aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Target/AVR/AVRISelLowering.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Target/AVR/AVRISelLowering.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/Target/AVR/AVRISelLowering.cpp2049
1 files changed, 2049 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Target/AVR/AVRISelLowering.cpp b/contrib/llvm-project/llvm/lib/Target/AVR/AVRISelLowering.cpp
new file mode 100644
index 000000000000..f159beee9730
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/Target/AVR/AVRISelLowering.cpp
@@ -0,0 +1,2049 @@
+//===-- AVRISelLowering.cpp - AVR DAG Lowering Implementation -------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the interfaces that AVR uses to lower LLVM code into a
+// selection DAG.
+//
+//===----------------------------------------------------------------------===//
+
+#include "AVRISelLowering.h"
+
+#include "llvm/ADT/StringSwitch.h"
+#include "llvm/CodeGen/CallingConvLower.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/SelectionDAG.h"
+#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
+#include "llvm/IR/Function.h"
+#include "llvm/Support/ErrorHandling.h"
+
+#include "AVR.h"
+#include "AVRMachineFunctionInfo.h"
+#include "AVRSubtarget.h"
+#include "AVRTargetMachine.h"
+#include "MCTargetDesc/AVRMCTargetDesc.h"
+
+namespace llvm {
+
+AVRTargetLowering::AVRTargetLowering(const AVRTargetMachine &TM,
+ const AVRSubtarget &STI)
+ : TargetLowering(TM), Subtarget(STI) {
+ // Set up the register classes.
+ addRegisterClass(MVT::i8, &AVR::GPR8RegClass);
+ addRegisterClass(MVT::i16, &AVR::DREGSRegClass);
+
+ // Compute derived properties from the register classes.
+ computeRegisterProperties(Subtarget.getRegisterInfo());
+
+ setBooleanContents(ZeroOrOneBooleanContent);
+ setBooleanVectorContents(ZeroOrOneBooleanContent);
+ setSchedulingPreference(Sched::RegPressure);
+ setStackPointerRegisterToSaveRestore(AVR::SP);
+ setSupportsUnalignedAtomics(true);
+
+ setOperationAction(ISD::GlobalAddress, MVT::i16, Custom);
+ setOperationAction(ISD::BlockAddress, MVT::i16, Custom);
+
+ setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
+ setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
+ setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i8, Expand);
+ setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i16, Expand);
+
+ for (MVT VT : MVT::integer_valuetypes()) {
+ for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) {
+ setLoadExtAction(N, VT, MVT::i1, Promote);
+ setLoadExtAction(N, VT, MVT::i8, Expand);
+ }
+ }
+
+ setTruncStoreAction(MVT::i16, MVT::i8, Expand);
+
+ for (MVT VT : MVT::integer_valuetypes()) {
+ setOperationAction(ISD::ADDC, VT, Legal);
+ setOperationAction(ISD::SUBC, VT, Legal);
+ setOperationAction(ISD::ADDE, VT, Legal);
+ setOperationAction(ISD::SUBE, VT, Legal);
+ }
+
+ // sub (x, imm) gets canonicalized to add (x, -imm), so for illegal types
+ // revert into a sub since we don't have an add with immediate instruction.
+ setOperationAction(ISD::ADD, MVT::i32, Custom);
+ setOperationAction(ISD::ADD, MVT::i64, Custom);
+
+ // our shift instructions are only able to shift 1 bit at a time, so handle
+ // this in a custom way.
+ setOperationAction(ISD::SRA, MVT::i8, Custom);
+ setOperationAction(ISD::SHL, MVT::i8, Custom);
+ setOperationAction(ISD::SRL, MVT::i8, Custom);
+ setOperationAction(ISD::SRA, MVT::i16, Custom);
+ setOperationAction(ISD::SHL, MVT::i16, Custom);
+ setOperationAction(ISD::SRL, MVT::i16, Custom);
+ setOperationAction(ISD::SHL_PARTS, MVT::i16, Expand);
+ setOperationAction(ISD::SRA_PARTS, MVT::i16, Expand);
+ setOperationAction(ISD::SRL_PARTS, MVT::i16, Expand);
+
+ setOperationAction(ISD::ROTL, MVT::i8, Custom);
+ setOperationAction(ISD::ROTL, MVT::i16, Expand);
+ setOperationAction(ISD::ROTR, MVT::i8, Custom);
+ setOperationAction(ISD::ROTR, MVT::i16, Expand);
+
+ setOperationAction(ISD::BR_CC, MVT::i8, Custom);
+ setOperationAction(ISD::BR_CC, MVT::i16, Custom);
+ setOperationAction(ISD::BR_CC, MVT::i32, Custom);
+ setOperationAction(ISD::BR_CC, MVT::i64, Custom);
+ setOperationAction(ISD::BRCOND, MVT::Other, Expand);
+
+ setOperationAction(ISD::SELECT_CC, MVT::i8, Custom);
+ setOperationAction(ISD::SELECT_CC, MVT::i16, Custom);
+ setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
+ setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
+ setOperationAction(ISD::SETCC, MVT::i8, Custom);
+ setOperationAction(ISD::SETCC, MVT::i16, Custom);
+ setOperationAction(ISD::SETCC, MVT::i32, Custom);
+ setOperationAction(ISD::SETCC, MVT::i64, Custom);
+ setOperationAction(ISD::SELECT, MVT::i8, Expand);
+ setOperationAction(ISD::SELECT, MVT::i16, Expand);
+
+ setOperationAction(ISD::BSWAP, MVT::i16, Expand);
+
+ // Add support for postincrement and predecrement load/stores.
+ setIndexedLoadAction(ISD::POST_INC, MVT::i8, Legal);
+ setIndexedLoadAction(ISD::POST_INC, MVT::i16, Legal);
+ setIndexedLoadAction(ISD::PRE_DEC, MVT::i8, Legal);
+ setIndexedLoadAction(ISD::PRE_DEC, MVT::i16, Legal);
+ setIndexedStoreAction(ISD::POST_INC, MVT::i8, Legal);
+ setIndexedStoreAction(ISD::POST_INC, MVT::i16, Legal);
+ setIndexedStoreAction(ISD::PRE_DEC, MVT::i8, Legal);
+ setIndexedStoreAction(ISD::PRE_DEC, MVT::i16, Legal);
+
+ setOperationAction(ISD::BR_JT, MVT::Other, Expand);
+
+ setOperationAction(ISD::VASTART, MVT::Other, Custom);
+ setOperationAction(ISD::VAEND, MVT::Other, Expand);
+ setOperationAction(ISD::VAARG, MVT::Other, Expand);
+ setOperationAction(ISD::VACOPY, MVT::Other, Expand);
+
+ // Atomic operations which must be lowered to rtlib calls
+ for (MVT VT : MVT::integer_valuetypes()) {
+ setOperationAction(ISD::ATOMIC_SWAP, VT, Expand);
+ setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Expand);
+ setOperationAction(ISD::ATOMIC_LOAD_NAND, VT, Expand);
+ setOperationAction(ISD::ATOMIC_LOAD_MAX, VT, Expand);
+ setOperationAction(ISD::ATOMIC_LOAD_MIN, VT, Expand);
+ setOperationAction(ISD::ATOMIC_LOAD_UMAX, VT, Expand);
+ setOperationAction(ISD::ATOMIC_LOAD_UMIN, VT, Expand);
+ }
+
+ // Division/remainder
+ setOperationAction(ISD::UDIV, MVT::i8, Expand);
+ setOperationAction(ISD::UDIV, MVT::i16, Expand);
+ setOperationAction(ISD::UREM, MVT::i8, Expand);
+ setOperationAction(ISD::UREM, MVT::i16, Expand);
+ setOperationAction(ISD::SDIV, MVT::i8, Expand);
+ setOperationAction(ISD::SDIV, MVT::i16, Expand);
+ setOperationAction(ISD::SREM, MVT::i8, Expand);
+ setOperationAction(ISD::SREM, MVT::i16, Expand);
+
+ // Make division and modulus custom
+ for (MVT VT : MVT::integer_valuetypes()) {
+ setOperationAction(ISD::UDIVREM, VT, Custom);
+ setOperationAction(ISD::SDIVREM, VT, Custom);
+ }
+
+ // Do not use MUL. The AVR instructions are closer to SMUL_LOHI &co.
+ setOperationAction(ISD::MUL, MVT::i8, Expand);
+ setOperationAction(ISD::MUL, MVT::i16, Expand);
+
+ // Expand 16 bit multiplications.
+ setOperationAction(ISD::SMUL_LOHI, MVT::i16, Expand);
+ setOperationAction(ISD::UMUL_LOHI, MVT::i16, Expand);
+
+ // Expand multiplications to libcalls when there is
+ // no hardware MUL.
+ if (!Subtarget.supportsMultiplication()) {
+ setOperationAction(ISD::SMUL_LOHI, MVT::i8, Expand);
+ setOperationAction(ISD::UMUL_LOHI, MVT::i8, Expand);
+ }
+
+ for (MVT VT : MVT::integer_valuetypes()) {
+ setOperationAction(ISD::MULHS, VT, Expand);
+ setOperationAction(ISD::MULHU, VT, Expand);
+ }
+
+ for (MVT VT : MVT::integer_valuetypes()) {
+ setOperationAction(ISD::CTPOP, VT, Expand);
+ setOperationAction(ISD::CTLZ, VT, Expand);
+ setOperationAction(ISD::CTTZ, VT, Expand);
+ }
+
+ for (MVT VT : MVT::integer_valuetypes()) {
+ setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
+ // TODO: The generated code is pretty poor. Investigate using the
+ // same "shift and subtract with carry" trick that we do for
+ // extending 8-bit to 16-bit. This may require infrastructure
+ // improvements in how we treat 16-bit "registers" to be feasible.
