isARMArea1Register, 0);
+ }
+
+ return true;
+}
+
+// FIXME: Make generic?
+static unsigned EstimateFunctionSizeInBytes(const MachineFunction &MF,
+ const ARMBaseInstrInfo &TII) {
+ unsigned FnSize = 0;
+ for (auto &MBB : MF) {
+ for (auto &MI : MBB)
+ FnSize += TII.getInstSizeInBytes(MI);
+ }
+ if (MF.getJumpTableInfo())
+ for (auto &Table: MF.getJumpTableInfo()->getJumpTables())
+ FnSize += Table.MBBs.size() * 4;
+ FnSize += MF.getConstantPool()->getConstants().size() * 4;
+ return FnSize;
+}
+
+/// estimateRSStackSizeLimit - Look at each instruction that references stack
+/// frames and return the stack size limit beyond which some of these
+/// instructions will require a scratch register during their expansion later.
+// FIXME: Move to TII?
+static unsigned estimateRSStackSizeLimit(MachineFunction &MF,
+ const TargetFrameLowering *TFI,
+ bool &HasNonSPFrameIndex) {
+ const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
+ const ARMBaseInstrInfo &TII =
+ *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
+ const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
+ unsigned Limit = (1 << 12) - 1;
+ for (auto &MBB : MF) {
+ for (auto &MI : MBB) {
+ if (MI.isDebugInstr())
+ continue;
+ for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
+ if (!MI.getOperand(i).isFI())
+ continue;
+
+ // When using ADDri to get the address of a stack object, 255 is the
+ // largest offset guaranteed to fit in the immediate offset.
+ if (MI.getOpcode() == ARM::ADDri) {
+ Limit = std::min(Limit, (1U << 8) - 1);
+ break;
+ }
+ // t2ADDri will not require an extra register, it can reuse the
+ // destination.
+ if (MI.getOpcode() == ARM::t2ADDri || MI.getOpcode() == ARM::t2ADDri12)
+ break;
+
+ const MCInstrDesc &MCID = MI.getDesc();
+ const TargetRegisterClass *RegClass = TII.getRegClass(MCID, i, TRI, MF);
+ if (RegClass && !RegClass->contains(ARM::SP))
+ HasNonSPFrameIndex = true;
+
+ // Otherwise check the addressing mode.
+ switch (MI.getDesc().TSFlags & ARMII::AddrModeMask) {
+ case ARMII::AddrMode_i12:
+ case ARMII::AddrMode2:
+ // Default 12 bit limit.
+ break;
+ case ARMII::AddrMode3:
+ case ARMII::AddrModeT2_i8neg:
+ Limit = std::min(Limit, (1U << 8) - 1);
+ break;
+ case ARMII::AddrMode5FP16:
+ Limit = std::min(Limit, ((1U << 8) - 1) * 2);
+ break;
+ case ARMII::AddrMode5:
+ case ARMII::AddrModeT2_i8s4:
+ case ARMII::AddrModeT2_ldrex:
+ Limit = std::min(Limit, ((1U << 8) - 1) * 4);
+ break;
+ case ARMII::AddrModeT2_i12:
+ // i12 supports only positive offset so these will be converted to
+ // i8 opcodes. See llvm::rewriteT2FrameIndex.
+ if (TFI->hasFP(MF) && AFI->hasStackFrame())
+ Limit = std::min(Limit, (1U << 8) - 1);
+ break;
+ case ARMII::AddrMode4:
+ case ARMII::AddrMode6:
+ // Addressing modes 4 & 6 (load/store) instructions can't encode an
+ // immediate offset for stack references.
+ return 0;
+ case ARMII::AddrModeT2_i7:
+ Limit = std::min(Limit, ((1U << 7) - 1) * 1);
+ break;
+ case ARMII::AddrModeT2_i7s2:
+ Limit = std::min(Limit, ((1U << 7) - 1) * 2);
+ break;
+ case ARMII::AddrModeT2_i7s4:
+ Limit = std::min(Limit, ((1U << 7) - 1) * 4);
+ break;
+ default:
+ llvm_unreachable("Unhandled addressing mode in stack size limit calculation");
+ }
+ break; // At most one FI per instruction
+ }
+ }
+ }
+
+ return Limit;
+}
+
+// In functions that realign the stack, it can be an advantage to spill the
+// callee-saved vector registers after realigning the stack. The vst1 and vld1
+// instructions take alignment hints that can improve performance.
+static void
+checkNumAlignedDPRCS2Regs(MachineFunction &MF, BitVector &SavedRegs) {
+ MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(0);
+ if (!SpillAlignedNEONRegs)
+ return;
+
+ // Naked functions don't spill callee-saved registers.
+ if (MF.getFunction().hasFnAttribute(Attribute::Naked))
+ return;
+
+ // We are planning to use NEON instructions vst1 / vld1.
+ if (!MF.getSubtarget<ARMSubtarget>().hasNEON())
+ return;
+
+ // Don't bother if the default stack alignment is sufficiently high.
+ if (MF.getSubtarget().getFrameLowering()->getStackAlign() >= Align(8))
+ return;
+
+ // Aligned spills require stack realignment.
+ if (!static_cast<const ARMBaseRegisterInfo *>(
+ MF.getSubtarget().getRegisterInfo())->canRealignStack(MF))
+ return;
+
+ // We always spill contiguous d-registers starting from d8. Count how many
+ // needs spilling. The register allocator will almost always use the
+ // callee-saved registers in order, but it can happen that there are holes in
+ // the range. Registers above the hole will be spilled to the standard DPRCS
+ // area.
+ unsigned NumSpills = 0;
+ for (; NumSpills < 8; ++NumSpills)
+ if (!SavedRegs.test(ARM::D8 + NumSpills))
+ break;
+
+ // Don't do this for just one d-register. It's not worth it.
+ if (NumSpills < 2)
+ return;
+
+ // Spill the first NumSpills D-registers after realigning the stack.
+ MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(NumSpills);
+
+ // A scratch register is required for the vst1 / vld1 instructions.
+ SavedRegs.set(ARM::R4);
+}
+
+bool ARMFrameLowering::enableShrinkWrapping(const MachineFunction &MF) const {
+ // For CMSE entry functions, we want to save the FPCXT_NS immediately
+ // upon function entry (resp. restore it immmediately before return)
+ if (STI.hasV8_1MMainlineOps() &&
+ MF.getInfo<ARMFunctionInfo>()->isCmseNSEntryFunction())
+ return false;
+
+ // We are disabling shrinkwrapping for now when PAC is enabled, as
+ // shrinkwrapping can cause clobbering of r12 when the PAC code is
+ // generated. A follow-up patch will fix this in a more performant manner.
+ if (MF.getInfo<ARMFunctionInfo>()->shouldSignReturnAddress(
+ true /* SpillsLR */))
+ return false;
+
+ return true;
+}
+
+bool ARMFrameLowering::requiresAAPCSFrameRecord(
+ const MachineFunction &MF) const {
+ const auto &Subtarget = MF.getSubtarget<ARMSubtarget>();
+ return Subtarget.createAAPCSFrameChain() && hasFP(MF);
+}
+
+// Thumb1 may require a spill when storing to a frame index through FP (or any
+// access with execute-only), for cases where FP is a high register (R11). This
+// scans the function for cases where this may happen.
