aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Transforms/IPO/FunctionSpecialization.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Transforms/IPO/FunctionSpecialization.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/Transforms/IPO/FunctionSpecialization.cpp1134
1 files changed, 482 insertions, 652 deletions
diff --git a/contrib/llvm-project/llvm/lib/Transforms/IPO/FunctionSpecialization.cpp b/contrib/llvm-project/llvm/lib/Transforms/IPO/FunctionSpecialization.cpp
index dafd0dc865a2..4a7efb28e853 100644
--- a/contrib/llvm-project/llvm/lib/Transforms/IPO/FunctionSpecialization.cpp
+++ b/contrib/llvm-project/llvm/lib/Transforms/IPO/FunctionSpecialization.cpp
@@ -45,6 +45,7 @@
//
//===----------------------------------------------------------------------===//
+#include "llvm/Transforms/IPO/FunctionSpecialization.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/CodeMetrics.h"
#include "llvm/Analysis/InlineCost.h"
@@ -70,11 +71,6 @@ static cl::opt<bool> ForceFunctionSpecialization(
cl::desc("Force function specialization for every call site with a "
"constant argument"));
-static cl::opt<unsigned> FuncSpecializationMaxIters(
- "func-specialization-max-iters", cl::Hidden,
- cl::desc("The maximum number of iterations function specialization is run"),
- cl::init(1));
-
static cl::opt<unsigned> MaxClonesThreshold(
"func-specialization-max-clones", cl::Hidden,
cl::desc("The maximum number of clones allowed for a single function "
@@ -97,9 +93,6 @@ static cl::opt<bool> SpecializeOnAddresses(
cl::desc("Enable function specialization on the address of global values"));
// Disabled by default as it can significantly increase compilation times.
-// Running nikic's compile time tracker on x86 with instruction count as the
-// metric shows 3-4% regression for SPASS while being neutral for all other
-// benchmarks of the llvm test suite.
//
// https://llvm-compile-time-tracker.com
// https://github.com/nikic/llvm-compile-time-tracker
@@ -108,37 +101,8 @@ static cl::opt<bool> EnableSpecializationForLiteralConstant(
cl::desc("Enable specialization of functions that take a literal constant "
"as an argument."));
-namespace {
-// Bookkeeping struct to pass data from the analysis and profitability phase
-// to the actual transform helper functions.
-struct SpecializationInfo {
- SmallVector<ArgInfo, 8> Args; // Stores the {formal,actual} argument pairs.
- InstructionCost Gain; // Profitability: Gain = Bonus - Cost.
-};
-} // Anonymous namespace
-
-using FuncList = SmallVectorImpl<Function *>;
-using CallArgBinding = std::pair<CallBase *, Constant *>;
-using CallSpecBinding = std::pair<CallBase *, SpecializationInfo>;
-// We are using MapVector because it guarantees deterministic iteration
-// order across executions.
-using SpecializationMap = SmallMapVector<CallBase *, SpecializationInfo, 8>;
-
-// Helper to check if \p LV is either a constant or a constant
-// range with a single element. This should cover exactly the same cases as the
-// old ValueLatticeElement::isConstant() and is intended to be used in the
-// transition to ValueLatticeElement.
-static bool isConstant(const ValueLatticeElement &LV) {
- return LV.isConstant() ||
- (LV.isConstantRange() && LV.getConstantRange().isSingleElement());
-}
-
-// Helper to check if \p LV is either overdefined or a constant int.
-static bool isOverdefined(const ValueLatticeElement &LV) {
- return !LV.isUnknownOrUndef() && !isConstant(LV);
-}
-
-static Constant *getPromotableAlloca(AllocaInst *Alloca, CallInst *Call) {
+Constant *FunctionSpecializer::getPromotableAlloca(AllocaInst *Alloca,
+ CallInst *Call) {
Value *StoreValue = nullptr;
for (auto *User : Alloca->users()) {
// We can't use llvm::isAllocaPromotable() as that would fail because of
@@ -161,14 +125,14 @@ static Constant *getPromotableAlloca(AllocaInst *Alloca, CallInst *Call) {
// Bail if there is any other unknown usage.
return nullptr;
}
- return dyn_cast_or_null<Constant>(StoreValue);
+ return getCandidateConstant(StoreValue);
}
// A constant stack value is an AllocaInst that has a single constant
// value stored to it. Return this constant if such an alloca stack value
// is a function argument.
-static Constant *getConstantStackValue(CallInst *Call, Value *Val,
- SCCPSolver &Solver) {
+Constant *FunctionSpecializer::getConstantStackValue(CallInst *Call,
+ Value *Val) {
if (!Val)
return nullptr;
Val = Val->stripPointerCasts();
@@ -201,19 +165,23 @@ static Constant *getConstantStackValue(CallInst *Call, Value *Val,
// ret void
// }
//
-static void constantArgPropagation(FuncList &WorkList, Module &M,
- SCCPSolver &Solver) {
+void FunctionSpecializer::promoteConstantStackValues() {
// Iterate over the argument tracked functions see if there
// are any new constant values for the call instruction via
// stack variables.
- for (auto *F : WorkList) {
+ for (Function &F : M) {
+ if (!Solver.isArgumentTrackedFunction(&F))
+ continue;
- for (auto *User : F->users()) {
+ for (auto *User : F.users()) {
auto *Call = dyn_cast<CallInst>(User);
if (!Call)
continue;
+ if (!Solver.isBlockExecutable(Call->getParent()))
+ continue;
+
bool Changed = false;
for (const Use &U : Call->args()) {
unsigned Idx = Call->getArgOperandNo(&U);
@@ -223,7 +191,7 @@ static void constantArgPropagation(FuncList &WorkList, Module &M,
if (!Call->onlyReadsMemory(Idx) || !ArgOpType->isPointerTy())
continue;
- auto *ConstVal = getConstantStackValue(Call, ArgOp, Solver);
+ auto *ConstVal = getConstantStackValue(Call, ArgOp);
if (!ConstVal)
continue;
@@ -245,7 +213,7 @@ static void constantArgPropagation(FuncList &WorkList, Module &M,
}
// ssa_copy intrinsics are introduced by the SCCP solver. These intrinsics
-// interfere with the constantArgPropagation optimization.
+// interfere with the promoteConstantStackValues() optimization.
static void removeSSACopy(Function &F) {
for (BasicBlock &BB : F) {
for (Instruction &Inst : llvm::make_early_inc_range(BB)) {
@@ -260,690 +228,552 @@ static void removeSSACopy(Function &F) {
}
}
-static void removeSSACopy(Module &M) {
- for (Function &F : M)
- removeSSACopy(F);
+/// Remove any ssa_copy intrinsics that may have been introduced.
+void FunctionSpecializer::cleanUpSSA() {
+ for (Function *F : SpecializedFuncs)
+ removeSSACopy(*F);
}
-namespace {
-class FunctionSpecializer {
-
- /// The IPSCCP Solver.
