aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Transforms/Utils/InlineFunction.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Transforms/Utils/InlineFunction.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/Transforms/Utils/InlineFunction.cpp2417
1 files changed, 2417 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Transforms/Utils/InlineFunction.cpp b/contrib/llvm-project/llvm/lib/Transforms/Utils/InlineFunction.cpp
new file mode 100644
index 000000000000..a7f0f7ac5d61
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/Transforms/Utils/InlineFunction.cpp
@@ -0,0 +1,2417 @@
+//===- InlineFunction.cpp - Code to perform function inlining -------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements inlining of a function into a call site, resolving
+// parameters and the return value as appropriate.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/None.h"
+#include "llvm/ADT/Optional.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/ADT/iterator_range.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/AssumptionCache.h"
+#include "llvm/Analysis/BlockFrequencyInfo.h"
+#include "llvm/Analysis/CallGraph.h"
+#include "llvm/Analysis/CaptureTracking.h"
+#include "llvm/Analysis/EHPersonalities.h"
+#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Analysis/ProfileSummaryInfo.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/Analysis/VectorUtils.h"
+#include "llvm/IR/Argument.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/CFG.h"
+#include "llvm/IR/CallSite.h"
+#include "llvm/IR/Constant.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DIBuilder.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DebugInfoMetadata.h"
+#include "llvm/IR/DebugLoc.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/InstrTypes.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/MDBuilder.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Type.h"
+#include "llvm/IR/User.h"
+#include "llvm/IR/Value.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Transforms/Utils/Cloning.h"
+#include "llvm/Transforms/Utils/ValueMapper.h"
+#include <algorithm>
+#include <cassert>
+#include <cstdint>
+#include <iterator>
+#include <limits>
+#include <string>
+#include <utility>
+#include <vector>
+
+using namespace llvm;
+using ProfileCount = Function::ProfileCount;
+
+static cl::opt<bool>
+EnableNoAliasConversion("enable-noalias-to-md-conversion", cl::init(true),
+ cl::Hidden,
+ cl::desc("Convert noalias attributes to metadata during inlining."));
+
+static cl::opt<bool>
+PreserveAlignmentAssumptions("preserve-alignment-assumptions-during-inlining",
+ cl::init(true), cl::Hidden,
+ cl::desc("Convert align attributes to assumptions during inlining."));
+
+llvm::InlineResult llvm::InlineFunction(CallBase *CB, InlineFunctionInfo &IFI,
+ AAResults *CalleeAAR,
+ bool InsertLifetime) {
+ return InlineFunction(CallSite(CB), IFI, CalleeAAR, InsertLifetime);
+}
+
+namespace {
+
+ /// A class for recording information about inlining a landing pad.
+ class LandingPadInliningInfo {
+ /// Destination of the invoke's unwind.
+ BasicBlock *OuterResumeDest;
+
+ /// Destination for the callee's resume.
+ BasicBlock *InnerResumeDest = nullptr;
+
+ /// LandingPadInst associated with the invoke.
+ LandingPadInst *CallerLPad = nullptr;
+
+ /// PHI for EH values from landingpad insts.
+ PHINode *InnerEHValuesPHI = nullptr;
+
+ SmallVector<Value*, 8> UnwindDestPHIValues;
+
+ public:
+ LandingPadInliningInfo(InvokeInst *II)
+ : OuterResumeDest(II->getUnwindDest()) {
+ // If there are PHI nodes in the unwind destination block, we need to keep
+ // track of which values came into them from the invoke before removing
+ // the edge from this block.
+ BasicBlock *InvokeBB = II->getParent();
+ BasicBlock::iterator I = OuterResumeDest->begin();
+ for (; isa<PHINode>(I); ++I) {
+ // Save the value to use for this edge.
+ PHINode *PHI = cast<PHINode>(I);
+ UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
+ }
+
+ CallerLPad = cast<LandingPadInst>(I);
+ }
+
+ /// The outer unwind destination is the target of
+ /// unwind edges introduced for calls within the inlined function.
+ BasicBlock *getOuterResumeDest() const {
+ return OuterResumeDest;
+ }
+
+ BasicBlock *getInnerResumeDest();
+
+ LandingPadInst *getLandingPadInst() const { return CallerLPad; }
+
+ /// Forward the 'resume' instruction to the caller's landing pad block.
+ /// When the landing pad block has only one predecessor, this is
+ /// a simple branch. When there is more than one predecessor, we need to
+ /// split the landing pad block after the landingpad instruction and jump
+ /// to there.
+ void forwardResume(ResumeInst *RI,
+ SmallPtrSetImpl<LandingPadInst*> &InlinedLPads);
+
+ /// Add incoming-PHI values to the unwind destination block for the given
+ /// basic block, using the values for the original invoke's source block.
+ void addIncomingPHIValuesFor(BasicBlock *BB) const {
+ addIncomingPHIValuesForInto(BB, OuterResumeDest);
+ }
+
+ void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const {
+ BasicBlock::iterator I = dest->begin();
+ for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
+ PHINode *phi = cast<PHINode>(I);
+ phi->addIncoming(UnwindDestPHIValues[i], src);
+ }
+ }
+ };
+
+} // end anonymous namespace
+
+/// Get or create a target for the branch from ResumeInsts.
+BasicBlock *LandingPadInliningInfo::getInnerResumeDest() {
+ if (InnerResumeDest) return InnerResumeDest;
+
+ // Split the landing pad.
+ BasicBlock::iterator SplitPoint = ++CallerLPad->getIterator();
+ InnerResumeDest =
+ OuterResumeDest->splitBasicBlock(SplitPoint,
+ OuterResumeDest->getName() + ".body");
+
+ // The number of incoming edges we expect to the inner landing pad.
+ const unsigned PHICapacity = 2;
+
+ // Create corresponding new PHIs for all the PHIs in the outer landing pad.
+ Instruction *InsertPoint = &InnerResumeDest->front();
+ BasicBlock::iterator I = OuterResumeDest->begin();
+ for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
+ PHINode *OuterPHI = cast<PHINode>(I);
+ PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity,
+ OuterPHI->getName() + ".lpad-body",
+ InsertPoint);
+ OuterPHI->replaceAllUsesWith(InnerPHI);
+ InnerPHI->addIncoming(OuterPHI, OuterResumeDest);
+ }
+
+ // Create a PHI for the exception values.
+ InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity,
+ "eh.lpad-body", InsertPoint);
+ CallerLPad->replaceAllUsesWith(InnerEHValuesPHI);
+ InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest);
+
+ // All done.
+ return InnerResumeDest;
+}
+
+/// Forward the 'resume' instruction to the caller's landing pad block.
+/// When the landing pad block has only one predecessor, this is a simple
+/// branch. When there is more than one predecessor, we need to split the
+/// landing pad block after the landingpad instruction and jump to there.
+void LandingPadInliningInfo::forwardResume(
+ ResumeInst *RI, SmallPtrSetImpl<LandingPadInst *> &InlinedLPads) {
+ BasicBlock *Dest = getInnerResumeDest();
+ BasicBlock *Src = RI->getParent();
+
+ BranchInst::Create(Dest, Src);
+
+ // Update the PHIs in the destination. They were inserted in an order which
+ // makes this work.
+ addIncomingPHIValuesForInto(Src, Dest);
+
+ InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src);
+ RI->eraseFromParent();
+}
+
+/// Helper for getUnwindDestToken/getUnwindDestTokenHelper.
+static Value *getParentPad(Value *EHPad) {
+ if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
+ return FPI->getParentPad();
+ return cast<CatchSwitchInst>(EHPad)->getParentPad();
+}
+
+using UnwindDestMemoTy = DenseMap<Instruction *, Value *>;
+
+/// Helper for getUnwindDestToken that does the descendant-ward part of
+/// the search.
+static Value *getUnwindDestTokenHelper(Instruction *EHPad,
+ UnwindDestMemoTy &MemoMap) {
+ SmallVector<Instruction *, 8> Worklist(1, EHPad);
+
+ while (!Worklist.empty()) {
+ Instruction *CurrentPad = Worklist.pop_back_val();
+ // We only put pads on the worklist that aren't in the MemoMap. When
+ // we find an unwind dest for a pad we may update its ancestors, but
+ // the queue only ever contains uncles/great-uncles/etc. of CurrentPad,
+ // so they should never get updated while queued on the worklist.
+ assert(!MemoMap.count(CurrentPad));
+ Value *UnwindDestToken = nullptr;
+ if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(CurrentPad)) {
+ if (CatchSwitch->hasUnwindDest()) {
+ UnwindDestToken = CatchSwitch->getUnwindDest()->getFirstNonPHI();
+ } else {
+ // Catchswitch doesn't have a 'nounwind' variant, and one might be
+ // annotated as "unwinds to caller" when really it's nounwind (see
+ // e.g. SimplifyCFGOpt::SimplifyUnreachable), so we can't infer the
+ // parent's unwind dest from this. We can check its catchpads'
+ // descendants, since they might include a cleanuppad with an
+ // "unwinds to caller" cleanupret, which can be trusted.
+ for (auto HI = CatchSwitch->handler_begin(),
+ HE = CatchSwitch->handler_end();
+ HI != HE && !UnwindDestToken; ++HI) {
+ BasicBlock *HandlerBlock = *HI;
+ auto *CatchPad = cast<CatchPadInst>(HandlerBlock->getFirstNonPHI());
+ for (User *Child : CatchPad->users()) {
+ // Intentionally ignore invokes here -- since the catchswitch is
+ // marked "unwind to caller", it would be a verifier error if it
+ // contained an invoke which unwinds out of it, so any invoke we'd
+ // encounter must unwind to some child of the catch.
+ if (!isa<CleanupPadInst>(Child) && !isa<CatchSwitchInst>(Child))
+ continue;
+
+ Instruction *ChildPad = cast<Instruction>(Child);
+ auto Memo = MemoMap.find(ChildPad);
+ if (Memo == MemoMap.end()) {
+ // Haven't figured out this child pad yet; queue it.
+ Worklist.push_back(ChildPad);
+ continue;
+ }
+ // We've already checked this child, but might have found that
+ // it offers no proof either way.
+ Value *ChildUnwindDestToken = Memo->second;
+ if (!ChildUnwindDestToken)
+ continue;
+ // We already know the child's unwind dest, which can either
+ // be ConstantTokenNone to indicate unwind to caller, or can
+ // be another child of the catchpad. Only the former indicates
+ // the unwind dest of the catchswitch.
+ if (isa<ConstantTokenNone>(ChildUnwindDestToken)) {
+ UnwindDestToken = ChildUnwindDestToken;
+ break;
+ }
+ assert(getParentPad(ChildUnwindDestToken) == CatchPad);
+ }
+ }
+ }
+ } else {
+ auto *CleanupPad = cast<CleanupPadInst>(CurrentPad);
+ for (User *U : CleanupPad->users()) {
+ if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(U)) {
+ if (BasicBlock *RetUnwindDest = CleanupRet->getUnwindDest())
+ UnwindDestToken = RetUnwindDest->getFirstNonPHI();
+ else
+ UnwindDestToken = ConstantTokenNone::get(CleanupPad->getContext());
+ break;
+ }
+ Value *ChildUnwindDestToken;
+ if (auto *Invoke = dyn_cast<InvokeInst>(U)) {
+ ChildUnwindDestToken = Invoke->getUnwindDest()->getFirstNonPHI();
+ } else if (isa<CleanupPadInst>(U) || isa<CatchSwitchInst>(U)) {
+ Instruction *ChildPad = cast<Instruction>(U);
+ auto Memo = MemoMap.find(ChildPad);
+ if (Memo == MemoMap.end()) {
+ // Haven't resolved this child yet; queue it and keep searching.
+ Worklist.push_back(ChildPad);
+ continue;
+ }
+ // We've checked this child, but still need to ignore it if it
+ // had no proof either way.
+ ChildUnwindDestToken = Memo->second;
+ if (!ChildUnwindDestToken)
+ continue;
+ } else {
+ // Not a relevant user of the cleanuppad
+ continue;
+ }
+ // In a well-formed program, the child/invoke must either unwind to
+ // an(other) child of the cleanup, or exit the cleanup. In the
+ // first case, continue searching.
+ if (isa<Instruction>(ChildUnwindDestToken) &&
+ getParentPad(ChildUnwindDestToken) == CleanupPad)
+ continue;
+ UnwindDestToken = ChildUnwindDestToken;
+ break;
+ }
+ }
+ // If we haven't found an unwind dest for CurrentPad, we may have queued its
+ // children, so move on to the next in the worklist.