+ }
+
+ // Division rtlib functions (not supported)
+ setLibcallName(RTLIB::SDIV_I8, nullptr);
+ setLibcallName(RTLIB::SDIV_I16, nullptr);
+ setLibcallName(RTLIB::SDIV_I32, nullptr);
+ setLibcallName(RTLIB::SDIV_I64, nullptr);
+ setLibcallName(RTLIB::SDIV_I128, nullptr);
+ setLibcallName(RTLIB::UDIV_I8, nullptr);
+ setLibcallName(RTLIB::UDIV_I16, nullptr);
+ setLibcallName(RTLIB::UDIV_I32, nullptr);
+ setLibcallName(RTLIB::UDIV_I64, nullptr);
+ setLibcallName(RTLIB::UDIV_I128, nullptr);
+
+ // Modulus rtlib functions (not supported)
+ setLibcallName(RTLIB::SREM_I8, nullptr);
+ setLibcallName(RTLIB::SREM_I16, nullptr);
+ setLibcallName(RTLIB::SREM_I32, nullptr);
+ setLibcallName(RTLIB::SREM_I64, nullptr);
+ setLibcallName(RTLIB::SREM_I128, nullptr);
+ setLibcallName(RTLIB::UREM_I8, nullptr);
+ setLibcallName(RTLIB::UREM_I16, nullptr);
+ setLibcallName(RTLIB::UREM_I32, nullptr);
+ setLibcallName(RTLIB::UREM_I64, nullptr);
+ setLibcallName(RTLIB::UREM_I128, nullptr);
+
+ // Division and modulus rtlib functions
+ setLibcallName(RTLIB::SDIVREM_I8, "__divmodqi4");
+ setLibcallName(RTLIB::SDIVREM_I16, "__divmodhi4");
+ setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4");
+ setLibcallName(RTLIB::SDIVREM_I64, "__divmoddi4");
+ setLibcallName(RTLIB::SDIVREM_I128, "__divmodti4");
+ setLibcallName(RTLIB::UDIVREM_I8, "__udivmodqi4");
+ setLibcallName(RTLIB::UDIVREM_I16, "__udivmodhi4");
+ setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4");
+ setLibcallName(RTLIB::UDIVREM_I64, "__udivmoddi4");
+ setLibcallName(RTLIB::UDIVREM_I128, "__udivmodti4");
+
+ // Several of the runtime library functions use a special calling conv
+ setLibcallCallingConv(RTLIB::SDIVREM_I8, CallingConv::AVR_BUILTIN);
+ setLibcallCallingConv(RTLIB::SDIVREM_I16, CallingConv::AVR_BUILTIN);
+ setLibcallCallingConv(RTLIB::UDIVREM_I8, CallingConv::AVR_BUILTIN);
+ setLibcallCallingConv(RTLIB::UDIVREM_I16, CallingConv::AVR_BUILTIN);
+
+ // Trigonometric rtlib functions
+ setLibcallName(RTLIB::SIN_F32, "sin");
+ setLibcallName(RTLIB::COS_F32, "cos");
+
+ setMinFunctionAlignment(1);
+ setMinimumJumpTableEntries(UINT_MAX);
+}
+
+const char *AVRTargetLowering::getTargetNodeName(unsigned Opcode) const {
+#define NODE(name) \
+ case AVRISD::name: \
+ return #name
+
+ switch (Opcode) {
+ default:
+ return nullptr;
+ NODE(RET_FLAG);
+ NODE(RETI_FLAG);
+ NODE(CALL);
+ NODE(WRAPPER);
+ NODE(LSL);
+ NODE(LSR);
+ NODE(ROL);
+ NODE(ROR);
+ NODE(ASR);
+ NODE(LSLLOOP);
+ NODE(LSRLOOP);
+ NODE(ASRLOOP);
+ NODE(BRCOND);
+ NODE(CMP);
+ NODE(CMPC);
+ NODE(TST);
+ NODE(SELECT_CC);
+#undef NODE
+ }
+}
+
+EVT AVRTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &,
+ EVT VT) const {
+ assert(!VT.isVector() && "No AVR SetCC type for vectors!");
+ return MVT::i8;
+}
+
+SDValue AVRTargetLowering::LowerShifts(SDValue Op, SelectionDAG &DAG) const {
+ //:TODO: this function has to be completely rewritten to produce optimal
+ // code, for now it's producing very long but correct code.
+ unsigned Opc8;
+ const SDNode *N = Op.getNode();
+ EVT VT = Op.getValueType();
+ SDLoc dl(N);
+
+ // Expand non-constant shifts to loops.
+ if (!isa<ConstantSDNode>(N->getOperand(1))) {
+ switch (Op.getOpcode()) {
+ default:
+ llvm_unreachable("Invalid shift opcode!");
+ case ISD::SHL:
+ return DAG.getNode(AVRISD::LSLLOOP, dl, VT, N->getOperand(0),
+ N->getOperand(1));
+ case ISD::SRL:
+ return DAG.getNode(AVRISD::LSRLOOP, dl, VT, N->getOperand(0),
+ N->getOperand(1));
+ case ISD::ROTL:
+ return DAG.getNode(AVRISD::ROLLOOP, dl, VT, N->getOperand(0),
+ N->getOperand(1));
+ case ISD::ROTR:
+ return DAG.getNode(AVRISD::RORLOOP, dl, VT, N->getOperand(0),
+ N->getOperand(1));
+ case ISD::SRA:
+ return DAG.getNode(AVRISD::ASRLOOP, dl, VT, N->getOperand(0),
+ N->getOperand(1));
+ }
+ }
+
+ uint64_t ShiftAmount = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
+ SDValue Victim = N->getOperand(0);
+
+ switch (Op.getOpcode()) {
+ case ISD::SRA:
+ Opc8 = AVRISD::ASR;
+ break;
+ case ISD::ROTL:
+ Opc8 = AVRISD::ROL;
+ break;
+ case ISD::ROTR:
+ Opc8 = AVRISD::ROR;
+ break;
+ case ISD::SRL:
+ Opc8 = AVRISD::LSR;
+ break;
+ case ISD::SHL:
+ Opc8 = AVRISD::LSL;
+ break;
+ default:
+ llvm_unreachable("Invalid shift opcode");
+ }
+
+ while (ShiftAmount--) {
+ Victim = DAG.getNode(Opc8, dl, VT, Victim);
+ }
+
+ return Victim;
+}
+
+SDValue AVRTargetLowering::LowerDivRem(SDValue Op, SelectionDAG &DAG) const {
+ unsigned Opcode = Op->getOpcode();
+ assert((Opcode == ISD::SDIVREM || Opcode == ISD::UDIVREM) &&
+ "Invalid opcode for Div/Rem lowering");
+ bool IsSigned = (Opcode == ISD::SDIVREM);
+ EVT VT = Op->getValueType(0);
+ Type *Ty = VT.getTypeForEVT(*DAG.getContext());
+
+ RTLIB::Libcall LC;
+ switch (VT.getSimpleVT().SimpleTy) {
+ default:
+ llvm_unreachable("Unexpected request for libcall!");
+ case MVT::i8:
+ LC = IsSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8;
+ break;
+ case MVT::i16:
+ LC = IsSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16;
+ break;
+ case MVT::i32:
+ LC = IsSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32;
+ break;
+ case MVT::i64:
+ LC = IsSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64;
+ break;
+ case MVT::i128:
+ LC = IsSigned ? RTLIB::SDIVREM_I128 : RTLIB::UDIVREM_I128;
+ break;
+ }
+
+ SDValue InChain = DAG.getEntryNode();
+
+ TargetLowering::ArgListTy Args;
+ TargetLowering::ArgListEntry Entry;
+ for (SDValue const &Value : Op->op_values()) {
+ Entry.Node = Value;
+ Entry.Ty = Value.getValueType().getTypeForEVT(*DAG.getContext());
+ Entry.IsSExt = IsSigned;
+ Entry.IsZExt = !IsSigned;
+ Args.push_back(Entry);
+ }
+
+ SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
+ getPointerTy(DAG.getDataLayout()));
+
+ Type *RetTy = (Type *)StructType::get(Ty, Ty);
+
+ SDLoc dl(Op);
+ TargetLowering::CallLoweringInfo CLI(DAG);
+ CLI.setDebugLoc(dl)
+ .setChain(InChain)
+ .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
+ .setInRegister()
+ .setSExtResult(IsSigned)
+ .setZExtResult(!IsSigned);
+
+ std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
+ return CallInfo.first;
+}
+
+SDValue AVRTargetLowering::LowerGlobalAddress(SDValue Op,
+ SelectionDAG &DAG) const {
+ auto DL = DAG.getDataLayout();
+
+ const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
+ int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
+
+ // Create the TargetGlobalAddress node, folding in the constant offset.
+ SDValue Result =
+ DAG.getTargetGlobalAddress(GV, SDLoc(Op), getPointerTy(DL), Offset);
+ return DAG.getNode(AVRISD::WRAPPER, SDLoc(Op), getPointerTy(DL), Result);
+}
+
+SDValue AVRTargetLowering::LowerBlockAddress(SDValue Op,
+ SelectionDAG &DAG) const {
+ auto DL = DAG.getDataLayout();
+ const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
+
+ SDValue Result = DAG.getTargetBlockAddress(BA, getPointerTy(DL));
+
+ return DAG.getNode(AVRISD::WRAPPER, SDLoc(Op), getPointerTy(DL), Result);
+}
+
+/// IntCCToAVRCC - Convert a DAG integer condition code to an AVR CC.
+static AVRCC::CondCodes intCCToAVRCC(ISD::CondCode CC) {
+ switch (CC) {
+ default:
+ llvm_unreachable("Unknown condition code!");
+ case ISD::SETEQ:
+ return AVRCC::COND_EQ;
+ case ISD::SETNE:
+ return AVRCC::COND_NE;
+ case ISD::SETGE:
+ return AVRCC::COND_GE;
+ case ISD::SETLT:
+ return AVRCC::COND_LT;
+ case ISD::SETUGE:
+ return AVRCC::COND_SH;
+ case ISD::SETULT:
+ return AVRCC::COND_LO;
+ }
+}
+
+/// Returns appropriate AVR CMP/CMPC nodes and corresponding condition code for
+/// the given operands.