- SCCPSolver &Solver;
-
- /// Analyses used to help determine if a function should be specialized.
- std::function<AssumptionCache &(Function &)> GetAC;
- std::function<TargetTransformInfo &(Function &)> GetTTI;
- std::function<TargetLibraryInfo &(Function &)> GetTLI;
-
- SmallPtrSet<Function *, 4> SpecializedFuncs;
- SmallPtrSet<Function *, 4> FullySpecialized;
- SmallVector<Instruction *> ReplacedWithConstant;
- DenseMap<Function *, CodeMetrics> FunctionMetrics;
-
-public:
- FunctionSpecializer(SCCPSolver &Solver,
- std::function<AssumptionCache &(Function &)> GetAC,
- std::function<TargetTransformInfo &(Function &)> GetTTI,
- std::function<TargetLibraryInfo &(Function &)> GetTLI)
- : Solver(Solver), GetAC(GetAC), GetTTI(GetTTI), GetTLI(GetTLI) {}
-
- ~FunctionSpecializer() {
- // Eliminate dead code.
- removeDeadInstructions();
- removeDeadFunctions();
- }
- /// Attempt to specialize functions in the module to enable constant
- /// propagation across function boundaries.
- ///
- /// \returns true if at least one function is specialized.
- bool specializeFunctions(FuncList &Candidates, FuncList &WorkList) {
- bool Changed = false;
- for (auto *F : Candidates) {
- if (!isCandidateFunction(F))
- continue;
+template <> struct llvm::DenseMapInfo<SpecSig> {
+ static inline SpecSig getEmptyKey() { return {~0U, {}}; }
- auto Cost = getSpecializationCost(F);
- if (!Cost.isValid()) {
- LLVM_DEBUG(
- dbgs() << "FnSpecialization: Invalid specialization cost.\n");
- continue;
- }
+ static inline SpecSig getTombstoneKey() { return {~1U, {}}; }
- LLVM_DEBUG(dbgs() << "FnSpecialization: Specialization cost for "
- << F->getName() << " is " << Cost << "\n");
+ static unsigned getHashValue(const SpecSig &S) {
+ return static_cast<unsigned>(hash_value(S));
+ }
- SmallVector<CallSpecBinding, 8> Specializations;
- if (!calculateGains(F, Cost, Specializations)) {
- LLVM_DEBUG(dbgs() << "FnSpecialization: No possible constants found\n");
- continue;
- }
+ static bool isEqual(const SpecSig &LHS, const SpecSig &RHS) {
+ return LHS == RHS;
+ }
+};
+
+/// Attempt to specialize functions in the module to enable constant
+/// propagation across function boundaries.
+///
+/// \returns true if at least one function is specialized.
+bool FunctionSpecializer::run() {
+ // Find possible specializations for each function.
+ SpecMap SM;
+ SmallVector<Spec, 32> AllSpecs;
+ unsigned NumCandidates = 0;
+ for (Function &F : M) {
+ if (!isCandidateFunction(&F))
+ continue;
- Changed = true;
- for (auto &Entry : Specializations)
- specializeFunction(F, Entry.second, WorkList);
+ auto Cost = getSpecializationCost(&F);
+ if (!Cost.isValid()) {
+ LLVM_DEBUG(dbgs() << "FnSpecialization: Invalid specialization cost for "
+ << F.getName() << "\n");
+ continue;
}
- updateSpecializedFuncs(Candidates, WorkList);
- NumFuncSpecialized += NbFunctionsSpecialized;
- return Changed;
- }
+ LLVM_DEBUG(dbgs() << "FnSpecialization: Specialization cost for "
+ << F.getName() << " is " << Cost << "\n");
- void removeDeadInstructions() {
- for (auto *I : ReplacedWithConstant) {
- LLVM_DEBUG(dbgs() << "FnSpecialization: Removing dead instruction " << *I
- << "\n");
- I->eraseFromParent();
+ if (!findSpecializations(&F, Cost, AllSpecs, SM)) {
+ LLVM_DEBUG(
+ dbgs() << "FnSpecialization: No possible specializations found for "
+ << F.getName() << "\n");
+ continue;
}
- ReplacedWithConstant.clear();
+
+ ++NumCandidates;
}
- void removeDeadFunctions() {
- for (auto *F : FullySpecialized) {
- LLVM_DEBUG(dbgs() << "FnSpecialization: Removing dead function "
- << F->getName() << "\n");
- F->eraseFromParent();
- }
- FullySpecialized.clear();
+ if (!NumCandidates) {
+ LLVM_DEBUG(
+ dbgs()
+ << "FnSpecialization: No possible specializations found in module\n");
+ return false;
}
- bool tryToReplaceWithConstant(Value *V) {
- if (!V->getType()->isSingleValueType() || isa<CallBase>(V) ||
- V->user_empty())
- return false;
-
- const ValueLatticeElement &IV = Solver.getLatticeValueFor(V);
- if (isOverdefined(IV))
- return false;
- auto *Const =
- isConstant(IV) ? Solver.getConstant(IV) : UndefValue::get(V->getType());
-
- LLVM_DEBUG(dbgs() << "FnSpecialization: Replacing " << *V
- << "\nFnSpecialization: with " << *Const << "\n");
-
- // Record uses of V to avoid visiting irrelevant uses of const later.
- SmallVector<Instruction *> UseInsts;
- for (auto *U : V->users())
- if (auto *I = dyn_cast<Instruction>(U))
- if (Solver.isBlockExecutable(I->getParent()))
- UseInsts.push_back(I);
-
- V->replaceAllUsesWith(Const);
-
- for (auto *I : UseInsts)
- Solver.visit(I);
-
- // Remove the instruction from Block and Solver.
- if (auto *I = dyn_cast<Instruction>(V)) {
- if (I->isSafeToRemove()) {
- ReplacedWithConstant.push_back(I);
- Solver.removeLatticeValueFor(I);
- }
+ // Choose the most profitable specialisations, which fit in the module
+ // specialization budget, which is derived from maximum number of
+ // specializations per specialization candidate function.
+ auto CompareGain = [&AllSpecs](unsigned I, unsigned J) {
+ return AllSpecs[I].Gain > AllSpecs[J].Gain;
+ };
+ const unsigned NSpecs =
+ std::min(NumCandidates * MaxClonesThreshold, unsigned(AllSpecs.size()));
+ SmallVector<unsigned> BestSpecs(NSpecs + 1);
+ std::iota(BestSpecs.begin(), BestSpecs.begin() + NSpecs, 0);
+ if (AllSpecs.size() > NSpecs) {
+ LLVM_DEBUG(dbgs() << "FnSpecialization: Number of candidates exceed "
+ << "the maximum number of clones threshold.\n"
+ << "FnSpecialization: Specializing the "
+ << NSpecs
+ << " most profitable candidates.\n");
+ std::make_heap(BestSpecs.begin(), BestSpecs.begin() + NSpecs, CompareGain);
+ for (unsigned I = NSpecs, N = AllSpecs.size(); I < N; ++I) {
+ BestSpecs[NSpecs] = I;
+ std::push_heap(BestSpecs.begin(), BestSpecs.end(), CompareGain);
+ std::pop_heap(BestSpecs.begin(), BestSpecs.end(), CompareGain);
}
- return true;
}
-private:
- // The number of functions specialised, used for collecting statistics and
- // also in the cost model.