+static bool canSpillOnFrameIndexAccess(const MachineFunction &MF,
+ const TargetFrameLowering &TFI) {
+ const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
+ if (!AFI->isThumb1OnlyFunction())
+ return false;
+
+ const ARMSubtarget &STI = MF.getSubtarget<ARMSubtarget>();
+ for (const auto &MBB : MF)
+ for (const auto &MI : MBB)
+ if (MI.getOpcode() == ARM::tSTRspi || MI.getOpcode() == ARM::tSTRi ||
+ STI.genExecuteOnly())
+ for (const auto &Op : MI.operands())
+ if (Op.isFI()) {
+ Register Reg;
+ TFI.getFrameIndexReference(MF, Op.getIndex(), Reg);
+ if (ARM::hGPRRegClass.contains(Reg) && Reg != ARM::SP)
+ return true;
+ }
+ return false;
+}
+
+void ARMFrameLowering::determineCalleeSaves(MachineFunction &MF,
+ BitVector &SavedRegs,
+ RegScavenger *RS) const {
+ TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
+ // This tells PEI to spill the FP as if it is any other callee-save register
+ // to take advantage the eliminateFrameIndex machinery. This also ensures it
+ // is spilled in the order specified by getCalleeSavedRegs() to make it easier
+ // to combine multiple loads / stores.
+ bool CanEliminateFrame = !(requiresAAPCSFrameRecord(MF) && hasFP(MF));
+ bool CS1Spilled = false;
+ bool LRSpilled = false;
+ unsigned NumGPRSpills = 0;
+ unsigned NumFPRSpills = 0;
+ SmallVector<unsigned, 4> UnspilledCS1GPRs;
+ SmallVector<unsigned, 4> UnspilledCS2GPRs;
+ const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>(
+ MF.getSubtarget().getRegisterInfo());
+ const ARMBaseInstrInfo &TII =
+ *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
+ ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
+ MachineFrameInfo &MFI = MF.getFrameInfo();
+ MachineRegisterInfo &MRI = MF.getRegInfo();
+ const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
+ (void)TRI; // Silence unused warning in non-assert builds.
+ Register FramePtr = RegInfo->getFrameRegister(MF);
+
+ // Spill R4 if Thumb2 function requires stack realignment - it will be used as
+ // scratch register. Also spill R4 if Thumb2 function has varsized objects,
+ // since it's not always possible to restore sp from fp in a single
+ // instruction.
+ // FIXME: It will be better just to find spare register here.
+ if (AFI->isThumb2Function() &&
+ (MFI.hasVarSizedObjects() || RegInfo->hasStackRealignment(MF)))
+ SavedRegs.set(ARM::R4);
+
+ // If a stack probe will be emitted, spill R4 and LR, since they are
+ // clobbered by the stack probe call.
+ // This estimate should be a safe, conservative estimate. The actual
+ // stack probe is enabled based on the size of the local objects;
+ // this estimate also includes the varargs store size.
+ if (STI.isTargetWindows() &&
+ WindowsRequiresStackProbe(MF, MFI.estimateStackSize(MF))) {
+ SavedRegs.set(ARM::R4);
+ SavedRegs.set(ARM::LR);
+ }
+
+ if (AFI->isThumb1OnlyFunction()) {
+ // Spill LR if Thumb1 function uses variable length argument lists.
+ if (AFI->getArgRegsSaveSize() > 0)
+ SavedRegs.set(ARM::LR);
+
+ // Spill R4 if Thumb1 epilogue has to restore SP from FP or the function
+ // requires stack alignment. We don't know for sure what the stack size
+ // will be, but for this, an estimate is good enough. If there anything
+ // changes it, it'll be a spill, which implies we've used all the registers
+ // and so R4 is already used, so not marking it here will be OK.
+ // FIXME: It will be better just to find spare register here.
+ if (MFI.hasVarSizedObjects() || RegInfo->hasStackRealignment(MF) ||
+ MFI.estimateStackSize(MF) > 508)
+ SavedRegs.set(ARM::R4);
+ }
+
+ // See if we can spill vector registers to aligned stack.
+ checkNumAlignedDPRCS2Regs(MF, SavedRegs);
+
+ // Spill the BasePtr if it's used.
+ if (RegInfo->hasBasePointer(MF))
+ SavedRegs.set(RegInfo->getBaseRegister());
+
+ // On v8.1-M.Main CMSE entry functions save/restore FPCXT.
+ if (STI.hasV8_1MMainlineOps() && AFI->isCmseNSEntryFunction())
+ CanEliminateFrame = false;
+
+ // When return address signing is enabled R12 is treated as callee-saved.
+ if (AFI->shouldSignReturnAddress())
+ CanEliminateFrame = false;
+
+ // Don't spill FP if the frame can be eliminated. This is determined
+ // by scanning the callee-save registers to see if any is modified.
+ const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF);
+ for (unsigned i = 0; CSRegs[i]; ++i) {
+ unsigned Reg = CSRegs[i];
+ bool Spilled = false;
+ if (SavedRegs.test(Reg)) {
+ Spilled = true;
+ CanEliminateFrame = false;
+ }
+
+ if (!ARM::GPRRegClass.contains(Reg)) {
+ if (Spilled) {
+ if (ARM::SPRRegClass.contains(Reg))
+ NumFPRSpills++;
+ else if (ARM::DPRRegClass.contains(Reg))
+ NumFPRSpills += 2;
+ else if (ARM::QPRRegClass.contains(Reg))
+ NumFPRSpills += 4;
+ }
+ continue;
+ }
+
+ if (Spilled) {
+ NumGPRSpills++;
+
+ if (!STI.splitFramePushPop(MF)) {
+ if (Reg == ARM::LR)
+ LRSpilled = true;
+ CS1Spilled = true;
+ continue;
+ }
+
+ // Keep track if LR and any of R4, R5, R6, and R7 is spilled.
+ switch (Reg) {
+ case ARM::LR:
+ LRSpilled = true;
+ [[fallthrough]];
+ case ARM::R0: case ARM::R1:
+ case ARM::R2: case ARM::R3:
+ case ARM::R4: case ARM::R5:
+ case ARM::R6: case ARM::R7:
+ CS1Spilled = true;
+ break;
+ default:
+ break;
+ }
+ } else {
+ if (!STI.splitFramePushPop(MF)) {
+ UnspilledCS1GPRs.push_back(Reg);
+ continue;
+ }
+
+ switch (Reg) {
+ case ARM::R0: case ARM::R1:
+ case ARM::R2: case ARM::R3:
+ case ARM::R4: case ARM::R5:
+ case ARM::R6: case ARM::R7:
+ case ARM::LR:
+ UnspilledCS1GPRs.push_back(Reg);
+ break;
+ default:
+ UnspilledCS2GPRs.push_back(Reg);
+ break;
+ }
+ }
+ }
+
+ bool ForceLRSpill = false;
+ if (!LRSpilled && AFI->isThumb1OnlyFunction()) {
+ unsigned FnSize = EstimateFunctionSizeInBytes(MF, TII);
+ // Force LR to be spilled if the Thumb function size is > 2048. This enables
+ // use of BL to implement far jump.
+ if (FnSize >= (1 << 11)) {
+ CanEliminateFrame = false;
+ ForceLRSpill = true;
+ }
+ }
+
+ // If any of the stack slot references may be out of range of an immediate
+ // offset, make sure a register (or a spill slot) is available for the
+ // register scavenger. Note that if we're indexing off the frame pointer, the
+ // effective stack size is 4 bytes larger since the FP points to the stack
+ // slot of the previous FP. Also, if we have variable sized objects in the
+ // function, stack slot references will often be negative, and some of
+ // our instructions are positive-offset only, so conservatively consider
+ // that case to want a spill slot (or register) as well. Similarly, if
+ // the function adjusts the stack pointer during execution and the
+ // adjustments aren't already part of our stack size estimate, our offset
+ // calculations may be off, so be conservative.
