aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Target/X86/X86FlagsCopyLowering.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Target/X86/X86FlagsCopyLowering.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/Target/X86/X86FlagsCopyLowering.cpp1046
1 files changed, 1046 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Target/X86/X86FlagsCopyLowering.cpp b/contrib/llvm-project/llvm/lib/Target/X86/X86FlagsCopyLowering.cpp
new file mode 100644
index 000000000000..5ce3255ea96a
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/Target/X86/X86FlagsCopyLowering.cpp
@@ -0,0 +1,1046 @@
+//====- X86FlagsCopyLowering.cpp - Lowers COPY nodes of EFLAGS ------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+/// \file
+///
+/// Lowers COPY nodes of EFLAGS by directly extracting and preserving individual
+/// flag bits.
+///
+/// We have to do this by carefully analyzing and rewriting the usage of the
+/// copied EFLAGS register because there is no general way to rematerialize the
+/// entire EFLAGS register safely and efficiently. Using `popf` both forces
+/// dynamic stack adjustment and can create correctness issues due to IF, TF,
+/// and other non-status flags being overwritten. Using sequences involving
+/// SAHF don't work on all x86 processors and are often quite slow compared to
+/// directly testing a single status preserved in its own GPR.
+///
+//===----------------------------------------------------------------------===//
+
+#include "X86.h"
+#include "X86InstrBuilder.h"
+#include "X86InstrInfo.h"
+#include "X86Subtarget.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/PostOrderIterator.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/ScopeExit.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/SparseBitVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/CodeGen/MachineConstantPool.h"
+#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineModuleInfo.h"
+#include "llvm/CodeGen/MachineOperand.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/MachineSSAUpdater.h"
+#include "llvm/CodeGen/TargetInstrInfo.h"
+#include "llvm/CodeGen/TargetRegisterInfo.h"
+#include "llvm/CodeGen/TargetSchedule.h"
+#include "llvm/CodeGen/TargetSubtargetInfo.h"
+#include "llvm/IR/DebugLoc.h"
+#include "llvm/MC/MCSchedule.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+#include <cassert>
+#include <iterator>
+#include <utility>
+
+using namespace llvm;
+
+#define PASS_KEY "x86-flags-copy-lowering"
+#define DEBUG_TYPE PASS_KEY
+
+STATISTIC(NumCopiesEliminated, "Number of copies of EFLAGS eliminated");
+STATISTIC(NumSetCCsInserted, "Number of setCC instructions inserted");
+STATISTIC(NumTestsInserted, "Number of test instructions inserted");
+STATISTIC(NumAddsInserted, "Number of adds instructions inserted");
+
+namespace {
+
+// Convenient array type for storing registers associated with each condition.
+using CondRegArray = std::array<unsigned, X86::LAST_VALID_COND + 1>;
+
+class X86FlagsCopyLoweringPass : public MachineFunctionPass {
+public:
+ X86FlagsCopyLoweringPass() : MachineFunctionPass(ID) { }
+
+ StringRef getPassName() const override { return "X86 EFLAGS copy lowering"; }
+ bool runOnMachineFunction(MachineFunction &MF) override;
+ void getAnalysisUsage(AnalysisUsage &AU) const override;
+
+ /// Pass identification, replacement for typeid.
+ static char ID;
+
+private:
+ MachineRegisterInfo *MRI;
+ const X86Subtarget *Subtarget;
+ const X86InstrInfo *TII;
+ const TargetRegisterInfo *TRI;
+ const TargetRegisterClass *PromoteRC;
+ MachineDominatorTree *MDT;
+
+ CondRegArray collectCondsInRegs(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator CopyDefI);
+
+ unsigned promoteCondToReg(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator TestPos,
+ DebugLoc TestLoc, X86::CondCode Cond);
+ std::pair<unsigned, bool>
+ getCondOrInverseInReg(MachineBasicBlock &TestMBB,
+ MachineBasicBlock::iterator TestPos, DebugLoc TestLoc,
+ X86::CondCode Cond, CondRegArray &CondRegs);
+ void insertTest(MachineBasicBlock &MBB, MachineBasicBlock::iterator Pos,
+ DebugLoc Loc, unsigned Reg);
+
+ void rewriteArithmetic(MachineBasicBlock &TestMBB,
+ MachineBasicBlock::iterator TestPos, DebugLoc TestLoc,
+ MachineInstr &MI, MachineOperand &FlagUse,
+ CondRegArray &CondRegs);
+ void rewriteCMov(MachineBasicBlock &TestMBB,
+ MachineBasicBlock::iterator TestPos, DebugLoc TestLoc,
+ MachineInstr &CMovI, MachineOperand &FlagUse,
+ CondRegArray &CondRegs);
+ void rewriteCondJmp(MachineBasicBlock &TestMBB,
+ MachineBasicBlock::iterator TestPos, DebugLoc TestLoc,
+ MachineInstr &JmpI, CondRegArray &CondRegs);
+ void rewriteCopy(MachineInstr &MI, MachineOperand &FlagUse,
+ MachineInstr &CopyDefI);
+ void rewriteSetCarryExtended(MachineBasicBlock &TestMBB,
+ MachineBasicBlock::iterator TestPos,
+ DebugLoc TestLoc, MachineInstr &SetBI,
+ MachineOperand &FlagUse, CondRegArray &CondRegs);
+ void rewriteSetCC(MachineBasicBlock &TestMBB,
+ MachineBasicBlock::iterator TestPos, DebugLoc TestLoc,
+ MachineInstr &SetCCI, MachineOperand &FlagUse,
+ CondRegArray &CondRegs);
+};
+
+} // end anonymous namespace
+
+INITIALIZE_PASS_BEGIN(X86FlagsCopyLoweringPass, DEBUG_TYPE,
+ "X86 EFLAGS copy lowering", false, false)
+INITIALIZE_PASS_END(X86FlagsCopyLoweringPass, DEBUG_TYPE,
+ "X86 EFLAGS copy lowering", false, false)
+
+FunctionPass *llvm::createX86FlagsCopyLoweringPass() {
+ return new X86FlagsCopyLoweringPass();
+}
+
+char X86FlagsCopyLoweringPass::ID = 0;
+
+void X86FlagsCopyLoweringPass::getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.addRequired<MachineDominatorTree>();
+ MachineFunctionPass::getAnalysisUsage(AU);
+}
+
+namespace {
+/// An enumeration of the arithmetic instruction mnemonics which have
+/// interesting flag semantics.