+SDValue AVRTargetLowering::getAVRCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
+ SDValue &AVRcc, SelectionDAG &DAG,
+ SDLoc DL) const {
+ SDValue Cmp;
+ EVT VT = LHS.getValueType();
+ bool UseTest = false;
+
+ switch (CC) {
+ default:
+ break;
+ case ISD::SETLE: {
+ // Swap operands and reverse the branching condition.
+ std::swap(LHS, RHS);
+ CC = ISD::SETGE;
+ break;
+ }
+ case ISD::SETGT: {
+ if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
+ switch (C->getSExtValue()) {
+ case -1: {
+ // When doing lhs > -1 use a tst instruction on the top part of lhs
+ // and use brpl instead of using a chain of cp/cpc.
+ UseTest = true;
+ AVRcc = DAG.getConstant(AVRCC::COND_PL, DL, MVT::i8);
+ break;
+ }
+ case 0: {
+ // Turn lhs > 0 into 0 < lhs since 0 can be materialized with
+ // __zero_reg__ in lhs.
+ RHS = LHS;
+ LHS = DAG.getConstant(0, DL, VT);
+ CC = ISD::SETLT;
+ break;
+ }
+ default: {
+ // Turn lhs < rhs with lhs constant into rhs >= lhs+1, this allows
+ // us to fold the constant into the cmp instruction.
+ RHS = DAG.getConstant(C->getSExtValue() + 1, DL, VT);
+ CC = ISD::SETGE;
+ break;
+ }
+ }
+ break;
+ }
+ // Swap operands and reverse the branching condition.
+ std::swap(LHS, RHS);
+ CC = ISD::SETLT;
+ break;
+ }
+ case ISD::SETLT: {
+ if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
+ switch (C->getSExtValue()) {
+ case 1: {
+ // Turn lhs < 1 into 0 >= lhs since 0 can be materialized with
+ // __zero_reg__ in lhs.
+ RHS = LHS;
+ LHS = DAG.getConstant(0, DL, VT);
+ CC = ISD::SETGE;
+ break;
+ }
+ case 0: {
+ // When doing lhs < 0 use a tst instruction on the top part of lhs
+ // and use brmi instead of using a chain of cp/cpc.
+ UseTest = true;
+ AVRcc = DAG.getConstant(AVRCC::COND_MI, DL, MVT::i8);
+ break;
+ }
+ }
+ }
+ break;
+ }
+ case ISD::SETULE: {
+ // Swap operands and reverse the branching condition.
+ std::swap(LHS, RHS);
+ CC = ISD::SETUGE;
+ break;
+ }
+ case ISD::SETUGT: {
+ // Turn lhs < rhs with lhs constant into rhs >= lhs+1, this allows us to
+ // fold the constant into the cmp instruction.
+ if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
+ RHS = DAG.getConstant(C->getSExtValue() + 1, DL, VT);
+ CC = ISD::SETUGE;
+ break;
+ }
+ // Swap operands and reverse the branching condition.
+ std::swap(LHS, RHS);
+ CC = ISD::SETULT;
+ break;
+ }
+ }
+
+ // Expand 32 and 64 bit comparisons with custom CMP and CMPC nodes instead of
+ // using the default and/or/xor expansion code which is much longer.
+ if (VT == MVT::i32) {
+ SDValue LHSlo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS,
+ DAG.getIntPtrConstant(0, DL));
+ SDValue LHShi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS,
+ DAG.getIntPtrConstant(1, DL));
+ SDValue RHSlo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS,
+ DAG.getIntPtrConstant(0, DL));
+ SDValue RHShi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS,
+ DAG.getIntPtrConstant(1, DL));
+
+ if (UseTest) {
+ // When using tst we only care about the highest part.
+ SDValue Top = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8, LHShi,
+ DAG.getIntPtrConstant(1, DL));
+ Cmp = DAG.getNode(AVRISD::TST, DL, MVT::Glue, Top);
+ } else {
+ Cmp = DAG.getNode(AVRISD::CMP, DL, MVT::Glue, LHSlo, RHSlo);
+ Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHShi, RHShi, Cmp);
+ }
+ } else if (VT == MVT::i64) {
+ SDValue LHS_0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, LHS,
+ DAG.getIntPtrConstant(0, DL));
+ SDValue LHS_1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, LHS,
+ DAG.getIntPtrConstant(1, DL));
+
+ SDValue LHS0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS_0,
+ DAG.getIntPtrConstant(0, DL));
+ SDValue LHS1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS_0,
+ DAG.getIntPtrConstant(1, DL));
+ SDValue LHS2 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS_1,
+ DAG.getIntPtrConstant(0, DL));
+ SDValue LHS3 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS_1,
+ DAG.getIntPtrConstant(1, DL));
+
+ SDValue RHS_0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, RHS,
+ DAG.getIntPtrConstant(0, DL));
+ SDValue RHS_1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, RHS,
+ DAG.getIntPtrConstant(1, DL));
+
+ SDValue RHS0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS_0,
+ DAG.getIntPtrConstant(0, DL));
+ SDValue RHS1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS_0,
+ DAG.getIntPtrConstant(1, DL));
+ SDValue RHS2 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS_1,
+ DAG.getIntPtrConstant(0, DL));
+ SDValue RHS3 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS_1,
+ DAG.getIntPtrConstant(1, DL));
+
+ if (UseTest) {
+ // When using tst we only care about the highest part.
+ SDValue Top = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8, LHS3,
+ DAG.getIntPtrConstant(1, DL));
+ Cmp = DAG.getNode(AVRISD::TST, DL, MVT::Glue, Top);
+ } else {
+ Cmp = DAG.getNode(AVRISD::CMP, DL, MVT::Glue, LHS0, RHS0);
+ Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHS1, RHS1, Cmp);
+ Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHS2, RHS2, Cmp);
+ Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHS3, RHS3, Cmp);
+ }
+ } else if (VT == MVT::i8 || VT == MVT::i16) {
+ if (UseTest) {
+ // When using tst we only care about the highest part.
+ Cmp = DAG.getNode(AVRISD::TST, DL, MVT::Glue,
+ (VT == MVT::i8)
+ ? LHS
+ : DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8,
+ LHS, DAG.getIntPtrConstant(1, DL)));
+ } else {
+ Cmp = DAG.getNode(AVRISD::CMP, DL, MVT::Glue, LHS, RHS);
+ }
+ } else {
+ llvm_unreachable("Invalid comparison size");
+ }
+
+ // When using a test instruction AVRcc is already set.
+ if (!UseTest) {
+ AVRcc = DAG.getConstant(intCCToAVRCC(CC), DL, MVT::i8);
+ }
+
+ return Cmp;
+}
+
+SDValue AVRTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
+ SDValue Chain = Op.getOperand(0);
+ ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
+ SDValue LHS = Op.getOperand(2);
+ SDValue RHS = Op.getOperand(3);
+ SDValue Dest = Op.getOperand(4);
+ SDLoc dl(Op);
+
+ SDValue TargetCC;
+ SDValue Cmp = getAVRCmp(LHS, RHS, CC, TargetCC, DAG, dl);
+
+ return DAG.getNode(AVRISD::BRCOND, dl, MVT::Other, Chain, Dest, TargetCC,
+ Cmp);
+}
+
+SDValue AVRTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
+ SDValue LHS = Op.getOperand(0);
+ SDValue RHS = Op.getOperand(1);
+ SDValue TrueV = Op.getOperand(2);
+ SDValue FalseV = Op.getOperand(3);
+ ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
+ SDLoc dl(Op);
+
+ SDValue TargetCC;
+ SDValue Cmp = getAVRCmp(LHS, RHS, CC, TargetCC, DAG, dl);
+
+ SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
+ SDValue Ops[] = {TrueV, FalseV, TargetCC, Cmp};
+
+ return DAG.getNode(AVRISD::SELECT_CC, dl, VTs, Ops);
+}
+
+SDValue AVRTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
+ SDValue LHS = Op.getOperand(0);
+ SDValue RHS = Op.getOperand(1);
+ ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
+ SDLoc DL(Op);
+
+ SDValue TargetCC;
+ SDValue Cmp = getAVRCmp(LHS, RHS, CC, TargetCC, DAG, DL);
+
+ SDValue TrueV = DAG.getConstant(1, DL, Op.getValueType());
+ SDValue FalseV = DAG.getConstant(0, DL, Op.getValueType());
+ SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
+ SDValue Ops[] = {TrueV, FalseV, TargetCC, Cmp};
+
+ return DAG.getNode(AVRISD::SELECT_CC, DL, VTs, Ops);
+}
+
+SDValue AVRTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
+ const MachineFunction &MF = DAG.getMachineFunction();
+ const AVRMachineFunctionInfo *AFI = MF.getInfo<AVRMachineFunctionInfo>();
+ const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
+ auto DL = DAG.getDataLayout();
+ SDLoc dl(Op);
+
+ // Vastart just stores the address of the VarArgsFrameIndex slot into the
+ // memory location argument.
+ SDValue FI = DAG.getFrameIndex(AFI->getVarArgsFrameIndex(), getPointerTy(DL));
+
+ return DAG.getStore(Op.getOperand(0), dl, FI, Op.getOperand(1),
+ MachinePointerInfo(SV), 0);
+}
+
+SDValue AVRTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
+ switch (Op.getOpcode()) {
+ default:
+ llvm_unreachable("Don't know how to custom lower this!");
+ case ISD::SHL:
+ case ISD::SRA:
+ case ISD::SRL:
+ case ISD::ROTL:
+ case ISD::ROTR:
+ return LowerShifts(Op, DAG);
+ case ISD::GlobalAddress:
+ return LowerGlobalAddress(Op, DAG);
+ case ISD::BlockAddress:
+ return LowerBlockAddress(Op, DAG);
+ case ISD::BR_CC:
+ return LowerBR_CC(Op, DAG);
+ case ISD::SELECT_CC:
+ return LowerSELECT_CC(Op, DAG);
+ case ISD::SETCC:
+ return LowerSETCC(Op, DAG);
+ case ISD::VASTART:
+ return LowerVASTART(Op, DAG);
+ case ISD::SDIVREM:
+ case ISD::UDIVREM:
+ return LowerDivRem(Op, DAG);
+ }
+
+ return SDValue();
+}
+
+/// Replace a node with an illegal result type
+/// with a new node built out of custom code.