+ // FIXME: We could add logic to be more precise about negative offsets
+ // and which instructions will need a scratch register for them. Is it
+ // worth the effort and added fragility?
+ unsigned EstimatedStackSize =
+ MFI.estimateStackSize(MF) + 4 * (NumGPRSpills + NumFPRSpills);
+
+ // Determine biggest (positive) SP offset in MachineFrameInfo.
+ int MaxFixedOffset = 0;
+ for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) {
+ int MaxObjectOffset = MFI.getObjectOffset(I) + MFI.getObjectSize(I);
+ MaxFixedOffset = std::max(MaxFixedOffset, MaxObjectOffset);
+ }
+
+ bool HasFP = hasFP(MF);
+ if (HasFP) {
+ if (AFI->hasStackFrame())
+ EstimatedStackSize += 4;
+ } else {
+ // If FP is not used, SP will be used to access arguments, so count the
+ // size of arguments into the estimation.
+ EstimatedStackSize += MaxFixedOffset;
+ }
+ EstimatedStackSize += 16; // For possible paddings.
+
+ unsigned EstimatedRSStackSizeLimit, EstimatedRSFixedSizeLimit;
+ bool HasNonSPFrameIndex = false;
+ if (AFI->isThumb1OnlyFunction()) {
+ // For Thumb1, don't bother to iterate over the function. The only
+ // instruction that requires an emergency spill slot is a store to a
+ // frame index.
+ //
+ // tSTRspi, which is used for sp-relative accesses, has an 8-bit unsigned
+ // immediate. tSTRi, which is used for bp- and fp-relative accesses, has
+ // a 5-bit unsigned immediate.
+ //
+ // We could try to check if the function actually contains a tSTRspi
+ // that might need the spill slot, but it's not really important.
+ // Functions with VLAs or extremely large call frames are rare, and
+ // if a function is allocating more than 1KB of stack, an extra 4-byte
+ // slot probably isn't relevant.
+ //
+ // A special case is the scenario where r11 is used as FP, where accesses
+ // to a frame index will require its value to be moved into a low reg.
+ // This is handled later on, once we are able to determine if we have any
+ // fp-relative accesses.
+ if (RegInfo->hasBasePointer(MF))
+ EstimatedRSStackSizeLimit = (1U << 5) * 4;
+ else
+ EstimatedRSStackSizeLimit = (1U << 8) * 4;
+ EstimatedRSFixedSizeLimit = (1U << 5) * 4;
+ } else {
+ EstimatedRSStackSizeLimit =
+ estimateRSStackSizeLimit(MF, this, HasNonSPFrameIndex);
+ EstimatedRSFixedSizeLimit = EstimatedRSStackSizeLimit;
+ }
+ // Final estimate of whether sp or bp-relative accesses might require
+ // scavenging.
+ bool HasLargeStack = EstimatedStackSize > EstimatedRSStackSizeLimit;
+
+ // If the stack pointer moves and we don't have a base pointer, the
+ // estimate logic doesn't work. The actual offsets might be larger when
+ // we're constructing a call frame, or we might need to use negative
+ // offsets from fp.
+ bool HasMovingSP = MFI.hasVarSizedObjects() ||
+ (MFI.adjustsStack() && !canSimplifyCallFramePseudos(MF));
+ bool HasBPOrFixedSP = RegInfo->hasBasePointer(MF) || !HasMovingSP;
+
+ // If we have a frame pointer, we assume arguments will be accessed
+ // relative to the frame pointer. Check whether fp-relative accesses to
+ // arguments require scavenging.
+ //
+ // We could do slightly better on Thumb1; in some cases, an sp-relative
+ // offset would be legal even though an fp-relative offset is not.
+ int MaxFPOffset = getMaxFPOffset(STI, *AFI, MF);
+ bool HasLargeArgumentList =
+ HasFP && (MaxFixedOffset - MaxFPOffset) > (int)EstimatedRSFixedSizeLimit;
+
+ bool BigFrameOffsets = HasLargeStack || !HasBPOrFixedSP ||
+ HasLargeArgumentList || HasNonSPFrameIndex;
+ LLVM_DEBUG(dbgs() << "EstimatedLimit: " << EstimatedRSStackSizeLimit
+ << "; EstimatedStack: " << EstimatedStackSize
+ << "; EstimatedFPStack: " << MaxFixedOffset - MaxFPOffset
+ << "; BigFrameOffsets: " << BigFrameOffsets << "\n");
+ if (BigFrameOffsets ||
+ !CanEliminateFrame || RegInfo->cannotEliminateFrame(MF)) {
+ AFI->setHasStackFrame(true);
+
+ if (HasFP) {
+ SavedRegs.set(FramePtr);
+ // If the frame pointer is required by the ABI, also spill LR so that we
+ // emit a complete frame record.
+ if ((requiresAAPCSFrameRecord(MF) ||
+ MF.getTarget().Options.DisableFramePointerElim(MF)) &&
+ !LRSpilled) {
+ SavedRegs.set(ARM::LR);
+ LRSpilled = true;
+ NumGPRSpills++;
+ auto LRPos = llvm::find(UnspilledCS1GPRs, ARM::LR);
+ if (LRPos != UnspilledCS1GPRs.end())
+ UnspilledCS1GPRs.erase(LRPos);
+ }
+ auto FPPos = llvm::find(UnspilledCS1GPRs, FramePtr);
+ if (FPPos != UnspilledCS1GPRs.end())
+ UnspilledCS1GPRs.erase(FPPos);
+ NumGPRSpills++;
+ if (FramePtr == ARM::R7)
+ CS1Spilled = true;
+ }
+
+ // This is the number of extra spills inserted for callee-save GPRs which
+ // would not otherwise be used by the function. When greater than zero it
+ // guaranteees that it is possible to scavenge a register to hold the
+ // address of a stack slot. On Thumb1, the register must be a valid operand
+ // to tSTRi, i.e. r4-r7. For other subtargets, this is any GPR, i.e. r4-r11
+ // or lr.
+ //
+ // If we don't insert a spill, we instead allocate an emergency spill
+ // slot, which can be used by scavenging to spill an arbitrary register.
+ //
+ // We currently don't try to figure out whether any specific instruction
+ // requires scavening an additional register.
+ unsigned NumExtraCSSpill = 0;
+
+ if (AFI->isThumb1OnlyFunction()) {
+ // For Thumb1-only targets, we need some low registers when we save and
+ // restore the high registers (which aren't allocatable, but could be
+ // used by inline assembly) because the push/pop instructions can not
+ // access high registers. If necessary, we might need to push more low
+ // registers to ensure that there is at least one free that can be used
+ // for the saving & restoring, and preferably we should ensure that as
+ // many as are needed are available so that fewer push/pop instructions
+ // are required.
+
+ // Low registers which are not currently pushed, but could be (r4-r7).
+ SmallVector<unsigned, 4> AvailableRegs;
+
+ // Unused argument registers (r0-r3) can be clobbered in the prologue for
+ // free.
+ int EntryRegDeficit = 0;
+ for (unsigned Reg : {ARM::R0, ARM::R1, ARM::R2, ARM::R3}) {
+ if (!MF.getRegInfo().isLiveIn(Reg)) {
+ --EntryRegDeficit;
+ LLVM_DEBUG(dbgs()
+ << printReg(Reg, TRI)
+ << " is unused argument register, EntryRegDeficit = "
+ << EntryRegDeficit << "\n");
+ }
+ }
+
+ // Unused return registers can be clobbered in the epilogue for free.
