diff options
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Target/ARM/ARMParallelDSP.cpp')
-rw-r--r-- | contrib/llvm-project/llvm/lib/Target/ARM/ARMParallelDSP.cpp | 812 |
1 files changed, 812 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Target/ARM/ARMParallelDSP.cpp b/contrib/llvm-project/llvm/lib/Target/ARM/ARMParallelDSP.cpp new file mode 100644 index 000000000000..861d60d3bcce --- /dev/null +++ b/contrib/llvm-project/llvm/lib/Target/ARM/ARMParallelDSP.cpp @@ -0,0 +1,812 @@ +//===- ARMParallelDSP.cpp - Parallel DSP Pass -----------------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +/// \file +/// Armv6 introduced instructions to perform 32-bit SIMD operations. The +/// purpose of this pass is do some IR pattern matching to create ACLE +/// DSP intrinsics, which map on these 32-bit SIMD operations. +/// This pass runs only when unaligned accesses is supported/enabled. +// +//===----------------------------------------------------------------------===// + +#include "ARM.h" +#include "ARMSubtarget.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Analysis/AssumptionCache.h" +#include "llvm/Analysis/GlobalsModRef.h" +#include "llvm/Analysis/LoopAccessAnalysis.h" +#include "llvm/Analysis/TargetLibraryInfo.h" +#include "llvm/CodeGen/TargetPassConfig.h" +#include "llvm/IR/IRBuilder.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicsARM.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/NoFolder.h" +#include "llvm/IR/PatternMatch.h" +#include "llvm/Pass.h" +#include "llvm/PassRegistry.h" +#include "llvm/Support/Debug.h" +#include "llvm/Transforms/Scalar.h" +#include "llvm/Transforms/Utils/BasicBlockUtils.h" + +using namespace llvm; +using namespace PatternMatch; + +#define DEBUG_TYPE "arm-parallel-dsp" + +STATISTIC(NumSMLAD , "Number of smlad instructions generated"); + +static cl::opt<bool> +DisableParallelDSP("disable-arm-parallel-dsp", cl::Hidden, cl::init(false), + cl::desc("Disable the ARM Parallel DSP pass")); + +static cl::opt<unsigned> +NumLoadLimit("arm-parallel-dsp-load-limit", cl::Hidden, cl::init(16), + cl::desc("Limit the number of loads analysed")); + +namespace { + struct MulCandidate; + class Reduction; + + using MulCandList = SmallVector<std::unique_ptr<MulCandidate>, 8>; + using MemInstList = SmallVectorImpl<LoadInst*>; + using MulPairList = SmallVector<std::pair<MulCandidate*, MulCandidate*>, 8>; + + // 'MulCandidate' holds the multiplication instructions that are candidates + // for parallel execution. + struct MulCandidate { + Instruction *Root; + Value* LHS; + Value* RHS; + bool Exchange = false; + bool Paired = false; + SmallVector<LoadInst*, 2> VecLd; // Container for loads to widen. + + MulCandidate(Instruction *I, Value *lhs, Value *rhs) : + Root(I), LHS(lhs), RHS(rhs) { } + + bool HasTwoLoadInputs() const { + return isa<LoadInst>(LHS) && isa<LoadInst>(RHS); + } + + LoadInst *getBaseLoad() const { + return VecLd.front(); + } + }; + + /// Represent a sequence of multiply-accumulate operations with the aim to + /// perform the multiplications in parallel. + class Reduction { + Instruction *Root = nullptr; + Value *Acc = nullptr; + MulCandList Muls; + MulPairList MulPairs; + SetVector<Instruction*> Adds; + + public: + Reduction() = delete; + + Reduction (Instruction *Add) : Root(Add) { } + + /// Record an Add instruction that is a part of the this reduction. + void InsertAdd(Instruction *I) { Adds.insert(I); } + + /// Create MulCandidates, each rooted at a Mul instruction, that is a part + /// of this reduction. + void InsertMuls() { + auto GetMulOperand = [](Value *V) -> Instruction* { + if (auto *SExt = dyn_cast<SExtInst>(V)) { + if (auto *I = dyn_cast<Instruction>(SExt->getOperand(0))) + if (I->getOpcode() == Instruction::Mul) + return I; + } else if (auto *I = dyn_cast<Instruction>(V)) { + if (I->getOpcode() == Instruction::Mul) + return I; + } + return nullptr; + }; + + auto InsertMul = [this](Instruction *I) { + Value *LHS = cast<Instruction>(I->getOperand(0))->getOperand(0); + Value *RHS = cast<Instruction>(I->getOperand(1))->getOperand(0); + Muls.push_back(std::make_unique<MulCandidate>(I, LHS, RHS)); + }; + + for (auto *Add : Adds) { + if (Add == Acc) + continue; + if (auto *Mul = GetMulOperand(Add->getOperand(0))) + InsertMul(Mul); + if (auto *Mul = GetMulOperand(Add->getOperand(1))) + InsertMul(Mul); + } + } + + /// Add the incoming accumulator value, returns true if a value had not + /// already been added. Returning false signals to the user that this + /// reduction already has a value to initialise the accumulator. + bool InsertAcc(Value *V) { + if (Acc) + return false; + Acc = V; + return true; + } + + /// Set two MulCandidates, rooted at muls, that can be executed as a single + /// parallel operation. + void AddMulPair(MulCandidate *Mul0, MulCandidate *Mul1, + bool Exchange = false) { + LLVM_DEBUG(dbgs() << "Pairing:\n" + << *Mul0->Root << "\n" + << *Mul1->Root << "\n"); + Mul0->Paired = true; + Mul1->Paired = true; + if (Exchange) + Mul1->Exchange = true; + MulPairs.push_back(std::make_pair(Mul0, Mul1)); + } + + /// Return the add instruction which is the root of the reduction. + Instruction *getRoot() { return Root; } + + bool is64Bit() const { return Root->getType()->isIntegerTy(64); } + + Type *getType() const { return Root->getType(); } + + /// Return the incoming value to be accumulated. This maybe null. + Value *getAccumulator() { return Acc; } + + /// Return the set of adds that comprise the reduction. + SetVector<Instruction*> &getAdds() { return Adds; } + + /// Return the MulCandidate, rooted at mul instruction, that comprise the + /// the reduction. + MulCandList &getMuls() { return Muls; } + + /// Return the MulCandidate, rooted at mul instructions, that have been + /// paired for parallel execution. + MulPairList &getMulPairs() { return MulPairs; } + + /// To finalise, replace the uses of the root with the intrinsic call. + void UpdateRoot(Instruction *SMLAD) { + Root->replaceAllUsesWith(SMLAD); + } + + void dump() { + LLVM_DEBUG(dbgs() << "Reduction:\n"; + for (auto *Add : Adds) + LLVM_DEBUG(dbgs() << *Add << "\n"); + for (auto &Mul : Muls) + LLVM_DEBUG(dbgs() << *Mul->Root << "\n" + << " " << *Mul->LHS << "\n" + << " " << *Mul->RHS << "\n"); + LLVM_DEBUG(if (Acc) dbgs() << "Acc in: " << *Acc << "\n") + ); + } + }; + + class WidenedLoad { + LoadInst *NewLd = nullptr; + SmallVector<LoadInst*, 4> Loads; + + public: + WidenedLoad(SmallVectorImpl<LoadInst*> &Lds, LoadInst *Wide) + : NewLd(Wide) { + append_range(Loads, Lds); + } + LoadInst *getLoad() { + return NewLd; + } + }; + + class ARMParallelDSP : public FunctionPass { + ScalarEvolution *SE; + AliasAnalysis *AA; + TargetLibraryInfo *TLI; + DominatorTree *DT; + const DataLayout *DL; + Module *M; + std::map<LoadInst*, LoadInst*> LoadPairs; + SmallPtrSet<LoadInst*, 4> OffsetLoads; + std::map<LoadInst*, std::unique_ptr<WidenedLoad>> WideLoads; + + template<unsigned> + bool IsNarrowSequence(Value *V); + bool Search(Value *V, BasicBlock *BB, Reduction &R); + bool RecordMemoryOps(BasicBlock *BB); + void InsertParallelMACs(Reduction &Reduction); + bool AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1, MemInstList &VecMem); + LoadInst* CreateWideLoad(MemInstList &Loads, IntegerType *LoadTy); + bool CreateParallelPairs(Reduction &R); + + /// Try to match and generate: SMLAD, SMLADX - Signed Multiply Accumulate + /// Dual performs two signed 16x16-bit multiplications. It adds the + /// products to a 32-bit accumulate operand. Optionally, the instruction can + /// exchange the halfwords of the second operand before performing the + /// arithmetic. + bool MatchSMLAD(Function &F); + + public: + static char ID; + + ARMParallelDSP() : FunctionPass(ID) { } + + void getAnalysisUsage(AnalysisUsage &AU) const override { + FunctionPass::getAnalysisUsage(AU); + AU.addRequired<AssumptionCacheTracker>(); + AU.addRequired<ScalarEvolutionWrapperPass>(); + AU.addRequired<AAResultsWrapperPass>(); + AU.addRequired<TargetLibraryInfoWrapperPass>(); + AU.addRequired<DominatorTreeWrapperPass>(); + AU.addRequired<TargetPassConfig>(); + AU.addPreserved<ScalarEvolutionWrapperPass>(); + AU.addPreserved<GlobalsAAWrapperPass>(); + AU.setPreservesCFG(); + } + + bool runOnFunction(Function &F) override { + if (DisableParallelDSP) + return false; + if (skipFunction(F)) + return false; + + SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); + AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); + TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); + DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); + auto &TPC = getAnalysis<TargetPassConfig>(); + + M = F.getParent(); + DL = &M->getDataLayout(); + + auto &TM = TPC.getTM<TargetMachine>(); + auto *ST = &TM.getSubtarget<ARMSubtarget>(F); + + if (!ST->allowsUnalignedMem()) { + LLVM_DEBUG(dbgs() << "Unaligned memory access not supported: not " + "running pass ARMParallelDSP\n"); + return false; + } + + if (!ST->hasDSP()) { + LLVM_DEBUG(dbgs() << "DSP extension not enabled: not running pass " + "ARMParallelDSP\n"); + return false; + } + + if (!ST->isLittle()) { + LLVM_DEBUG(dbgs() << "Only supporting little endian: not running pass " + << "ARMParallelDSP\n"); + return false; + } + + LLVM_DEBUG(dbgs() << "\n== Parallel DSP pass ==\n"); + LLVM_DEBUG(dbgs() << " - " << F.getName() << "\n\n"); + + bool Changes = MatchSMLAD(F); + return Changes; + } + }; +} + +bool ARMParallelDSP::AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1, + MemInstList &VecMem) { + if (!Ld0 || !Ld1) + return false; + + if (!LoadPairs.count(Ld0) || LoadPairs[Ld0] != Ld1) + return false; + + LLVM_DEBUG(dbgs() << "Loads are sequential and valid:\n"; + dbgs() << "Ld0:"; Ld0->dump(); + dbgs() << "Ld1:"; Ld1->dump(); + ); + + VecMem.clear(); + VecMem.push_back(Ld0); + VecMem.push_back(Ld1); + return true; +} + +// MaxBitwidth: the maximum supported bitwidth of the elements in the DSP +// instructions, which is set to 16. So here we should collect all i8 and i16 +// narrow operations. +// TODO: we currently only collect i16, and will support i8 later, so that's +// why we check that types are equal to MaxBitWidth, and not <= MaxBitWidth. +template<unsigned MaxBitWidth> +bool ARMParallelDSP::IsNarrowSequence(Value *V) { + if (auto *SExt = dyn_cast<SExtInst>(V)) { + if (SExt->getSrcTy()->getIntegerBitWidth() != MaxBitWidth) + return false; + + if (auto *Ld = dyn_cast<LoadInst>(SExt->getOperand(0))) { + // Check that this load could be paired. + return LoadPairs.count(Ld) || OffsetLoads.count(Ld); + } + } + return false; +} + +/// Iterate through the block and record base, offset pairs of loads which can +/// be widened into a single load. +bool ARMParallelDSP::RecordMemoryOps(BasicBlock *BB) { + SmallVector<LoadInst*, 8> Loads; + SmallVector<Instruction*, 8> Writes; + LoadPairs.clear(); + WideLoads.clear(); + + // Collect loads