+void AVRTargetLowering::ReplaceNodeResults(SDNode *N,
+ SmallVectorImpl<SDValue> &Results,
+ SelectionDAG &DAG) const {
+ SDLoc DL(N);
+
+ switch (N->getOpcode()) {
+ case ISD::ADD: {
+ // Convert add (x, imm) into sub (x, -imm).
+ if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
+ SDValue Sub = DAG.getNode(
+ ISD::SUB, DL, N->getValueType(0), N->getOperand(0),
+ DAG.getConstant(-C->getAPIntValue(), DL, C->getValueType(0)));
+ Results.push_back(Sub);
+ }
+ break;
+ }
+ default: {
+ SDValue Res = LowerOperation(SDValue(N, 0), DAG);
+
+ for (unsigned I = 0, E = Res->getNumValues(); I != E; ++I)
+ Results.push_back(Res.getValue(I));
+
+ break;
+ }
+ }
+}
+
+/// Return true if the addressing mode represented
+/// by AM is legal for this target, for a load/store of the specified type.
+bool AVRTargetLowering::isLegalAddressingMode(const DataLayout &DL,
+ const AddrMode &AM, Type *Ty,
+ unsigned AS, Instruction *I) const {
+ int64_t Offs = AM.BaseOffs;
+
+ // Allow absolute addresses.
+ if (AM.BaseGV && !AM.HasBaseReg && AM.Scale == 0 && Offs == 0) {
+ return true;
+ }
+
+ // Flash memory instructions only allow zero offsets.
+ if (isa<PointerType>(Ty) && AS == AVR::ProgramMemory) {
+ return false;
+ }
+
+ // Allow reg+<6bit> offset.
+ if (Offs < 0)
+ Offs = -Offs;
+ if (AM.BaseGV == 0 && AM.HasBaseReg && AM.Scale == 0 && isUInt<6>(Offs)) {
+ return true;
+ }
+
+ return false;
+}
+
+/// Returns true by value, base pointer and
+/// offset pointer and addressing mode by reference if the node's address
+/// can be legally represented as pre-indexed load / store address.
+bool AVRTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
+ SDValue &Offset,
+ ISD::MemIndexedMode &AM,
+ SelectionDAG &DAG) const {
+ EVT VT;
+ const SDNode *Op;
+ SDLoc DL(N);
+
+ if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
+ VT = LD->getMemoryVT();
+ Op = LD->getBasePtr().getNode();
+ if (LD->getExtensionType() != ISD::NON_EXTLOAD)
+ return false;
+ if (AVR::isProgramMemoryAccess(LD)) {
+ return false;
+ }
+ } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
+ VT = ST->getMemoryVT();
+ Op = ST->getBasePtr().getNode();
+ if (AVR::isProgramMemoryAccess(ST)) {
+ return false;
+ }
+ } else {
+ return false;
+ }
+
+ if (VT != MVT::i8 && VT != MVT::i16) {
+ return false;
+ }
+
+ if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB) {
+ return false;
+ }
+
+ if (const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) {
+ int RHSC = RHS->getSExtValue();
+ if (Op->getOpcode() == ISD::SUB)
+ RHSC = -RHSC;
+
+ if ((VT == MVT::i16 && RHSC != -2) || (VT == MVT::i8 && RHSC != -1)) {
+ return false;
+ }
+
+ Base = Op->getOperand(0);
+ Offset = DAG.getConstant(RHSC, DL, MVT::i8);
+ AM = ISD::PRE_DEC;
+
+ return true;
+ }
+
+ return false;
+}
+
+/// Returns true by value, base pointer and
+/// offset pointer and addressing mode by reference if this node can be
+/// combined with a load / store to form a post-indexed load / store.
+bool AVRTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
+ SDValue &Base,
+ SDValue &Offset,
+ ISD::MemIndexedMode &AM,
+ SelectionDAG &DAG) const {
+ EVT VT;
+ SDLoc DL(N);
+
+ if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
+ VT = LD->getMemoryVT();
+ if (LD->getExtensionType() != ISD::NON_EXTLOAD)
+ return false;
+ } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
+ VT = ST->getMemoryVT();
+ if (AVR::isProgramMemoryAccess(ST)) {
+ return false;
+ }
+ } else {
+ return false;
+ }
+
+ if (VT != MVT::i8 && VT != MVT::i16) {
+ return false;
+ }
+
+ if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB) {
+ return false;
+ }
+
+ if (const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) {
+ int RHSC = RHS->getSExtValue();
+ if (Op->getOpcode() == ISD::SUB)
+ RHSC = -RHSC;
+ if ((VT == MVT::i16 && RHSC != 2) || (VT == MVT::i8 && RHSC != 1)) {
+ return false;
+ }
+
+ Base = Op->getOperand(0);
+ Offset = DAG.getConstant(RHSC, DL, MVT::i8);
+ AM = ISD::POST_INC;
+
+ return true;
+ }
+
+ return false;
+}
+
+bool AVRTargetLowering::isOffsetFoldingLegal(
+ const GlobalAddressSDNode *GA) const {
+ return true;
+}
+
+//===----------------------------------------------------------------------===//
+// Formal Arguments Calling Convention Implementation
+//===----------------------------------------------------------------------===//
+
+#include "AVRGenCallingConv.inc"
+
+/// For each argument in a function store the number of pieces it is composed
+/// of.
+static void parseFunctionArgs(const SmallVectorImpl<ISD::InputArg> &Ins,
+ SmallVectorImpl<unsigned> &Out) {
+ for (const ISD::InputArg &Arg : Ins) {
+ if(Arg.PartOffset > 0) continue;
+ unsigned Bytes = ((Arg.ArgVT.getSizeInBits()) + 7) / 8;
+
+ Out.push_back((Bytes + 1) / 2);
+ }
+}
+
+/// For external symbols there is no function prototype information so we
+/// have to rely directly on argument sizes.
+static void parseExternFuncCallArgs(const SmallVectorImpl<ISD::OutputArg> &In,
+ SmallVectorImpl<unsigned> &Out) {
+ for (unsigned i = 0, e = In.size(); i != e;) {
+ unsigned Size = 0;
+ unsigned Offset = 0;
+ while ((i != e) && (In[i].PartOffset == Offset)) {
+ Offset += In[i].VT.getStoreSize();
+ ++i;
+ ++Size;
+ }
+ Out.push_back(Size);
+ }
+}
+
+static StringRef getFunctionName(TargetLowering::CallLoweringInfo &CLI) {
+ SDValue Callee = CLI.Callee;
+
+ if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee)) {
+ return G->getSymbol();
+ }
+
+ if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
+ return G->getGlobal()->getName();
+ }
+
+ llvm_unreachable("don't know how to get the name for this callee");
+}
+
+/// Analyze incoming and outgoing function arguments. We need custom C++ code
+/// to handle special constraints in the ABI like reversing the order of the
+/// pieces of splitted arguments. In addition, all pieces of a certain argument
+/// have to be passed either using registers or the stack but never mixing both.
+static void analyzeStandardArguments(TargetLowering::CallLoweringInfo *CLI,
+ const Function *F, const DataLayout *TD,
+ const SmallVectorImpl<ISD::OutputArg> *Outs,
+ const SmallVectorImpl<ISD::InputArg> *Ins,
+ CallingConv::ID CallConv,
+ SmallVectorImpl<CCValAssign> &ArgLocs,
+ CCState &CCInfo, bool IsCall, bool IsVarArg) {
+ static const MCPhysReg RegList8[] = {AVR::R24, AVR::R22, AVR::R20,
+ AVR::R18, AVR::R16, AVR::R14,
+ AVR::R12, AVR::R10, AVR::R8};
+ static const MCPhysReg RegList16[] = {AVR::R25R24, AVR::R23R22, AVR::R21R20,
+ AVR::R19R18, AVR::R17R16, AVR::R15R14,
+ AVR::R13R12, AVR::R11R10, AVR::R9R8};
+ if (IsVarArg) {
+ // Variadic functions do not need all the analysis below.
+ if (IsCall) {
+ CCInfo.AnalyzeCallOperands(*Outs, ArgCC_AVR_Vararg);
+ } else {
+ CCInfo.AnalyzeFormalArguments(*Ins, ArgCC_AVR_Vararg);
+ }
+ return;
+ }
+
+ // Fill in the Args array which will contain original argument sizes.
+ SmallVector<unsigned, 8> Args;
+ if (IsCall) {
+ parseExternFuncCallArgs(*Outs, Args);
+ } else {
+ assert(F != nullptr && "function should not be null");
+ parseFunctionArgs(*Ins, Args);
+ }
+
+ unsigned RegsLeft = array_lengthof(RegList8), ValNo = 0;
+ // Variadic functions always use the stack.
+ bool UsesStack = false;
+ for (unsigned i = 0, pos = 0, e = Args.size(); i != e; ++i) {
+ unsigned Size = Args[i];
+
+ // If we have a zero-sized argument, don't attempt to lower it.
+ // AVR-GCC does not support zero-sized arguments and so we need not
+ // worry about ABI compatibility.
+ if (Size == 0) continue;
+
+ MVT LocVT = (IsCall) ? (*Outs)[pos].VT : (*Ins)[pos].VT;
+
+ // If we have plenty of regs to pass the whole argument do it.
+ if (!UsesStack && (Size <= RegsLeft)) {
+ const MCPhysReg *RegList = (LocVT == MVT::i16) ? RegList16 : RegList8;
+
+ for (unsigned j = 0; j != Size; ++j) {
+ unsigned Reg = CCInfo.AllocateReg(
+ ArrayRef<MCPhysReg>(RegList, array_lengthof(RegList8)));
+ CCInfo.addLoc(
+ CCValAssign::getReg(ValNo++, LocVT, Reg, LocVT, CCValAssign::Full));
+ --RegsLeft;
+ }
+
+ // Reverse the order of the pieces to agree with the "big endian" format
+ // required in the calling convention ABI.