+ if (!UnwindDestToken)
+ continue;
+
+ // Now we know that CurrentPad unwinds to UnwindDestToken. It also exits
+ // any ancestors of CurrentPad up to but not including UnwindDestToken's
+ // parent pad. Record this in the memo map, and check to see if the
+ // original EHPad being queried is one of the ones exited.
+ Value *UnwindParent;
+ if (auto *UnwindPad = dyn_cast<Instruction>(UnwindDestToken))
+ UnwindParent = getParentPad(UnwindPad);
+ else
+ UnwindParent = nullptr;
+ bool ExitedOriginalPad = false;
+ for (Instruction *ExitedPad = CurrentPad;
+ ExitedPad && ExitedPad != UnwindParent;
+ ExitedPad = dyn_cast<Instruction>(getParentPad(ExitedPad))) {
+ // Skip over catchpads since they just follow their catchswitches.
+ if (isa<CatchPadInst>(ExitedPad))
+ continue;
+ MemoMap[ExitedPad] = UnwindDestToken;
+ ExitedOriginalPad |= (ExitedPad == EHPad);
+ }
+
+ if (ExitedOriginalPad)
+ return UnwindDestToken;
+
+ // Continue the search.
+ }
+
+ // No definitive information is contained within this funclet.
+ return nullptr;
+}
+
+/// Given an EH pad, find where it unwinds. If it unwinds to an EH pad,
+/// return that pad instruction. If it unwinds to caller, return
+/// ConstantTokenNone. If it does not have a definitive unwind destination,
+/// return nullptr.
+///
+/// This routine gets invoked for calls in funclets in inlinees when inlining
+/// an invoke. Since many funclets don't have calls inside them, it's queried
+/// on-demand rather than building a map of pads to unwind dests up front.
+/// Determining a funclet's unwind dest may require recursively searching its
+/// descendants, and also ancestors and cousins if the descendants don't provide
+/// an answer. Since most funclets will have their unwind dest immediately
+/// available as the unwind dest of a catchswitch or cleanupret, this routine
+/// searches top-down from the given pad and then up. To avoid worst-case
+/// quadratic run-time given that approach, it uses a memo map to avoid
+/// re-processing funclet trees. The callers that rewrite the IR as they go
+/// take advantage of this, for correctness, by checking/forcing rewritten
+/// pads' entries to match the original callee view.
+static Value *getUnwindDestToken(Instruction *EHPad,
+ UnwindDestMemoTy &MemoMap) {
+ // Catchpads unwind to the same place as their catchswitch;
+ // redirct any queries on catchpads so the code below can
+ // deal with just catchswitches and cleanuppads.
+ if (auto *CPI = dyn_cast<CatchPadInst>(EHPad))
+ EHPad = CPI->getCatchSwitch();
+
+ // Check if we've already determined the unwind dest for this pad.
+ auto Memo = MemoMap.find(EHPad);
+ if (Memo != MemoMap.end())
+ return Memo->second;
+
+ // Search EHPad and, if necessary, its descendants.
+ Value *UnwindDestToken = getUnwindDestTokenHelper(EHPad, MemoMap);
+ assert((UnwindDestToken == nullptr) != (MemoMap.count(EHPad) != 0));
+ if (UnwindDestToken)
+ return UnwindDestToken;
+
+ // No information is available for this EHPad from itself or any of its
+ // descendants. An unwind all the way out to a pad in the caller would
+ // need also to agree with the unwind dest of the parent funclet, so
+ // search up the chain to try to find a funclet with information. Put
+ // null entries in the memo map to avoid re-processing as we go up.
+ MemoMap[EHPad] = nullptr;
+#ifndef NDEBUG
+ SmallPtrSet<Instruction *, 4> TempMemos;
+ TempMemos.insert(EHPad);
+#endif
+ Instruction *LastUselessPad = EHPad;
+ Value *AncestorToken;
+ for (AncestorToken = getParentPad(EHPad);
+ auto *AncestorPad = dyn_cast<Instruction>(AncestorToken);
+ AncestorToken = getParentPad(AncestorToken)) {
+ // Skip over catchpads since they just follow their catchswitches.
+ if (isa<CatchPadInst>(AncestorPad))
+ continue;
+ // If the MemoMap had an entry mapping AncestorPad to nullptr, since we
+ // haven't yet called getUnwindDestTokenHelper for AncestorPad in this
+ // call to getUnwindDestToken, that would mean that AncestorPad had no
+ // information in itself, its descendants, or its ancestors. If that
+ // were the case, then we should also have recorded the lack of information
+ // for the descendant that we're coming from. So assert that we don't
+ // find a null entry in the MemoMap for AncestorPad.
+ assert(!MemoMap.count(AncestorPad) || MemoMap[AncestorPad]);
+ auto AncestorMemo = MemoMap.find(AncestorPad);
+ if (AncestorMemo == MemoMap.end()) {
+ UnwindDestToken = getUnwindDestTokenHelper(AncestorPad, MemoMap);
+ } else {
+ UnwindDestToken = AncestorMemo->second;
+ }
+ if (UnwindDestToken)
+ break;
+ LastUselessPad = AncestorPad;
+ MemoMap[LastUselessPad] = nullptr;
+#ifndef NDEBUG
+ TempMemos.insert(LastUselessPad);
+#endif
+ }
+
+ // We know that getUnwindDestTokenHelper was called on LastUselessPad and
+ // returned nullptr (and likewise for EHPad and any of its ancestors up to
+ // LastUselessPad), so LastUselessPad has no information from below. Since
+ // getUnwindDestTokenHelper must investigate all downward paths through
+ // no-information nodes to prove that a node has no information like this,
+ // and since any time it finds information it records it in the MemoMap for
+ // not just the immediately-containing funclet but also any ancestors also
+ // exited, it must be the case that, walking downward from LastUselessPad,
+ // visiting just those nodes which have not been mapped to an unwind dest
+ // by getUnwindDestTokenHelper (the nullptr TempMemos notwithstanding, since
+ // they are just used to keep getUnwindDestTokenHelper from repeating work),
+ // any node visited must have been exhaustively searched with no information
+ // for it found.
+ SmallVector<Instruction *, 8> Worklist(1, LastUselessPad);
+ while (!Worklist.empty()) {
+ Instruction *UselessPad = Worklist.pop_back_val();
+ auto Memo = MemoMap.find(UselessPad);
+ if (Memo != MemoMap.end() && Memo->second) {
+ // Here the name 'UselessPad' is a bit of a misnomer, because we've found
+ // that it is a funclet that does have information about unwinding to
+ // a particular destination; its parent was a useless pad.
+ // Since its parent has no information, the unwind edge must not escape
+ // the parent, and must target a sibling of this pad. This local unwind
+ // gives us no information about EHPad. Leave it and the subtree rooted
+ // at it alone.
+ assert(getParentPad(Memo->second) == getParentPad(UselessPad));
+ continue;
+ }
+ // We know we don't have information for UselesPad. If it has an entry in
+ // the MemoMap (mapping it to nullptr), it must be one of the TempMemos
+ // added on this invocation of getUnwindDestToken; if a previous invocation
+ // recorded nullptr, it would have had to prove that the ancestors of
+ // UselessPad, which include LastUselessPad, had no information, and that
+ // in turn would have required proving that the descendants of
+ // LastUselesPad, which include EHPad, have no information about
+ // LastUselessPad, which would imply that EHPad was mapped to nullptr in
+ // the MemoMap on that invocation, which isn't the case if we got here.
+ assert(!MemoMap.count(UselessPad) || TempMemos.count(UselessPad));
+ // Assert as we enumerate users that 'UselessPad' doesn't have any unwind
+ // information that we'd be contradicting by making a map entry for it
+ // (which is something that getUnwindDestTokenHelper must have proved for
+ // us to get here). Just assert on is direct users here; the checks in
+ // this downward walk at its descendants will verify that they don't have
+ // any unwind edges that exit 'UselessPad' either (i.e. they either have no
+ // unwind edges or unwind to a sibling).
+ MemoMap[UselessPad] = UnwindDestToken;
+ if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(UselessPad)) {
+ assert(CatchSwitch->getUnwindDest() == nullptr && "Expected useless pad");
+ for (BasicBlock *HandlerBlock : CatchSwitch->handlers()) {
+ auto *CatchPad = HandlerBlock->getFirstNonPHI();
+ for (User *U : CatchPad->users()) {
+ assert(
+ (!isa<InvokeInst>(U) ||
+ (getParentPad(
+ cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) ==
+ CatchPad)) &&
+ "Expected useless pad");
+ if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U))
+ Worklist.push_back(cast<Instruction>(U));
+ }
+ }
+ } else {
+ assert(isa<CleanupPadInst>(UselessPad));
+ for (User *U : UselessPad->users()) {
+ assert(!isa<CleanupReturnInst>(U) && "Expected useless pad");
+ assert((!isa<InvokeInst>(U) ||
+ (getParentPad(
+ cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) ==
+ UselessPad)) &&
+ "Expected useless pad");
+ if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U))
+ Worklist.push_back(cast<Instruction>(U));
+ }
+ }
+ }
+
+ return UnwindDestToken;
+}
+
+/// When we inline a basic block into an invoke,
+/// we have to turn all of the calls that can throw into invokes.
+/// This function analyze BB to see if there are any calls, and if so,
+/// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI
+/// nodes in that block with the values specified in InvokeDestPHIValues.
+static BasicBlock *HandleCallsInBlockInlinedThroughInvoke(
+ BasicBlock *BB, BasicBlock *UnwindEdge,
+ UnwindDestMemoTy *FuncletUnwindMap = nullptr) {
+ for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
+ Instruction *I = &*BBI++;
+
+ // We only need to check for function calls: inlined invoke
+ // instructions require no special handling.
+ CallInst *CI = dyn_cast<CallInst>(I);
+
+ if (!CI || CI->doesNotThrow() || isa<InlineAsm>(CI->getCalledValue()))
+ continue;
+
+ // We do not need to (and in fact, cannot) convert possibly throwing calls
+ // to @llvm.experimental_deoptimize (resp. @llvm.experimental.guard) into
+ // invokes. The caller's "segment" of the deoptimization continuation
+ // attached to the newly inlined @llvm.experimental_deoptimize
+ // (resp. @llvm.experimental.guard) call should contain the exception
+ // handling logic, if any.
+ if (auto *F = CI->getCalledFunction())
+ if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize ||
+ F->getIntrinsicID() == Intrinsic::experimental_guard)
+ continue;
+
+ if (auto FuncletBundle = CI->getOperandBundle(LLVMContext::OB_funclet)) {
+ // This call is nested inside a funclet. If that funclet has an unwind
+ // destination within the inlinee, then unwinding out of this call would
+ // be UB. Rewriting this call to an invoke which targets the inlined
+ // invoke's unwind dest would give the call's parent funclet multiple
+ // unwind destinations, which is something that subsequent EH table
+ // generation can't handle and that the veirifer rejects. So when we
+ // see such a call, leave it as a call.
+ auto *FuncletPad = cast<Instruction>(FuncletBundle->Inputs[0]);
+ Value *UnwindDestToken =
+ getUnwindDestToken(FuncletPad, *FuncletUnwindMap);
+ if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken))
+ continue;
+#ifndef NDEBUG
+ Instruction *MemoKey;
+ if (auto *CatchPad = dyn_cast<CatchPadInst>(FuncletPad))
+ MemoKey = CatchPad->getCatchSwitch();
+ else
+ MemoKey = FuncletPad;
+ assert(FuncletUnwindMap->count(MemoKey) &&
+ (*FuncletUnwindMap)[MemoKey] == UnwindDestToken &&
+ "must get memoized to avoid confusing later searches");
+#endif // NDEBUG
+ }
+
+ changeToInvokeAndSplitBasicBlock(CI, UnwindEdge);
+ return BB;
+ }
+ return nullptr;
+}
+
+/// If we inlined an invoke site, we need to convert calls
+/// in the body of the inlined function into invokes.
+///
+/// II is the invoke instruction being inlined. FirstNewBlock is the first
+/// block of the inlined code (the last block is the end of the function),
+/// and InlineCodeInfo is information about the code that got inlined.
+static void HandleInlinedLandingPad(InvokeInst *II, BasicBlock *FirstNewBlock,
+ ClonedCodeInfo &InlinedCodeInfo) {
+ BasicBlock *InvokeDest = II->getUnwindDest();
+
+ Function *Caller = FirstNewBlock->getParent();
+
+ // The inlined code is currently at the end of the function, scan from the
+ // start of the inlined code to its end, checking for stuff we need to
+ // rewrite.