+ int ExitRegDeficit = AFI->getReturnRegsCount() - 4;
+ LLVM_DEBUG(dbgs() << AFI->getReturnRegsCount()
+ << " return regs used, ExitRegDeficit = "
+ << ExitRegDeficit << "\n");
+
+ int RegDeficit = std::max(EntryRegDeficit, ExitRegDeficit);
+ LLVM_DEBUG(dbgs() << "RegDeficit = " << RegDeficit << "\n");
+
+ // r4-r6 can be used in the prologue if they are pushed by the first push
+ // instruction.
+ for (unsigned Reg : {ARM::R4, ARM::R5, ARM::R6}) {
+ if (SavedRegs.test(Reg)) {
+ --RegDeficit;
+ LLVM_DEBUG(dbgs() << printReg(Reg, TRI)
+ << " is saved low register, RegDeficit = "
+ << RegDeficit << "\n");
+ } else {
+ AvailableRegs.push_back(Reg);
+ LLVM_DEBUG(
+ dbgs()
+ << printReg(Reg, TRI)
+ << " is non-saved low register, adding to AvailableRegs\n");
+ }
+ }
+
+ // r7 can be used if it is not being used as the frame pointer.
+ if (!HasFP || FramePtr != ARM::R7) {
+ if (SavedRegs.test(ARM::R7)) {
+ --RegDeficit;
+ LLVM_DEBUG(dbgs() << "%r7 is saved low register, RegDeficit = "
+ << RegDeficit << "\n");
+ } else {
+ AvailableRegs.push_back(ARM::R7);
+ LLVM_DEBUG(
+ dbgs()
+ << "%r7 is non-saved low register, adding to AvailableRegs\n");
+ }
+ }
+
+ // Each of r8-r11 needs to be copied to a low register, then pushed.
+ for (unsigned Reg : {ARM::R8, ARM::R9, ARM::R10, ARM::R11}) {
+ if (SavedRegs.test(Reg)) {
+ ++RegDeficit;
+ LLVM_DEBUG(dbgs() << printReg(Reg, TRI)
+ << " is saved high register, RegDeficit = "
+ << RegDeficit << "\n");
+ }
+ }
+
+ // LR can only be used by PUSH, not POP, and can't be used at all if the
+ // llvm.returnaddress intrinsic is used. This is only worth doing if we
+ // are more limited at function entry than exit.
+ if ((EntryRegDeficit > ExitRegDeficit) &&
+ !(MF.getRegInfo().isLiveIn(ARM::LR) &&
+ MF.getFrameInfo().isReturnAddressTaken())) {
+ if (SavedRegs.test(ARM::LR)) {
+ --RegDeficit;
+ LLVM_DEBUG(dbgs() << "%lr is saved register, RegDeficit = "
+ << RegDeficit << "\n");
+ } else {
+ AvailableRegs.push_back(ARM::LR);
+ LLVM_DEBUG(dbgs() << "%lr is not saved, adding to AvailableRegs\n");
+ }
+ }
+
+ // If there are more high registers that need pushing than low registers
+ // available, push some more low registers so that we can use fewer push
+ // instructions. This might not reduce RegDeficit all the way to zero,
+ // because we can only guarantee that r4-r6 are available, but r8-r11 may
+ // need saving.
+ LLVM_DEBUG(dbgs() << "Final RegDeficit = " << RegDeficit << "\n");
+ for (; RegDeficit > 0 && !AvailableRegs.empty(); --RegDeficit) {
+ unsigned Reg = AvailableRegs.pop_back_val();
+ LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI)
+ << " to make up reg deficit\n");
+ SavedRegs.set(Reg);
+ NumGPRSpills++;
+ CS1Spilled = true;
+ assert(!MRI.isReserved(Reg) && "Should not be reserved");
+ if (Reg != ARM::LR && !MRI.isPhysRegUsed(Reg))
+ NumExtraCSSpill++;
+ UnspilledCS1GPRs.erase(llvm::find(UnspilledCS1GPRs, Reg));
+ if (Reg == ARM::LR)
+ LRSpilled = true;
+ }
+ LLVM_DEBUG(dbgs() << "After adding spills, RegDeficit = " << RegDeficit
+ << "\n");
+ }
+
+ // Avoid spilling LR in Thumb1 if there's a tail call: it's expensive to
+ // restore LR in that case.
+ bool ExpensiveLRRestore = AFI->isThumb1OnlyFunction() && MFI.hasTailCall();
+
+ // If LR is not spilled, but at least one of R4, R5, R6, and R7 is spilled.
+ // Spill LR as well so we can fold BX_RET to the registers restore (LDM).
+ if (!LRSpilled && CS1Spilled && !ExpensiveLRRestore) {
+ SavedRegs.set(ARM::LR);
+ NumGPRSpills++;
+ SmallVectorImpl<unsigned>::iterator LRPos;
+ LRPos = llvm::find(UnspilledCS1GPRs, (unsigned)ARM::LR);
+ if (LRPos != UnspilledCS1GPRs.end())
+ UnspilledCS1GPRs.erase(LRPos);
+
+ ForceLRSpill = false;
+ if (!MRI.isReserved(ARM::LR) && !MRI.isPhysRegUsed(ARM::LR) &&
+ !AFI->isThumb1OnlyFunction())
+ NumExtraCSSpill++;
+ }
+
+ // If stack and double are 8-byte aligned and we are spilling an odd number
+ // of GPRs, spill one extra callee save GPR so we won't have to pad between
+ // the integer and double callee save areas.
+ LLVM_DEBUG(dbgs() << "NumGPRSpills = " << NumGPRSpills << "\n");
+ const Align TargetAlign = getStackAlign();
+ if (TargetAlign >= Align(8) && (NumGPRSpills & 1)) {
+ if (CS1Spilled && !UnspilledCS1GPRs.empty()) {
+ for (unsigned Reg : UnspilledCS1GPRs) {
+ // Don't spill high register if the function is thumb. In the case of
+ // Windows on ARM, accept R11 (frame pointer)
+ if (!AFI->isThumbFunction() ||
+ (STI.isTargetWindows() && Reg == ARM::R11) ||
+ isARMLowRegister(Reg) ||
+ (Reg == ARM::LR && !ExpensiveLRRestore)) {
+ SavedRegs.set(Reg);
+ LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI)
+ << " to make up alignment\n");
+ if (!MRI.isReserved(Reg) && !MRI.isPhysRegUsed(Reg) &&
+ !(Reg == ARM::LR && AFI->isThumb1OnlyFunction()))
+ NumExtraCSSpill++;
+ break;
+ }
+ }
+ } else if (!UnspilledCS2GPRs.empty() && !AFI->isThumb1OnlyFunction()) {
+ unsigned Reg = UnspilledCS2GPRs.front();
+ SavedRegs.set(Reg);
+ LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI)
+ << " to make up alignment\n");
+ if (!MRI.isReserved(Reg) && !MRI.isPhysRegUsed(Reg))
+ NumExtraCSSpill++;
+ }
+ }
+
+ // Estimate if we might need to scavenge registers at some point in order
+ // to materialize a stack offset. If so, either spill one additional
+ // callee-saved register or reserve a special spill slot to facilitate
+ // register scavenging. Thumb1 needs a spill slot for stack pointer
+ // adjustments and for frame index accesses when FP is high register,
+ // even when the frame itself is small.
+ unsigned RegsNeeded = 0;
+ if (BigFrameOffsets || canSpillOnFrameIndexAccess(MF, *this)) {
+ RegsNeeded++;
+ // With thumb1 execute-only we may need an additional register for saving
+ // and restoring the CPSR.