+ std::reverse(ArgLocs.begin() + pos, ArgLocs.begin() + pos + Size);
+ } else {
+ // Pass the rest of arguments using the stack.
+ UsesStack = true;
+ for (unsigned j = 0; j != Size; ++j) {
+ unsigned Offset = CCInfo.AllocateStack(
+ TD->getTypeAllocSize(EVT(LocVT).getTypeForEVT(CCInfo.getContext())),
+ TD->getABITypeAlignment(
+ EVT(LocVT).getTypeForEVT(CCInfo.getContext())));
+ CCInfo.addLoc(CCValAssign::getMem(ValNo++, LocVT, Offset, LocVT,
+ CCValAssign::Full));
+ }
+ }
+ pos += Size;
+ }
+}
+
+static void analyzeBuiltinArguments(TargetLowering::CallLoweringInfo &CLI,
+ const Function *F, const DataLayout *TD,
+ const SmallVectorImpl<ISD::OutputArg> *Outs,
+ const SmallVectorImpl<ISD::InputArg> *Ins,
+ CallingConv::ID CallConv,
+ SmallVectorImpl<CCValAssign> &ArgLocs,
+ CCState &CCInfo, bool IsCall, bool IsVarArg) {
+ StringRef FuncName = getFunctionName(CLI);
+
+ if (FuncName.startswith("__udivmod") || FuncName.startswith("__divmod")) {
+ CCInfo.AnalyzeCallOperands(*Outs, ArgCC_AVR_BUILTIN_DIV);
+ } else {
+ analyzeStandardArguments(&CLI, F, TD, Outs, Ins,
+ CallConv, ArgLocs, CCInfo,
+ IsCall, IsVarArg);
+ }
+}
+
+static void analyzeArguments(TargetLowering::CallLoweringInfo *CLI,
+ const Function *F, const DataLayout *TD,
+ const SmallVectorImpl<ISD::OutputArg> *Outs,
+ const SmallVectorImpl<ISD::InputArg> *Ins,
+ CallingConv::ID CallConv,
+ SmallVectorImpl<CCValAssign> &ArgLocs,
+ CCState &CCInfo, bool IsCall, bool IsVarArg) {
+ switch (CallConv) {
+ case CallingConv::AVR_BUILTIN: {
+ analyzeBuiltinArguments(*CLI, F, TD, Outs, Ins,
+ CallConv, ArgLocs, CCInfo,
+ IsCall, IsVarArg);
+ return;
+ }
+ default: {
+ analyzeStandardArguments(CLI, F, TD, Outs, Ins,
+ CallConv, ArgLocs, CCInfo,
+ IsCall, IsVarArg);
+ return;
+ }
+ }
+}
+
+SDValue AVRTargetLowering::LowerFormalArguments(
+ SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineFrameInfo &MFI = MF.getFrameInfo();
+ auto DL = DAG.getDataLayout();
+
+ // Assign locations to all of the incoming arguments.
+ SmallVector<CCValAssign, 16> ArgLocs;
+ CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
+ *DAG.getContext());
+
+ analyzeArguments(nullptr, &MF.getFunction(), &DL, 0, &Ins, CallConv, ArgLocs, CCInfo,
+ false, isVarArg);
+
+ SDValue ArgValue;
+ for (CCValAssign &VA : ArgLocs) {
+
+ // Arguments stored on registers.
+ if (VA.isRegLoc()) {
+ EVT RegVT = VA.getLocVT();
+ const TargetRegisterClass *RC;
+ if (RegVT == MVT::i8) {
+ RC = &AVR::GPR8RegClass;
+ } else if (RegVT == MVT::i16) {
+ RC = &AVR::DREGSRegClass;
+ } else {
+ llvm_unreachable("Unknown argument type!");
+ }
+
+ unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
+ ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
+
+ // :NOTE: Clang should not promote any i8 into i16 but for safety the
+ // following code will handle zexts or sexts generated by other
+ // front ends. Otherwise:
+ // If this is an 8 bit value, it is really passed promoted
+ // to 16 bits. Insert an assert[sz]ext to capture this, then
+ // truncate to the right size.
+ switch (VA.getLocInfo()) {
+ default:
+ llvm_unreachable("Unknown loc info!");
+ case CCValAssign::Full:
+ break;
+ case CCValAssign::BCvt:
+ ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
+ break;
+ case CCValAssign::SExt:
+ ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
+ DAG.getValueType(VA.getValVT()));
+ ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
+ break;
+ case CCValAssign::ZExt:
+ ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
+ DAG.getValueType(VA.getValVT()));
+ ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
+ break;
+ }
+
+ InVals.push_back(ArgValue);
+ } else {
+ // Sanity check.
+ assert(VA.isMemLoc());
+
+ EVT LocVT = VA.getLocVT();
+
+ // Create the frame index object for this incoming parameter.
+ int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8,
+ VA.getLocMemOffset(), true);
+
+ // Create the SelectionDAG nodes corresponding to a load
+ // from this parameter.
+ SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DL));
+ InVals.push_back(DAG.getLoad(LocVT, dl, Chain, FIN,
+ MachinePointerInfo::getFixedStack(MF, FI),
+ 0));
+ }
+ }
+
+ // If the function takes variable number of arguments, make a frame index for
+ // the start of the first vararg value... for expansion of llvm.va_start.
+ if (isVarArg) {
+ unsigned StackSize = CCInfo.getNextStackOffset();
+ AVRMachineFunctionInfo *AFI = MF.getInfo<AVRMachineFunctionInfo>();
+
+ AFI->setVarArgsFrameIndex(MFI.CreateFixedObject(2, StackSize, true));
+ }
+
+ return Chain;
+}
+
+//===----------------------------------------------------------------------===//
+// Call Calling Convention Implementation
+//===----------------------------------------------------------------------===//
+
+SDValue AVRTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
+ SmallVectorImpl<SDValue> &InVals) const {
+ SelectionDAG &DAG = CLI.DAG;
+ SDLoc &DL = CLI.DL;
+ SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
+ SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
+ SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
+ SDValue Chain = CLI.Chain;
+ SDValue Callee = CLI.Callee;
+ bool &isTailCall = CLI.IsTailCall;
+ CallingConv::ID CallConv = CLI.CallConv;
+ bool isVarArg = CLI.IsVarArg;
+
+ MachineFunction &MF = DAG.getMachineFunction();
+
+ // AVR does not yet support tail call optimization.
+ isTailCall = false;
+
+ // Analyze operands of the call, assigning locations to each operand.
+ SmallVector<CCValAssign, 16> ArgLocs;
+ CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
+ *DAG.getContext());
+
+ // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
+ // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
+ // node so that legalize doesn't hack it.
+ const Function *F = nullptr;
+ if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
+ const GlobalValue *GV = G->getGlobal();
+
+ F = cast<Function>(GV);
+ Callee =
+ DAG.getTargetGlobalAddress(GV, DL, getPointerTy(DAG.getDataLayout()));
+ } else if (const ExternalSymbolSDNode *ES =
+ dyn_cast<ExternalSymbolSDNode>(Callee)) {
+ Callee = DAG.getTargetExternalSymbol(ES->getSymbol(),
+ getPointerTy(DAG.getDataLayout()));
+ }
+
+ analyzeArguments(&CLI, F, &DAG.getDataLayout(), &Outs, 0, CallConv, ArgLocs, CCInfo,
+ true, isVarArg);
+
+ // Get a count of how many bytes are to be pushed on the stack.
+ unsigned NumBytes = CCInfo.getNextStackOffset();
+
+ Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL);
+
+ SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
+
+ // First, walk the register assignments, inserting copies.
+ unsigned AI, AE;
+ bool HasStackArgs = false;
+ for (AI = 0, AE = ArgLocs.size(); AI != AE; ++AI) {
+ CCValAssign &VA = ArgLocs[AI];
+ EVT RegVT = VA.getLocVT();
+ SDValue Arg = OutVals[AI];
+
+ // Promote the value if needed. With Clang this should not happen.
+ switch (VA.getLocInfo()) {
+ default:
+ llvm_unreachable("Unknown loc info!");
+ case CCValAssign::Full:
+ break;
+ case CCValAssign::SExt:
+ Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, RegVT, Arg);
+ break;
+ case CCValAssign::ZExt:
+ Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, RegVT, Arg);
+ break;
+ case CCValAssign::AExt:
+ Arg = DAG.getNode(ISD::ANY_EXTEND, DL, RegVT, Arg);
+ break;
+ case CCValAssign::BCvt:
+ Arg = DAG.getNode(ISD::BITCAST, DL, RegVT, Arg);
+ break;
+ }
+
+ // Stop when we encounter a stack argument, we need to process them
+ // in reverse order in the loop below.
+ if (VA.isMemLoc()) {
+ HasStackArgs = true;
+ break;
+ }
+
+ // Arguments that can be passed on registers must be kept in the RegsToPass
+ // vector.
+ RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
+ }
+
+ // Second, stack arguments have to walked in reverse order by inserting
+ // chained stores, this ensures their order is not changed by the scheduler
+ // and that the push instruction sequence generated is correct, otherwise they
+ // can be freely intermixed.
+ if (HasStackArgs) {
+ for (AE = AI, AI = ArgLocs.size(); AI != AE; --AI) {
+ unsigned Loc = AI - 1;
+ CCValAssign &VA = ArgLocs[Loc];
+ SDValue Arg = OutVals[Loc];
+
+ assert(VA.isMemLoc());
+
+ // SP points to one stack slot further so add one to adjust it.