+ LandingPadInliningInfo Invoke(II);
+
+ // Get all of the inlined landing pad instructions.
+ SmallPtrSet<LandingPadInst*, 16> InlinedLPads;
+ for (Function::iterator I = FirstNewBlock->getIterator(), E = Caller->end();
+ I != E; ++I)
+ if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator()))
+ InlinedLPads.insert(II->getLandingPadInst());
+
+ // Append the clauses from the outer landing pad instruction into the inlined
+ // landing pad instructions.
+ LandingPadInst *OuterLPad = Invoke.getLandingPadInst();
+ for (LandingPadInst *InlinedLPad : InlinedLPads) {
+ unsigned OuterNum = OuterLPad->getNumClauses();
+ InlinedLPad->reserveClauses(OuterNum);
+ for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx)
+ InlinedLPad->addClause(OuterLPad->getClause(OuterIdx));
+ if (OuterLPad->isCleanup())
+ InlinedLPad->setCleanup(true);
+ }
+
+ for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end();
+ BB != E; ++BB) {
+ if (InlinedCodeInfo.ContainsCalls)
+ if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke(
+ &*BB, Invoke.getOuterResumeDest()))
+ // Update any PHI nodes in the exceptional block to indicate that there
+ // is now a new entry in them.
+ Invoke.addIncomingPHIValuesFor(NewBB);
+
+ // Forward any resumes that are remaining here.
+ if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator()))
+ Invoke.forwardResume(RI, InlinedLPads);
+ }
+
+ // Now that everything is happy, we have one final detail. The PHI nodes in
+ // the exception destination block still have entries due to the original
+ // invoke instruction. Eliminate these entries (which might even delete the
+ // PHI node) now.
+ InvokeDest->removePredecessor(II->getParent());
+}
+
+/// If we inlined an invoke site, we need to convert calls
+/// in the body of the inlined function into invokes.
+///
+/// II is the invoke instruction being inlined. FirstNewBlock is the first
+/// block of the inlined code (the last block is the end of the function),
+/// and InlineCodeInfo is information about the code that got inlined.
+static void HandleInlinedEHPad(InvokeInst *II, BasicBlock *FirstNewBlock,
+ ClonedCodeInfo &InlinedCodeInfo) {
+ BasicBlock *UnwindDest = II->getUnwindDest();
+ Function *Caller = FirstNewBlock->getParent();
+
+ assert(UnwindDest->getFirstNonPHI()->isEHPad() && "unexpected BasicBlock!");
+
+ // If there are PHI nodes in the unwind destination block, we need to keep
+ // track of which values came into them from the invoke before removing the
+ // edge from this block.
+ SmallVector<Value *, 8> UnwindDestPHIValues;
+ BasicBlock *InvokeBB = II->getParent();
+ for (Instruction &I : *UnwindDest) {
+ // Save the value to use for this edge.
+ PHINode *PHI = dyn_cast<PHINode>(&I);
+ if (!PHI)
+ break;
+ UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
+ }
+
+ // Add incoming-PHI values to the unwind destination block for the given basic
+ // block, using the values for the original invoke's source block.
+ auto UpdatePHINodes = [&](BasicBlock *Src) {
+ BasicBlock::iterator I = UnwindDest->begin();
+ for (Value *V : UnwindDestPHIValues) {
+ PHINode *PHI = cast<PHINode>(I);
+ PHI->addIncoming(V, Src);
+ ++I;
+ }
+ };
+
+ // This connects all the instructions which 'unwind to caller' to the invoke
+ // destination.
+ UnwindDestMemoTy FuncletUnwindMap;
+ for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end();
+ BB != E; ++BB) {
+ if (auto *CRI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
+ if (CRI->unwindsToCaller()) {
+ auto *CleanupPad = CRI->getCleanupPad();
+ CleanupReturnInst::Create(CleanupPad, UnwindDest, CRI);
+ CRI->eraseFromParent();
+ UpdatePHINodes(&*BB);
+ // Finding a cleanupret with an unwind destination would confuse
+ // subsequent calls to getUnwindDestToken, so map the cleanuppad
+ // to short-circuit any such calls and recognize this as an "unwind
+ // to caller" cleanup.
+ assert(!FuncletUnwindMap.count(CleanupPad) ||
+ isa<ConstantTokenNone>(FuncletUnwindMap[CleanupPad]));
+ FuncletUnwindMap[CleanupPad] =
+ ConstantTokenNone::get(Caller->getContext());
+ }
+ }
+
+ Instruction *I = BB->getFirstNonPHI();
+ if (!I->isEHPad())
+ continue;
+
+ Instruction *Replacement = nullptr;
+ if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) {
+ if (CatchSwitch->unwindsToCaller()) {
+ Value *UnwindDestToken;
+ if (auto *ParentPad =
+ dyn_cast<Instruction>(CatchSwitch->getParentPad())) {
+ // This catchswitch is nested inside another funclet. If that
+ // funclet has an unwind destination within the inlinee, then
+ // unwinding out of this catchswitch would be UB. Rewriting this
+ // catchswitch to unwind to the inlined invoke's unwind dest would
+ // give the parent funclet multiple unwind destinations, which is
+ // something that subsequent EH table generation can't handle and
+ // that the veirifer rejects. So when we see such a call, leave it
+ // as "unwind to caller".
+ UnwindDestToken = getUnwindDestToken(ParentPad, FuncletUnwindMap);
+ if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken))
+ continue;
+ } else {
+ // This catchswitch has no parent to inherit constraints from, and
+ // none of its descendants can have an unwind edge that exits it and
+ // targets another funclet in the inlinee. It may or may not have a
+ // descendant that definitively has an unwind to caller. In either
+ // case, we'll have to assume that any unwinds out of it may need to
+ // be routed to the caller, so treat it as though it has a definitive
+ // unwind to caller.
+ UnwindDestToken = ConstantTokenNone::get(Caller->getContext());
+ }
+ auto *NewCatchSwitch = CatchSwitchInst::Create(
+ CatchSwitch->getParentPad(), UnwindDest,
+ CatchSwitch->getNumHandlers(), CatchSwitch->getName(),
+ CatchSwitch);
+ for (BasicBlock *PadBB : CatchSwitch->handlers())
+ NewCatchSwitch->addHandler(PadBB);
+ // Propagate info for the old catchswitch over to the new one in
+ // the unwind map. This also serves to short-circuit any subsequent
+ // checks for the unwind dest of this catchswitch, which would get
+ // confused if they found the outer handler in the callee.
+ FuncletUnwindMap[NewCatchSwitch] = UnwindDestToken;
+ Replacement = NewCatchSwitch;
+ }
+ } else if (!isa<FuncletPadInst>(I)) {
+ llvm_unreachable("unexpected EHPad!");
+ }
+
+ if (Replacement) {
+ Replacement->takeName(I);
+ I->replaceAllUsesWith(Replacement);
+ I->eraseFromParent();
+ UpdatePHINodes(&*BB);
+ }
+ }
+
+ if (InlinedCodeInfo.ContainsCalls)
+ for (Function::iterator BB = FirstNewBlock->getIterator(),
+ E = Caller->end();
+ BB != E; ++BB)
+ if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke(
+ &*BB, UnwindDest, &FuncletUnwindMap))
+ // Update any PHI nodes in the exceptional block to indicate that there
+ // is now a new entry in them.
+ UpdatePHINodes(NewBB);
+
+ // Now that everything is happy, we have one final detail. The PHI nodes in
+ // the exception destination block still have entries due to the original
+ // invoke instruction. Eliminate these entries (which might even delete the
+ // PHI node) now.
+ UnwindDest->removePredecessor(InvokeBB);
+}
+
+/// When inlining a call site that has !llvm.mem.parallel_loop_access or
+/// llvm.access.group metadata, that metadata should be propagated to all
+/// memory-accessing cloned instructions.
+static void PropagateParallelLoopAccessMetadata(CallSite CS,
+ ValueToValueMapTy &VMap) {
+ MDNode *M =
+ CS.getInstruction()->getMetadata(LLVMContext::MD_mem_parallel_loop_access);
+ MDNode *CallAccessGroup =
+ CS.getInstruction()->getMetadata(LLVMContext::MD_access_group);
+ if (!M && !CallAccessGroup)
+ return;
+
+ for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
+ VMI != VMIE; ++VMI) {
+ if (!VMI->second)
+ continue;
+
+ Instruction *NI = dyn_cast<Instruction>(VMI->second);
+ if (!NI)
+ continue;
+
+ if (M) {
+ if (MDNode *PM =
+ NI->getMetadata(LLVMContext::MD_mem_parallel_loop_access)) {
+ M = MDNode::concatenate(PM, M);
+ NI->setMetadata(LLVMContext::MD_mem_parallel_loop_access, M);
+ } else if (NI->mayReadOrWriteMemory()) {
+ NI->setMetadata(LLVMContext::MD_mem_parallel_loop_access, M);
+ }
+ }
+
+ if (NI->mayReadOrWriteMemory()) {
+ MDNode *UnitedAccGroups = uniteAccessGroups(
+ NI->getMetadata(LLVMContext::MD_access_group), CallAccessGroup);
+ NI->setMetadata(LLVMContext::MD_access_group, UnitedAccGroups);
+ }
+ }
+}
+
+/// When inlining a function that contains noalias scope metadata,
+/// this metadata needs to be cloned so that the inlined blocks
+/// have different "unique scopes" at every call site. Were this not done, then
+/// aliasing scopes from a function inlined into a caller multiple times could
+/// not be differentiated (and this would lead to miscompiles because the
+/// non-aliasing property communicated by the metadata could have
+/// call-site-specific control dependencies).
+static void CloneAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap) {
+ const Function *CalledFunc = CS.getCalledFunction();
+ SetVector<const MDNode *> MD;
+
+ // Note: We could only clone the metadata if it is already used in the
+ // caller. I'm omitting that check here because it might confuse
+ // inter-procedural alias analysis passes. We can revisit this if it becomes
+ // an efficiency or overhead problem.
+
+ for (const BasicBlock &I : *CalledFunc)
+ for (const Instruction &J : I) {
+ if (const MDNode *M = J.getMetadata(LLVMContext::MD_alias_scope))
+ MD.insert(M);
+ if (const MDNode *M = J.getMetadata(LLVMContext::MD_noalias))
+ MD.insert(M);
+ }
+
+ if (MD.empty())
+ return;
+
+ // Walk the existing metadata, adding the complete (perhaps cyclic) chain to
+ // the set.
+ SmallVector<const Metadata *, 16> Queue(MD.begin(), MD.end());
+ while (!Queue.empty()) {
+ const MDNode *M = cast<MDNode>(Queue.pop_back_val());
+ for (unsigned i = 0, ie = M->getNumOperands(); i != ie; ++i)
+ if (const MDNode *M1 = dyn_cast<MDNode>(M->getOperand(i)))
+ if (MD.insert(M1))
+ Queue.push_back(M1);
+ }
+
+ // Now we have a complete set of all metadata in the chains used to specify
+ // the noalias scopes and the lists of those scopes.
+ SmallVector<TempMDTuple, 16> DummyNodes;
+ DenseMap<const MDNode *, TrackingMDNodeRef> MDMap;
+ for (const MDNode *I : MD) {
+ DummyNodes.push_back(MDTuple::getTemporary(CalledFunc->getContext(), None));
+ MDMap[I].reset(DummyNodes.back().get());
+ }
+
+ // Create new metadata nodes to replace the dummy nodes, replacing old
+ // metadata references with either a dummy node or an already-created new
+ // node.
+ for (const MDNode *I : MD) {
+ SmallVector<Metadata *, 4> NewOps;
+ for (unsigned i = 0, ie = I->getNumOperands(); i != ie; ++i) {
+ const Metadata *V = I->getOperand(i);
+ if (const MDNode *M = dyn_cast<MDNode>(V))
+ NewOps.push_back(MDMap[M]);
+ else
+ NewOps.push_back(const_cast<Metadata *>(V));
+ }
+
+ MDNode *NewM = MDNode::get(CalledFunc->getContext(), NewOps);
+ MDTuple *TempM = cast<MDTuple>(MDMap[I]);
+ assert(TempM->isTemporary() && "Expected temporary node");
+
+ TempM->replaceAllUsesWith(NewM);
+ }
+
+ // Now replace the metadata in the new inlined instructions with the
+ // repacements from the map.
+ for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
+ VMI != VMIE; ++VMI) {
+ if (!VMI->second)
+ continue;
+
+ Instruction *NI = dyn_cast<Instruction>(VMI->second);
+ if (!NI)
+ continue;
+
+ if (MDNode *M = NI->getMetadata(LLVMContext::MD_alias_scope)) {
+ MDNode *NewMD = MDMap[M];
+ // If the call site also had alias scope metadata (a list of scopes to
+ // which instructions inside it might belong), propagate those scopes to
+ // the inlined instructions.