+///
+/// We can map instruction opcodes into these mnemonics to make it easy to
+/// dispatch with specific functionality.
+enum class FlagArithMnemonic {
+ ADC,
+ ADCX,
+ ADOX,
+ RCL,
+ RCR,
+ SBB,
+};
+} // namespace
+
+static FlagArithMnemonic getMnemonicFromOpcode(unsigned Opcode) {
+ switch (Opcode) {
+ default:
+ report_fatal_error("No support for lowering a copy into EFLAGS when used "
+ "by this instruction!");
+
+#define LLVM_EXPAND_INSTR_SIZES(MNEMONIC, SUFFIX) \
+ case X86::MNEMONIC##8##SUFFIX: \
+ case X86::MNEMONIC##16##SUFFIX: \
+ case X86::MNEMONIC##32##SUFFIX: \
+ case X86::MNEMONIC##64##SUFFIX:
+
+#define LLVM_EXPAND_ADC_SBB_INSTR(MNEMONIC) \
+ LLVM_EXPAND_INSTR_SIZES(MNEMONIC, rr) \
+ LLVM_EXPAND_INSTR_SIZES(MNEMONIC, rr_REV) \
+ LLVM_EXPAND_INSTR_SIZES(MNEMONIC, rm) \
+ LLVM_EXPAND_INSTR_SIZES(MNEMONIC, mr) \
+ case X86::MNEMONIC##8ri: \
+ case X86::MNEMONIC##16ri8: \
+ case X86::MNEMONIC##32ri8: \
+ case X86::MNEMONIC##64ri8: \
+ case X86::MNEMONIC##16ri: \
+ case X86::MNEMONIC##32ri: \
+ case X86::MNEMONIC##64ri32: \
+ case X86::MNEMONIC##8mi: \
+ case X86::MNEMONIC##16mi8: \
+ case X86::MNEMONIC##32mi8: \
+ case X86::MNEMONIC##64mi8: \
+ case X86::MNEMONIC##16mi: \
+ case X86::MNEMONIC##32mi: \
+ case X86::MNEMONIC##64mi32: \
+ case X86::MNEMONIC##8i8: \
+ case X86::MNEMONIC##16i16: \
+ case X86::MNEMONIC##32i32: \
+ case X86::MNEMONIC##64i32:
+
+ LLVM_EXPAND_ADC_SBB_INSTR(ADC)
+ return FlagArithMnemonic::ADC;
+
+ LLVM_EXPAND_ADC_SBB_INSTR(SBB)
+ return FlagArithMnemonic::SBB;
+
+#undef LLVM_EXPAND_ADC_SBB_INSTR
+
+ LLVM_EXPAND_INSTR_SIZES(RCL, rCL)
+ LLVM_EXPAND_INSTR_SIZES(RCL, r1)
+ LLVM_EXPAND_INSTR_SIZES(RCL, ri)
+ return FlagArithMnemonic::RCL;
+
+ LLVM_EXPAND_INSTR_SIZES(RCR, rCL)
+ LLVM_EXPAND_INSTR_SIZES(RCR, r1)
+ LLVM_EXPAND_INSTR_SIZES(RCR, ri)
+ return FlagArithMnemonic::RCR;
+
+#undef LLVM_EXPAND_INSTR_SIZES
+
+ case X86::ADCX32rr:
+ case X86::ADCX64rr:
+ case X86::ADCX32rm:
+ case X86::ADCX64rm:
+ return FlagArithMnemonic::ADCX;
+
+ case X86::ADOX32rr:
+ case X86::ADOX64rr:
+ case X86::ADOX32rm:
+ case X86::ADOX64rm:
+ return FlagArithMnemonic::ADOX;
+ }
+}
+
+static MachineBasicBlock &splitBlock(MachineBasicBlock &MBB,
+ MachineInstr &SplitI,
+ const X86InstrInfo &TII) {
+ MachineFunction &MF = *MBB.getParent();
+
+ assert(SplitI.getParent() == &MBB &&
+ "Split instruction must be in the split block!");
+ assert(SplitI.isBranch() &&
+ "Only designed to split a tail of branch instructions!");
+ assert(X86::getCondFromBranch(SplitI) != X86::COND_INVALID &&
+ "Must split on an actual jCC instruction!");
+
+ // Dig out the previous instruction to the split point.
+ MachineInstr &PrevI = *std::prev(SplitI.getIterator());
+ assert(PrevI.isBranch() && "Must split after a branch!");
+ assert(X86::getCondFromBranch(PrevI) != X86::COND_INVALID &&
+ "Must split after an actual jCC instruction!");
+ assert(!std::prev(PrevI.getIterator())->isTerminator() &&
+ "Must only have this one terminator prior to the split!");
+
+ // Grab the one successor edge that will stay in `MBB`.
+ MachineBasicBlock &UnsplitSucc = *PrevI.getOperand(0).getMBB();
+
+ // Analyze the original block to see if we are actually splitting an edge
+ // into two edges. This can happen when we have multiple conditional jumps to
+ // the same successor.