+ SDValue PtrOff = DAG.getNode(
+ ISD::ADD, DL, getPointerTy(DAG.getDataLayout()),
+ DAG.getRegister(AVR::SP, getPointerTy(DAG.getDataLayout())),
+ DAG.getIntPtrConstant(VA.getLocMemOffset() + 1, DL));
+
+ Chain =
+ DAG.getStore(Chain, DL, Arg, PtrOff,
+ MachinePointerInfo::getStack(MF, VA.getLocMemOffset()),
+ 0);
+ }
+ }
+
+ // Build a sequence of copy-to-reg nodes chained together with token chain and
+ // flag operands which copy the outgoing args into registers. The InFlag in
+ // necessary since all emited instructions must be stuck together.
+ SDValue InFlag;
+ for (auto Reg : RegsToPass) {
+ Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, InFlag);
+ InFlag = Chain.getValue(1);
+ }
+
+ // Returns a chain & a flag for retval copy to use.
+ SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
+ SmallVector<SDValue, 8> Ops;
+ Ops.push_back(Chain);
+ Ops.push_back(Callee);
+
+ // Add argument registers to the end of the list so that they are known live
+ // into the call.
+ for (auto Reg : RegsToPass) {
+ Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
+ }
+
+ // Add a register mask operand representing the call-preserved registers.
+ const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
+ const uint32_t *Mask =
+ TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv);
+ assert(Mask && "Missing call preserved mask for calling convention");
+ Ops.push_back(DAG.getRegisterMask(Mask));
+
+ if (InFlag.getNode()) {
+ Ops.push_back(InFlag);
+ }
+
+ Chain = DAG.getNode(AVRISD::CALL, DL, NodeTys, Ops);
+ InFlag = Chain.getValue(1);
+
+ // Create the CALLSEQ_END node.
+ Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, DL, true),
+ DAG.getIntPtrConstant(0, DL, true), InFlag, DL);
+
+ if (!Ins.empty()) {
+ InFlag = Chain.getValue(1);
+ }
+
+ // Handle result values, copying them out of physregs into vregs that we
+ // return.
+ return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, DL, DAG,
+ InVals);
+}
+
+/// Lower the result values of a call into the
+/// appropriate copies out of appropriate physical registers.
+///
+SDValue AVRTargetLowering::LowerCallResult(
+ SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) const {
+
+ // Assign locations to each value returned by this call.
+ SmallVector<CCValAssign, 16> RVLocs;
+ CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
+ *DAG.getContext());
+
+ // Handle runtime calling convs.
+ auto CCFunction = CCAssignFnForReturn(CallConv);
+ CCInfo.AnalyzeCallResult(Ins, CCFunction);
+
+ if (CallConv != CallingConv::AVR_BUILTIN && RVLocs.size() > 1) {
+ // Reverse splitted return values to get the "big endian" format required
+ // to agree with the calling convention ABI.
+ std::reverse(RVLocs.begin(), RVLocs.end());
+ }
+
+ // Copy all of the result registers out of their specified physreg.
+ for (CCValAssign const &RVLoc : RVLocs) {
+ Chain = DAG.getCopyFromReg(Chain, dl, RVLoc.getLocReg(), RVLoc.getValVT(),
+ InFlag)
+ .getValue(1);
+ InFlag = Chain.getValue(2);
+ InVals.push_back(Chain.getValue(0));
+ }
+
+ return Chain;
+}
+
+//===----------------------------------------------------------------------===//
+// Return Value Calling Convention Implementation
+//===----------------------------------------------------------------------===//
+
+CCAssignFn *AVRTargetLowering::CCAssignFnForReturn(CallingConv::ID CC) const {
+ switch (CC) {
+ case CallingConv::AVR_BUILTIN:
+ return RetCC_AVR_BUILTIN;
+ default:
+ return RetCC_AVR;
+ }
+}
+
+bool
+AVRTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
+ MachineFunction &MF, bool isVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ LLVMContext &Context) const
+{
+ SmallVector<CCValAssign, 16> RVLocs;
+ CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
+
+ auto CCFunction = CCAssignFnForReturn(CallConv);
+ return CCInfo.CheckReturn(Outs, CCFunction);
+}
+
+SDValue
+AVRTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
+ bool isVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<SDValue> &OutVals,
+ const SDLoc &dl, SelectionDAG &DAG) const {
+ // CCValAssign - represent the assignment of the return value to locations.
+ SmallVector<CCValAssign, 16> RVLocs;
+
+ // CCState - Info about the registers and stack slot.
+ CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
+ *DAG.getContext());
+
+ // Analyze return values.
+ auto CCFunction = CCAssignFnForReturn(CallConv);
+ CCInfo.AnalyzeReturn(Outs, CCFunction);
+
+ // If this is the first return lowered for this function, add the regs to
+ // the liveout set for the function.
+ MachineFunction &MF = DAG.getMachineFunction();
+ unsigned e = RVLocs.size();
+
+ // Reverse splitted return values to get the "big endian" format required
+ // to agree with the calling convention ABI.
+ if (e > 1) {
+ std::reverse(RVLocs.begin(), RVLocs.end());
+ }
+
+ SDValue Flag;
+ SmallVector<SDValue, 4> RetOps(1, Chain);
+ // Copy the result values into the output registers.
+ for (unsigned i = 0; i != e; ++i) {
+ CCValAssign &VA = RVLocs[i];
+ assert(VA.isRegLoc() && "Can only return in registers!");
+
+ Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag);
+
+ // Guarantee that all emitted copies are stuck together with flags.
+ Flag = Chain.getValue(1);
+ RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
+ }
+
+ // Don't emit the ret/reti instruction when the naked attribute is present in
+ // the function being compiled.
+ if (MF.getFunction().getAttributes().hasAttribute(
+ AttributeList::FunctionIndex, Attribute::Naked)) {
+ return Chain;
+ }
+
+ unsigned RetOpc =
+ (CallConv == CallingConv::AVR_INTR || CallConv == CallingConv::AVR_SIGNAL)
+ ? AVRISD::RETI_FLAG
+ : AVRISD::RET_FLAG;
+
+ RetOps[0] = Chain; // Update chain.
+
+ if (Flag.getNode()) {
+ RetOps.push_back(Flag);
+ }
+
+ return DAG.getNode(RetOpc, dl, MVT::Other, RetOps);
+}
+
+//===----------------------------------------------------------------------===//
+// Custom Inserters
+//===----------------------------------------------------------------------===//
+
+MachineBasicBlock *AVRTargetLowering::insertShift(MachineInstr &MI,
+ MachineBasicBlock *BB) const {
+ unsigned Opc;
+ const TargetRegisterClass *RC;
+ bool HasRepeatedOperand = false;
+ MachineFunction *F = BB->getParent();
+ MachineRegisterInfo &RI = F->getRegInfo();
+ const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
+ DebugLoc dl = MI.getDebugLoc();
+
+ switch (MI.getOpcode()) {
+ default:
+ llvm_unreachable("Invalid shift opcode!");
+ case AVR::Lsl8:
+ Opc = AVR::ADDRdRr; // LSL is an alias of ADD Rd, Rd
+ RC = &AVR::GPR8RegClass;
+ HasRepeatedOperand = true;
+ break;
+ case AVR::Lsl16:
+ Opc = AVR::LSLWRd;
+ RC = &AVR::DREGSRegClass;
+ break;
+ case AVR::Asr8:
+ Opc = AVR::ASRRd;
+ RC = &AVR::GPR8RegClass;
+ break;
+ case AVR::Asr16:
+ Opc = AVR::ASRWRd;
+ RC = &AVR::DREGSRegClass;
+ break;
+ case AVR::Lsr8:
+ Opc = AVR::LSRRd;
+ RC = &AVR::GPR8RegClass;
+ break;
+ case AVR::Lsr16:
+ Opc = AVR::LSRWRd;
+ RC = &AVR::DREGSRegClass;
+ break;
+ case AVR::Rol8:
+ Opc = AVR::ADCRdRr; // ROL is an alias of ADC Rd, Rd
+ RC = &AVR::GPR8RegClass;
+ HasRepeatedOperand = true;
+ break;
+ case AVR::Rol16:
+ Opc = AVR::ROLWRd;
+ RC = &AVR::DREGSRegClass;
+ break;
+ case AVR::Ror8:
+ Opc = AVR::RORRd;
+ RC = &AVR::GPR8RegClass;
+ break;
+ case AVR::Ror16:
+ Opc = AVR::RORWRd;
+ RC = &AVR::DREGSRegClass;
+ break;
+ }
+
+ const BasicBlock *LLVM_BB = BB->getBasicBlock();
+
+ MachineFunction::iterator I;
+ for (I = BB->getIterator(); I != F->end() && &(*I) != BB; ++I);
+ if (I != F->end()) ++I;
+
+ // Create loop block.
+ MachineBasicBlock *LoopBB = F->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *RemBB = F->CreateMachineBasicBlock(LLVM_BB);
+
+ F->insert(I, LoopBB);
+ F->insert(I, RemBB);
+
+ // Update machine-CFG edges by transferring all successors of the current
+ // block to the block containing instructions after shift.
+ RemBB->splice(RemBB->begin(), BB, std::next(MachineBasicBlock::iterator(MI)),
+ BB->end());
+ RemBB->transferSuccessorsAndUpdatePHIs(BB);
+
+ // Add adges BB => LoopBB => RemBB, BB => RemBB, LoopBB => LoopBB.