+ if (AFI->isThumb1OnlyFunction() && STI.genExecuteOnly() && !STI.useMovt())
+ RegsNeeded++;
+ }
+
+ if (RegsNeeded > NumExtraCSSpill) {
+ // If any non-reserved CS register isn't spilled, just spill one or two
+ // extra. That should take care of it!
+ unsigned NumExtras = TargetAlign.value() / 4;
+ SmallVector<unsigned, 2> Extras;
+ while (NumExtras && !UnspilledCS1GPRs.empty()) {
+ unsigned Reg = UnspilledCS1GPRs.pop_back_val();
+ if (!MRI.isReserved(Reg) &&
+ (!AFI->isThumb1OnlyFunction() || isARMLowRegister(Reg))) {
+ Extras.push_back(Reg);
+ NumExtras--;
+ }
+ }
+ // For non-Thumb1 functions, also check for hi-reg CS registers
+ if (!AFI->isThumb1OnlyFunction()) {
+ while (NumExtras && !UnspilledCS2GPRs.empty()) {
+ unsigned Reg = UnspilledCS2GPRs.pop_back_val();
+ if (!MRI.isReserved(Reg)) {
+ Extras.push_back(Reg);
+ NumExtras--;
+ }
+ }
+ }
+ if (NumExtras == 0) {
+ for (unsigned Reg : Extras) {
+ SavedRegs.set(Reg);
+ if (!MRI.isPhysRegUsed(Reg))
+ NumExtraCSSpill++;
+ }
+ }
+ while ((RegsNeeded > NumExtraCSSpill) && RS) {
+ // Reserve a slot closest to SP or frame pointer.
+ LLVM_DEBUG(dbgs() << "Reserving emergency spill slot\n");
+ const TargetRegisterClass &RC = ARM::GPRRegClass;
+ unsigned Size = TRI->getSpillSize(RC);
+ Align Alignment = TRI->getSpillAlign(RC);
+ RS->addScavengingFrameIndex(
+ MFI.CreateStackObject(Size, Alignment, false));
+ --RegsNeeded;
+ }
+ }
+ }
+
+ if (ForceLRSpill)
+ SavedRegs.set(ARM::LR);
+ AFI->setLRIsSpilled(SavedRegs.test(ARM::LR));
+}
+
+void ARMFrameLowering::updateLRRestored(MachineFunction &MF) {
+ MachineFrameInfo &MFI = MF.getFrameInfo();
+ if (!MFI.isCalleeSavedInfoValid())
+ return;
+
+ // Check if all terminators do not implicitly use LR. Then we can 'restore' LR
+ // into PC so it is not live out of the return block: Clear the Restored bit
+ // in that case.
+ for (CalleeSavedInfo &Info : MFI.getCalleeSavedInfo()) {
+ if (Info.getReg() != ARM::LR)
+ continue;
+ if (all_of(MF, [](const MachineBasicBlock &MBB) {
+ return all_of(MBB.terminators(), [](const MachineInstr &Term) {
+ return !Term.isReturn() || Term.getOpcode() == ARM::LDMIA_RET ||
+ Term.getOpcode() == ARM::t2LDMIA_RET ||
+ Term.getOpcode() == ARM::tPOP_RET;
+ });
+ })) {
+ Info.setRestored(false);
+ break;
+ }
+ }
+}
+
+void ARMFrameLowering::processFunctionBeforeFrameFinalized(
+ MachineFunction &MF, RegScavenger *RS) const {
+ TargetFrameLowering::processFunctionBeforeFrameFinalized(MF, RS);
+ updateLRRestored(MF);
+}
+
+void ARMFrameLowering::getCalleeSaves(const MachineFunction &MF,
+ BitVector &SavedRegs) const {
+ TargetFrameLowering::getCalleeSaves(MF, SavedRegs);
+
+ // If we have the "returned" parameter attribute which guarantees that we
+ // return the value which was passed in r0 unmodified (e.g. C++ 'structors),
+ // record that fact for IPRA.
+ const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
+ if (AFI->getPreservesR0())
+ SavedRegs.set(ARM::R0);
+}
+
+bool ARMFrameLowering::assignCalleeSavedSpillSlots(
+ MachineFunction &MF, const TargetRegisterInfo *TRI,
+ std::vector<CalleeSavedInfo> &CSI) const {
+ // For CMSE entry functions, handle floating-point context as if it was a
+ // callee-saved register.
+ if (STI.hasV8_1MMainlineOps() &&
+ MF.getInfo<ARMFunctionInfo>()->isCmseNSEntryFunction()) {
+ CSI.emplace_back(ARM::FPCXTNS);
+ CSI.back().setRestored(false);
+ }
+
+ // For functions, which sign their return address, upon function entry, the
+ // return address PAC is computed in R12. Treat R12 as a callee-saved register
+ // in this case.
+ const auto &AFI = *MF.getInfo<ARMFunctionInfo>();
+ if (AFI.shouldSignReturnAddress()) {
+ // The order of register must match the order we push them, because the
+ // PEI assigns frame indices in that order. When compiling for return
+ // address sign and authenication, we use split push, therefore the orders
+ // we want are:
+ // LR, R7, R6, R5, R4, <R12>, R11, R10, R9, R8, D15-D8
+ CSI.insert(find_if(CSI,
+ [=](const auto &CS) {
+ Register Reg = CS.getReg();
+ return Reg == ARM::R10 || Reg == ARM::R11 ||
+ Reg == ARM::R8 || Reg == ARM::R9 ||
+ ARM::DPRRegClass.contains(Reg);
+ }),
+ CalleeSavedInfo(ARM::R12));
+ }
+
+ return false;
+}
+
+const TargetFrameLowering::SpillSlot *
+ARMFrameLowering::getCalleeSavedSpillSlots(unsigned &NumEntries) const {
+ static const SpillSlot FixedSpillOffsets[] = {{ARM::FPCXTNS, -4}};
+ NumEntries = std::size(FixedSpillOffsets);
+ return FixedSpillOffsets;
+}
+
+MachineBasicBlock::iterator ARMFrameLowering::eliminateCallFramePseudoInstr(
+ MachineFunction &MF, MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I) const {
+ const ARMBaseInstrInfo &TII =
+ *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
+ ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
+ bool isARM = !AFI->isThumbFunction();
+ DebugLoc dl = I->getDebugLoc();
+ unsigned Opc = I->getOpcode();
+ bool IsDestroy = Opc == TII.getCallFrameDestroyOpcode();
+ unsigned CalleePopAmount = IsDestroy ? I->getOperand(1).getImm() : 0;
+
+ assert(!AFI->isThumb1OnlyFunction() &&
+ "This eliminateCallFramePseudoInstr does not support Thumb1!");
+
+ int PIdx = I->findFirstPredOperandIdx();
+ ARMCC::CondCodes Pred = (PIdx == -1)
+ ? ARMCC::AL
+ : (ARMCC::CondCodes)I->getOperand(PIdx).getImm();
+ unsigned PredReg = TII.getFramePred(*I);
+
+ if (!hasReservedCallFrame(MF)) {
+ // Bail early if the callee is expected to do the adjustment.
+ if (IsDestroy && CalleePopAmount != -1U)
+ return MBB.erase(I);
+
+ // If we have alloca, convert as follows:
+ // ADJCALLSTACKDOWN -> sub, sp, sp, amount
+ // ADJCALLSTACKUP -> add, sp, sp, amount
+ unsigned Amount = TII.getFrameSize(*I);
+ if (Amount != 0) {
+ // We need to keep the stack aligned properly. To do this, we round the
+ // amount of space needed for the outgoing arguments up to the next
+ // alignment boundary.