+ bool IsEdgeSplit =
+ std::any_of(SplitI.getIterator(), MBB.instr_end(),
+ [&](MachineInstr &MI) {
+ assert(MI.isTerminator() &&
+ "Should only have spliced terminators!");
+ return llvm::any_of(
+ MI.operands(), [&](MachineOperand &MOp) {
+ return MOp.isMBB() && MOp.getMBB() == &UnsplitSucc;
+ });
+ }) ||
+ MBB.getFallThrough() == &UnsplitSucc;
+
+ MachineBasicBlock &NewMBB = *MF.CreateMachineBasicBlock();
+
+ // Insert the new block immediately after the current one. Any existing
+ // fallthrough will be sunk into this new block anyways.
+ MF.insert(std::next(MachineFunction::iterator(&MBB)), &NewMBB);
+
+ // Splice the tail of instructions into the new block.
+ NewMBB.splice(NewMBB.end(), &MBB, SplitI.getIterator(), MBB.end());
+
+ // Copy the necessary succesors (and their probability info) into the new
+ // block.
+ for (auto SI = MBB.succ_begin(), SE = MBB.succ_end(); SI != SE; ++SI)
+ if (IsEdgeSplit || *SI != &UnsplitSucc)
+ NewMBB.copySuccessor(&MBB, SI);
+ // Normalize the probabilities if we didn't end up splitting the edge.
+ if (!IsEdgeSplit)
+ NewMBB.normalizeSuccProbs();
+
+ // Now replace all of the moved successors in the original block with the new
+ // block. This will merge their probabilities.
+ for (MachineBasicBlock *Succ : NewMBB.successors())
+ if (Succ != &UnsplitSucc)
+ MBB.replaceSuccessor(Succ, &NewMBB);
+
+ // We should always end up replacing at least one successor.
+ assert(MBB.isSuccessor(&NewMBB) &&
+ "Failed to make the new block a successor!");
+
+ // Now update all the PHIs.
+ for (MachineBasicBlock *Succ : NewMBB.successors()) {
+ for (MachineInstr &MI : *Succ) {
+ if (!MI.isPHI())
+ break;
+
+ for (int OpIdx = 1, NumOps = MI.getNumOperands(); OpIdx < NumOps;
+ OpIdx += 2) {
+ MachineOperand &OpV = MI.getOperand(OpIdx);
+ MachineOperand &OpMBB = MI.getOperand(OpIdx + 1);
+ assert(OpMBB.isMBB() && "Block operand to a PHI is not a block!");
+ if (OpMBB.getMBB() != &MBB)
+ continue;
+
+ // Replace the operand for unsplit successors
+ if (!IsEdgeSplit || Succ != &UnsplitSucc) {
+ OpMBB.setMBB(&NewMBB);
+
+ // We have to continue scanning as there may be multiple entries in
+ // the PHI.
+ continue;
+ }
+
+ // When we have split the edge append a new successor.
+ MI.addOperand(MF, OpV);
+ MI.addOperand(MF, MachineOperand::CreateMBB(&NewMBB));
+ break;
+ }
+ }
+ }
+
+ return NewMBB;
+}
+
+bool X86FlagsCopyLoweringPass::runOnMachineFunction(MachineFunction &MF) {
+ LLVM_DEBUG(dbgs() << "********** " << getPassName() << " : " << MF.getName()
+ << " **********\n");
+
+ Subtarget = &MF.getSubtarget<X86Subtarget>();
+ MRI = &MF.getRegInfo();
+ TII = Subtarget->getInstrInfo();
+ TRI = Subtarget->getRegisterInfo();
+ MDT = &getAnalysis<MachineDominatorTree>();
+ PromoteRC = &X86::GR8RegClass;
+
+ if (MF.begin() == MF.end())
+ // Nothing to do for a degenerate empty function...
+ return false;
+
+ // Collect the copies in RPO so that when there are chains where a copy is in
+ // turn copied again we visit the first one first. This ensures we can find
+ // viable locations for testing the original EFLAGS that dominate all the
+ // uses across complex CFGs.
+ SmallVector<MachineInstr *, 4> Copies;
+ ReversePostOrderTraversal<MachineFunction *> RPOT(&MF);
+ for (MachineBasicBlock *MBB : RPOT)
+ for (MachineInstr &MI : *MBB)
+ if (MI.getOpcode() == TargetOpcode::COPY &&
+ MI.getOperand(0).getReg() == X86::EFLAGS)
+ Copies.push_back(&MI);
+
+ for (MachineInstr *CopyI : Copies) {
+ MachineBasicBlock &MBB = *CopyI->getParent();
+
+ MachineOperand &VOp = CopyI->getOperand(1);
+ assert(VOp.isReg() &&
+ "The input to the copy for EFLAGS should always be a register!");
+ MachineInstr &CopyDefI = *MRI->getVRegDef(VOp.getReg());
+ if (CopyDefI.getOpcode() != TargetOpcode::COPY) {
+ // FIXME: The big likely candidate here are PHI nodes. We could in theory
+ // handle PHI nodes, but it gets really, really hard. Insanely hard. Hard
+ // enough that it is probably better to change every other part of LLVM
+ // to avoid creating them. The issue is that once we have PHIs we won't
+ // know which original EFLAGS value we need to capture with our setCCs
+ // below. The end result will be computing a complete set of setCCs that
+ // we *might* want, computing them in every place where we copy *out* of
+ // EFLAGS and then doing SSA formation on all of them to insert necessary
+ // PHI nodes and consume those here. Then hoping that somehow we DCE the
+ // unnecessary ones. This DCE seems very unlikely to be successful and so
+ // we will almost certainly end up with a glut of dead setCC
+ // instructions. Until we have a motivating test case and fail to avoid
+ // it by changing other parts of LLVM's lowering, we refuse to handle
+ // this complex case here.
+ LLVM_DEBUG(
+ dbgs() << "ERROR: Encountered unexpected def of an eflags copy: ";
+ CopyDefI.dump());
+ report_fatal_error(
+ "Cannot lower EFLAGS copy unless it is defined in turn by a copy!");
+ }
+
+ auto Cleanup = make_scope_exit([&] {
+ // All uses of the EFLAGS copy are now rewritten, kill the copy into
+ // eflags and if dead the copy from.