and instruction that may write to memory. For now we only + // record loads which are simple, sign-extended and have a single user. + // TODO: Allow zero-extended loads. + for (auto &I : *BB) { + if (I.mayWriteToMemory()) + Writes.push_back(&I); + auto *Ld = dyn_cast<LoadInst>(&I); + if (!Ld || !Ld->isSimple() || + !Ld->hasOneUse() || !isa<SExtInst>(Ld->user_back())) + continue; + Loads.push_back(Ld); + } + + if (Loads.empty() || Loads.size() > NumLoadLimit) + return false; + + using InstSet = std::set<Instruction*>; + using DepMap = std::map<Instruction*, InstSet>; + DepMap RAWDeps; + + // Record any writes that may alias a load. + const auto Size = LocationSize::beforeOrAfterPointer(); + for (auto *Write : Writes) { + for (auto *Read : Loads) { + MemoryLocation ReadLoc = + MemoryLocation(Read->getPointerOperand(), Size); + + if (!isModOrRefSet(AA->getModRefInfo(Write, ReadLoc))) + continue; + if (Write->comesBefore(Read)) + RAWDeps[Read].insert(Write); + } + } + + // Check whether there's not a write between the two loads which would + // prevent them from being safely merged. + auto SafeToPair = [&](LoadInst *Base, LoadInst *Offset) { + bool BaseFirst = Base->comesBefore(Offset); + LoadInst *Dominator = BaseFirst ? Base : Offset; + LoadInst *Dominated = BaseFirst ? Offset : Base; + + if (RAWDeps.count(Dominated)) { + InstSet &WritesBefore = RAWDeps[Dominated]; + + for (auto *Before : WritesBefore) { + // We can't move the second load backward, past a write, to merge + // with the first load. + if (Dominator->comesBefore(Before)) + return false; + } + } + return true; + }; + + // Record base, offset load pairs. + for (auto *Base : Loads) { + for (auto *Offset : Loads) { + if (Base == Offset || OffsetLoads.count(Offset)) + continue; + + if (isConsecutiveAccess(Base, Offset, *DL, *SE) && + SafeToPair(Base, Offset)) { + LoadPairs[Base] = Offset; + OffsetLoads.insert(Offset); + break; + } + } + } + + LLVM_DEBUG(if (!LoadPairs.empty()) { + dbgs() << "Consecutive load pairs:\n"; + for (auto &MapIt : LoadPairs) { + LLVM_DEBUG(dbgs() << *MapIt.first << ", " + << *MapIt.second << "\n"); + } + }); + return LoadPairs.size() > 1; +} + +// Search recursively back through the operands to find a tree of values that +// form a multiply-accumulate chain. The search records the Add and Mul +// instructions that form the reduction and allows us to find a single value +// to be used as the initial input to the accumlator. +bool ARMParallelDSP::Search(Value *V, BasicBlock *BB, Reduction &R) { + // If we find a non-instruction, try to use it as the initial accumulator + // value. This may have already been found during the search in which case + // this function will return false, signaling a search fail. + auto *I = dyn_cast<Instruction>(V); + if (!I) + return R.InsertAcc(V); + + if (I->getParent() != BB) + return false; + + switch (I->getOpcode()) { + default: + break; + case Instruction::PHI: + // Could be the accumulator value. + return R.InsertAcc(V); + case Instruction::Add: { + // Adds should be adding together two muls, or another add and a mul to + // be within the mac chain. One of the operands may also be the + // accumulator value at which point we should stop searching. + R.InsertAdd(I); + Value *LHS = I->getOperand(0); + Value *RHS = I->getOperand(1); + bool ValidLHS = Search(LHS, BB, R); + bool ValidRHS = Search(RHS, BB, R); + + if (ValidLHS && ValidRHS) + return true; + + // Ensure we don't add the root as the incoming accumulator. + if (R.getRoot() == I) + return false; + + return R.InsertAcc(I); + } + case Instruction::Mul: { + Value *MulOp0 = I->getOperand(0); + Value *MulOp1 = I->getOperand(1); + return IsNarrowSequence<16>(MulOp0) && IsNarrowSequence<16>(MulOp1); + } + case Instruction::SExt: + return Search(I->getOperand(0), BB, R); + } + return false; +} + +// The pass needs to identify integer add/sub reductions of 16-bit vector +// multiplications. +// To use SMLAD: +// 1) we first need to find integer add then look for this pattern: +// +// acc0 = ... +// ld0 = load i16 +// sext0 = sext i16 %ld0 to i32 +// ld1 = load i16 +// sext1 = sext i16 %ld1 to i32 +// mul0 = mul %sext0, %sext1 +// ld2 = load i16 +// sext2 = sext i16 %ld2 to i32 +// ld3 = load i16 +// sext3 = sext i16 %ld3 to i32 +// mul1 = mul i32 %sext2, %sext3 +// add0 = add i32 %mul0, %acc0 +// acc1 = add i32 %add0, %mul1 +// +// Which can be selected to: +// +// ldr r0 +// ldr r1 +// smlad r2, r0, r1, r2 +// +// If constants are used instead of loads, these will need to be hoisted +// out and into a register. +// +// If loop invariants are used instead of loads, these need to be packed +// before the loop begins. +// +bool ARMParallelDSP::MatchSMLAD(Function &F) { + bool Changed = false; + + for (auto &BB : F) { + SmallPtrSet<Instruction*, 4> AllAdds; + if (!RecordMemoryOps(&BB)) + continue; + + for (Instruction &I : reverse(BB)) { + if (I.getOpcode() != Instruction::Add) + continue; + + if (AllAdds.count(&I)) + continue; + + const auto *Ty = I.getType(); + if (!Ty->isIntegerTy(32) && !Ty->isIntegerTy(64)) + continue; + + Reduction R(&I); + if (!Search(&I, &BB, R)) + continue; + + R.InsertMuls(); + LLVM_DEBUG(dbgs() << "After search, Reduction:\n"; R.dump()); + + if (!CreateParallelPairs(R)) + continue; + + InsertParallelMACs(R); + Changed = true; + AllAdds.insert(R.getAdds().begin(), R.getAdds().end()); + LLVM_DEBUG(dbgs() << "BB after inserting parallel MACs:\n" << BB); + } + } + + return Changed; +} + +bool ARMParallelDSP::CreateParallelPairs(Reduction &R) { + + // Not enough mul operations to make a pair. + if (R.getMuls().size() < 2) + return false; + + // Check that the muls operate directly upon sign extended loads. + for (auto &MulCand : R.getMuls()) { + if (!MulCand->HasTwoLoadInputs()) + return false; + } + + auto CanPair = [&](Reduction &R, MulCandidate *PMul0, MulCandidate *PMul1) { + // The first elements of each vector should be loads with sexts. If we + // find that its two pairs of consecutive loads, then these can be + // transformed into two wider loads and the users can be replaced with + // DSP intrinsics. + auto Ld0 = static_cast<LoadInst*>(PMul0->LHS); + auto Ld1 = static_cast<LoadInst*>(PMul1->LHS); + auto Ld2 = static_cast<LoadInst*>(PMul0->RHS); + auto Ld3 = static_cast<LoadInst*>(PMul1->RHS); + + // Check that each mul is operating on two different loads. + if (Ld0 == Ld2 || Ld1 == Ld3) + return false; + + if (AreSequentialLoads(Ld0, Ld1, PMul0->VecLd)) { + if (AreSequentialLoads(Ld2, Ld3, PMul1->VecLd)) { + LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n"); + R.AddMulPair(PMul0, PMul1); + return true; + } else if (AreSequentialLoads(Ld3, Ld2, PMul1->VecLd)) { + LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n"); + LLVM_DEBUG(dbgs() << " exchanging Ld2 and Ld3\n"); + R.AddMulPair(PMul0, PMul1, true); + return true; + } + } else if (AreSequentialLoads(Ld1, Ld0, PMul0->VecLd) && + AreSequentialLoads(Ld2, Ld3, PMul1->VecLd)) { + LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n"); + LLVM_DEBUG(dbgs() << " exchanging Ld0 and Ld1\n"); + LLVM_DEBUG(dbgs() << " and swapping muls\n"); + // Only the second operand can be exchanged, so swap the muls. + R.AddMulPair(PMul1, PMul0, true); + return true; + } + return