- unsigned NbFunctionsSpecialized = 0;
-
- // Compute the code metrics for function \p F.
- CodeMetrics &analyzeFunction(Function *F) {
- auto I = FunctionMetrics.insert({F, CodeMetrics()});
- CodeMetrics &Metrics = I.first->second;
- if (I.second) {
- // The code metrics were not cached.
- SmallPtrSet<const Value *, 32> EphValues;
- CodeMetrics::collectEphemeralValues(F, &(GetAC)(*F), EphValues);
- for (BasicBlock &BB : *F)
- Metrics.analyzeBasicBlock(&BB, (GetTTI)(*F), EphValues);
-
- LLVM_DEBUG(dbgs() << "FnSpecialization: Code size of function "
- << F->getName() << " is " << Metrics.NumInsts
- << " instructions\n");
+ LLVM_DEBUG(dbgs() << "FnSpecialization: List of specializations \n";
+ for (unsigned I = 0; I < NSpecs; ++I) {
+ const Spec &S = AllSpecs[BestSpecs[I]];
+ dbgs() << "FnSpecialization: Function " << S.F->getName()
+ << " , gain " << S.Gain << "\n";
+ for (const ArgInfo &Arg : S.Sig.Args)
+ dbgs() << "FnSpecialization: FormalArg = "
+ << Arg.Formal->getNameOrAsOperand()
+ << ", ActualArg = " << Arg.Actual->getNameOrAsOperand()
+ << "\n";
+ });
+
+ // Create the chosen specializations.
+ SmallPtrSet<Function *, 8> OriginalFuncs;
+ SmallVector<Function *> Clones;
+ for (unsigned I = 0; I < NSpecs; ++I) {
+ Spec &S = AllSpecs[BestSpecs[I]];
+ S.Clone = createSpecialization(S.F, S.Sig);
+
+ // Update the known call sites to call the clone.
+ for (CallBase *Call : S.CallSites) {
+ LLVM_DEBUG(dbgs() << "FnSpecialization: Redirecting " << *Call
+ << " to call " << S.Clone->getName() << "\n");
+ Call->setCalledFunction(S.Clone);
}
- return Metrics;
- }
- /// Clone the function \p F and remove the ssa_copy intrinsics added by
- /// the SCCPSolver in the cloned version.
- Function *cloneCandidateFunction(Function *F, ValueToValueMapTy &Mappings) {
- Function *Clone = CloneFunction(F, Mappings);
- removeSSACopy(*Clone);
- return Clone;
+ Clones.push_back(S.Clone);
+ OriginalFuncs.insert(S.F);
}
- /// This function decides whether it's worthwhile to specialize function
- /// \p F based on the known constant values its arguments can take on. It
- /// only discovers potential specialization opportunities without actually
- /// applying them.
- ///
- /// \returns true if any specializations have been found.
- bool calculateGains(Function *F, InstructionCost Cost,
- SmallVectorImpl<CallSpecBinding> &WorkList) {
- SpecializationMap Specializations;
- // Determine if we should specialize the function based on the values the
- // argument can take on. If specialization is not profitable, we continue
- // on to the next argument.
- for (Argument &FormalArg : F->args()) {
- // Determine if this argument is interesting. If we know the argument can
- // take on any constant values, they are collected in Constants.
- SmallVector<CallArgBinding, 8> ActualArgs;
- if (!isArgumentInteresting(&FormalArg, ActualArgs)) {
- LLVM_DEBUG(dbgs() << "FnSpecialization: Argument "
- << FormalArg.getNameOrAsOperand()
- << " is not interesting\n");
- continue;
- }
+ Solver.solveWhileResolvedUndefsIn(Clones);
- for (const auto &Entry : ActualArgs) {
- CallBase *Call = Entry.first;
- Constant *ActualArg = Entry.second;
+ // Update the rest of the call sites - these are the recursive calls, calls
+ // to discarded specialisations and calls that may match a specialisation
+ // after the solver runs.
+ for (Function *F : OriginalFuncs) {
+ auto [Begin, End] = SM[F];
+ updateCallSites(F, AllSpecs.begin() + Begin, AllSpecs.begin() + End);
+ }
- auto I = Specializations.insert({Call, SpecializationInfo()});
- SpecializationInfo &S = I.first->second;
+ promoteConstantStackValues();
+ LLVM_DEBUG(if (NbFunctionsSpecialized) dbgs()
+ << "FnSpecialization: Specialized " << NbFunctionsSpecialized
+ << " functions in module " << M.getName() << "\n");
- if (I.second)
- S.Gain = ForceFunctionSpecialization ? 1 : 0 - Cost;
- if (!ForceFunctionSpecialization)
- S.Gain += getSpecializationBonus(&FormalArg, ActualArg);
- S.Args.push_back({&FormalArg, ActualArg});
- }
- }
+ NumFuncSpecialized += NbFunctionsSpecialized;
+ return true;
+}
- // Remove unprofitable specializations.
- Specializations.remove_if(
- [](const auto &Entry) { return Entry.second.Gain <= 0; });
-
- // Clear the MapVector and return the underlying vector.
- WorkList = Specializations.takeVector();
-
- // Sort the candidates in descending order.
- llvm::stable_sort(WorkList, [](const auto &L, const auto &R) {
- return L.second.Gain > R.second.Gain;
- });
-
- // Truncate the worklist to 'MaxClonesThreshold' candidates if necessary.
- if (WorkList.size() > MaxClonesThreshold) {
- LLVM_DEBUG(dbgs() << "FnSpecialization: Number of candidates exceed "
- << "the maximum number of clones threshold.\n"
- << "FnSpecialization: Truncating worklist to "
- << MaxClonesThreshold << " candidates.\n");
- WorkList.erase(WorkList.begin() + MaxClonesThreshold, WorkList.end());
- }
+void FunctionSpecializer::removeDeadFunctions() {
+ for (Function *F : FullySpecialized) {
+ LLVM_DEBUG(dbgs() << "FnSpecialization: Removing dead function "
+ << F->getName() << "\n");
+ if (FAM)
+ FAM->clear(*F, F->getName());
+ F->eraseFromParent();
+ }
+ FullySpecialized.clear();
+}
- LLVM_DEBUG(dbgs() << "FnSpecialization: Specializations for function "
- << F->getName() << "\n";
- for (const auto &Entry
- : WorkList) {
- dbgs() << "FnSpecialization: Gain = " << Entry.second.Gain
- << "\n";
- for (const ArgInfo &Arg : Entry.second.Args)
- dbgs() << "FnSpecialization: FormalArg = "
- << Arg.Formal->getNameOrAsOperand()
- << ", ActualArg = "
- << Arg.Actual->getNameOrAsOperand() << "\n";
- });
-
- return !WorkList.empty();
+// Compute the code metrics for function \p F.