+ BB->addSuccessor(LoopBB);
+ BB->addSuccessor(RemBB);
+ LoopBB->addSuccessor(RemBB);
+ LoopBB->addSuccessor(LoopBB);
+
+ unsigned ShiftAmtReg = RI.createVirtualRegister(&AVR::LD8RegClass);
+ unsigned ShiftAmtReg2 = RI.createVirtualRegister(&AVR::LD8RegClass);
+ unsigned ShiftReg = RI.createVirtualRegister(RC);
+ unsigned ShiftReg2 = RI.createVirtualRegister(RC);
+ unsigned ShiftAmtSrcReg = MI.getOperand(2).getReg();
+ unsigned SrcReg = MI.getOperand(1).getReg();
+ unsigned DstReg = MI.getOperand(0).getReg();
+
+ // BB:
+ // cpi N, 0
+ // breq RemBB
+ BuildMI(BB, dl, TII.get(AVR::CPIRdK)).addReg(ShiftAmtSrcReg).addImm(0);
+ BuildMI(BB, dl, TII.get(AVR::BREQk)).addMBB(RemBB);
+
+ // LoopBB:
+ // ShiftReg = phi [%SrcReg, BB], [%ShiftReg2, LoopBB]
+ // ShiftAmt = phi [%N, BB], [%ShiftAmt2, LoopBB]
+ // ShiftReg2 = shift ShiftReg
+ // ShiftAmt2 = ShiftAmt - 1;
+ BuildMI(LoopBB, dl, TII.get(AVR::PHI), ShiftReg)
+ .addReg(SrcReg)
+ .addMBB(BB)
+ .addReg(ShiftReg2)
+ .addMBB(LoopBB);
+ BuildMI(LoopBB, dl, TII.get(AVR::PHI), ShiftAmtReg)
+ .addReg(ShiftAmtSrcReg)
+ .addMBB(BB)
+ .addReg(ShiftAmtReg2)
+ .addMBB(LoopBB);
+
+ auto ShiftMI = BuildMI(LoopBB, dl, TII.get(Opc), ShiftReg2).addReg(ShiftReg);
+ if (HasRepeatedOperand)
+ ShiftMI.addReg(ShiftReg);
+
+ BuildMI(LoopBB, dl, TII.get(AVR::SUBIRdK), ShiftAmtReg2)
+ .addReg(ShiftAmtReg)
+ .addImm(1);
+ BuildMI(LoopBB, dl, TII.get(AVR::BRNEk)).addMBB(LoopBB);
+
+ // RemBB:
+ // DestReg = phi [%SrcReg, BB], [%ShiftReg, LoopBB]
+ BuildMI(*RemBB, RemBB->begin(), dl, TII.get(AVR::PHI), DstReg)
+ .addReg(SrcReg)
+ .addMBB(BB)
+ .addReg(ShiftReg2)
+ .addMBB(LoopBB);
+
+ MI.eraseFromParent(); // The pseudo instruction is gone now.
+ return RemBB;
+}
+
+static bool isCopyMulResult(MachineBasicBlock::iterator const &I) {
+ if (I->getOpcode() == AVR::COPY) {
+ unsigned SrcReg = I->getOperand(1).getReg();
+ return (SrcReg == AVR::R0 || SrcReg == AVR::R1);
+ }
+
+ return false;
+}
+
+// The mul instructions wreak havock on our zero_reg R1. We need to clear it
+// after the result has been evacuated. This is probably not the best way to do
+// it, but it works for now.
+MachineBasicBlock *AVRTargetLowering::insertMul(MachineInstr &MI,
+ MachineBasicBlock *BB) const {
+ const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
+ MachineBasicBlock::iterator I(MI);
+ ++I; // in any case insert *after* the mul instruction
+ if (isCopyMulResult(I))
+ ++I;
+ if (isCopyMulResult(I))
+ ++I;
+ BuildMI(*BB, I, MI.getDebugLoc(), TII.get(AVR::EORRdRr), AVR::R1)
+ .addReg(AVR::R1)
+ .addReg(AVR::R1);
+ return BB;
+}
+
+MachineBasicBlock *
+AVRTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
+ MachineBasicBlock *MBB) const {
+ int Opc = MI.getOpcode();
+
+ // Pseudo shift instructions with a non constant shift amount are expanded
+ // into a loop.
+ switch (Opc) {
+ case AVR::Lsl8:
+ case AVR::Lsl16:
+ case AVR::Lsr8:
+ case AVR::Lsr16:
+ case AVR::Rol8:
+ case AVR::Rol16:
+ case AVR::Ror8:
+ case AVR::Ror16:
+ case AVR::Asr8:
+ case AVR::Asr16:
+ return insertShift(MI, MBB);
+ case AVR::MULRdRr:
+ case AVR::MULSRdRr:
+ return insertMul(MI, MBB);
+ }
+
+ assert((Opc == AVR::Select16 || Opc == AVR::Select8) &&
+ "Unexpected instr type to insert");
+
+ const AVRInstrInfo &TII = (const AVRInstrInfo &)*MI.getParent()
+ ->getParent()
+ ->getSubtarget()
+ .getInstrInfo();
+ DebugLoc dl = MI.getDebugLoc();
+
+ // To "insert" a SELECT instruction, we insert the diamond
+ // control-flow pattern. The incoming instruction knows the
+ // destination vreg to set, the condition code register to branch
+ // on, the true/false values to select between, and a branch opcode
+ // to use.
+
+ MachineFunction *MF = MBB->getParent();
+ const BasicBlock *LLVM_BB = MBB->getBasicBlock();
+ MachineBasicBlock *FallThrough = MBB->getFallThrough();
+
+ // If the current basic block falls through to another basic block,
+ // we must insert an unconditional branch to the fallthrough destination
+ // if we are to insert basic blocks at the prior fallthrough point.
+ if (FallThrough != nullptr) {
+ BuildMI(MBB, dl, TII.get(AVR::RJMPk)).addMBB(FallThrough);
+ }
+
+ MachineBasicBlock *trueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *falseMBB = MF->CreateMachineBasicBlock(LLVM_BB);
+
+ MachineFunction::iterator I;
+ for (I = MF->begin(); I != MF->end() && &(*I) != MBB; ++I);
+ if (I != MF->end()) ++I;
+ MF->insert(I, trueMBB);
+ MF->insert(I, falseMBB);
+
+ // Transfer remaining instructions and all successors of the current
+ // block to the block which will contain the Phi node for the
+ // select.
+ trueMBB->splice(trueMBB->begin(), MBB,
+ std::next(MachineBasicBlock::iterator(MI)), MBB->end());
+ trueMBB->transferSuccessorsAndUpdatePHIs(MBB);
+
+ AVRCC::CondCodes CC = (AVRCC::CondCodes)MI.getOperand(3).getImm();
+ BuildMI(MBB, dl, TII.getBrCond(CC)).addMBB(trueMBB);
+ BuildMI(MBB, dl, TII.get(AVR::RJMPk)).addMBB(falseMBB);
+ MBB->addSuccessor(falseMBB);
+ MBB->addSuccessor(trueMBB);
+
+ // Unconditionally flow back to the true block
+ BuildMI(falseMBB, dl, TII.get(AVR::RJMPk)).addMBB(trueMBB);
+ falseMBB->addSuccessor(trueMBB);
+
+ // Set up the Phi node to determine where we came from
+ BuildMI(*trueMBB, trueMBB->begin(), dl, TII.get(AVR::PHI), MI.getOperand(0).getReg())
+ .addReg(MI.getOperand(1).getReg())
+ .addMBB(MBB)
+ .addReg(MI.getOperand(2).getReg())
+ .addMBB(falseMBB) ;
+
+ MI.eraseFromParent(); // The pseudo instruction is gone now.
+ return trueMBB;
+}
+
+//===----------------------------------------------------------------------===//
+// Inline Asm Support
+//===----------------------------------------------------------------------===//
+
+AVRTargetLowering::ConstraintType
+AVRTargetLowering::getConstraintType(StringRef Constraint) const {
+ if (Constraint.size() == 1) {
+ // See http://www.nongnu.org/avr-libc/user-manual/inline_asm.html
+ switch (Constraint[0]) {
+ default:
+ break;
+ case 'a': // Simple upper registers
+ case 'b': // Base pointer registers pairs
+ case 'd': // Upper register
+ case 'l': // Lower registers
+ case 'e': // Pointer register pairs
+ case 'q': // Stack pointer register
+ case 'r': // Any register
+ case 'w': // Special upper register pairs
+ return C_RegisterClass;
+ case 't': // Temporary register
+ case 'x': case 'X': // Pointer register pair X
+ case 'y': case 'Y': // Pointer register pair Y
+ case 'z': case 'Z': // Pointer register pair Z
+ return C_Register;
+ case 'Q': // A memory address based on Y or Z pointer with displacement.
+ return C_Memory;
+ case 'G': // Floating point constant
+ case 'I': // 6-bit positive integer constant
+ case 'J': // 6-bit negative integer constant
+ case 'K': // Integer constant (Range: 2)
+ case 'L': // Integer constant (Range: 0)
+ case 'M': // 8-bit integer constant
+ case 'N': // Integer constant (Range: -1)
+ case 'O': // Integer constant (Range: 8, 16, 24)
+ case 'P': // Integer constant (Range: 1)
+ case 'R': // Integer constant (Range: -6 to 5)x
+ return C_Immediate;
+ }
+ }
+
+ return TargetLowering::getConstraintType(Constraint);
+}
+
+unsigned
+AVRTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const {
+ // Not sure if this is actually the right thing to do, but we got to do
+ // *something* [agnat]
+ switch (ConstraintCode[0]) {
+ case 'Q':
+ return InlineAsm::Constraint_Q;
+ }
+ return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
+}
+
+AVRTargetLowering::ConstraintWeight
+AVRTargetLowering::getSingleConstraintMatchWeight(
+ AsmOperandInfo &info, const char *constraint) const {
+ ConstraintWeight weight = CW_Invalid;
+ Value *CallOperandVal = info.CallOperandVal;
+
+ // If we don't have a value, we can't do a match,
+ // but allow it at the lowest weight.
+ // (this behaviour has been copied from the ARM backend)
+ if (!CallOperandVal) {
+ return CW_Default;
+ }
+
+ // Look at the constraint type.