false; + }; + + MulCandList &Muls = R.getMuls(); + const unsigned Elems = Muls.size(); + for (unsigned i = 0; i < Elems; ++i) { + MulCandidate *PMul0 = static_cast<MulCandidate*>(Muls[i].get()); + if (PMul0->Paired) + continue; + + for (unsigned j = 0; j < Elems; ++j) { + if (i == j) + continue; + + MulCandidate *PMul1 = static_cast<MulCandidate*>(Muls[j].get()); + if (PMul1->Paired) + continue; + + const Instruction *Mul0 = PMul0->Root; + const Instruction *Mul1 = PMul1->Root; + if (Mul0 == Mul1) + continue; + + assert(PMul0 != PMul1 && "expected different chains"); + + if (CanPair(R, PMul0, PMul1)) + break; + } + } + return !R.getMulPairs().empty(); +} + +void ARMParallelDSP::InsertParallelMACs(Reduction &R) { + + auto CreateSMLAD = [&](LoadInst* WideLd0, LoadInst *WideLd1, + Value *Acc, bool Exchange, + Instruction *InsertAfter) { + // Replace the reduction chain with an intrinsic call + + Value* Args[] = { WideLd0, WideLd1, Acc }; + Function *SMLAD = nullptr; + if (Exchange) + SMLAD = Acc->getType()->isIntegerTy(32) ? + Intrinsic::getDeclaration(M, Intrinsic::arm_smladx) : + Intrinsic::getDeclaration(M, Intrinsic::arm_smlaldx); + else + SMLAD = Acc->getType()->isIntegerTy(32) ? + Intrinsic::getDeclaration(M, Intrinsic::arm_smlad) : + Intrinsic::getDeclaration(M, Intrinsic::arm_smlald); + + IRBuilder<NoFolder> Builder(InsertAfter->getParent(), + BasicBlock::iterator(InsertAfter)); + Instruction *Call = Builder.CreateCall(SMLAD, Args); + NumSMLAD++; + return Call; + }; + + // Return the instruction after the dominated instruction. + auto GetInsertPoint = [this](Value *A, Value *B) { + assert((isa<Instruction>(A) || isa<Instruction>(B)) && + "expected at least one instruction"); + + Value *V = nullptr; + if (!isa<Instruction>(A)) + V = B; + else if (!isa<Instruction>(B)) + V = A; + else + V = DT->dominates(cast<Instruction>(A), cast<Instruction>(B)) ? B : A; + + return &*++BasicBlock::iterator(cast<Instruction>(V)); + }; + + Value *Acc = R.getAccumulator(); + + // For any muls that were discovered but not paired, accumulate their values + // as before. + IRBuilder<NoFolder> Builder(R.getRoot()->getParent()); + MulCandList &MulCands = R.getMuls(); + for (auto &MulCand : MulCands) { + if (MulCand->Paired) + continue; + + Instruction *Mul = cast<Instruction>(MulCand->Root); + LLVM_DEBUG(dbgs() << "Accumulating unpaired mul: " << *Mul << "\n"); + + if (R.getType() != Mul->getType()) { + assert(R.is64Bit() && "expected 64-bit result"); + Builder.SetInsertPoint(&*++BasicBlock::iterator(Mul)); + Mul = cast<Instruction>(Builder.CreateSExt(Mul, R.getRoot()->getType())); + } + + if (!Acc) { + Acc = Mul; + continue; + } + + // If Acc is the original incoming value to the reduction, it could be a + // phi. But the phi will dominate Mul, meaning that Mul will be the + // insertion point. + Builder.SetInsertPoint(GetInsertPoint(Mul, Acc)); + Acc = Builder.CreateAdd(Mul, Acc); + } + + if (!Acc) { + Acc = R.is64Bit() ? + ConstantInt::get(IntegerType::get(M->getContext(), 64), 0) : + ConstantInt::get(IntegerType::get(M->getContext(), 32), 0); + } else if (Acc->getType() != R.getType()) { + Builder.SetInsertPoint(R.getRoot()); + Acc = Builder.CreateSExt(Acc, R.getType()); + } + + // Roughly sort the mul pairs in their program order. + llvm::sort(R.getMulPairs(), [](auto &PairA, auto &PairB) { + const Instruction *A = PairA.first->Root; + const Instruction *B = PairB.first->Root; + return A->comesBefore(B); + }); + + IntegerType *Ty = IntegerType::get(M->getContext(), 32); + for (auto &Pair : R.getMulPairs()) { + MulCandidate *LHSMul = Pair.first; + MulCandidate *RHSMul = Pair.second; + LoadInst *BaseLHS = LHSMul->getBaseLoad(); + LoadInst *BaseRHS = RHSMul->getBaseLoad(); + LoadInst *WideLHS = WideLoads.count(BaseLHS) ? + WideLoads[BaseLHS]->getLoad() : CreateWideLoad(LHSMul->VecLd, Ty); + LoadInst *WideRHS = WideLoads.count(BaseRHS) ? + WideLoads[BaseRHS]->getLoad() : CreateWideLoad(RHSMul->VecLd, Ty); + + Instruction *InsertAfter = GetInsertPoint(WideLHS, WideRHS); + InsertAfter = GetInsertPoint(InsertAfter, Acc); + Acc = CreateSMLAD(WideLHS, WideRHS, Acc, RHSMul->Exchange, InsertAfter); + } + R.UpdateRoot(cast<Instruction>(Acc)); +} + +LoadInst* ARMParallelDSP::CreateWideLoad(MemInstList &Loads, + IntegerType *LoadTy) { + assert(Loads.size() == 2 && "currently only support widening two loads"); + + LoadInst *Base = Loads[0]; + LoadInst *Offset = Loads[1]; + + Instruction *BaseSExt = dyn_cast<SExtInst>(Base->user_back()); + Instruction *OffsetSExt = dyn_cast<SExtInst>(Offset->user_back()); + + assert((BaseSExt && OffsetSExt) + && "Loads should have a single, extending, user"); + + std::function<void(Value*, Value*)> MoveBefore = + [&](Value *A, Value *B) -> void { + if (!isa<Instruction>(A) || !isa<Instruction>(B)) + return; + + auto *Source = cast<Instruction>(A); + auto *Sink = cast<Instruction>(B); + + if (DT->dominates(Source, Sink) || + Source->getParent() != Sink->getParent() || + isa<PHINode>(Source) || isa<PHINode>(Sink)) + return; + + Source->moveBefore(Sink); + for (auto &Op : Source->operands()) + MoveBefore(Op, Source); + }; + + // Insert the load at the point of the original dominating load. + LoadInst *DomLoad = DT->dominates(Base, Offset) ? Base : Offset; + IRBuilder<NoFolder> IRB(DomLoad->getParent(), + ++BasicBlock::iterator(DomLoad)); + + // Create the wide load, while making sure to maintain the original alignment + // as this prevents ldrd from being generated when it could be illegal due to + // memory alignment. + Value *VecPtr = Base->getPointerOperand(); + LoadInst *WideLoad = IRB.CreateAlignedLoad(LoadTy, VecPtr, Base->getAlign()); + + // Make sure everything is in the correct order in the basic block. + MoveBefore(Base->getPointerOperand(), VecPtr); + MoveBefore(VecPtr, WideLoad); + + // From the wide load, create two values that equal the original two loads. + // Loads[0] needs trunc while Loads[1] needs a lshr and trunc. + // TODO: Support big-endian as well. + Value *Bottom = IRB.CreateTrunc(WideLoad, Base->getType()); + Value *NewBaseSExt = IRB.CreateSExt(Bottom, BaseSExt->getType()); + BaseSExt->replaceAllUsesWith(NewBaseSExt); + + IntegerType *OffsetTy = cast<IntegerType>(Offset->getType()); + Value *ShiftVal = ConstantInt::get(LoadTy, OffsetTy->getBitWidth()); + Value *Top = IRB.CreateLShr(WideLoad, ShiftVal); + Value *Trunc = IRB.CreateTrunc(Top, OffsetTy); + Value *NewOffsetSExt = IRB.CreateSExt(Trunc, OffsetSExt->getType()); + OffsetSExt->replaceAllUsesWith(NewOffsetSExt); + + LLVM_DEBUG(dbgs() << "From Base and Offset:\n" + << *Base << "\n" << *Offset << "\n" + << "Created Wide Load:\n" + << *WideLoad << "\n" + << *Bottom << "\n" + << *NewBaseSExt << "\n" + << *Top << "\n" + << *Trunc << "\n" + << *NewOffsetSExt << "\n"); + WideLoads.emplace(std::make_pair(Base, + std::make_unique<WidenedLoad>(Loads, WideLoad))); + return WideLoad; +} + +Pass *llvm::createARMParallelDSPPass() { + return new ARMParallelDSP(); +} + +char ARMParallelDSP::ID = 0; + +INITIALIZE_PASS_BEGIN(ARMParallelDSP, "arm-parallel-dsp", + "Transform functions to use DSP intrinsics", false, false) +INITIALIZE_PASS_END(ARMParallelDSP, "arm-parallel-dsp", + "Transform functions to use DSP intrinsics", false, false) |