+CodeMetrics &FunctionSpecializer::analyzeFunction(Function *F) {
+ auto I = FunctionMetrics.insert({F, CodeMetrics()});
+ CodeMetrics &Metrics = I.first->second;
+ if (I.second) {
+ // The code metrics were not cached.
+ SmallPtrSet<const Value *, 32> EphValues;
+ CodeMetrics::collectEphemeralValues(F, &(GetAC)(*F), EphValues);
+ for (BasicBlock &BB : *F)
+ Metrics.analyzeBasicBlock(&BB, (GetTTI)(*F), EphValues);
+
+ LLVM_DEBUG(dbgs() << "FnSpecialization: Code size of function "
+ << F->getName() << " is " << Metrics.NumInsts
+ << " instructions\n");
}
+ return Metrics;
+}
- bool isCandidateFunction(Function *F) {
- // Do not specialize the cloned function again.
- if (SpecializedFuncs.contains(F))
- return false;
+/// Clone the function \p F and remove the ssa_copy intrinsics added by
+/// the SCCPSolver in the cloned version.
+static Function *cloneCandidateFunction(Function *F) {
+ ValueToValueMapTy Mappings;
+ Function *Clone = CloneFunction(F, Mappings);
+ removeSSACopy(*Clone);
+ return Clone;
+}
- // If we're optimizing the function for size, we shouldn't specialize it.
- if (F->hasOptSize() ||
- shouldOptimizeForSize(F, nullptr, nullptr, PGSOQueryType::IRPass))
- return false;
+bool FunctionSpecializer::findSpecializations(Function *F, InstructionCost Cost,
+ SmallVectorImpl<Spec> &AllSpecs,
+ SpecMap &SM) {
+ // A mapping from a specialisation signature to the index of the respective
+ // entry in the all specialisation array. Used to ensure uniqueness of
+ // specialisations.
+ DenseMap<SpecSig, unsigned> UM;
+
+ // Get a list of interesting arguments.
+ SmallVector<Argument *> Args;
+ for (Argument &Arg : F->args())
+ if (isArgumentInteresting(&Arg))
+ Args.push_back(&Arg);
+
+ if (Args.empty())
+ return false;
- // Exit if the function is not executable. There's no point in specializing
- // a dead function.
- if (!Solver.isBlockExecutable(&F->getEntryBlock()))
- return false;
+ bool Found = false;
+ for (User *U : F->users()) {
+ if (!isa<CallInst>(U) && !isa<InvokeInst>(U))
+ continue;
+ auto &CS = *cast<CallBase>(U);
- // It wastes time to specialize a function which would get inlined finally.
- if (F->hasFnAttribute(Attribute::AlwaysInline))
- return false;
+ // The user instruction does not call our function.
+ if (CS.getCalledFunction() != F)
+ continue;
- LLVM_DEBUG(dbgs() << "FnSpecialization: Try function: " << F->getName()
- << "\n");
- return true;
- }
+ // If the call site has attribute minsize set, that callsite won't be
+ // specialized.
+ if (CS.hasFnAttr(Attribute::MinSize))
+ continue;
- void specializeFunction(Function *F, SpecializationInfo &S,
- FuncList &WorkList) {
- ValueToValueMapTy Mappings;
- Function *Clone = cloneCandidateFunction(F, Mappings);
-
- // Rewrite calls to the function so that they call the clone instead.
- rewriteCallSites(Clone, S.Args, Mappings);
-
- // Initialize the lattice state of the arguments of the function clone,
- // marking the argument on which we specialized the function constant
- // with the given value.
- Solver.markArgInFuncSpecialization(Clone, S.Args);
-
- // Mark all the specialized functions
- WorkList.push_back(Clone);
- NbFunctionsSpecialized++;
-
- // If the function has been completely specialized, the original function
- // is no longer needed. Mark it unreachable.
- if (F->getNumUses() == 0 || all_of(F->users(), [F](User *U) {
- if (auto *CS = dyn_cast<CallBase>(U))
- return CS->getFunction() == F;
- return false;
- })) {
- Solver.markFunctionUnreachable(F);
- FullySpecialized.insert(F);
- }
- }
+ // If the parent of the call site will never be executed, we don't need
+ // to worry about the passed value.
+ if (!Solver.isBlockExecutable(CS.getParent()))
+ continue;
- /// Compute and return the cost of specializing function \p F.
- InstructionCost getSpecializationCost(Function *F) {
- CodeMetrics &Metrics = analyzeFunction(F);
- // If the code metrics reveal that we shouldn't duplicate the function, we
- // shouldn't specialize it. Set the specialization cost to Invalid.
- // Or if the lines of codes implies that this function is easy to get
- // inlined so that we shouldn't specialize it.
- if (Metrics.notDuplicatable || !Metrics.NumInsts.isValid() ||
- (!ForceFunctionSpecialization &&
- *Metrics.NumInsts.getValue() < SmallFunctionThreshold)) {
- InstructionCost C{};
- C.setInvalid();
- return C;
+ // Examine arguments and create a specialisation candidate from the
+ // constant operands of this call site.
+ SpecSig S;
+ for (Argument *A : Args) {
+ Constant *C = getCandidateConstant(CS.getArgOperand(A->getArgNo()));
+ if (!C)
+ continue;
+ LLVM_DEBUG(dbgs() << "FnSpecialization: Found interesting argument "
+ << A->getName() << " : " << C->getNameOrAsOperand()
+ << "\n");
+ S.Args.push_back({A, C});
}
- // Otherwise, set the specialization cost to be the cost of all the
- // instructions in the function and penalty for specializing more functions.
- unsigned Penalty = NbFunctionsSpecialized + 1;
- return Metrics.NumInsts * InlineConstants::InstrCost * Penalty;
- }
-
- InstructionCost getUserBonus(User *U, llvm::TargetTransformInfo &TTI,
- LoopInfo &LI) {
- auto *I = dyn_cast_or_null<Instruction>(U);
- // If not an instruction we do not know how to evaluate.
- // Keep minimum possible cost for now so that it doesnt affect
- // specialization.
- if (!I)
- return std::numeric_limits<unsigned>::min();
-
- auto Cost = TTI.getUserCost(U, TargetTransformInfo::TCK_SizeAndLatency);
-
- // Traverse recursively if there are more uses.