+ if (MDNode *CSM =
+ CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope))
+ NewMD = MDNode::concatenate(NewMD, CSM);
+ NI->setMetadata(LLVMContext::MD_alias_scope, NewMD);
+ } else if (NI->mayReadOrWriteMemory()) {
+ if (MDNode *M =
+ CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope))
+ NI->setMetadata(LLVMContext::MD_alias_scope, M);
+ }
+
+ if (MDNode *M = NI->getMetadata(LLVMContext::MD_noalias)) {
+ MDNode *NewMD = MDMap[M];
+ // If the call site also had noalias metadata (a list of scopes with
+ // which instructions inside it don't alias), propagate those scopes to
+ // the inlined instructions.
+ if (MDNode *CSM =
+ CS.getInstruction()->getMetadata(LLVMContext::MD_noalias))
+ NewMD = MDNode::concatenate(NewMD, CSM);
+ NI->setMetadata(LLVMContext::MD_noalias, NewMD);
+ } else if (NI->mayReadOrWriteMemory()) {
+ if (MDNode *M = CS.getInstruction()->getMetadata(LLVMContext::MD_noalias))
+ NI->setMetadata(LLVMContext::MD_noalias, M);
+ }
+ }
+}
+
+/// If the inlined function has noalias arguments,
+/// then add new alias scopes for each noalias argument, tag the mapped noalias
+/// parameters with noalias metadata specifying the new scope, and tag all
+/// non-derived loads, stores and memory intrinsics with the new alias scopes.
+static void AddAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap,
+ const DataLayout &DL, AAResults *CalleeAAR) {
+ if (!EnableNoAliasConversion)
+ return;
+
+ const Function *CalledFunc = CS.getCalledFunction();
+ SmallVector<const Argument *, 4> NoAliasArgs;
+
+ for (const Argument &Arg : CalledFunc->args())
+ if (Arg.hasNoAliasAttr() && !Arg.use_empty())
+ NoAliasArgs.push_back(&Arg);
+
+ if (NoAliasArgs.empty())
+ return;
+
+ // To do a good job, if a noalias variable is captured, we need to know if
+ // the capture point dominates the particular use we're considering.
+ DominatorTree DT;
+ DT.recalculate(const_cast<Function&>(*CalledFunc));
+
+ // noalias indicates that pointer values based on the argument do not alias
+ // pointer values which are not based on it. So we add a new "scope" for each
+ // noalias function argument. Accesses using pointers based on that argument
+ // become part of that alias scope, accesses using pointers not based on that
+ // argument are tagged as noalias with that scope.
+
+ DenseMap<const Argument *, MDNode *> NewScopes;
+ MDBuilder MDB(CalledFunc->getContext());
+
+ // Create a new scope domain for this function.
+ MDNode *NewDomain =
+ MDB.createAnonymousAliasScopeDomain(CalledFunc->getName());
+ for (unsigned i = 0, e = NoAliasArgs.size(); i != e; ++i) {
+ const Argument *A = NoAliasArgs[i];
+
+ std::string Name = CalledFunc->getName();
+ if (A->hasName()) {
+ Name += ": %";
+ Name += A->getName();
+ } else {
+ Name += ": argument ";
+ Name += utostr(i);
+ }
+
+ // Note: We always create a new anonymous root here. This is true regardless
+ // of the linkage of the callee because the aliasing "scope" is not just a
+ // property of the callee, but also all control dependencies in the caller.
+ MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name);
+ NewScopes.insert(std::make_pair(A, NewScope));
+ }
+
+ // Iterate over all new instructions in the map; for all memory-access
+ // instructions, add the alias scope metadata.
+ for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
+ VMI != VMIE; ++VMI) {
+ if (const Instruction *I = dyn_cast<Instruction>(VMI->first)) {
+ if (!VMI->second)
+ continue;
+
+ Instruction *NI = dyn_cast<Instruction>(VMI->second);
+ if (!NI)
+ continue;
+
+ bool IsArgMemOnlyCall = false, IsFuncCall = false;
+ SmallVector<const Value *, 2> PtrArgs;
+
+ if (const LoadInst *LI = dyn_cast<LoadInst>(I))
+ PtrArgs.push_back(LI->getPointerOperand());
+ else if (const StoreInst *SI = dyn_cast<StoreInst>(I))
+ PtrArgs.push_back(SI->getPointerOperand());
+ else if (const VAArgInst *VAAI = dyn_cast<VAArgInst>(I))
+ PtrArgs.push_back(VAAI->getPointerOperand());
+ else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
+ PtrArgs.push_back(CXI->getPointerOperand());
+ else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
+ PtrArgs.push_back(RMWI->getPointerOperand());
+ else if (const auto *Call = dyn_cast<CallBase>(I)) {
+ // If we know that the call does not access memory, then we'll still
+ // know that about the inlined clone of this call site, and we don't
+ // need to add metadata.
+ if (Call->doesNotAccessMemory())
+ continue;
+
+ IsFuncCall = true;
+ if (CalleeAAR) {
+ FunctionModRefBehavior MRB = CalleeAAR->getModRefBehavior(Call);
+ if (MRB == FMRB_OnlyAccessesArgumentPointees ||
+ MRB == FMRB_OnlyReadsArgumentPointees)
+ IsArgMemOnlyCall = true;
+ }
+
+ for (Value *Arg : Call->args()) {
+ // We need to check the underlying objects of all arguments, not just
+ // the pointer arguments, because we might be passing pointers as
+ // integers, etc.
+ // However, if we know that the call only accesses pointer arguments,
+ // then we only need to check the pointer arguments.
+ if (IsArgMemOnlyCall && !Arg->getType()->isPointerTy())
+ continue;
+
+ PtrArgs.push_back(Arg);
+ }
+ }
+
+ // If we found no pointers, then this instruction is not suitable for
+ // pairing with an instruction to receive aliasing metadata.
+ // However, if this is a call, this we might just alias with none of the
+ // noalias arguments.
+ if (PtrArgs.empty() && !IsFuncCall)
+ continue;
+
+ // It is possible that there is only one underlying object, but you
+ // need to go through several PHIs to see it, and thus could be
+ // repeated in the Objects list.
+ SmallPtrSet<const Value *, 4> ObjSet;
+ SmallVector<Metadata *, 4> Scopes, NoAliases;
+
+ SmallSetVector<const Argument *, 4> NAPtrArgs;
+ for (const Value *V : PtrArgs) {
+ SmallVector<const Value *, 4> Objects;
+ GetUnderlyingObjects(V, Objects, DL, /* LI = */ nullptr);
+
+ for (const Value *O : Objects)
+ ObjSet.insert(O);
+ }
+
+ // Figure out if we're derived from anything that is not a noalias
+ // argument.
+ bool CanDeriveViaCapture = false, UsesAliasingPtr = false;
+ for (const Value *V : ObjSet) {
+ // Is this value a constant that cannot be derived from any pointer
+ // value (we need to exclude constant expressions, for example, that
+ // are formed from arithmetic on global symbols).
+ bool IsNonPtrConst = isa<ConstantInt>(V) || isa<ConstantFP>(V) ||
+ isa<ConstantPointerNull>(V) ||
+ isa<ConstantDataVector>(V) || isa<UndefValue>(V);
+ if (IsNonPtrConst)
+ continue;
+
+ // If this is anything other than a noalias argument, then we cannot
+ // completely describe the aliasing properties using alias.scope
+ // metadata (and, thus, won't add any).
+ if (const Argument *A = dyn_cast<Argument>(V)) {
+ if (!A->hasNoAliasAttr())
+ UsesAliasingPtr = true;
+ } else {
+ UsesAliasingPtr = true;
+ }
+
+ // If this is not some identified function-local object (which cannot
+ // directly alias a noalias argument), or some other argument (which,
+ // by definition, also cannot alias a noalias argument), then we could
+ // alias a noalias argument that has been captured).
+ if (!isa<Argument>(V) &&
+ !isIdentifiedFunctionLocal(const_cast<Value*>(V)))
+ CanDeriveViaCapture = true;
+ }
+
+ // A function call can always get captured noalias pointers (via other
+ // parameters, globals, etc.).
+ if (IsFuncCall && !IsArgMemOnlyCall)
+ CanDeriveViaCapture = true;
+
+ // First, we want to figure out all of the sets with which we definitely
+ // don't alias. Iterate over all noalias set, and add those for which:
+ // 1. The noalias argument is not in the set of objects from which we
+ // definitely derive.
+ // 2. The noalias argument has not yet been captured.
+ // An arbitrary function that might load pointers could see captured
+ // noalias arguments via other noalias arguments or globals, and so we
+ // must always check for prior capture.
+ for (const Argument *A : NoAliasArgs) {
+ if (!ObjSet.count(A) && (!CanDeriveViaCapture ||
+ // It might be tempting to skip the
+ // PointerMayBeCapturedBefore check if
+ // A->hasNoCaptureAttr() is true, but this is
+ // incorrect because nocapture only guarantees
+ // that no copies outlive the function, not
+ // that the value cannot be locally captured.
+ !PointerMayBeCapturedBefore(A,
+ /* ReturnCaptures */ false,
+ /* StoreCaptures */ false, I, &DT)))
+ NoAliases.push_back(NewScopes[A]);
+ }
+
+ if (!NoAliases.empty())
+ NI->setMetadata(LLVMContext::MD_noalias,
+ MDNode::concatenate(
+ NI->getMetadata(LLVMContext::MD_noalias),
+ MDNode::get(CalledFunc->getContext(), NoAliases)));
+
+ // Next, we want to figure out all of the sets to which we might belong.
+ // We might belong to a set if the noalias argument is in the set of
+ // underlying objects. If there is some non-noalias argument in our list
+ // of underlying objects, then we cannot add a scope because the fact
+ // that some access does not alias with any set of our noalias arguments
+ // cannot itself guarantee that it does not alias with this access
+ // (because there is some pointer of unknown origin involved and the
+ // other access might also depend on this pointer). We also cannot add
+ // scopes to arbitrary functions unless we know they don't access any
+ // non-parameter pointer-values.
+ bool CanAddScopes = !UsesAliasingPtr;
+ if (CanAddScopes && IsFuncCall)
+ CanAddScopes = IsArgMemOnlyCall;
+
+ if (CanAddScopes)
+ for (const Argument *A : NoAliasArgs) {
+ if (ObjSet.count(A))
+ Scopes.push_back(NewScopes[A]);
+ }
+
+ if (!Scopes.empty())
+ NI->setMetadata(
+ LLVMContext::MD_alias_scope,
+ MDNode::concatenate(NI->getMetadata(LLVMContext::MD_alias_scope),
+ MDNode::get(CalledFunc->getContext(), Scopes)));
+ }
+ }
+}
+
+/// If the inlined function has non-byval align arguments, then
+/// add @llvm.assume-based alignment assumptions to preserve this information.
+static void AddAlignmentAssumptions(CallSite CS, InlineFunctionInfo &IFI) {
+ if (!PreserveAlignmentAssumptions || !IFI.GetAssumptionCache)
+ return;
+
+ AssumptionCache *AC = &(*IFI.GetAssumptionCache)(*CS.getCaller());
+ auto &DL = CS.getCaller()->getParent()->getDataLayout();
+
+ // To avoid inserting redundant assumptions, we should check for assumptions
+ // already in the caller. To do this, we might need a DT of the caller.
+ DominatorTree DT;
+ bool DTCalculated = false;
+
+ Function *CalledFunc = CS.getCalledFunction();
+ for (Argument &Arg : CalledFunc->args()) {
+ unsigned Align = Arg.getType()->isPointerTy() ? Arg.getParamAlignment() : 0;
+ if (Align && !Arg.hasByValOrInAllocaAttr() && !Arg.hasNUses(0)) {
+ if (!DTCalculated) {
+ DT.recalculate(*CS.getCaller());
+ DTCalculated = true;
+ }
+
+ // If we can already prove the asserted alignment in the context of the
+ // caller, then don't bother inserting the assumption.
+ Value *ArgVal = CS.getArgument(Arg.getArgNo());
+ if (getKnownAlignment(ArgVal, DL, CS.getInstruction(), AC, &DT) >= Align)
+ continue;
+
+ CallInst *NewAsmp = IRBuilder<>(CS.getInstruction())
+ .CreateAlignmentAssumption(DL, ArgVal, Align);
+ AC->registerAssumption(NewAsmp);
+ }
+ }
+}
+
+/// Once we have cloned code over from a callee into the caller,
+/// update the specified callgraph to reflect the changes we made.