+ Amount = alignSPAdjust(Amount);
+
+ if (Opc == ARM::ADJCALLSTACKDOWN || Opc == ARM::tADJCALLSTACKDOWN) {
+ emitSPUpdate(isARM, MBB, I, dl, TII, -Amount, MachineInstr::NoFlags,
+ Pred, PredReg);
+ } else {
+ assert(Opc == ARM::ADJCALLSTACKUP || Opc == ARM::tADJCALLSTACKUP);
+ emitSPUpdate(isARM, MBB, I, dl, TII, Amount, MachineInstr::NoFlags,
+ Pred, PredReg);
+ }
+ }
+ } else if (CalleePopAmount != -1U) {
+ // If the calling convention demands that the callee pops arguments from the
+ // stack, we want to add it back if we have a reserved call frame.
+ emitSPUpdate(isARM, MBB, I, dl, TII, -CalleePopAmount,
+ MachineInstr::NoFlags, Pred, PredReg);
+ }
+ return MBB.erase(I);
+}
+
+/// Get the minimum constant for ARM that is greater than or equal to the
+/// argument. In ARM, constants can have any value that can be produced by
+/// rotating an 8-bit value to the right by an even number of bits within a
+/// 32-bit word.
+static uint32_t alignToARMConstant(uint32_t Value) {
+ unsigned Shifted = 0;
+
+ if (Value == 0)
+ return 0;
+
+ while (!(Value & 0xC0000000)) {
+ Value = Value << 2;
+ Shifted += 2;
+ }
+
+ bool Carry = (Value & 0x00FFFFFF);
+ Value = ((Value & 0xFF000000) >> 24) + Carry;
+
+ if (Value & 0x0000100)
+ Value = Value & 0x000001FC;
+
+ if (Shifted > 24)
+ Value = Value >> (Shifted - 24);
+ else
+ Value = Value << (24 - Shifted);
+
+ return Value;
+}
+
+// The stack limit in the TCB is set to this many bytes above the actual
+// stack limit.
+static const uint64_t kSplitStackAvailable = 256;
+
+// Adjust the function prologue to enable split stacks. This currently only
+// supports android and linux.
+//
+// The ABI of the segmented stack prologue is a little arbitrarily chosen, but
+// must be well defined in order to allow for consistent implementations of the
+// __morestack helper function. The ABI is also not a normal ABI in that it
+// doesn't follow the normal calling conventions because this allows the
+// prologue of each function to be optimized further.
+//
+// Currently, the ABI looks like (when calling __morestack)
+//
+// * r4 holds the minimum stack size requested for this function call
+// * r5 holds the stack size of the arguments to the function
+// * the beginning of the function is 3 instructions after the call to
+// __morestack
+//
+// Implementations of __morestack should use r4 to allocate a new stack, r5 to
+// place the arguments on to the new stack, and the 3-instruction knowledge to
+// jump directly to the body of the function when working on the new stack.
+//
+// An old (and possibly no longer compatible) implementation of __morestack for
+// ARM can be found at [1].
+//
+// [1] - https://github.com/mozilla/rust/blob/86efd9/src/rt/arch/arm/morestack.S
+void ARMFrameLowering::adjustForSegmentedStacks(
+ MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
+ unsigned Opcode;
+ unsigned CFIIndex;
+ const ARMSubtarget *ST = &MF.getSubtarget<ARMSubtarget>();
+ bool Thumb = ST->isThumb();
+ bool Thumb2 = ST->isThumb2();
+
+ // Sadly, this currently doesn't support varargs, platforms other than
+ // android/linux. Note that thumb1/thumb2 are support for android/linux.
+ if (MF.getFunction().isVarArg())
+ report_fatal_error("Segmented stacks do not support vararg functions.");
+ if (!ST->isTargetAndroid() && !ST->isTargetLinux())
+ report_fatal_error("Segmented stacks not supported on this platform.");
+
+ MachineFrameInfo &MFI = MF.getFrameInfo();
+ MCContext &Context = MF.getContext();
+ const MCRegisterInfo *MRI = Context.getRegisterInfo();
+ const ARMBaseInstrInfo &TII =
+ *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
+ ARMFunctionInfo *ARMFI = MF.getInfo<ARMFunctionInfo>();
+ DebugLoc DL;
+
+ if (!MFI.needsSplitStackProlog())
+ return;
+
+ uint64_t StackSize = MFI.getStackSize();
+
+ // Use R4 and R5 as scratch registers.
+ // We save R4 and R5 before use and restore them before leaving the function.
+ unsigned ScratchReg0 = ARM::R4;
+ unsigned ScratchReg1 = ARM::R5;
+ unsigned MovOp = ST->useMovt() ? ARM::t2MOVi32imm : ARM::tMOVi32imm;
+ uint64_t AlignedStackSize;
+
+ MachineBasicBlock *PrevStackMBB = MF.CreateMachineBasicBlock();
+ MachineBasicBlock *PostStackMBB = MF.CreateMachineBasicBlock();
+ MachineBasicBlock *AllocMBB = MF.CreateMachineBasicBlock();
+ MachineBasicBlock *GetMBB = MF.CreateMachineBasicBlock();
+ MachineBasicBlock *McrMBB = MF.CreateMachineBasicBlock();
+
+ // Grab everything that reaches PrologueMBB to update there liveness as well.
+ SmallPtrSet<MachineBasicBlock *, 8> BeforePrologueRegion;
+ SmallVector<MachineBasicBlock *, 2> WalkList;
+ WalkList.push_back(&PrologueMBB);
+
+ do {
+ MachineBasicBlock *CurMBB = WalkList.pop_back_val();
+ for (MachineBasicBlock *PredBB : CurMBB->predecessors()) {
+ if (BeforePrologueRegion.insert(PredBB).second)
+ WalkList.push_back(PredBB);
+ }
+ } while (!WalkList.empty());
+
+ // The order in that list is important.
+ // The blocks will all be inserted before PrologueMBB using that order.
+ // Therefore the block that should appear first in the CFG should appear
+ // first in the list.
+ MachineBasicBlock *AddedBlocks[] = {PrevStackMBB, McrMBB, GetMBB, AllocMBB,
+ PostStackMBB};
+
+ for (MachineBasicBlock *B : AddedBlocks)
+ BeforePrologueRegion.insert(B);
+
+ for (const auto &LI : PrologueMBB.liveins()) {
+ for (MachineBasicBlock *PredBB : BeforePrologueRegion)
+ PredBB->addLiveIn(LI);
+ }
+
+ // Remove the newly added blocks from the list, since we know
+ // we do not have to do the following updates for them.
+ for (MachineBasicBlock *B : AddedBlocks) {
+ BeforePrologueRegion.erase(B);
+ MF.insert(PrologueMBB.getIterator(), B);
+ }
+
+ for (MachineBasicBlock *MBB : BeforePrologueRegion) {
+ // Make sure the LiveIns are still sorted and unique.
+ MBB->sortUniqueLiveIns();
+ // Replace the edges to PrologueMBB by edges to the sequences
+ // we are about to add, but only update for immediate predecessors.
+ if (MBB->isSuccessor(&PrologueMBB))
+ MBB->ReplaceUsesOfBlockWith(&PrologueMBB, AddedBlocks[0]);
+ }
+
+ // The required stack size that is aligned to ARM constant criterion.