- // TODO: Any other instructions to be added here?
- if (I->mayReadFromMemory() || I->isCast())
- for (auto *User : I->users())
- Cost += getUserBonus(User, TTI, LI);
-
- // Increase the cost if it is inside the loop.
- auto LoopDepth = LI.getLoopDepth(I->getParent());
- Cost *= std::pow((double)AvgLoopIterationCount, LoopDepth);
- return Cost;
- }
-
- /// Compute a bonus for replacing argument \p A with constant \p C.
- InstructionCost getSpecializationBonus(Argument *A, Constant *C) {
- Function *F = A->getParent();
- DominatorTree DT(*F);
- LoopInfo LI(DT);
- auto &TTI = (GetTTI)(*F);
- LLVM_DEBUG(dbgs() << "FnSpecialization: Analysing bonus for constant: "
- << C->getNameOrAsOperand() << "\n");
-
- InstructionCost TotalCost = 0;
- for (auto *U : A->users()) {
- TotalCost += getUserBonus(U, TTI, LI);
- LLVM_DEBUG(dbgs() << "FnSpecialization: User cost ";
- TotalCost.print(dbgs()); dbgs() << " for: " << *U << "\n");
- }
+ if (S.Args.empty())
+ continue;
- // The below heuristic is only concerned with exposing inlining
- // opportunities via indirect call promotion. If the argument is not a
- // (potentially casted) function pointer, give up.
- Function *CalledFunction = dyn_cast<Function>(C->stripPointerCasts());
- if (!CalledFunction)
- return TotalCost;
-
- // Get TTI for the called function (used for the inline cost).
- auto &CalleeTTI = (GetTTI)(*CalledFunction);
-
- // Look at all the call sites whose called value is the argument.
- // Specializing the function on the argument would allow these indirect
- // calls to be promoted to direct calls. If the indirect call promotion
- // would likely enable the called function to be inlined, specializing is a
- // good idea.
- int Bonus = 0;
- for (User *U : A->users()) {
- if (!isa<CallInst>(U) && !isa<InvokeInst>(U))
+ // Check if we have encountered the same specialisation already.
+ if (auto It = UM.find(S); It != UM.end()) {
+ // Existing specialisation. Add the call to the list to rewrite, unless
+ // it's a recursive call. A specialisation, generated because of a
+ // recursive call may end up as not the best specialisation for all
+ // the cloned instances of this call, which result from specialising
+ // functions. Hence we don't rewrite the call directly, but match it with
+ // the best specialisation once all specialisations are known.
+ if (CS.getFunction() == F)
continue;
- auto *CS = cast<CallBase>(U);
- if (CS->getCalledOperand() != A)
+ const unsigned Index = It->second;
+ AllSpecs[Index].CallSites.push_back(&CS);
+ } else {
+ // Calculate the specialisation gain.
+ InstructionCost Gain = 0 - Cost;
+ for (ArgInfo &A : S.Args)
+ Gain +=
+ getSpecializationBonus(A.Formal, A.Actual, Solver.getLoopInfo(*F));
+
+ // Discard unprofitable specialisations.
+ if (!ForceFunctionSpecialization && Gain <= 0)
continue;
- // Get the cost of inlining the called function at this call site. Note
- // that this is only an estimate. The called function may eventually
- // change in a way that leads to it not being inlined here, even though
- // inlining looks profitable now. For example, one of its called
- // functions may be inlined into it, making the called function too large
- // to be inlined into this call site.
- //
- // We apply a boost for performing indirect call promotion by increasing
- // the default threshold by the threshold for indirect calls.
- auto Params = getInlineParams();
- Params.DefaultThreshold += InlineConstants::IndirectCallThreshold;
- InlineCost IC =
- getInlineCost(*CS, CalledFunction, Params, CalleeTTI, GetAC, GetTLI);
-
- // We clamp the bonus for this call to be between zero and the default
- // threshold.
- if (IC.isAlways())
- Bonus += Params.DefaultThreshold;
- else if (IC.isVariable() && IC.getCostDelta() > 0)
- Bonus += IC.getCostDelta();
-
- LLVM_DEBUG(dbgs() << "FnSpecialization: Inlining bonus " << Bonus
- << " for user " << *U << "\n");
+ // Create a new specialisation entry.
+ auto &Spec = AllSpecs.emplace_back(F, S, Gain);
+ if (CS.getFunction() != F)
+ Spec.CallSites.push_back(&CS);
+ const unsigned Index = AllSpecs.size() - 1;
+ UM[S] = Index;
+ if (auto [It, Inserted] = SM.try_emplace(F, Index, Index + 1); !Inserted)
+ It->second.second = Index + 1;
+ Found = true;
}
-
- return TotalCost + Bonus;
}
- /// Determine if we should specialize a function based on the incoming values
- /// of the given argument.
- ///
- /// This function implements the goal-directed heuristic. It determines if
- /// specializing the function based on the incoming values of argument \p A
- /// would result in any significant optimization opportunities. If
- /// optimization opportunities exist, the constant values of \p A on which to
- /// specialize the function are collected in \p Constants.
- ///
- /// \returns true if the function should be specialized on the given
- /// argument.
- bool isArgumentInteresting(Argument *A,
- SmallVectorImpl<CallArgBinding> &Constants) {
- // For now, don't attempt to specialize functions based on the values of
- // composite types.
- if (!A->getType()->isSingleValueType() || A->user_empty())
- return false;
-
- // If the argument isn't overdefined, there's nothing to do. It should
- // already be constant.
- if (!Solver.getLatticeValueFor(A).isOverdefined()) {
- LLVM_DEBUG(dbgs() << "FnSpecialization: Nothing to do, argument "
- << A->getNameOrAsOperand()
- << " is already constant?\n");
- return false;
- }
-
- // Collect the constant values that the argument can take on. If the
- // argument can't take on any constant values, we aren't going to
- // specialize the function. While it's possible to specialize the function
- // based on non-constant arguments, there's likely not much benefit to
- // constant propagation in doing so.
- //
- // TODO 1: currently it won't specialize if there are over the threshold of
- // calls using the same argument, e.g foo(a) x 4 and foo(b) x 1, but it
- // might be beneficial to take the occurrences into account in the cost
- // model, so we would need to find the unique constants.
- //
- // TODO 2: this currently does not support constants, i.e. integer ranges.
- //
- getPossibleConstants(A, Constants);
-
- if (Constants.empty())
- return false;
+ return Found;
+}
- LLVM_DEBUG(dbgs() << "FnSpecialization: Found interesting argument "
- << A->getNameOrAsOperand() << "\n");
- return true;
- }
+bool FunctionSpecializer::isCandidateFunction(Function *F) {
+ if (F->isDeclaration())
+ return false;
- /// Collect in \p Constants all the constant values that argument \p A can
- /// take on.