+ CopyI->eraseFromParent();
+ if (MRI->use_empty(CopyDefI.getOperand(0).getReg()))
+ CopyDefI.eraseFromParent();
+ ++NumCopiesEliminated;
+ });
+
+ MachineOperand &DOp = CopyI->getOperand(0);
+ assert(DOp.isDef() && "Expected register def!");
+ assert(DOp.getReg() == X86::EFLAGS && "Unexpected copy def register!");
+ if (DOp.isDead())
+ continue;
+
+ MachineBasicBlock *TestMBB = CopyDefI.getParent();
+ auto TestPos = CopyDefI.getIterator();
+ DebugLoc TestLoc = CopyDefI.getDebugLoc();
+
+ LLVM_DEBUG(dbgs() << "Rewriting copy: "; CopyI->dump());
+
+ // Walk up across live-in EFLAGS to find where they were actually def'ed.
+ //
+ // This copy's def may just be part of a region of blocks covered by
+ // a single def of EFLAGS and we want to find the top of that region where
+ // possible.
+ //
+ // This is essentially a search for a *candidate* reaching definition
+ // location. We don't need to ever find the actual reaching definition here,
+ // but we want to walk up the dominator tree to find the highest point which
+ // would be viable for such a definition.
+ auto HasEFLAGSClobber = [&](MachineBasicBlock::iterator Begin,
+ MachineBasicBlock::iterator End) {
+ // Scan backwards as we expect these to be relatively short and often find
+ // a clobber near the end.
+ return llvm::any_of(
+ llvm::reverse(llvm::make_range(Begin, End)), [&](MachineInstr &MI) {
+ // Flag any instruction (other than the copy we are
+ // currently rewriting) that defs EFLAGS.
+ return &MI != CopyI && MI.findRegisterDefOperand(X86::EFLAGS);
+ });
+ };
+ auto HasEFLAGSClobberPath = [&](MachineBasicBlock *BeginMBB,
+ MachineBasicBlock *EndMBB) {
+ assert(MDT->dominates(BeginMBB, EndMBB) &&
+ "Only support paths down the dominator tree!");
+ SmallPtrSet<MachineBasicBlock *, 4> Visited;
+ SmallVector<MachineBasicBlock *, 4> Worklist;
+ // We terminate at the beginning. No need to scan it.
+ Visited.insert(BeginMBB);
+ Worklist.push_back(EndMBB);
+ do {
+ auto *MBB = Worklist.pop_back_val();
+ for (auto *PredMBB : MBB->predecessors()) {
+ if (!Visited.insert(PredMBB).second)
+ continue;
+ if (HasEFLAGSClobber(PredMBB->begin(), PredMBB->end()))
+ return true;
+ // Enqueue this block to walk its predecessors.
+ Worklist.push_back(PredMBB);
+ }
+ } while (!Worklist.empty());
+ // No clobber found along a path from the begin to end.
+ return false;
+ };
+ while (TestMBB->isLiveIn(X86::EFLAGS) && !TestMBB->pred_empty() &&
+ !HasEFLAGSClobber(TestMBB->begin(), TestPos)) {
+ // Find the nearest common dominator of the predecessors, as
+ // that will be the best candidate to hoist into.
+ MachineBasicBlock *HoistMBB =
+ std::accumulate(std::next(TestMBB->pred_begin()), TestMBB->pred_end(),
+ *TestMBB->pred_begin(),
+ [&](MachineBasicBlock *LHS, MachineBasicBlock *RHS) {
+ return MDT->findNearestCommonDominator(LHS, RHS);
+ });
+
+ // Now we need to scan all predecessors that may be reached along paths to
+ // the hoist block. A clobber anywhere in any of these blocks the hoist.
+ // Note that this even handles loops because we require *no* clobbers.
+ if (HasEFLAGSClobberPath(HoistMBB, TestMBB))
+ break;
+
+ // We also need the terminators to not sneakily clobber flags.
+ if (HasEFLAGSClobber(HoistMBB->getFirstTerminator()->getIterator(),
+ HoistMBB->instr_end()))
+ break;
+
+ // We found a viable location, hoist our test position to it.
+ TestMBB = HoistMBB;
+ TestPos = TestMBB->getFirstTerminator()->getIterator();
+ // Clear the debug location as it would just be confusing after hoisting.
+ TestLoc = DebugLoc();
+ }
+ LLVM_DEBUG({
+ auto DefIt = llvm::find_if(
+ llvm::reverse(llvm::make_range(TestMBB->instr_begin(), TestPos)),
+ [&](MachineInstr &MI) {
+ return MI.findRegisterDefOperand(X86::EFLAGS);
+ });
+ if (DefIt.base() != TestMBB->instr_begin()) {
+ dbgs() << " Using EFLAGS defined by: ";
+ DefIt->dump();
+ } else {
+ dbgs() << " Using live-in flags for BB:\n";
+ TestMBB->dump();
+ }
+ });
+
+ // While rewriting uses, we buffer jumps and rewrite them in a second pass
+ // because doing so will perturb the CFG that we are walking to find the
+ // uses in the first place.
+ SmallVector<MachineInstr *, 4> JmpIs;
+
+ // Gather the condition flags that have already been preserved in
+ // registers. We do this from scratch each time as we expect there to be
+ // very few of them and we expect to not revisit the same copy definition
+ // many times. If either of those change sufficiently we could build a map
+ // of these up front instead.
+ CondRegArray CondRegs = collectCondsInRegs(*TestMBB, TestPos);
+
+ // Collect the basic blocks we need to scan. Typically this will just be
+ // a single basic block but we may have to scan multiple blocks if the
+ // EFLAGS copy lives into successors.
+ SmallVector<MachineBasicBlock *, 2> Blocks;
+ SmallPtrSet<MachineBasicBlock *, 2> VisitedBlocks;
+ Blocks.push_back(&MBB);
+
+ do {
+ MachineBasicBlock &UseMBB = *Blocks.pop_back_val();
+
+ // Track when if/when we find a kill of the flags in this block.