+/// Note that it's possible that not all code was copied over, so only
+/// some edges of the callgraph may remain.
+static void UpdateCallGraphAfterInlining(CallSite CS,
+ Function::iterator FirstNewBlock,
+ ValueToValueMapTy &VMap,
+ InlineFunctionInfo &IFI) {
+ CallGraph &CG = *IFI.CG;
+ const Function *Caller = CS.getCaller();
+ const Function *Callee = CS.getCalledFunction();
+ CallGraphNode *CalleeNode = CG[Callee];
+ CallGraphNode *CallerNode = CG[Caller];
+
+ // Since we inlined some uninlined call sites in the callee into the caller,
+ // add edges from the caller to all of the callees of the callee.
+ CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end();
+
+ // Consider the case where CalleeNode == CallerNode.
+ CallGraphNode::CalledFunctionsVector CallCache;
+ if (CalleeNode == CallerNode) {
+ CallCache.assign(I, E);
+ I = CallCache.begin();
+ E = CallCache.end();
+ }
+
+ for (; I != E; ++I) {
+ const Value *OrigCall = I->first;
+
+ ValueToValueMapTy::iterator VMI = VMap.find(OrigCall);
+ // Only copy the edge if the call was inlined!
+ if (VMI == VMap.end() || VMI->second == nullptr)
+ continue;
+
+ // If the call was inlined, but then constant folded, there is no edge to
+ // add. Check for this case.
+ auto *NewCall = dyn_cast<CallBase>(VMI->second);
+ if (!NewCall)
+ continue;
+
+ // We do not treat intrinsic calls like real function calls because we
+ // expect them to become inline code; do not add an edge for an intrinsic.
+ if (NewCall->getCalledFunction() &&
+ NewCall->getCalledFunction()->isIntrinsic())
+ continue;
+
+ // Remember that this call site got inlined for the client of
+ // InlineFunction.
+ IFI.InlinedCalls.push_back(NewCall);
+
+ // It's possible that inlining the callsite will cause it to go from an
+ // indirect to a direct call by resolving a function pointer. If this
+ // happens, set the callee of the new call site to a more precise
+ // destination. This can also happen if the call graph node of the caller
+ // was just unnecessarily imprecise.
+ if (!I->second->getFunction())
+ if (Function *F = NewCall->getCalledFunction()) {
+ // Indirect call site resolved to direct call.
+ CallerNode->addCalledFunction(NewCall, CG[F]);
+
+ continue;
+ }
+
+ CallerNode->addCalledFunction(NewCall, I->second);
+ }
+
+ // Update the call graph by deleting the edge from Callee to Caller. We must
+ // do this after the loop above in case Caller and Callee are the same.
+ CallerNode->removeCallEdgeFor(*cast<CallBase>(CS.getInstruction()));
+}
+
+static void HandleByValArgumentInit(Value *Dst, Value *Src, Module *M,
+ BasicBlock *InsertBlock,
+ InlineFunctionInfo &IFI) {
+ Type *AggTy = cast<PointerType>(Src->getType())->getElementType();
+ IRBuilder<> Builder(InsertBlock, InsertBlock->begin());
+
+ Value *Size = Builder.getInt64(M->getDataLayout().getTypeStoreSize(AggTy));
+
+ // Always generate a memcpy of alignment 1 here because we don't know
+ // the alignment of the src pointer. Other optimizations can infer
+ // better alignment.
+ Builder.CreateMemCpy(Dst, /*DstAlign*/1, Src, /*SrcAlign*/1, Size);
+}
+
+/// When inlining a call site that has a byval argument,
+/// we have to make the implicit memcpy explicit by adding it.
+static Value *HandleByValArgument(Value *Arg, Instruction *TheCall,
+ const Function *CalledFunc,
+ InlineFunctionInfo &IFI,
+ unsigned ByValAlignment) {
+ PointerType *ArgTy = cast<PointerType>(Arg->getType());
+ Type *AggTy = ArgTy->getElementType();
+
+ Function *Caller = TheCall->getFunction();
+ const DataLayout &DL = Caller->getParent()->getDataLayout();
+
+ // If the called function is readonly, then it could not mutate the caller's
+ // copy of the byval'd memory. In this case, it is safe to elide the copy and
+ // temporary.
+ if (CalledFunc->onlyReadsMemory()) {
+ // If the byval argument has a specified alignment that is greater than the
+ // passed in pointer, then we either have to round up the input pointer or
+ // give up on this transformation.
+ if (ByValAlignment <= 1) // 0 = unspecified, 1 = no particular alignment.
+ return Arg;
+
+ AssumptionCache *AC =
+ IFI.GetAssumptionCache ? &(*IFI.GetAssumptionCache)(*Caller) : nullptr;
+
+ // If the pointer is already known to be sufficiently aligned, or if we can
+ // round it up to a larger alignment, then we don't need a temporary.
+ if (getOrEnforceKnownAlignment(Arg, ByValAlignment, DL, TheCall, AC) >=
+ ByValAlignment)
+ return Arg;
+
+ // Otherwise, we have to make a memcpy to get a safe alignment. This is bad
+ // for code quality, but rarely happens and is required for correctness.
+ }
+
+ // Create the alloca. If we have DataLayout, use nice alignment.
+ unsigned Align = DL.getPrefTypeAlignment(AggTy);
+
+ // If the byval had an alignment specified, we *must* use at least that
+ // alignment, as it is required by the byval argument (and uses of the
+ // pointer inside the callee).
+ Align = std::max(Align, ByValAlignment);
+
+ Value *NewAlloca = new AllocaInst(AggTy, DL.getAllocaAddrSpace(),
+ nullptr, Align, Arg->getName(),
+ &*Caller->begin()->begin());
+ IFI.StaticAllocas.push_back(cast<AllocaInst>(NewAlloca));
+
+ // Uses of the argument in the function should use our new alloca
+ // instead.
+ return NewAlloca;
+}
+
+// Check whether this Value is used by a lifetime intrinsic.
+static bool isUsedByLifetimeMarker(Value *V) {
+ for (User *U : V->users())
+ if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U))
+ if (II->isLifetimeStartOrEnd())
+ return true;
+ return false;
+}
+
+// Check whether the given alloca already has
+// lifetime.start or lifetime.end intrinsics.
+static bool hasLifetimeMarkers(AllocaInst *AI) {
+ Type *Ty = AI->getType();
+ Type *Int8PtrTy = Type::getInt8PtrTy(Ty->getContext(),
+ Ty->getPointerAddressSpace());
+ if (Ty == Int8PtrTy)
+ return isUsedByLifetimeMarker(AI);
+
+ // Do a scan to find all the casts to i8*.
+ for (User *U : AI->users()) {
+ if (U->getType() != Int8PtrTy) continue;
+ if (U->stripPointerCasts() != AI) continue;
+ if (isUsedByLifetimeMarker(U))
+ return true;
+ }
+ return false;
+}
+
+/// Return the result of AI->isStaticAlloca() if AI were moved to the entry
+/// block. Allocas used in inalloca calls and allocas of dynamic array size
+/// cannot be static.
+static bool allocaWouldBeStaticInEntry(const AllocaInst *AI ) {
+ return isa<Constant>(AI->getArraySize()) && !AI->isUsedWithInAlloca();
+}
+
+/// Returns a DebugLoc for a new DILocation which is a clone of \p OrigDL
+/// inlined at \p InlinedAt. \p IANodes is an inlined-at cache.
+static DebugLoc inlineDebugLoc(DebugLoc OrigDL, DILocation *InlinedAt,
+ LLVMContext &Ctx,
+ DenseMap<const MDNode *, MDNode *> &IANodes) {
+ auto IA = DebugLoc::appendInlinedAt(OrigDL, InlinedAt, Ctx, IANodes);
+ return DebugLoc::get(OrigDL.getLine(), OrigDL.getCol(), OrigDL.getScope(),
+ IA);
+}
+
+/// Returns the LoopID for a loop which has has been cloned from another
+/// function for inlining with the new inlined-at start and end locs.
+static MDNode *inlineLoopID(const MDNode *OrigLoopId, DILocation *InlinedAt,
+ LLVMContext &Ctx,
+ DenseMap<const MDNode *, MDNode *> &IANodes) {
+ assert(OrigLoopId && OrigLoopId->getNumOperands() > 0 &&
+ "Loop ID needs at least one operand");
+ assert(OrigLoopId && OrigLoopId->getOperand(0).get() == OrigLoopId &&
+ "Loop ID should refer to itself");
+
+ // Save space for the self-referential LoopID.
+ SmallVector<Metadata *, 4> MDs = {nullptr};
+
+ for (unsigned i = 1; i < OrigLoopId->getNumOperands(); ++i) {
+ Metadata *MD = OrigLoopId->getOperand(i);
+ // Update the DILocations to encode the inlined-at metadata.
+ if (DILocation *DL = dyn_cast<DILocation>(MD))
+ MDs.push_back(inlineDebugLoc(DL, InlinedAt, Ctx, IANodes));
+ else
+ MDs.push_back(MD);
+ }
+
+ MDNode *NewLoopID = MDNode::getDistinct(Ctx, MDs);
+ // Insert the self-referential LoopID.
+ NewLoopID->replaceOperandWith(0, NewLoopID);
+ return NewLoopID;
+}
+
+/// Update inlined instructions' line numbers to
+/// to encode location where these instructions are inlined.
+static void fixupLineNumbers(Function *Fn, Function::iterator FI,
+ Instruction *TheCall, bool CalleeHasDebugInfo) {
+ const DebugLoc &TheCallDL = TheCall->getDebugLoc();
+ if (!TheCallDL)
+ return;
+
+ auto &Ctx = Fn->getContext();
+ DILocation *InlinedAtNode = TheCallDL;
+
+ // Create a unique call site, not to be confused with any other call from the
+ // same location.
+ InlinedAtNode = DILocation::getDistinct(
+ Ctx, InlinedAtNode->getLine(), InlinedAtNode->getColumn(),
+ InlinedAtNode->getScope(), InlinedAtNode->getInlinedAt());
+
+ // Cache the inlined-at nodes as they're built so they are reused, without
+ // this every instruction's inlined-at chain would become distinct from each
+ // other.
+ DenseMap<const MDNode *, MDNode *> IANodes;
+
+ for (; FI != Fn->end(); ++FI) {
+ for (BasicBlock::iterator BI = FI->begin(), BE = FI->end();
+ BI != BE; ++BI) {
+ // Loop metadata needs to be updated so that the start and end locs
+ // reference inlined-at locations.
+ if (MDNode *LoopID = BI->getMetadata(LLVMContext::MD_loop)) {
+ MDNode *NewLoopID =
+ inlineLoopID(LoopID, InlinedAtNode, BI->getContext(), IANodes);
+ BI->setMetadata(LLVMContext::MD_loop, NewLoopID);
+ }
+
+ if (DebugLoc DL = BI->getDebugLoc()) {
+ DebugLoc IDL =
+ inlineDebugLoc(DL, InlinedAtNode, BI->getContext(), IANodes);
+ BI->setDebugLoc(IDL);
+ continue;
+ }
+
+ if (CalleeHasDebugInfo)
+ continue;
+
+ // If the inlined instruction has no line number, make it look as if it
+ // originates from the call location. This is important for
+ // ((__always_inline__, __nodebug__)) functions which must use caller
+ // location for all instructions in their function body.
+
+ // Don't update static allocas, as they may get moved later.
+ if (auto *AI = dyn_cast<AllocaInst>(BI))
+ if (allocaWouldBeStaticInEntry(AI))
+ continue;
+
+ BI->setDebugLoc(TheCallDL);
+ }
+ }
+}
+
+/// Update the block frequencies of the caller after a callee has been inlined.
+///
+/// Each block cloned into the caller has its block frequency scaled by the
+/// ratio of CallSiteFreq/CalleeEntryFreq. This ensures that the cloned copy of
+/// callee's entry block gets the same frequency as the callsite block and the
+/// relative frequencies of all cloned blocks remain the same after cloning.