+ AlignedStackSize = alignToARMConstant(StackSize);
+
+ // When the frame size is less than 256 we just compare the stack
+ // boundary directly to the value of the stack pointer, per gcc.
+ bool CompareStackPointer = AlignedStackSize < kSplitStackAvailable;
+
+ // We will use two of the callee save registers as scratch registers so we
+ // need to save those registers onto the stack.
+ // We will use SR0 to hold stack limit and SR1 to hold the stack size
+ // requested and arguments for __morestack().
+ // SR0: Scratch Register #0
+ // SR1: Scratch Register #1
+ // push {SR0, SR1}
+ if (Thumb) {
+ BuildMI(PrevStackMBB, DL, TII.get(ARM::tPUSH))
+ .add(predOps(ARMCC::AL))
+ .addReg(ScratchReg0)
+ .addReg(ScratchReg1);
+ } else {
+ BuildMI(PrevStackMBB, DL, TII.get(ARM::STMDB_UPD))
+ .addReg(ARM::SP, RegState::Define)
+ .addReg(ARM::SP)
+ .add(predOps(ARMCC::AL))
+ .addReg(ScratchReg0)
+ .addReg(ScratchReg1);
+ }
+
+ // Emit the relevant DWARF information about the change in stack pointer as
+ // well as where to find both r4 and r5 (the callee-save registers)
+ if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) {
+ CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 8));
+ BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex);
+ CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
+ nullptr, MRI->getDwarfRegNum(ScratchReg1, true), -4));
+ BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex);
+ CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
+ nullptr, MRI->getDwarfRegNum(ScratchReg0, true), -8));
+ BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex);
+ }
+
+ // mov SR1, sp
+ if (Thumb) {
+ BuildMI(McrMBB, DL, TII.get(ARM::tMOVr), ScratchReg1)
+ .addReg(ARM::SP)
+ .add(predOps(ARMCC::AL));
+ } else if (CompareStackPointer) {
+ BuildMI(McrMBB, DL, TII.get(ARM::MOVr), ScratchReg1)
+ .addReg(ARM::SP)
+ .add(predOps(ARMCC::AL))
+ .add(condCodeOp());
+ }
+
+ // sub SR1, sp, #StackSize
+ if (!CompareStackPointer && Thumb) {
+ if (AlignedStackSize < 256) {
+ BuildMI(McrMBB, DL, TII.get(ARM::tSUBi8), ScratchReg1)
+ .add(condCodeOp())
+ .addReg(ScratchReg1)
+ .addImm(AlignedStackSize)
+ .add(predOps(ARMCC::AL));
+ } else {
+ if (Thumb2 || ST->genExecuteOnly()) {
+ BuildMI(McrMBB, DL, TII.get(MovOp), ScratchReg0)
+ .addImm(AlignedStackSize);
+ } else {
+ auto MBBI = McrMBB->end();
+ auto RegInfo = STI.getRegisterInfo();
+ RegInfo->emitLoadConstPool(*McrMBB, MBBI, DL, ScratchReg0, 0,
+ AlignedStackSize);
+ }
+ BuildMI(McrMBB, DL, TII.get(ARM::tSUBrr), ScratchReg1)
+ .add(condCodeOp())
+ .addReg(ScratchReg1)
+ .addReg(ScratchReg0)
+ .add(predOps(ARMCC::AL));
+ }
+ } else if (!CompareStackPointer) {
+ if (AlignedStackSize < 256) {
+ BuildMI(McrMBB, DL, TII.get(ARM::SUBri), ScratchReg1)
+ .addReg(ARM::SP)
+ .addImm(AlignedStackSize)
+ .add(predOps(ARMCC::AL))
+ .add(condCodeOp());
+ } else {
+ auto MBBI = McrMBB->end();
+ auto RegInfo = STI.getRegisterInfo();
+ RegInfo->emitLoadConstPool(*McrMBB, MBBI, DL, ScratchReg0, 0,
+ AlignedStackSize);
+ BuildMI(McrMBB, DL, TII.get(ARM::SUBrr), ScratchReg1)
+ .addReg(ARM::SP)
+ .addReg(ScratchReg0)
+ .add(predOps(ARMCC::AL))
+ .add(condCodeOp());
+ }
+ }
+
+ if (Thumb && ST->isThumb1Only()) {
+ if (ST->genExecuteOnly()) {
+ BuildMI(GetMBB, DL, TII.get(MovOp), ScratchReg0)
+ .addExternalSymbol("__STACK_LIMIT");
+ } else {
+ unsigned PCLabelId = ARMFI->createPICLabelUId();
+ ARMConstantPoolValue *NewCPV = ARMConstantPoolSymbol::Create(
+ MF.getFunction().getContext(), "__STACK_LIMIT", PCLabelId, 0);
+ MachineConstantPool *MCP = MF.getConstantPool();
+ unsigned CPI = MCP->getConstantPoolIndex(NewCPV, Align(4));
+
+ // ldr SR0, [pc, offset(STACK_LIMIT)]
+ BuildMI(GetMBB, DL, TII.get(ARM::tLDRpci), ScratchReg0)
+ .addConstantPoolIndex(CPI)
+ .add(predOps(ARMCC::AL));
+ }
+
+ // ldr SR0, [SR0]
+ BuildMI(GetMBB, DL, TII.get(ARM::tLDRi), ScratchReg0)
+ .addReg(ScratchReg0)
+ .addImm(0)
+ .add(predOps(ARMCC::AL));
+ } else {
+ // Get TLS base address from the coprocessor
+ // mrc p15, #0, SR0, c13, c0, #3
+ BuildMI(McrMBB, DL, TII.get(Thumb ? ARM::t2MRC : ARM::MRC),
+ ScratchReg0)
+ .addImm(15)
+ .addImm(0)
+ .addImm(13)
+ .addImm(0)
+ .addImm(3)
+ .add(predOps(ARMCC::AL));
+
+ // Use the last tls slot on android and a private field of the TCP on linux.
+ assert(ST->isTargetAndroid() || ST->isTargetLinux());
+ unsigned TlsOffset = ST->isTargetAndroid() ? 63 : 1;
+
+ // Get the stack limit from the right offset
+ // ldr SR0, [sr0, #4 * TlsOffset]
+ BuildMI(GetMBB, DL, TII.get(Thumb ? ARM::t2LDRi12 : ARM::LDRi12),
+ ScratchReg0)
+ .addReg(ScratchReg0)
+ .addImm(4 * TlsOffset)
+ .add(predOps(ARMCC::AL));
+ }
+
+ // Compare stack limit with stack size requested.
+ // cmp SR0, SR1
+ Opcode = Thumb ? ARM::tCMPr : ARM::CMPrr;
+ BuildMI(GetMBB, DL, TII.get(Opcode))
+ .addReg(ScratchReg0)
+ .addReg(ScratchReg1)
+ .add(predOps(ARMCC::AL));
+
+ // This jump is taken if StackLimit <= SP - stack required.
+ Opcode = Thumb ? ARM::tBcc : ARM::Bcc;
+ BuildMI(GetMBB, DL, TII.get(Opcode))
+ .addMBB(PostStackMBB)
+ .addImm(ARMCC::LS)
+ .addReg(ARM::CPSR);
+
+ // Calling __morestack(StackSize, Size of stack arguments).
+ // __morestack knows that the stack size requested is in SR0(r4)
+ // and amount size of stack arguments is in SR1(r5).
+
+ // Pass first argument for the __morestack by Scratch Register #0.