+ switch (*constraint) {
+ default:
+ weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
+ break;
+ case 'd':
+ case 'r':
+ case 'l':
+ weight = CW_Register;
+ break;
+ case 'a':
+ case 'b':
+ case 'e':
+ case 'q':
+ case 't':
+ case 'w':
+ case 'x': case 'X':
+ case 'y': case 'Y':
+ case 'z': case 'Z':
+ weight = CW_SpecificReg;
+ break;
+ case 'G':
+ if (const ConstantFP *C = dyn_cast<ConstantFP>(CallOperandVal)) {
+ if (C->isZero()) {
+ weight = CW_Constant;
+ }
+ }
+ break;
+ case 'I':
+ if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
+ if (isUInt<6>(C->getZExtValue())) {
+ weight = CW_Constant;
+ }
+ }
+ break;
+ case 'J':
+ if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
+ if ((C->getSExtValue() >= -63) && (C->getSExtValue() <= 0)) {
+ weight = CW_Constant;
+ }
+ }
+ break;
+ case 'K':
+ if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
+ if (C->getZExtValue() == 2) {
+ weight = CW_Constant;
+ }
+ }
+ break;
+ case 'L':
+ if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
+ if (C->getZExtValue() == 0) {
+ weight = CW_Constant;
+ }
+ }
+ break;
+ case 'M':
+ if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
+ if (isUInt<8>(C->getZExtValue())) {
+ weight = CW_Constant;
+ }
+ }
+ break;
+ case 'N':
+ if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
+ if (C->getSExtValue() == -1) {
+ weight = CW_Constant;
+ }
+ }
+ break;
+ case 'O':
+ if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
+ if ((C->getZExtValue() == 8) || (C->getZExtValue() == 16) ||
+ (C->getZExtValue() == 24)) {
+ weight = CW_Constant;
+ }
+ }
+ break;
+ case 'P':
+ if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
+ if (C->getZExtValue() == 1) {
+ weight = CW_Constant;
+ }
+ }
+ break;
+ case 'R':
+ if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
+ if ((C->getSExtValue() >= -6) && (C->getSExtValue() <= 5)) {
+ weight = CW_Constant;
+ }
+ }
+ break;
+ case 'Q':
+ weight = CW_Memory;
+ break;
+ }
+
+ return weight;
+}
+
+std::pair<unsigned, const TargetRegisterClass *>
+AVRTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
+ StringRef Constraint,
+ MVT VT) const {
+ // We only support i8 and i16.
+ //
+ //:FIXME: remove this assert for now since it gets sometimes executed
+ // assert((VT == MVT::i16 || VT == MVT::i8) && "Wrong operand type.");
+
+ if (Constraint.size() == 1) {
+ switch (Constraint[0]) {
+ case 'a': // Simple upper registers r16..r23.
+ return std::make_pair(0U, &AVR::LD8loRegClass);
+ case 'b': // Base pointer registers: y, z.
+ return std::make_pair(0U, &AVR::PTRDISPREGSRegClass);
+ case 'd': // Upper registers r16..r31.
+ return std::make_pair(0U, &AVR::LD8RegClass);
+ case 'l': // Lower registers r0..r15.
+ return std::make_pair(0U, &AVR::GPR8loRegClass);
+ case 'e': // Pointer register pairs: x, y, z.
+ return std::make_pair(0U, &AVR::PTRREGSRegClass);
+ case 'q': // Stack pointer register: SPH:SPL.
+ return std::make_pair(0U, &AVR::GPRSPRegClass);
+ case 'r': // Any register: r0..r31.
+ if (VT == MVT::i8)
+ return std::make_pair(0U, &AVR::GPR8RegClass);
+
+ assert(VT == MVT::i16 && "inline asm constraint too large");
+ return std::make_pair(0U, &AVR::DREGSRegClass);
+ case 't': // Temporary register: r0.
+ return std::make_pair(unsigned(AVR::R0), &AVR::GPR8RegClass);
+ case 'w': // Special upper register pairs: r24, r26, r28, r30.
+ return std::make_pair(0U, &AVR::IWREGSRegClass);
+ case 'x': // Pointer register pair X: r27:r26.
+ case 'X':
+ return std::make_pair(unsigned(AVR::R27R26), &AVR::PTRREGSRegClass);
+ case 'y': // Pointer register pair Y: r29:r28.
+ case 'Y':
+ return std::make_pair(unsigned(AVR::R29R28), &AVR::PTRREGSRegClass);
+ case 'z': // Pointer register pair Z: r31:r30.
+ case 'Z':
+ return std::make_pair(unsigned(AVR::R31R30), &AVR::PTRREGSRegClass);
+ default:
+ break;
+ }
+ }
+
+ return TargetLowering::getRegForInlineAsmConstraint(
+ Subtarget.getRegisterInfo(), Constraint, VT);
+}
+
+void AVRTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
+ std::string &Constraint,
+ std::vector<SDValue> &Ops,
+ SelectionDAG &DAG) const {
+ SDValue Result(0, 0);
+ SDLoc DL(Op);
+ EVT Ty = Op.getValueType();
+
+ // Currently only support length 1 constraints.
+ if (Constraint.length() != 1) {
+ return;
+ }
+
+ char ConstraintLetter = Constraint[0];
+ switch (ConstraintLetter) {
+ default:
+ break;
+ // Deal with integers first:
+ case 'I':
+ case 'J':
+ case 'K':
+ case 'L':
+ case 'M':
+ case 'N':
+ case 'O':
+ case 'P':
+ case 'R': {
+ const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
+ if (!C) {
+ return;
+ }
+
+ int64_t CVal64 = C->getSExtValue();
+ uint64_t CUVal64 = C->getZExtValue();
+ switch (ConstraintLetter) {
+ case 'I': // 0..63
+ if (!isUInt<6>(CUVal64))
+ return;
+ Result = DAG.getTargetConstant(CUVal64, DL, Ty);
+ break;
+ case 'J': // -63..0
+ if (CVal64 < -63 || CVal64 > 0)
+ return;
+ Result = DAG.getTargetConstant(CVal64, DL, Ty);
+ break;
+ case 'K': // 2
+ if (CUVal64 != 2)
+ return;
+ Result = DAG.getTargetConstant(CUVal64, DL, Ty);
+ break;
+ case 'L': // 0
+ if (CUVal64 != 0)
+ return;
+ Result = DAG.getTargetConstant(CUVal64, DL, Ty);
+ break;
+ case 'M': // 0..255
+ if (!isUInt<8>(CUVal64))
+ return;
+ // i8 type may be printed as a negative number,
+ // e.g. 254 would be printed as -2,
+ // so we force it to i16 at least.
+ if (Ty.getSimpleVT() == MVT::i8) {
+ Ty = MVT::i16;
+ }
+ Result = DAG.getTargetConstant(CUVal64, DL, Ty);
+ break;
+ case 'N': // -1
+ if (CVal64 != -1)
+ return;
+ Result = DAG.getTargetConstant(CVal64, DL, Ty);
+ break;
+ case 'O': // 8, 16, 24
+ if (CUVal64 != 8 && CUVal64 != 16 && CUVal64 != 24)
+ return;
+ Result = DAG.getTargetConstant(CUVal64, DL, Ty);
+ break;
+ case 'P': // 1
+ if (CUVal64 != 1)
+ return;
+ Result = DAG.getTargetConstant(CUVal64, DL, Ty);
+ break;
+ case 'R': // -6..5
+ if (CVal64 < -6 || CVal64 > 5)
+ return;
+ Result = DAG.getTargetConstant(CVal64, DL, Ty);
+ break;
+ }
+
+ break;
+ }
+ case 'G':
+ const ConstantFPSDNode *FC = dyn_cast<ConstantFPSDNode>(Op);
+ if (!FC || !FC->isZero())
+ return;
+ // Soften float to i8 0
+ Result = DAG.getTargetConstant(0, DL, MVT::i8);
+ break;
+ }
+
+ if (Result.getNode()) {
+ Ops.push_back(Result);
+ return;
+ }
+
+ return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
+}
+
+unsigned AVRTargetLowering::getRegisterByName(const char *RegName,
+ EVT VT,
+ SelectionDAG &DAG) const {
+ unsigned Reg;
+
+ if (VT == MVT::i8) {
+ Reg = StringSwitch<unsigned>(RegName)
+ .Case("r0", AVR::R0).Case("r1", AVR::R1).Case("r2", AVR::R2)
+ .Case("r3", AVR::R3).Case("r4", AVR::R4).Case("r5", AVR::R5)
+ .Case("r6", AVR::R6).Case("r7", AVR::R7).Case("r8", AVR::R8)
+ .Case("r9", AVR::R9).Case("r10", AVR::R10).Case("r11", AVR::R11)
+ .Case("r12", AVR::R12).Case("r13", AVR::R13).Case("r14", AVR::R14)
+ .Case("r15", AVR::R15).Case("r16", AVR::R16).Case("r17", AVR::R17)
+ .Case("r18", AVR::R18).Case("r19", AVR::R19).Case("r20", AVR::R20)
+ .Case("r21", AVR::R21).Case("r22", AVR::R22).Case("r23", AVR::R23)
+ .Case("r24", AVR::R24).Case("r25", AVR::R25).Case("r26", AVR::R26)
+ .Case("r27", AVR::R27).Case("r28", AVR::R28).Case("r29", AVR::R29)
+ .Case("r30", AVR::R30).Case("r31", AVR::R31)
+ .Case("X", AVR::R27R26).Case("Y", AVR::R29R28).Case("Z", AVR::R31R30)
+ .Default(0);
+ } else {
+ Reg = StringSwitch<unsigned>(RegName)
+ .Case("r0", AVR::R1R0).Case("r2", AVR::R3R2)
+ .Case("r4", AVR::R5R4).Case("r6", AVR::R7R6)
+ .Case("r8", AVR::R9R8).Case("r10", AVR::R11R10)
+ .Case("r12", AVR::R13R12).Case("r14", AVR::R15R14)
+ .Case("r16", AVR::R17R16).Case("r18", AVR::R19R18)
+ .Case("r20", AVR::R21R20).Case("r22", AVR::R23R22)
+ .Case("r24", AVR::R25R24).Case("r26", AVR::R27R26)
+ .Case("r28", AVR::R29R28).Case("r30", AVR::R31R30)
+ .Case("X", AVR::R27R26).Case("Y", AVR::R29R28).Case("Z", AVR::R31R30)
+ .Default(0);
+ }
+
+ if (Reg)
+ return Reg;
+
+ report_fatal_error("Invalid register name global variable");
+}
+
+} // end of namespace llvm