+static void updateCallerBFI(BasicBlock *CallSiteBlock,
+ const ValueToValueMapTy &VMap,
+ BlockFrequencyInfo *CallerBFI,
+ BlockFrequencyInfo *CalleeBFI,
+ const BasicBlock &CalleeEntryBlock) {
+ SmallPtrSet<BasicBlock *, 16> ClonedBBs;
+ for (auto const &Entry : VMap) {
+ if (!isa<BasicBlock>(Entry.first) || !Entry.second)
+ continue;
+ auto *OrigBB = cast<BasicBlock>(Entry.first);
+ auto *ClonedBB = cast<BasicBlock>(Entry.second);
+ uint64_t Freq = CalleeBFI->getBlockFreq(OrigBB).getFrequency();
+ if (!ClonedBBs.insert(ClonedBB).second) {
+ // Multiple blocks in the callee might get mapped to one cloned block in
+ // the caller since we prune the callee as we clone it. When that happens,
+ // we want to use the maximum among the original blocks' frequencies.
+ uint64_t NewFreq = CallerBFI->getBlockFreq(ClonedBB).getFrequency();
+ if (NewFreq > Freq)
+ Freq = NewFreq;
+ }
+ CallerBFI->setBlockFreq(ClonedBB, Freq);
+ }
+ BasicBlock *EntryClone = cast<BasicBlock>(VMap.lookup(&CalleeEntryBlock));
+ CallerBFI->setBlockFreqAndScale(
+ EntryClone, CallerBFI->getBlockFreq(CallSiteBlock).getFrequency(),
+ ClonedBBs);
+}
+
+/// Update the branch metadata for cloned call instructions.
+static void updateCallProfile(Function *Callee, const ValueToValueMapTy &VMap,
+ const ProfileCount &CalleeEntryCount,
+ const Instruction *TheCall,
+ ProfileSummaryInfo *PSI,
+ BlockFrequencyInfo *CallerBFI) {
+ if (!CalleeEntryCount.hasValue() || CalleeEntryCount.isSynthetic() ||
+ CalleeEntryCount.getCount() < 1)
+ return;
+ auto CallSiteCount = PSI ? PSI->getProfileCount(TheCall, CallerBFI) : None;
+ int64_t CallCount =
+ std::min(CallSiteCount.hasValue() ? CallSiteCount.getValue() : 0,
+ CalleeEntryCount.getCount());
+ updateProfileCallee(Callee, -CallCount, &VMap);
+}
+
+void llvm::updateProfileCallee(
+ Function *Callee, int64_t entryDelta,
+ const ValueMap<const Value *, WeakTrackingVH> *VMap) {
+ auto CalleeCount = Callee->getEntryCount();
+ if (!CalleeCount.hasValue())
+ return;
+
+ uint64_t priorEntryCount = CalleeCount.getCount();
+ uint64_t newEntryCount;
+
+ // Since CallSiteCount is an estimate, it could exceed the original callee
+ // count and has to be set to 0 so guard against underflow.
+ if (entryDelta < 0 && static_cast<uint64_t>(-entryDelta) > priorEntryCount)
+ newEntryCount = 0;
+ else
+ newEntryCount = priorEntryCount + entryDelta;
+
+ Callee->setEntryCount(newEntryCount);
+
+ // During inlining ?
+ if (VMap) {
+ uint64_t cloneEntryCount = priorEntryCount - newEntryCount;
+ for (auto const &Entry : *VMap)
+ if (isa<CallInst>(Entry.first))
+ if (auto *CI = dyn_cast_or_null<CallInst>(Entry.second))
+ CI->updateProfWeight(cloneEntryCount, priorEntryCount);
+ }
+ for (BasicBlock &BB : *Callee)
+ // No need to update the callsite if it is pruned during inlining.
+ if (!VMap || VMap->count(&BB))
+ for (Instruction &I : BB)
+ if (CallInst *CI = dyn_cast<CallInst>(&I))
+ CI->updateProfWeight(newEntryCount, priorEntryCount);
+}
+
+/// This function inlines the called function into the basic block of the
+/// caller. This returns false if it is not possible to inline this call.
+/// The program is still in a well defined state if this occurs though.
+///
+/// Note that this only does one level of inlining. For example, if the
+/// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
+/// exists in the instruction stream. Similarly this will inline a recursive
+/// function by one level.
+llvm::InlineResult llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI,
+ AAResults *CalleeAAR,
+ bool InsertLifetime,
+ Function *ForwardVarArgsTo) {
+ Instruction *TheCall = CS.getInstruction();
+ assert(TheCall->getParent() && TheCall->getFunction()
+ && "Instruction not in function!");
+
+ // FIXME: we don't inline callbr yet.
+ if (isa<CallBrInst>(TheCall))
+ return false;
+
+ // If IFI has any state in it, zap it before we fill it in.
+ IFI.reset();
+
+ Function *CalledFunc = CS.getCalledFunction();
+ if (!CalledFunc || // Can't inline external function or indirect
+ CalledFunc->isDeclaration()) // call!
+ return "external or indirect";
+
+ // The inliner does not know how to inline through calls with operand bundles
+ // in general ...
+ if (CS.hasOperandBundles()) {
+ for (int i = 0, e = CS.getNumOperandBundles(); i != e; ++i) {
+ uint32_t Tag = CS.getOperandBundleAt(i).getTagID();
+ // ... but it knows how to inline through "deopt" operand bundles ...
+ if (Tag == LLVMContext::OB_deopt)
+ continue;
+ // ... and "funclet" operand bundles.
+ if (Tag == LLVMContext::OB_funclet)
+ continue;
+
+ return "unsupported operand bundle";
+ }
+ }
+
+ // If the call to the callee cannot throw, set the 'nounwind' flag on any
+ // calls that we inline.
+ bool MarkNoUnwind = CS.doesNotThrow();
+
+ BasicBlock *OrigBB = TheCall->getParent();
+ Function *Caller = OrigBB->getParent();
+
+ // GC poses two hazards to inlining, which only occur when the callee has GC:
+ // 1. If the caller has no GC, then the callee's GC must be propagated to the
+ // caller.
+ // 2. If the caller has a differing GC, it is invalid to inline.
+ if (CalledFunc->hasGC()) {
+ if (!Caller->hasGC())
+ Caller->setGC(CalledFunc->getGC());
+ else if (CalledFunc->getGC() != Caller->getGC())
+ return "incompatible GC";
+ }
+
+ // Get the personality function from the callee if it contains a landing pad.
+ Constant *CalledPersonality =
+ CalledFunc->hasPersonalityFn()
+ ? CalledFunc->getPersonalityFn()->stripPointerCasts()
+ : nullptr;
+
+ // Find the personality function used by the landing pads of the caller. If it
+ // exists, then check to see that it matches the personality function used in
+ // the callee.
+ Constant *CallerPersonality =
+ Caller->hasPersonalityFn()
+ ? Caller->getPersonalityFn()->stripPointerCasts()
+ : nullptr;
+ if (CalledPersonality) {
+ if (!CallerPersonality)
+ Caller->setPersonalityFn(CalledPersonality);
+ // If the personality functions match, then we can perform the
+ // inlining. Otherwise, we can't inline.
+ // TODO: This isn't 100% true. Some personality functions are proper
+ // supersets of others and can be used in place of the other.
+ else if (CalledPersonality != CallerPersonality)
+ return "incompatible personality";
+ }
+
+ // We need to figure out which funclet the callsite was in so that we may
+ // properly nest the callee.
+ Instruction *CallSiteEHPad = nullptr;
+ if (CallerPersonality) {
+ EHPersonality Personality = classifyEHPersonality(CallerPersonality);
+ if (isScopedEHPersonality(Personality)) {
+ Optional<OperandBundleUse> ParentFunclet =
+ CS.getOperandBundle(LLVMContext::OB_funclet);
+ if (ParentFunclet)
+ CallSiteEHPad = cast<FuncletPadInst>(ParentFunclet->Inputs.front());
+
+ // OK, the inlining site is legal. What about the target function?
+
+ if (CallSiteEHPad) {
+ if (Personality == EHPersonality::MSVC_CXX) {
+ // The MSVC personality cannot tolerate catches getting inlined into
+ // cleanup funclets.
+ if (isa<CleanupPadInst>(CallSiteEHPad)) {
+ // Ok, the call site is within a cleanuppad. Let's check the callee
+ // for catchpads.
+ for (const BasicBlock &CalledBB : *CalledFunc) {
+ if (isa<CatchSwitchInst>(CalledBB.getFirstNonPHI()))
+ return "catch in cleanup funclet";
+ }
+ }
+ } else if (isAsynchronousEHPersonality(Personality)) {
+ // SEH is even less tolerant, there may not be any sort of exceptional
+ // funclet in the callee.
+ for (const BasicBlock &CalledBB : *CalledFunc) {
+ if (CalledBB.isEHPad())
+ return "SEH in cleanup funclet";
+ }
+ }
+ }
+ }
+ }
+
+ // Determine if we are dealing with a call in an EHPad which does not unwind
+ // to caller.
+ bool EHPadForCallUnwindsLocally = false;
+ if (CallSiteEHPad && CS.isCall()) {
+ UnwindDestMemoTy FuncletUnwindMap;
+ Value *CallSiteUnwindDestToken =
+ getUnwindDestToken(CallSiteEHPad, FuncletUnwindMap);
+
+ EHPadForCallUnwindsLocally =
+ CallSiteUnwindDestToken &&
+ !isa<ConstantTokenNone>(CallSiteUnwindDestToken);
+ }
+
+ // Get an iterator to the last basic block in the function, which will have
+ // the new function inlined after it.
+ Function::iterator LastBlock = --Caller->end();
+
+ // Make sure to capture all of the return instructions from the cloned
+ // function.
+ SmallVector<ReturnInst*, 8> Returns;
+ ClonedCodeInfo InlinedFunctionInfo;
+ Function::iterator FirstNewBlock;
+
+ { // Scope to destroy VMap after cloning.
+ ValueToValueMapTy VMap;
+ // Keep a list of pair (dst, src) to emit byval initializations.
+ SmallVector<std::pair<Value*, Value*>, 4> ByValInit;
+
+ auto &DL = Caller->getParent()->getDataLayout();
+
+ // Calculate the vector of arguments to pass into the function cloner, which
+ // matches up the formal to the actual argument values.
+ CallSite::arg_iterator AI = CS.arg_begin();
+ unsigned ArgNo = 0;
+ for (Function::arg_iterator I = CalledFunc->arg_begin(),
+ E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
+ Value *ActualArg = *AI;
+
+ // When byval arguments actually inlined, we need to make the copy implied
+ // by them explicit. However, we don't do this if the callee is readonly
+ // or readnone, because the copy would be unneeded: the callee doesn't
+ // modify the struct.
+ if (CS.isByValArgument(ArgNo)) {
+ ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI,
+ CalledFunc->getParamAlignment(ArgNo));
+ if (ActualArg != *AI)
+ ByValInit.push_back(std::make_pair(ActualArg, (Value*) *AI));
+ }
+
+ VMap[&*I] = ActualArg;
+ }
+
+ // Add alignment assumptions if necessary. We do this before the inlined
+ // instructions are actually cloned into the caller so that we can easily
+ // check what will be known at the start of the inlined code.
+ AddAlignmentAssumptions(CS, IFI);
+
+ // We want the inliner to prune the code as it copies. We would LOVE to
+ // have no dead or constant instructions leftover after inlining occurs
+ // (which can happen, e.g., because an argument was constant), but we'll be
+ // happy with whatever the cloner can do.
+ CloneAndPruneFunctionInto(Caller, CalledFunc, VMap,
+ /*ModuleLevelChanges=*/false, Returns, ".i",
+ &InlinedFunctionInfo, TheCall);
+ // Remember the first block that is newly cloned over.
+ FirstNewBlock = LastBlock; ++FirstNewBlock;
+
+ if (IFI.CallerBFI != nullptr && IFI.CalleeBFI != nullptr)
+ // Update the BFI of blocks cloned into the caller.
+ updateCallerBFI(OrigBB, VMap, IFI.CallerBFI, IFI.CalleeBFI,
+ CalledFunc->front());
+
+ updateCallProfile(CalledFunc, VMap, CalledFunc->getEntryCount(), TheCall,
+ IFI.PSI, IFI.CallerBFI);
+
+ // Inject byval arguments initialization.
+ for (std::pair<Value*, Value*> &Init : ByValInit)
+ HandleByValArgumentInit(Init.first, Init.second, Caller->getParent(),
+ &*FirstNewBlock, IFI);
+
+ Optional<OperandBundleUse> ParentDeopt =
+ CS.getOperandBundle(LLVMContext::OB_deopt);
+ if (ParentDeopt) {
+ SmallVector<OperandBundleDef, 2> OpDefs;
+
+ for (auto &VH : InlinedFunctionInfo.OperandBundleCallSites) {
+ Instruction *I = dyn_cast_or_null<Instruction>(VH);
+ if (!I) continue; // instruction was DCE'd or RAUW'ed to undef
+
+ OpDefs.clear();
+
+ CallSite ICS(I);
+ OpDefs.reserve(ICS.getNumOperandBundles());
+
+ for (unsigned i = 0, e = ICS.getNumOperandBundles(); i < e; ++i) {
+ auto ChildOB = ICS.getOperandBundleAt(i);
+ if (ChildOB.getTagID() != LLVMContext::OB_deopt) {
+ // If the inlined call has other operand bundles, let them be
+ OpDefs.emplace_back(ChildOB);
+ continue;
+ }
+
+ // It may be useful to separate this logic (of handling operand
+ // bundles) out to a separate "policy" component if this gets crowded.