+ // The amount size of stack required
+ if (Thumb) {
+ if (AlignedStackSize < 256) {
+ BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg0)
+ .add(condCodeOp())
+ .addImm(AlignedStackSize)
+ .add(predOps(ARMCC::AL));
+ } else {
+ if (Thumb2 || ST->genExecuteOnly()) {
+ BuildMI(AllocMBB, DL, TII.get(MovOp), ScratchReg0)
+ .addImm(AlignedStackSize);
+ } else {
+ auto MBBI = AllocMBB->end();
+ auto RegInfo = STI.getRegisterInfo();
+ RegInfo->emitLoadConstPool(*AllocMBB, MBBI, DL, ScratchReg0, 0,
+ AlignedStackSize);
+ }
+ }
+ } else {
+ if (AlignedStackSize < 256) {
+ BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg0)
+ .addImm(AlignedStackSize)
+ .add(predOps(ARMCC::AL))
+ .add(condCodeOp());
+ } else {
+ auto MBBI = AllocMBB->end();
+ auto RegInfo = STI.getRegisterInfo();
+ RegInfo->emitLoadConstPool(*AllocMBB, MBBI, DL, ScratchReg0, 0,
+ AlignedStackSize);
+ }
+ }
+
+ // Pass second argument for the __morestack by Scratch Register #1.
+ // The amount size of stack consumed to save function arguments.
+ if (Thumb) {
+ if (ARMFI->getArgumentStackSize() < 256) {
+ BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg1)
+ .add(condCodeOp())
+ .addImm(alignToARMConstant(ARMFI->getArgumentStackSize()))
+ .add(predOps(ARMCC::AL));
+ } else {
+ if (Thumb2 || ST->genExecuteOnly()) {
+ BuildMI(AllocMBB, DL, TII.get(MovOp), ScratchReg1)
+ .addImm(alignToARMConstant(ARMFI->getArgumentStackSize()));
+ } else {
+ auto MBBI = AllocMBB->end();
+ auto RegInfo = STI.getRegisterInfo();
+ RegInfo->emitLoadConstPool(
+ *AllocMBB, MBBI, DL, ScratchReg1, 0,
+ alignToARMConstant(ARMFI->getArgumentStackSize()));
+ }
+ }
+ } else {
+ if (alignToARMConstant(ARMFI->getArgumentStackSize()) < 256) {
+ BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg1)
+ .addImm(alignToARMConstant(ARMFI->getArgumentStackSize()))
+ .add(predOps(ARMCC::AL))
+ .add(condCodeOp());
+ } else {
+ auto MBBI = AllocMBB->end();
+ auto RegInfo = STI.getRegisterInfo();
+ RegInfo->emitLoadConstPool(
+ *AllocMBB, MBBI, DL, ScratchReg1, 0,
+ alignToARMConstant(ARMFI->getArgumentStackSize()));
+ }
+ }
+
+ // push {lr} - Save return address of this function.
+ if (Thumb) {
+ BuildMI(AllocMBB, DL, TII.get(ARM::tPUSH))
+ .add(predOps(ARMCC::AL))
+ .addReg(ARM::LR);
+ } else {
+ BuildMI(AllocMBB, DL, TII.get(ARM::STMDB_UPD))
+ .addReg(ARM::SP, RegState::Define)
+ .addReg(ARM::SP)
+ .add(predOps(ARMCC::AL))
+ .addReg(ARM::LR);
+ }
+
+ // Emit the DWARF info about the change in stack as well as where to find the
+ // previous link register
+ if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) {
+ CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 12));
+ BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex);
+ CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
+ nullptr, MRI->getDwarfRegNum(ARM::LR, true), -12));
+ BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex);
+ }
+
+ // Call __morestack().
+ if (Thumb) {
+ BuildMI(AllocMBB, DL, TII.get(ARM::tBL))
+ .add(predOps(ARMCC::AL))
+ .addExternalSymbol("__morestack");
+ } else {
+ BuildMI(AllocMBB, DL, TII.get(ARM::BL))
+ .addExternalSymbol("__morestack");
+ }
+
+ // pop {lr} - Restore return address of this original function.
+ if (Thumb) {
+ if (ST->isThumb1Only()) {
+ BuildMI(AllocMBB, DL, TII.get(ARM::tPOP))
+ .add(predOps(ARMCC::AL))
+ .addReg(ScratchReg0);
+ BuildMI(AllocMBB, DL, TII.get(ARM::tMOVr), ARM::LR)
+ .addReg(ScratchReg0)
+ .add(predOps(ARMCC::AL));
+ } else {
+ BuildMI(AllocMBB, DL, TII.get(ARM::t2LDR_POST))
+ .addReg(ARM::LR, RegState::Define)
+ .addReg(ARM::SP, RegState::Define)
+ .addReg(ARM::SP)
+ .addImm(4)
+ .add(predOps(ARMCC::AL));
+ }
+ } else {
+ BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD))
+ .addReg(ARM::SP, RegState::Define)
+ .addReg(ARM::SP)
+ .add(predOps(ARMCC::AL))
+ .addReg(ARM::LR);
+ }
+
+ // Restore SR0 and SR1 in case of __morestack() was called.
+ // __morestack() will skip PostStackMBB block so we need to restore
+ // scratch registers from here.
+ // pop {SR0, SR1}
+ if (Thumb) {
+ BuildMI(AllocMBB, DL, TII.get(ARM::tPOP))
+ .add(predOps(ARMCC::AL))
+ .addReg(ScratchReg0)
+ .addReg(ScratchReg1);
+ } else {
+ BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD))
+ .addReg(ARM::SP, RegState::Define)
+ .addReg(ARM::SP)
+ .add(predOps(ARMCC::AL))
+ .addReg(ScratchReg0)
+ .addReg(ScratchReg1);
+ }
+
+ // Update the CFA offset now that we've popped
+ if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) {
+ CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 0));
+ BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex);
+ }
+
+ // Return from this function.
+ BuildMI(AllocMBB, DL, TII.get(ST->getReturnOpcode())).add(predOps(ARMCC::AL));
+
+ // Restore SR0 and SR1 in case of __morestack() was not called.
+ // pop {SR0, SR1}
+ if (Thumb) {
+ BuildMI(PostStackMBB, DL, TII.get(ARM::tPOP))
+ .add(predOps(ARMCC::AL))
+ .addReg(ScratchReg0)
+ .addReg(ScratchReg1);
+ } else {
+ BuildMI(PostStackMBB, DL, TII.get(ARM::LDMIA_UPD))
+ .addReg(ARM::SP, RegState::Define)
+ .addReg(ARM::SP)
+ .add(predOps(ARMCC::AL))
+ .addReg(ScratchReg0)
+ .addReg(ScratchReg1);
+ }
+
+ // Update the CFA offset now that we've popped
+ if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) {
+ CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 0));
+ BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex);
+
+ // Tell debuggers that r4 and r5 are now the same as they were in the
+ // previous function, that they're the "Same Value".
+ CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(
+ nullptr, MRI->getDwarfRegNum(ScratchReg0, true)));
+ BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex);
+ CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(
+ nullptr, MRI->getDwarfRegNum(ScratchReg1, true)));
+ BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex);
+ }
+
+ // Organizing MBB lists
+ PostStackMBB->addSuccessor(&PrologueMBB);
+
+ AllocMBB->addSuccessor(PostStackMBB);
+
+ GetMBB->addSuccessor(PostStackMBB);
+ GetMBB->addSuccessor(AllocMBB);
+
+ McrMBB->addSuccessor(GetMBB);
+
+ PrevStackMBB->addSuccessor(McrMBB);
+
+#ifdef EXPENSIVE_CHECKS
+ MF.verify();
+#endif
+}