- void getPossibleConstants(Argument *A,
- SmallVectorImpl<CallArgBinding> &Constants) {
- Function *F = A->getParent();
+ if (F->hasFnAttribute(Attribute::NoDuplicate))
+ return false;
- // SCCP solver does not record an argument that will be constructed on
- // stack.
- if (A->hasByValAttr() && !F->onlyReadsMemory())
- return;
+ if (!Solver.isArgumentTrackedFunction(F))
+ return false;
- // Iterate over all the call sites of the argument's parent function.
- for (User *U : F->users()) {
- if (!isa<CallInst>(U) && !isa<InvokeInst>(U))
- continue;
- auto &CS = *cast<CallBase>(U);
- // If the call site has attribute minsize set, that callsite won't be
- // specialized.
- if (CS.hasFnAttr(Attribute::MinSize))
- continue;
+ // Do not specialize the cloned function again.
+ if (SpecializedFuncs.contains(F))
+ return false;
- // If the parent of the call site will never be executed, we don't need
- // to worry about the passed value.
- if (!Solver.isBlockExecutable(CS.getParent()))
- continue;
+ // If we're optimizing the function for size, we shouldn't specialize it.
+ if (F->hasOptSize() ||
+ shouldOptimizeForSize(F, nullptr, nullptr, PGSOQueryType::IRPass))
+ return false;
- auto *V = CS.getArgOperand(A->getArgNo());
- if (isa<PoisonValue>(V))
- return;
+ // Exit if the function is not executable. There's no point in specializing
+ // a dead function.
+ if (!Solver.isBlockExecutable(&F->getEntryBlock()))
+ return false;
- // TrackValueOfGlobalVariable only tracks scalar global variables.
- if (auto *GV = dyn_cast<GlobalVariable>(V)) {
- // Check if we want to specialize on the address of non-constant
- // global values.
- if (!GV->isConstant())
- if (!SpecializeOnAddresses)
- return;
+ // It wastes time to specialize a function which would get inlined finally.
+ if (F->hasFnAttribute(Attribute::AlwaysInline))
+ return false;
- if (!GV->getValueType()->isSingleValueType())
- return;
- }
+ LLVM_DEBUG(dbgs() << "FnSpecialization: Try function: " << F->getName()
+ << "\n");
+ return true;
+}
- if (isa<Constant>(V) && (Solver.getLatticeValueFor(V).isConstant() ||
- EnableSpecializationForLiteralConstant))
- Constants.push_back({&CS, cast<Constant>(V)});
- }
- }
+Function *FunctionSpecializer::createSpecialization(Function *F, const SpecSig &S) {
+ Function *Clone = cloneCandidateFunction(F);
- /// Rewrite calls to function \p F to call function \p Clone instead.
- ///
- /// This function modifies calls to function \p F as long as the actual
- /// arguments match those in \p Args. Note that for recursive calls we
- /// need to compare against the cloned formal arguments.
- ///
- /// Callsites that have been marked with the MinSize function attribute won't
- /// be specialized and rewritten.
- void rewriteCallSites(Function *Clone, const SmallVectorImpl<ArgInfo> &Args,
- ValueToValueMapTy &Mappings) {
- assert(!Args.empty() && "Specialization without arguments");
- Function *F = Args[0].Formal->getParent();
-
- SmallVector<CallBase *, 8> CallSitesToRewrite;
- for (auto *U : F->users()) {
- if (!isa<CallInst>(U) && !isa<InvokeInst>(U))
- continue;
- auto &CS = *cast<CallBase>(U);
- if (!CS.getCalledFunction() || CS.getCalledFunction() != F)
- continue;
- CallSitesToRewrite.push_back(&CS);
- }
+ // Initialize the lattice state of the arguments of the function clone,
+ // marking the argument on which we specialized the function constant
+ // with the given value.
+ Solver.markArgInFuncSpecialization(Clone, S.Args);
- LLVM_DEBUG(dbgs() << "FnSpecialization: Replacing call sites of "
- << F->getName() << " with " << Clone->getName() << "\n");
+ Solver.addArgumentTrackedFunction(Clone);
+ Solver.markBlockExecutable(&Clone->front());
- for (auto *CS : CallSitesToRewrite) {
- LLVM_DEBUG(dbgs() << "FnSpecialization: "
- << CS->getFunction()->getName() << " ->" << *CS
- << "\n");
- if (/* recursive call */
- (CS->getFunction() == Clone &&
- all_of(Args,
- [CS, &Mappings](const ArgInfo &Arg) {
- unsigned ArgNo = Arg.Formal->getArgNo();
- return CS->getArgOperand(ArgNo) == Mappings[Arg.Formal];
- })) ||
- /* normal call */
- all_of(Args, [CS](const ArgInfo &Arg) {
- unsigned ArgNo = Arg.Formal->getArgNo();
- return CS->getArgOperand(ArgNo) == Arg.Actual;
- })) {
- CS->setCalledFunction(Clone);
- Solver.markOverdefined(CS);
- }
- }
- }
+ // Mark all the specialized functions
+ SpecializedFuncs.insert(Clone);
+ NbFunctionsSpecialized++;
- void updateSpecializedFuncs(FuncList &Candidates, FuncList &WorkList) {
- for (auto *F : WorkList) {
- SpecializedFuncs.insert(F);
+ return Clone;
+}
- // Initialize the state of the newly created functions, marking them
- // argument-tracked and executable.
- if (F->hasExactDefinition() && !F->hasFnAttribute(Attribute::Naked))
- Solver.addTrackedFunction(F);
+/// Compute and return the cost of specializing function \p F.
+InstructionCost FunctionSpecializer::getSpecializationCost(Function *F) {
+ CodeMetrics &Metrics = analyzeFunction(F);
+ // If the code metrics reveal that we shouldn't duplicate the function, we
+ // shouldn't specialize it. Set the specialization cost to Invalid.
+ // Or if the lines of codes implies that this function is easy to get
+ // inlined so that we shouldn't specialize it.
+ if (Metrics.notDuplicatable || !Metrics.NumInsts.isValid() ||
+ (!ForceFunctionSpecialization &&
+ !F->hasFnAttribute(Attribute::NoInline) &&
+ Metrics.NumInsts < SmallFunctionThreshold))
+ return InstructionCost::getInvalid();
+
+ // Otherwise, set the specialization cost to be the cost of all the
+ // instructions in the function.
+ return Metrics.NumInsts * InlineConstants::getInstrCost();
+}
- Solver.addArgumentTrackedFunction(F);
- Candidates.push_back(F);
- Solver.markBlockExecutable(&F->front());
+static InstructionCost getUserBonus(User *U, llvm::TargetTransformInfo &TTI,
+ const LoopInfo &LI) {
+ auto *I = dyn_cast_or_null<Instruction>(U);
+ // If not an instruction we do not know how to evaluate.