+ bool FlagsKilled = false;
+
+ // In most cases, we walk from the beginning to the end of the block. But
+ // when the block is the same block as the copy is from, we will visit it
+ // twice. The first time we start from the copy and go to the end. The
+ // second time we start from the beginning and go to the copy. This lets
+ // us handle copies inside of cycles.
+ // FIXME: This loop is *super* confusing. This is at least in part
+ // a symptom of all of this routine needing to be refactored into
+ // documentable components. Once done, there may be a better way to write
+ // this loop.
+ for (auto MII = (&UseMBB == &MBB && !VisitedBlocks.count(&UseMBB))
+ ? std::next(CopyI->getIterator())
+ : UseMBB.instr_begin(),
+ MIE = UseMBB.instr_end();
+ MII != MIE;) {
+ MachineInstr &MI = *MII++;
+ // If we are in the original copy block and encounter either the copy
+ // def or the copy itself, break so that we don't re-process any part of
+ // the block or process the instructions in the range that was copied
+ // over.
+ if (&MI == CopyI || &MI == &CopyDefI) {
+ assert(&UseMBB == &MBB && VisitedBlocks.count(&MBB) &&
+ "Should only encounter these on the second pass over the "
+ "original block.");
+ break;
+ }
+
+ MachineOperand *FlagUse = MI.findRegisterUseOperand(X86::EFLAGS);
+ if (!FlagUse) {
+ if (MI.findRegisterDefOperand(X86::EFLAGS)) {
+ // If EFLAGS are defined, it's as-if they were killed. We can stop
+ // scanning here.
+ //
+ // NB!!! Many instructions only modify some flags. LLVM currently
+ // models this as clobbering all flags, but if that ever changes
+ // this will need to be carefully updated to handle that more
+ // complex logic.
+ FlagsKilled = true;
+ break;
+ }
+ continue;
+ }
+
+ LLVM_DEBUG(dbgs() << " Rewriting use: "; MI.dump());
+
+ // Check the kill flag before we rewrite as that may change it.
+ if (FlagUse->isKill())
+ FlagsKilled = true;
+
+ // Once we encounter a branch, the rest of the instructions must also be
+ // branches. We can't rewrite in place here, so we handle them below.
+ //
+ // Note that we don't have to handle tail calls here, even conditional
+ // tail calls, as those are not introduced into the X86 MI until post-RA
+ // branch folding or black placement. As a consequence, we get to deal
+ // with the simpler formulation of conditional branches followed by tail
+ // calls.
+ if (X86::getCondFromBranch(MI) != X86::COND_INVALID) {
+ auto JmpIt = MI.getIterator();
+ do {
+ JmpIs.push_back(&*JmpIt);
+ ++JmpIt;
+ } while (JmpIt != UseMBB.instr_end() &&
+ X86::getCondFromBranch(*JmpIt) !=
+ X86::COND_INVALID);
+ break;
+ }
+
+ // Otherwise we can just rewrite in-place.
+ if (X86::getCondFromCMov(MI) != X86::COND_INVALID) {
+ rewriteCMov(*TestMBB, TestPos, TestLoc, MI, *FlagUse, CondRegs);
+ } else if (X86::getCondFromSETCC(MI) != X86::COND_INVALID) {
+ rewriteSetCC(*TestMBB, TestPos, TestLoc, MI, *FlagUse, CondRegs);
+ } else if (MI.getOpcode() == TargetOpcode::COPY) {
+ rewriteCopy(MI, *FlagUse, CopyDefI);
+ } else {
+ // We assume all other instructions that use flags also def them.
+ assert(MI.findRegisterDefOperand(X86::EFLAGS) &&
+ "Expected a def of EFLAGS for this instruction!");
+
+ // NB!!! Several arithmetic instructions only *partially* update
+ // flags. Theoretically, we could generate MI code sequences that
+ // would rely on this fact and observe different flags independently.
+ // But currently LLVM models all of these instructions as clobbering
+ // all the flags in an undef way. We rely on that to simplify the
+ // logic.
+ FlagsKilled = true;
+
+ switch (MI.getOpcode()) {
+ case X86::SETB_C8r:
+ case X86::SETB_C16r:
+ case X86::SETB_C32r:
+ case X86::SETB_C64r:
+ // Use custom lowering for arithmetic that is merely extending the
+ // carry flag. We model this as the SETB_C* pseudo instructions.
+ rewriteSetCarryExtended(*TestMBB, TestPos, TestLoc, MI, *FlagUse,
+ CondRegs);
+ break;
+
+ default:
+ // Generically handle remaining uses as arithmetic instructions.
+ rewriteArithmetic(*TestMBB, TestPos, TestLoc, MI, *FlagUse,
+ CondRegs);
+ break;
+ }
+ break;
+ }
+
+ // If this was the last use of the flags, we're done.
+ if (FlagsKilled)
+ break;
+ }
+
+ // If the flags were killed, we're done with this block.
+ if (FlagsKilled)
+ continue;
+
+ // Otherwise we need to scan successors for ones where the flags live-in
+ // and queue those up for processing.
+ for (MachineBasicBlock *SuccMBB : UseMBB.successors())
+ if (SuccMBB->isLiveIn(X86::EFLAGS) &&
+ VisitedBlocks.insert(SuccMBB).second) {
+ // We currently don't do any PHI insertion and so we require that the
+ // test basic block dominates all of the use basic blocks. Further, we
+ // can't have a cycle from the test block back to itself as that would
+ // create a cycle requiring a PHI to break it.
+ //
+ // We could in theory do PHI insertion here if it becomes useful by
+ // just taking undef values in along every edge that we don't trace
+ // this EFLAGS copy along. This isn't as bad as fully general PHI
+ // insertion, but still seems like a great deal of complexity.