+ // Prepend the parent's deoptimization continuation to the newly
+ // inlined call's deoptimization continuation.
+ std::vector<Value *> MergedDeoptArgs;
+ MergedDeoptArgs.reserve(ParentDeopt->Inputs.size() +
+ ChildOB.Inputs.size());
+
+ MergedDeoptArgs.insert(MergedDeoptArgs.end(),
+ ParentDeopt->Inputs.begin(),
+ ParentDeopt->Inputs.end());
+ MergedDeoptArgs.insert(MergedDeoptArgs.end(), ChildOB.Inputs.begin(),
+ ChildOB.Inputs.end());
+
+ OpDefs.emplace_back("deopt", std::move(MergedDeoptArgs));
+ }
+
+ Instruction *NewI = nullptr;
+ if (isa<CallInst>(I))
+ NewI = CallInst::Create(cast<CallInst>(I), OpDefs, I);
+ else if (isa<CallBrInst>(I))
+ NewI = CallBrInst::Create(cast<CallBrInst>(I), OpDefs, I);
+ else
+ NewI = InvokeInst::Create(cast<InvokeInst>(I), OpDefs, I);
+
+ // Note: the RAUW does the appropriate fixup in VMap, so we need to do
+ // this even if the call returns void.
+ I->replaceAllUsesWith(NewI);
+
+ VH = nullptr;
+ I->eraseFromParent();
+ }
+ }
+
+ // Update the callgraph if requested.
+ if (IFI.CG)
+ UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI);
+
+ // For 'nodebug' functions, the associated DISubprogram is always null.
+ // Conservatively avoid propagating the callsite debug location to
+ // instructions inlined from a function whose DISubprogram is not null.
+ fixupLineNumbers(Caller, FirstNewBlock, TheCall,
+ CalledFunc->getSubprogram() != nullptr);
+
+ // Clone existing noalias metadata if necessary.
+ CloneAliasScopeMetadata(CS, VMap);
+
+ // Add noalias metadata if necessary.
+ AddAliasScopeMetadata(CS, VMap, DL, CalleeAAR);
+
+ // Propagate llvm.mem.parallel_loop_access if necessary.
+ PropagateParallelLoopAccessMetadata(CS, VMap);
+
+ // Register any cloned assumptions.
+ if (IFI.GetAssumptionCache)
+ for (BasicBlock &NewBlock :
+ make_range(FirstNewBlock->getIterator(), Caller->end()))
+ for (Instruction &I : NewBlock) {
+ if (auto *II = dyn_cast<IntrinsicInst>(&I))
+ if (II->getIntrinsicID() == Intrinsic::assume)
+ (*IFI.GetAssumptionCache)(*Caller).registerAssumption(II);
+ }
+ }
+
+ // If there are any alloca instructions in the block that used to be the entry
+ // block for the callee, move them to the entry block of the caller. First
+ // calculate which instruction they should be inserted before. We insert the
+ // instructions at the end of the current alloca list.
+ {
+ BasicBlock::iterator InsertPoint = Caller->begin()->begin();
+ for (BasicBlock::iterator I = FirstNewBlock->begin(),
+ E = FirstNewBlock->end(); I != E; ) {
+ AllocaInst *AI = dyn_cast<AllocaInst>(I++);
+ if (!AI) continue;
+
+ // If the alloca is now dead, remove it. This often occurs due to code
+ // specialization.
+ if (AI->use_empty()) {
+ AI->eraseFromParent();
+ continue;
+ }
+
+ if (!allocaWouldBeStaticInEntry(AI))
+ continue;
+
+ // Keep track of the static allocas that we inline into the caller.
+ IFI.StaticAllocas.push_back(AI);
+
+ // Scan for the block of allocas that we can move over, and move them
+ // all at once.
+ while (isa<AllocaInst>(I) &&
+ allocaWouldBeStaticInEntry(cast<AllocaInst>(I))) {
+ IFI.StaticAllocas.push_back(cast<AllocaInst>(I));
+ ++I;
+ }
+
+ // Transfer all of the allocas over in a block. Using splice means
+ // that the instructions aren't removed from the symbol table, then
+ // reinserted.
+ Caller->getEntryBlock().getInstList().splice(
+ InsertPoint, FirstNewBlock->getInstList(), AI->getIterator(), I);
+ }
+ // Move any dbg.declares describing the allocas into the entry basic block.
+ DIBuilder DIB(*Caller->getParent());
+ for (auto &AI : IFI.StaticAllocas)
+ replaceDbgDeclareForAlloca(AI, AI, DIB, DIExpression::ApplyOffset, 0);
+ }
+
+ SmallVector<Value*,4> VarArgsToForward;
+ SmallVector<AttributeSet, 4> VarArgsAttrs;
+ for (unsigned i = CalledFunc->getFunctionType()->getNumParams();
+ i < CS.getNumArgOperands(); i++) {
+ VarArgsToForward.push_back(CS.getArgOperand(i));
+ VarArgsAttrs.push_back(CS.getAttributes().getParamAttributes(i));
+ }
+
+ bool InlinedMustTailCalls = false, InlinedDeoptimizeCalls = false;
+ if (InlinedFunctionInfo.ContainsCalls) {
+ CallInst::TailCallKind CallSiteTailKind = CallInst::TCK_None;
+ if (CallInst *CI = dyn_cast<CallInst>(TheCall))
+ CallSiteTailKind = CI->getTailCallKind();
+
+ // For inlining purposes, the "notail" marker is the same as no marker.
+ if (CallSiteTailKind == CallInst::TCK_NoTail)
+ CallSiteTailKind = CallInst::TCK_None;
+
+ for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E;
+ ++BB) {
+ for (auto II = BB->begin(); II != BB->end();) {
+ Instruction &I = *II++;
+ CallInst *CI = dyn_cast<CallInst>(&I);
+ if (!CI)
+ continue;
+
+ // Forward varargs from inlined call site to calls to the
+ // ForwardVarArgsTo function, if requested, and to musttail calls.
+ if (!VarArgsToForward.empty() &&
+ ((ForwardVarArgsTo &&
+ CI->getCalledFunction() == ForwardVarArgsTo) ||
+ CI->isMustTailCall())) {
+ // Collect attributes for non-vararg parameters.
+ AttributeList Attrs = CI->getAttributes();
+ SmallVector<AttributeSet, 8> ArgAttrs;
+ if (!Attrs.isEmpty() || !VarArgsAttrs.empty()) {
+ for (unsigned ArgNo = 0;
+ ArgNo < CI->getFunctionType()->getNumParams(); ++ArgNo)
+ ArgAttrs.push_back(Attrs.getParamAttributes(ArgNo));
+ }
+
+ // Add VarArg attributes.
+ ArgAttrs.append(VarArgsAttrs.begin(), VarArgsAttrs.end());
+ Attrs = AttributeList::get(CI->getContext(), Attrs.getFnAttributes(),
+ Attrs.getRetAttributes(), ArgAttrs);
+ // Add VarArgs to existing parameters.
+ SmallVector<Value *, 6> Params(CI->arg_operands());
+ Params.append(VarArgsToForward.begin(), VarArgsToForward.end());
+ CallInst *NewCI = CallInst::Create(
+ CI->getFunctionType(), CI->getCalledOperand(), Params, "", CI);
+ NewCI->setDebugLoc(CI->getDebugLoc());
+ NewCI->setAttributes(Attrs);
+ NewCI->setCallingConv(CI->getCallingConv());
+ CI->replaceAllUsesWith(NewCI);
+ CI->eraseFromParent();
+ CI = NewCI;
+ }
+
+ if (Function *F = CI->getCalledFunction())
+ InlinedDeoptimizeCalls |=
+ F->getIntrinsicID() == Intrinsic::experimental_deoptimize;
+
+ // We need to reduce the strength of any inlined tail calls. For
+ // musttail, we have to avoid introducing potential unbounded stack
+ // growth. For example, if functions 'f' and 'g' are mutually recursive
+ // with musttail, we can inline 'g' into 'f' so long as we preserve
+ // musttail on the cloned call to 'f'. If either the inlined call site
+ // or the cloned call site is *not* musttail, the program already has
+ // one frame of stack growth, so it's safe to remove musttail. Here is
+ // a table of example transformations:
+ //
+ // f -> musttail g -> musttail f ==> f -> musttail f
+ // f -> musttail g -> tail f ==> f -> tail f
+ // f -> g -> musttail f ==> f -> f
+ // f -> g -> tail f ==> f -> f
+ //
+ // Inlined notail calls should remain notail calls.
+ CallInst::TailCallKind ChildTCK = CI->getTailCallKind();
+ if (ChildTCK != CallInst::TCK_NoTail)
+ ChildTCK = std::min(CallSiteTailKind, ChildTCK);
+ CI->setTailCallKind(ChildTCK);
+ InlinedMustTailCalls |= CI->isMustTailCall();
+
+ // Calls inlined through a 'nounwind' call site should be marked
+ // 'nounwind'.
+ if (MarkNoUnwind)
+ CI->setDoesNotThrow();
+ }
+ }
+ }
+
+ // Leave lifetime markers for the static alloca's, scoping them to the
+ // function we just inlined.
+ if (InsertLifetime && !IFI.StaticAllocas.empty()) {
+ IRBuilder<> builder(&FirstNewBlock->front());
+ for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) {
+ AllocaInst *AI = IFI.StaticAllocas[ai];
+ // Don't mark swifterror allocas. They can't have bitcast uses.
+ if (AI->isSwiftError())
+ continue;
+
+ // If the alloca is already scoped to something smaller than the whole
+ // function then there's no need to add redundant, less accurate markers.
+ if (hasLifetimeMarkers(AI))
+ continue;
+
+ // Try to determine the size of the allocation.
+ ConstantInt *AllocaSize = nullptr;
+ if (ConstantInt *AIArraySize =
+ dyn_cast<ConstantInt>(AI->getArraySize())) {
+ auto &DL = Caller->getParent()->getDataLayout();
+ Type *AllocaType = AI->getAllocatedType();
+ uint64_t AllocaTypeSize = DL.getTypeAllocSize(AllocaType);
+ uint64_t AllocaArraySize = AIArraySize->getLimitedValue();
+
+ // Don't add markers for zero-sized allocas.
+ if (AllocaArraySize == 0)
+ continue;
+
+ // Check that array size doesn't saturate uint64_t and doesn't
+ // overflow when it's multiplied by type size.
+ if (AllocaArraySize != std::numeric_limits<uint64_t>::max() &&
+ std::numeric_limits<uint64_t>::max() / AllocaArraySize >=
+ AllocaTypeSize) {
+ AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()),
+ AllocaArraySize * AllocaTypeSize);
+ }
+ }
+
+ builder.CreateLifetimeStart(AI, AllocaSize);
+ for (ReturnInst *RI : Returns) {
+ // Don't insert llvm.lifetime.end calls between a musttail or deoptimize
+ // call and a return. The return kills all local allocas.
+ if (InlinedMustTailCalls &&
+ RI->getParent()->getTerminatingMustTailCall())
+ continue;
+ if (InlinedDeoptimizeCalls &&
+ RI->getParent()->getTerminatingDeoptimizeCall())
+ continue;
+ IRBuilder<>(RI).CreateLifetimeEnd(AI, AllocaSize);
+ }
+ }
+ }
+
+ // If the inlined code contained dynamic alloca instructions, wrap the inlined
+ // code with llvm.stacksave/llvm.stackrestore intrinsics.
+ if (InlinedFunctionInfo.ContainsDynamicAllocas) {
+ Module *M = Caller->getParent();
+ // Get the two intrinsics we care about.
+ Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave);
+ Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore);
+
+ // Insert the llvm.stacksave.
+ CallInst *SavedPtr = IRBuilder<>(&*FirstNewBlock, FirstNewBlock->begin())
+ .CreateCall(StackSave, {}, "savedstack");
+
+ // Insert a call to llvm.stackrestore before any return instructions in the
+ // inlined function.