+ // Keep minimum possible cost for now so that it doesnt affect
+ // specialization.
+ if (!I)
+ return std::numeric_limits<unsigned>::min();
+
+ InstructionCost Cost =
+ TTI.getInstructionCost(U, TargetTransformInfo::TCK_SizeAndLatency);
+
+ // Increase the cost if it is inside the loop.
+ unsigned LoopDepth = LI.getLoopDepth(I->getParent());
+ Cost *= std::pow((double)AvgLoopIterationCount, LoopDepth);
+
+ // Traverse recursively if there are more uses.
+ // TODO: Any other instructions to be added here?
+ if (I->mayReadFromMemory() || I->isCast())
+ for (auto *User : I->users())
+ Cost += getUserBonus(User, TTI, LI);
+
+ return Cost;
+}
- // Replace the function arguments for the specialized functions.
- for (Argument &Arg : F->args())
- if (!Arg.use_empty() && tryToReplaceWithConstant(&Arg))
- LLVM_DEBUG(dbgs() << "FnSpecialization: Replaced constant argument: "
- << Arg.getNameOrAsOperand() << "\n");
- }
+/// Compute a bonus for replacing argument \p A with constant \p C.
+InstructionCost
+FunctionSpecializer::getSpecializationBonus(Argument *A, Constant *C,
+ const LoopInfo &LI) {
+ Function *F = A->getParent();
+ auto &TTI = (GetTTI)(*F);
+ LLVM_DEBUG(dbgs() << "FnSpecialization: Analysing bonus for constant: "
+ << C->getNameOrAsOperand() << "\n");
+
+ InstructionCost TotalCost = 0;
+ for (auto *U : A->users()) {
+ TotalCost += getUserBonus(U, TTI, LI);
+ LLVM_DEBUG(dbgs() << "FnSpecialization: User cost ";
+ TotalCost.print(dbgs()); dbgs() << " for: " << *U << "\n");
}
-};
-} // namespace
-
-bool llvm::runFunctionSpecialization(
- Module &M, const DataLayout &DL,
- std::function<TargetLibraryInfo &(Function &)> GetTLI,
- std::function<TargetTransformInfo &(Function &)> GetTTI,
- std::function<AssumptionCache &(Function &)> GetAC,
- function_ref<AnalysisResultsForFn(Function &)> GetAnalysis) {
- SCCPSolver Solver(DL, GetTLI, M.getContext());
- FunctionSpecializer FS(Solver, GetAC, GetTTI, GetTLI);
- bool Changed = false;
-
- // Loop over all functions, marking arguments to those with their addresses
- // taken or that are external as overdefined.
- for (Function &F : M) {
- if (F.isDeclaration())
+
+ // The below heuristic is only concerned with exposing inlining
+ // opportunities via indirect call promotion. If the argument is not a
+ // (potentially casted) function pointer, give up.
+ Function *CalledFunction = dyn_cast<Function>(C->stripPointerCasts());
+ if (!CalledFunction)
+ return TotalCost;
+
+ // Get TTI for the called function (used for the inline cost).
+ auto &CalleeTTI = (GetTTI)(*CalledFunction);
+
+ // Look at all the call sites whose called value is the argument.
+ // Specializing the function on the argument would allow these indirect
+ // calls to be promoted to direct calls. If the indirect call promotion
+ // would likely enable the called function to be inlined, specializing is a
+ // good idea.
+ int Bonus = 0;
+ for (User *U : A->users()) {
+ if (!isa<CallInst>(U) && !isa<InvokeInst>(U))
+ continue;
+ auto *CS = cast<CallBase>(U);
+ if (CS->getCalledOperand() != A)
continue;
- if (F.hasFnAttribute(Attribute::NoDuplicate))
+ if (CS->getFunctionType() != CalledFunction->getFunctionType())
continue;
- LLVM_DEBUG(dbgs() << "\nFnSpecialization: Analysing decl: " << F.getName()
- << "\n");
- Solver.addAnalysis(F, GetAnalysis(F));
+ // Get the cost of inlining the called function at this call site. Note
+ // that this is only an estimate. The called function may eventually
+ // change in a way that leads to it not being inlined here, even though
+ // inlining looks profitable now. For example, one of its called
+ // functions may be inlined into it, making the called function too large
+ // to be inlined into this call site.
+ //
+ // We apply a boost for performing indirect call promotion by increasing
+ // the default threshold by the threshold for indirect calls.
+ auto Params = getInlineParams();
+ Params.DefaultThreshold += InlineConstants::IndirectCallThreshold;
+ InlineCost IC =
+ getInlineCost(*CS, CalledFunction, Params, CalleeTTI, GetAC, GetTLI);
+
+ // We clamp the bonus for this call to be between zero and the default
+ // threshold.
+ if (IC.isAlways())
+ Bonus += Params.DefaultThreshold;
+ else if (IC.isVariable() && IC.getCostDelta() > 0)
+ Bonus += IC.getCostDelta();
+
+ LLVM_DEBUG(dbgs() << "FnSpecialization: Inlining bonus " << Bonus
+ << " for user " << *U << "\n");
+ }
- // Determine if we can track the function's arguments. If so, add the
- // function to the solver's set of argument-tracked functions.
- if (canTrackArgumentsInterprocedurally(&F)) {
- LLVM_DEBUG(dbgs() << "FnSpecialization: Can track arguments\n");
- Solver.addArgumentTrackedFunction(&F);
- continue;
- } else {
- LLVM_DEBUG(dbgs() << "FnSpecialization: Can't track arguments!\n"
- << "FnSpecialization: Doesn't have local linkage, or "
- << "has its address taken\n");
- }
+ return TotalCost + Bonus;
+}
- // Assume the function is called.
- Solver.markBlockExecutable(&F.front());
+/// Determine if it is possible to specialise the function for constant values
+/// of the formal parameter \p A.
+bool FunctionSpecializer::isArgumentInteresting(Argument *A) {
+ // No point in specialization if the argument is unused.
+ if (A->user_empty())
+ return false;
- // Assume nothing about the incoming arguments.
- for (Argument &AI : F.args())
- Solver.markOverdefined(&AI);
- }
+ // For now, don't attempt to specialize functions based on the values of
+ // composite types.
+ Type *ArgTy = A->getType();
+ if (!ArgTy->isSingleValueType())
+ return false;
- // Determine if we can track any of the module's global variables. If so, add
- // the global variables we can track to the solver's set of tracked global
- // variables.
- for (GlobalVariable &G : M.globals()) {
- G.removeDeadConstantUsers();
- if (canTrackGlobalVariableInterprocedurally(&G))
- Solver.trackValueOfGlobalVariable(&G);
- }
+ // Specialization of integer and floating point types needs to be explicitly
+ // enabled.