+ //
+ // Because it is theoretically possible that some earlier MI pass or
+ // other lowering transformation could induce this to happen, we do
+ // a hard check even in non-debug builds here.
+ if (SuccMBB == TestMBB || !MDT->dominates(TestMBB, SuccMBB)) {
+ LLVM_DEBUG({
+ dbgs()
+ << "ERROR: Encountered use that is not dominated by our test "
+ "basic block! Rewriting this would require inserting PHI "
+ "nodes to track the flag state across the CFG.\n\nTest "
+ "block:\n";
+ TestMBB->dump();
+ dbgs() << "Use block:\n";
+ SuccMBB->dump();
+ });
+ report_fatal_error(
+ "Cannot lower EFLAGS copy when original copy def "
+ "does not dominate all uses.");
+ }
+
+ Blocks.push_back(SuccMBB);
+ }
+ } while (!Blocks.empty());
+
+ // Now rewrite the jumps that use the flags. These we handle specially
+ // because if there are multiple jumps in a single basic block we'll have
+ // to do surgery on the CFG.
+ MachineBasicBlock *LastJmpMBB = nullptr;
+ for (MachineInstr *JmpI : JmpIs) {
+ // Past the first jump within a basic block we need to split the blocks
+ // apart.
+ if (JmpI->getParent() == LastJmpMBB)
+ splitBlock(*JmpI->getParent(), *JmpI, *TII);
+ else
+ LastJmpMBB = JmpI->getParent();
+
+ rewriteCondJmp(*TestMBB, TestPos, TestLoc, *JmpI, CondRegs);
+ }
+
+ // FIXME: Mark the last use of EFLAGS before the copy's def as a kill if
+ // the copy's def operand is itself a kill.
+ }
+
+#ifndef NDEBUG
+ for (MachineBasicBlock &MBB : MF)
+ for (MachineInstr &MI : MBB)
+ if (MI.getOpcode() == TargetOpcode::COPY &&
+ (MI.getOperand(0).getReg() == X86::EFLAGS ||
+ MI.getOperand(1).getReg() == X86::EFLAGS)) {
+ LLVM_DEBUG(dbgs() << "ERROR: Found a COPY involving EFLAGS: ";
+ MI.dump());
+ llvm_unreachable("Unlowered EFLAGS copy!");
+ }
+#endif
+
+ return true;
+}
+
+/// Collect any conditions that have already been set in registers so that we
+/// can re-use them rather than adding duplicates.
+CondRegArray X86FlagsCopyLoweringPass::collectCondsInRegs(
+ MachineBasicBlock &MBB, MachineBasicBlock::iterator TestPos) {
+ CondRegArray CondRegs = {};
+
+ // Scan backwards across the range of instructions with live EFLAGS.
+ for (MachineInstr &MI :
+ llvm::reverse(llvm::make_range(MBB.begin(), TestPos))) {
+ X86::CondCode Cond = X86::getCondFromSETCC(MI);
+ if (Cond != X86::COND_INVALID && !MI.mayStore() && MI.getOperand(0).isReg() &&
+ TRI->isVirtualRegister(MI.getOperand(0).getReg())) {
+ assert(MI.getOperand(0).isDef() &&
+ "A non-storing SETcc should always define a register!");
+ CondRegs[Cond] = MI.getOperand(0).getReg();
+ }
+
+ // Stop scanning when we see the first definition of the EFLAGS as prior to
+ // this we would potentially capture the wrong flag state.
+ if (MI.findRegisterDefOperand(X86::EFLAGS))
+ break;
+ }
+ return CondRegs;
+}
+
+unsigned X86FlagsCopyLoweringPass::promoteCondToReg(
+ MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos,
+ DebugLoc TestLoc, X86::CondCode Cond) {
+ unsigned Reg = MRI->createVirtualRegister(PromoteRC);
+ auto SetI = BuildMI(TestMBB, TestPos, TestLoc,
+ TII->get(X86::SETCCr), Reg).addImm(Cond);
+ (void)SetI;
+ LLVM_DEBUG(dbgs() << " save cond: "; SetI->dump());
+ ++NumSetCCsInserted;
+ return Reg;
+}
+
+std::pair<unsigned, bool> X86FlagsCopyLoweringPass::getCondOrInverseInReg(
+ MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos,
+ DebugLoc TestLoc, X86::CondCode Cond, CondRegArray &CondRegs) {
+ unsigned &CondReg = CondRegs[Cond];
+ unsigned &InvCondReg = CondRegs[X86::GetOppositeBranchCondition(Cond)];
+ if (!CondReg && !InvCondReg)
+ CondReg = promoteCondToReg(TestMBB, TestPos, TestLoc, Cond);
+
+ if (CondReg)
+ return {CondReg, false};
+ else
+ return {InvCondReg, true};
+}
+
+void X86FlagsCopyLoweringPass::insertTest(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator Pos,
+ DebugLoc Loc, unsigned Reg) {
+ auto TestI =
+ BuildMI(MBB, Pos, Loc, TII->get(X86::TEST8rr)).addReg(Reg).addReg(Reg);
+ (void)TestI;
+ LLVM_DEBUG(dbgs() << " test cond: "; TestI->dump());
+ ++NumTestsInserted;
+}
+
+void X86FlagsCopyLoweringPass::rewriteArithmetic(
+ MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos,
+ DebugLoc TestLoc, MachineInstr &MI, MachineOperand &FlagUse,
+ CondRegArray &CondRegs) {
+ // Arithmetic is either reading CF or OF. Figure out which condition we need
+ // to preserve in a register.
+ X86::CondCode Cond;
+
+ // The addend to use to reset CF or OF when added to the flag value.
+ int Addend;
+
+ switch (getMnemonicFromOpcode(MI.getOpcode())) {
+ case FlagArithMnemonic::ADC:
+ case FlagArithMnemonic::ADCX:
+ case FlagArithMnemonic::RCL:
+ case FlagArithMnemonic::RCR:
+ case FlagArithMnemonic::SBB:
+ Cond = X86::COND_B; // CF == 1
+ // Set up an addend that when one is added will need a carry due to not
+ // having a higher bit available.
+ Addend = 255;
+ break;
+
+ case FlagArithMnemonic::ADOX:
+ Cond = X86::COND_O; // OF == 1
+ // Set up an addend that when one is added will turn from positive to
+ // negative and thus overflow in the signed domain.
+ Addend = 127;
+ break;
+ }
+
+ // Now get a register that contains the value of the flag input to the
+ // arithmetic. We require exactly this flag to simplify the arithmetic
+ // required to materialize it back into the flag.
+ unsigned &CondReg = CondRegs[Cond];
+ if (!CondReg)
+ CondReg = promoteCondToReg(TestMBB, TestPos, TestLoc, Cond);
+
+ MachineBasicBlock &MBB = *MI.getParent();
+
+ // Insert an instruction that will set the flag back to the desired value.
+ unsigned TmpReg = MRI->createVirtualRegister(PromoteRC);
+ auto AddI =
+ BuildMI(MBB, MI.getIterator(), MI.getDebugLoc(), TII->get(X86::ADD8ri))
+ .addDef(TmpReg, RegState::Dead)
+ .addReg(CondReg)
+ .addImm(Addend);
+ (void)AddI;
+ LLVM_DEBUG(dbgs() << " add cond: "; AddI->dump());
+ ++NumAddsInserted;
+ FlagUse.setIsKill(true);
+}
+
+void X86FlagsCopyLoweringPass::rewriteCMov(MachineBasicBlock &TestMBB,
+ MachineBasicBlock::iterator TestPos,
+ DebugLoc TestLoc,
+ MachineInstr &CMovI,
+ MachineOperand &FlagUse,
+ CondRegArray &CondRegs) {
+ // First get the register containing this specific condition.
+ X86::CondCode Cond = X86::getCondFromCMov(CMovI);
+ unsigned CondReg;
+ bool Inverted;
+ std::tie(CondReg, Inverted) =
+ getCondOrInverseInReg(TestMBB, TestPos, TestLoc, Cond, CondRegs);
+
+ MachineBasicBlock &MBB = *CMovI.getParent();
+
+ // Insert a direct test of the saved register.
+ insertTest(MBB, CMovI.getIterator(), CMovI.getDebugLoc(), CondReg);
+
+ // Rewrite the CMov to use the !ZF flag from the test, and then kill its use
+ // of the flags afterward.
+ CMovI.getOperand(CMovI.getDesc().getNumOperands() - 1)
+ .setImm(Inverted ? X86::COND_E : X86::COND_NE);
+ FlagUse.setIsKill(true);
+ LLVM_DEBUG(dbgs() << " fixed cmov: "; CMovI.dump());
+}
+
+void X86FlagsCopyLoweringPass::rewriteCondJmp(
+ MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos,
+ DebugLoc TestLoc, MachineInstr &JmpI, CondRegArray &CondRegs) {
+ // First get the register containing this specific condition.
+ X86::CondCode Cond = X86::getCondFromBranch(JmpI);
+ unsigned CondReg;
+ bool Inverted;
+ std::tie(CondReg, Inverted) =
+ getCondOrInverseInReg(TestMBB, TestPos, TestLoc, Cond, CondRegs);
+
+ MachineBasicBlock &JmpMBB = *JmpI.getParent();
+
+ // Insert a direct test of the saved register.
+ insertTest(JmpMBB, JmpI.getIterator(), JmpI.getDebugLoc(), CondReg);
+
+ // Rewrite the jump to use the !ZF flag from the test, and kill its use of
+ // flags afterward.
+ JmpI.getOperand(1).setImm(Inverted ? X86::COND_E : X86::COND_NE);
+ JmpI.findRegisterUseOperand(X86::EFLAGS)->setIsKill(true);
+ LLVM_DEBUG(dbgs() << " fixed jCC: "; JmpI.dump());
+}
+
+void X86FlagsCopyLoweringPass::rewriteCopy(MachineInstr &MI,
+ MachineOperand &FlagUse,
+ MachineInstr &CopyDefI) {
+ // Just replace this copy with the original copy def.
+ MRI->replaceRegWith(MI.getOperand(0).getReg(),
+ CopyDefI.getOperand(0).getReg());
+ MI.eraseFromParent();
+}
+
+void X86FlagsCopyLoweringPass::rewriteSetCarryExtended(
+ MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos,
+ DebugLoc TestLoc, MachineInstr &SetBI, MachineOperand &FlagUse,
+ CondRegArray &CondRegs) {
+ // This routine is only used to handle pseudos for setting a register to zero
+ // or all ones based on CF. This is essentially the sign extended from 1-bit
+ // form of SETB and modeled with the SETB_C* pseudos. They require special
+ // handling as they aren't normal SETcc instructions and are lowered to an
+ // EFLAGS clobbering operation (SBB typically). One simplifying aspect is that
+ // they are only provided in reg-defining forms. A complicating factor is that
+ // they can define many different register widths.
+ assert(SetBI.getOperand(0).isReg() &&
+ "Cannot have a non-register defined operand to this variant of SETB!");
+
+ // Little helper to do the common final step of replacing the register def'ed
+ // by this SETB instruction with a new register and removing the SETB
+ // instruction.
+ auto RewriteToReg = [&](unsigned Reg) {
+ MRI->replaceRegWith(SetBI.getOperand(0).getReg(), Reg);
+ SetBI.eraseFromParent();
+ };
+
+ // Grab the register class used for this particular instruction.