+ if (!EnableSpecializationForLiteralConstant &&
+ (ArgTy->isIntegerTy() || ArgTy->isFloatingPointTy()))
+ return false;
- auto &TrackedFuncs = Solver.getArgumentTrackedFunctions();
- SmallVector<Function *, 16> FuncDecls(TrackedFuncs.begin(),
- TrackedFuncs.end());
+ // SCCP solver does not record an argument that will be constructed on
+ // stack.
+ if (A->hasByValAttr() && !A->getParent()->onlyReadsMemory())
+ return false;
- // No tracked functions, so nothing to do: don't run the solver and remove
- // the ssa_copy intrinsics that may have been introduced.
- if (TrackedFuncs.empty()) {
- removeSSACopy(M);
+ // Check the lattice value and decide if we should attemt to specialize,
+ // based on this argument. No point in specialization, if the lattice value
+ // is already a constant.
+ const ValueLatticeElement &LV = Solver.getLatticeValueFor(A);
+ if (LV.isUnknownOrUndef() || LV.isConstant() ||
+ (LV.isConstantRange() && LV.getConstantRange().isSingleElement())) {
+ LLVM_DEBUG(dbgs() << "FnSpecialization: Nothing to do, parameter "
+ << A->getNameOrAsOperand() << " is already constant\n");
return false;
}
- // Solve for constants.
- auto RunSCCPSolver = [&](auto &WorkList) {
- bool ResolvedUndefs = true;
-
- while (ResolvedUndefs) {
- // Not running the solver unnecessary is checked in regression test
- // nothing-to-do.ll, so if this debug message is changed, this regression
- // test needs updating too.
- LLVM_DEBUG(dbgs() << "FnSpecialization: Running solver\n");
-
- Solver.solve();
- LLVM_DEBUG(dbgs() << "FnSpecialization: Resolving undefs\n");
- ResolvedUndefs = false;
- for (Function *F : WorkList)
- if (Solver.resolvedUndefsIn(*F))
- ResolvedUndefs = true;
- }
+ LLVM_DEBUG(dbgs() << "FnSpecialization: Found interesting parameter "
+ << A->getNameOrAsOperand() << "\n");
- for (auto *F : WorkList) {
- for (BasicBlock &BB : *F) {
- if (!Solver.isBlockExecutable(&BB))
- continue;
- // FIXME: The solver may make changes to the function here, so set
- // Changed, even if later function specialization does not trigger.
- for (auto &I : make_early_inc_range(BB))
- Changed |= FS.tryToReplaceWithConstant(&I);
- }
- }
- };
+ return true;
+}
+
+/// Check if the valuy \p V (an actual argument) is a constant or can only
+/// have a constant value. Return that constant.
+Constant *FunctionSpecializer::getCandidateConstant(Value *V) {
+ if (isa<PoisonValue>(V))
+ return nullptr;
-#ifndef NDEBUG
- LLVM_DEBUG(dbgs() << "FnSpecialization: Worklist fn decls:\n");
- for (auto *F : FuncDecls)
- LLVM_DEBUG(dbgs() << "FnSpecialization: *) " << F->getName() << "\n");
-#endif
+ // TrackValueOfGlobalVariable only tracks scalar global variables.
+ if (auto *GV = dyn_cast<GlobalVariable>(V)) {
+ // Check if we want to specialize on the address of non-constant
+ // global values.
+ if (!GV->isConstant() && !SpecializeOnAddresses)
+ return nullptr;
- // Initially resolve the constants in all the argument tracked functions.
- RunSCCPSolver(FuncDecls);
+ if (!GV->getValueType()->isSingleValueType())
+ return nullptr;
+ }
- SmallVector<Function *, 8> WorkList;
- unsigned I = 0;
- while (FuncSpecializationMaxIters != I++ &&
- FS.specializeFunctions(FuncDecls, WorkList)) {
- LLVM_DEBUG(dbgs() << "FnSpecialization: Finished iteration " << I << "\n");
+ // Select for possible specialisation values that are constants or
+ // are deduced to be constants or constant ranges with a single element.
+ Constant *C = dyn_cast<Constant>(V);
+ if (!C) {
+ const ValueLatticeElement &LV = Solver.getLatticeValueFor(V);
+ if (LV.isConstant())
+ C = LV.getConstant();
+ else if (LV.isConstantRange() && LV.getConstantRange().isSingleElement()) {
+ assert(V->getType()->isIntegerTy() && "Non-integral constant range");
+ C = Constant::getIntegerValue(V->getType(),
+ *LV.getConstantRange().getSingleElement());
+ } else
+ return nullptr;
+ }
- // Run the solver for the specialized functions.
- RunSCCPSolver(WorkList);
+ return C;
+}
- // Replace some unresolved constant arguments.
- constantArgPropagation(FuncDecls, M, Solver);
+void FunctionSpecializer::updateCallSites(Function *F, const Spec *Begin,
+ const Spec *End) {
+ // Collect the call sites that need updating.
+ SmallVector<CallBase *> ToUpdate;
+ for (User *U : F->users())
+ if (auto *CS = dyn_cast<CallBase>(U);
+ CS && CS->getCalledFunction() == F &&
+ Solver.isBlockExecutable(CS->getParent()))
+ ToUpdate.push_back(CS);
+
+ unsigned NCallsLeft = ToUpdate.size();
+ for (CallBase *CS : ToUpdate) {
+ bool ShouldDecrementCount = CS->getFunction() == F;
+
+ // Find the best matching specialisation.
+ const Spec *BestSpec = nullptr;
+ for (const Spec &S : make_range(Begin, End)) {
+ if (!S.Clone || (BestSpec && S.Gain <= BestSpec->Gain))
+ continue;
- WorkList.clear();
- Changed = true;
- }
+ if (any_of(S.Sig.Args, [CS, this](const ArgInfo &Arg) {
+ unsigned ArgNo = Arg.Formal->getArgNo();
+ return getCandidateConstant(CS->getArgOperand(ArgNo)) != Arg.Actual;
+ }))
+ continue;
+
+ BestSpec = &S;
+ }
- LLVM_DEBUG(dbgs() << "FnSpecialization: Number of specializations = "
- << NumFuncSpecialized << "\n");
+ if (BestSpec) {
+ LLVM_DEBUG(dbgs() << "FnSpecialization: Redirecting " << *CS
+ << " to call " << BestSpec->Clone->getName() << "\n");
+ CS->setCalledFunction(BestSpec->Clone);
+ ShouldDecrementCount = true;
+ }
+
+ if (ShouldDecrementCount)
+ --NCallsLeft;
+ }
- // Remove any ssa_copy intrinsics that may have been introduced.
- removeSSACopy(M);
- return Changed;
+ // If the function has been completely specialized, the original function
+ // is no longer needed. Mark it unreachable.
+ if (NCallsLeft == 0) {
+ Solver.markFunctionUnreachable(F);
+ FullySpecialized.insert(F);
+ }
}