+ auto &SetBRC = *MRI->getRegClass(SetBI.getOperand(0).getReg());
+
+ MachineBasicBlock &MBB = *SetBI.getParent();
+ auto SetPos = SetBI.getIterator();
+ auto SetLoc = SetBI.getDebugLoc();
+
+ auto AdjustReg = [&](unsigned Reg) {
+ auto &OrigRC = *MRI->getRegClass(Reg);
+ if (&OrigRC == &SetBRC)
+ return Reg;
+
+ unsigned NewReg;
+
+ int OrigRegSize = TRI->getRegSizeInBits(OrigRC) / 8;
+ int TargetRegSize = TRI->getRegSizeInBits(SetBRC) / 8;
+ assert(OrigRegSize <= 8 && "No GPRs larger than 64-bits!");
+ assert(TargetRegSize <= 8 && "No GPRs larger than 64-bits!");
+ int SubRegIdx[] = {X86::NoSubRegister, X86::sub_8bit, X86::sub_16bit,
+ X86::NoSubRegister, X86::sub_32bit};
+
+ // If the original size is smaller than the target *and* is smaller than 4
+ // bytes, we need to explicitly zero extend it. We always extend to 4-bytes
+ // to maximize the chance of being able to CSE that operation and to avoid
+ // partial dependency stalls extending to 2-bytes.
+ if (OrigRegSize < TargetRegSize && OrigRegSize < 4) {
+ NewReg = MRI->createVirtualRegister(&X86::GR32RegClass);
+ BuildMI(MBB, SetPos, SetLoc, TII->get(X86::MOVZX32rr8), NewReg)
+ .addReg(Reg);
+ if (&SetBRC == &X86::GR32RegClass)
+ return NewReg;
+ Reg = NewReg;
+ OrigRegSize = 4;
+ }
+
+ NewReg = MRI->createVirtualRegister(&SetBRC);
+ if (OrigRegSize < TargetRegSize) {
+ BuildMI(MBB, SetPos, SetLoc, TII->get(TargetOpcode::SUBREG_TO_REG),
+ NewReg)
+ .addImm(0)
+ .addReg(Reg)
+ .addImm(SubRegIdx[OrigRegSize]);
+ } else if (OrigRegSize > TargetRegSize) {
+ if (TargetRegSize == 1 && !Subtarget->is64Bit()) {
+ // Need to constrain the register class.
+ MRI->constrainRegClass(Reg, &X86::GR32_ABCDRegClass);
+ }
+
+ BuildMI(MBB, SetPos, SetLoc, TII->get(TargetOpcode::COPY),
+ NewReg)
+ .addReg(Reg, 0, SubRegIdx[TargetRegSize]);
+ } else {
+ BuildMI(MBB, SetPos, SetLoc, TII->get(TargetOpcode::COPY), NewReg)
+ .addReg(Reg);
+ }
+ return NewReg;
+ };
+
+ unsigned &CondReg = CondRegs[X86::COND_B];
+ if (!CondReg)
+ CondReg = promoteCondToReg(TestMBB, TestPos, TestLoc, X86::COND_B);
+
+ // Adjust the condition to have the desired register width by zero-extending
+ // as needed.
+ // FIXME: We should use a better API to avoid the local reference and using a
+ // different variable here.
+ unsigned ExtCondReg = AdjustReg(CondReg);
+
+ // Now we need to turn this into a bitmask. We do this by subtracting it from
+ // zero.
+ unsigned ZeroReg = MRI->createVirtualRegister(&X86::GR32RegClass);
+ BuildMI(MBB, SetPos, SetLoc, TII->get(X86::MOV32r0), ZeroReg);
+ ZeroReg = AdjustReg(ZeroReg);
+
+ unsigned Sub;
+ switch (SetBI.getOpcode()) {
+ case X86::SETB_C8r:
+ Sub = X86::SUB8rr;
+ break;
+
+ case X86::SETB_C16r:
+ Sub = X86::SUB16rr;
+ break;
+
+ case X86::SETB_C32r:
+ Sub = X86::SUB32rr;
+ break;
+
+ case X86::SETB_C64r:
+ Sub = X86::SUB64rr;
+ break;
+
+ default:
+ llvm_unreachable("Invalid SETB_C* opcode!");
+ }
+ unsigned ResultReg = MRI->createVirtualRegister(&SetBRC);
+ BuildMI(MBB, SetPos, SetLoc, TII->get(Sub), ResultReg)
+ .addReg(ZeroReg)
+ .addReg(ExtCondReg);
+ return RewriteToReg(ResultReg);
+}
+
+void X86FlagsCopyLoweringPass::rewriteSetCC(MachineBasicBlock &TestMBB,
+ MachineBasicBlock::iterator TestPos,
+ DebugLoc TestLoc,
+ MachineInstr &SetCCI,
+ MachineOperand &FlagUse,
+ CondRegArray &CondRegs) {
+ X86::CondCode Cond = X86::getCondFromSETCC(SetCCI);
+ // Note that we can't usefully rewrite this to the inverse without complex
+ // analysis of the users of the setCC. Largely we rely on duplicates which
+ // could have been avoided already being avoided here.
+ unsigned &CondReg = CondRegs[Cond];
+ if (!CondReg)
+ CondReg = promoteCondToReg(TestMBB, TestPos, TestLoc, Cond);
+
+ // Rewriting a register def is trivial: we just replace the register and
+ // remove the setcc.
+ if (!SetCCI.mayStore()) {
+ assert(SetCCI.getOperand(0).isReg() &&
+ "Cannot have a non-register defined operand to SETcc!");
+ MRI->replaceRegWith(SetCCI.getOperand(0).getReg(), CondReg);
+ SetCCI.eraseFromParent();
+ return;
+ }
+
+ // Otherwise, we need to emit a store.
+ auto MIB = BuildMI(*SetCCI.getParent(), SetCCI.getIterator(),
+ SetCCI.getDebugLoc(), TII->get(X86::MOV8mr));
+ // Copy the address operands.
+ for (int i = 0; i < X86::AddrNumOperands; ++i)
+ MIB.add(SetCCI.getOperand(i));
+
+ MIB.addReg(CondReg);
+
+ MIB.setMemRefs(SetCCI.memoperands());
+
+ SetCCI.eraseFromParent();
+ return;
+}