+ for (ReturnInst *RI : Returns) {
+ // Don't insert llvm.stackrestore calls between a musttail or deoptimize
+ // call and a return. The return will restore the stack pointer.
+ if (InlinedMustTailCalls && RI->getParent()->getTerminatingMustTailCall())
+ continue;
+ if (InlinedDeoptimizeCalls && RI->getParent()->getTerminatingDeoptimizeCall())
+ continue;
+ IRBuilder<>(RI).CreateCall(StackRestore, SavedPtr);
+ }
+ }
+
+ // If we are inlining for an invoke instruction, we must make sure to rewrite
+ // any call instructions into invoke instructions. This is sensitive to which
+ // funclet pads were top-level in the inlinee, so must be done before
+ // rewriting the "parent pad" links.
+ if (auto *II = dyn_cast<InvokeInst>(TheCall)) {
+ BasicBlock *UnwindDest = II->getUnwindDest();
+ Instruction *FirstNonPHI = UnwindDest->getFirstNonPHI();
+ if (isa<LandingPadInst>(FirstNonPHI)) {
+ HandleInlinedLandingPad(II, &*FirstNewBlock, InlinedFunctionInfo);
+ } else {
+ HandleInlinedEHPad(II, &*FirstNewBlock, InlinedFunctionInfo);
+ }
+ }
+
+ // Update the lexical scopes of the new funclets and callsites.
+ // Anything that had 'none' as its parent is now nested inside the callsite's
+ // EHPad.
+
+ if (CallSiteEHPad) {
+ for (Function::iterator BB = FirstNewBlock->getIterator(),
+ E = Caller->end();
+ BB != E; ++BB) {
+ // Add bundle operands to any top-level call sites.
+ SmallVector<OperandBundleDef, 1> OpBundles;
+ for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;) {
+ Instruction *I = &*BBI++;
+ CallSite CS(I);
+ if (!CS)
+ continue;
+
+ // Skip call sites which are nounwind intrinsics.
+ auto *CalledFn =
+ dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts());
+ if (CalledFn && CalledFn->isIntrinsic() && CS.doesNotThrow())
+ continue;
+
+ // Skip call sites which already have a "funclet" bundle.
+ if (CS.getOperandBundle(LLVMContext::OB_funclet))
+ continue;
+
+ CS.getOperandBundlesAsDefs(OpBundles);
+ OpBundles.emplace_back("funclet", CallSiteEHPad);
+
+ Instruction *NewInst;
+ if (CS.isCall())
+ NewInst = CallInst::Create(cast<CallInst>(I), OpBundles, I);
+ else if (CS.isCallBr())
+ NewInst = CallBrInst::Create(cast<CallBrInst>(I), OpBundles, I);
+ else
+ NewInst = InvokeInst::Create(cast<InvokeInst>(I), OpBundles, I);
+ NewInst->takeName(I);
+ I->replaceAllUsesWith(NewInst);
+ I->eraseFromParent();
+
+ OpBundles.clear();
+ }
+
+ // It is problematic if the inlinee has a cleanupret which unwinds to
+ // caller and we inline it into a call site which doesn't unwind but into
+ // an EH pad that does. Such an edge must be dynamically unreachable.
+ // As such, we replace the cleanupret with unreachable.
+ if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(BB->getTerminator()))
+ if (CleanupRet->unwindsToCaller() && EHPadForCallUnwindsLocally)
+ changeToUnreachable(CleanupRet, /*UseLLVMTrap=*/false);
+
+ Instruction *I = BB->getFirstNonPHI();
+ if (!I->isEHPad())
+ continue;
+
+ if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) {
+ if (isa<ConstantTokenNone>(CatchSwitch->getParentPad()))
+ CatchSwitch->setParentPad(CallSiteEHPad);
+ } else {
+ auto *FPI = cast<FuncletPadInst>(I);
+ if (isa<ConstantTokenNone>(FPI->getParentPad()))
+ FPI->setParentPad(CallSiteEHPad);
+ }
+ }
+ }
+
+ if (InlinedDeoptimizeCalls) {
+ // We need to at least remove the deoptimizing returns from the Return set,
+ // so that the control flow from those returns does not get merged into the
+ // caller (but terminate it instead). If the caller's return type does not
+ // match the callee's return type, we also need to change the return type of
+ // the intrinsic.
+ if (Caller->getReturnType() == TheCall->getType()) {
+ auto NewEnd = llvm::remove_if(Returns, [](ReturnInst *RI) {
+ return RI->getParent()->getTerminatingDeoptimizeCall() != nullptr;
+ });
+ Returns.erase(NewEnd, Returns.end());
+ } else {
+ SmallVector<ReturnInst *, 8> NormalReturns;
+ Function *NewDeoptIntrinsic = Intrinsic::getDeclaration(
+ Caller->getParent(), Intrinsic::experimental_deoptimize,
+ {Caller->getReturnType()});
+
+ for (ReturnInst *RI : Returns) {
+ CallInst *DeoptCall = RI->getParent()->getTerminatingDeoptimizeCall();
+ if (!DeoptCall) {
+ NormalReturns.push_back(RI);
+ continue;
+ }
+
+ // The calling convention on the deoptimize call itself may be bogus,
+ // since the code we're inlining may have undefined behavior (and may
+ // never actually execute at runtime); but all
+ // @llvm.experimental.deoptimize declarations have to have the same
+ // calling convention in a well-formed module.
+ auto CallingConv = DeoptCall->getCalledFunction()->getCallingConv();
+ NewDeoptIntrinsic->setCallingConv(CallingConv);
+ auto *CurBB = RI->getParent();
+ RI->eraseFromParent();
+
+ SmallVector<Value *, 4> CallArgs(DeoptCall->arg_begin(),
+ DeoptCall->arg_end());
+
+ SmallVector<OperandBundleDef, 1> OpBundles;
+ DeoptCall->getOperandBundlesAsDefs(OpBundles);
+ DeoptCall->eraseFromParent();
+ assert(!OpBundles.empty() &&
+ "Expected at least the deopt operand bundle");
+
+ IRBuilder<> Builder(CurBB);
+ CallInst *NewDeoptCall =
+ Builder.CreateCall(NewDeoptIntrinsic, CallArgs, OpBundles);
+ NewDeoptCall->setCallingConv(CallingConv);
+ if (NewDeoptCall->getType()->isVoidTy())
+ Builder.CreateRetVoid();
+ else
+ Builder.CreateRet(NewDeoptCall);
+ }
+
+ // Leave behind the normal returns so we can merge control flow.
+ std::swap(Returns, NormalReturns);
+ }
+ }
+
+ // Handle any inlined musttail call sites. In order for a new call site to be
+ // musttail, the source of the clone and the inlined call site must have been
+ // musttail. Therefore it's safe to return without merging control into the
+ // phi below.
+ if (InlinedMustTailCalls) {
+ // Check if we need to bitcast the result of any musttail calls.
+ Type *NewRetTy = Caller->getReturnType();
+ bool NeedBitCast = !TheCall->use_empty() && TheCall->getType() != NewRetTy;
+
+ // Handle the returns preceded by musttail calls separately.
+ SmallVector<ReturnInst *, 8> NormalReturns;
+ for (ReturnInst *RI : Returns) {
+ CallInst *ReturnedMustTail =
+ RI->getParent()->getTerminatingMustTailCall();
+ if (!ReturnedMustTail) {
+ NormalReturns.push_back(RI);
+ continue;
+ }
+ if (!NeedBitCast)
+ continue;
+
+ // Delete the old return and any preceding bitcast.
+ BasicBlock *CurBB = RI->getParent();
+ auto *OldCast = dyn_cast_or_null<BitCastInst>(RI->getReturnValue());
+ RI->eraseFromParent();
+ if (OldCast)
+ OldCast->eraseFromParent();
+
+ // Insert a new bitcast and return with the right type.
+ IRBuilder<> Builder(CurBB);
+ Builder.CreateRet(Builder.CreateBitCast(ReturnedMustTail, NewRetTy));
+ }
+
+ // Leave behind the normal returns so we can merge control flow.
+ std::swap(Returns, NormalReturns);
+ }
+
+ // Now that all of the transforms on the inlined code have taken place but
+ // before we splice the inlined code into the CFG and lose track of which
+ // blocks were actually inlined, collect the call sites. We only do this if
+ // call graph updates weren't requested, as those provide value handle based
+ // tracking of inlined call sites instead.
+ if (InlinedFunctionInfo.ContainsCalls && !IFI.CG) {
+ // Otherwise just collect the raw call sites that were inlined.
+ for (BasicBlock &NewBB :
+ make_range(FirstNewBlock->getIterator(), Caller->end()))
+ for (Instruction &I : NewBB)
+ if (auto CS = CallSite(&I))
+ IFI.InlinedCallSites.push_back(CS);
+ }
+
+ // If we cloned in _exactly one_ basic block, and if that block ends in a
+ // return instruction, we splice the body of the inlined callee directly into
+ // the calling basic block.
+ if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
+ // Move all of the instructions right before the call.
+ OrigBB->getInstList().splice(TheCall->getIterator(),
+ FirstNewBlock->getInstList(),
+ FirstNewBlock->begin(), FirstNewBlock->end());
+ // Remove the cloned basic block.
+ Caller->getBasicBlockList().pop_back();
+
+ // If the call site was an invoke instruction, add a branch to the normal
+ // destination.
+ if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
+ BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall);
+ NewBr->setDebugLoc(Returns[0]->getDebugLoc());
+ }
+
+ // If the return instruction returned a value, replace uses of the call with
+ // uses of the returned value.
+ if (!TheCall->use_empty()) {
+ ReturnInst *R = Returns[0];
+ if (TheCall == R->getReturnValue())
+ TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
+ else
+ TheCall->replaceAllUsesWith(R->getReturnValue());
+ }
+ // Since we are now done with the Call/Invoke, we can delete it.
+ TheCall->eraseFromParent();
+
+ // Since we are now done with the return instruction, delete it also.
+ Returns[0]->eraseFromParent();
+
+ // We are now done with the inlining.
+ return true;
+ }
+
+ // Otherwise, we have the normal case, of more than one block to inline or
+ // multiple return sites.
+
+ // We want to clone the entire callee function into the hole between the
+ // "starter" and "ender" blocks. How we accomplish this depends on whether
+ // this is an invoke instruction or a call instruction.
+ BasicBlock *AfterCallBB;
+ BranchInst *CreatedBranchToNormalDest = nullptr;
+ if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
+
+ // Add an unconditional branch to make this look like the CallInst case...
+ CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), TheCall);
+
+ // Split the basic block. This guarantees that no PHI nodes will have to be
+ // updated due to new incoming edges, and make the invoke case more
+ // symmetric to the call case.
+ AfterCallBB =
+ OrigBB->splitBasicBlock(CreatedBranchToNormalDest->getIterator(),
+ CalledFunc->getName() + ".exit");
+
+ } else { // It's a call
+ // If this is a call instruction, we need to split the basic block that
+ // the call lives in.
+ //
+ AfterCallBB = OrigBB->splitBasicBlock(TheCall->getIterator(),
+ CalledFunc->getName() + ".exit");
+ }
+
+ if (IFI.CallerBFI) {
+ // Copy original BB's block frequency to AfterCallBB
+ IFI.CallerBFI->setBlockFreq(
+ AfterCallBB, IFI.CallerBFI->getBlockFreq(OrigBB).getFrequency());
+ }
+
+ // Change the branch that used to go to AfterCallBB to branch to the first
+ // basic block of the inlined function.
+ //
+ Instruction *Br = OrigBB->getTerminator();
+ assert(Br && Br->getOpcode() == Instruction::Br &&
+ "splitBasicBlock broken!");
+ Br->setOperand(0, &*FirstNewBlock);
+
+ // Now that the function is correct, make it a little bit nicer. In
+ // particular, move the basic blocks inserted from the end of the function
+ // into the space made by splitting the source basic block.
+ Caller->getBasicBlockList().splice(AfterCallBB->getIterator(),
+ Caller->getBasicBlockList(), FirstNewBlock,
+ Caller->end());
+
+ // Handle all of the return instructions that we just cloned in, and eliminate
+ // any users of the original call/invoke instruction.
+ Type *RTy = CalledFunc->getReturnType();
+
+ PHINode *PHI = nullptr;
+ if (Returns.size() > 1) {
+ // The PHI node should go at the front of the new basic block to merge all
+ // possible incoming values.
+ if (!TheCall->use_empty()) {
+ PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(),
+ &AfterCallBB->front());
+ // Anything that used the result of the function call should now use the
+ // PHI node as their operand.
+ TheCall->replaceAllUsesWith(PHI);
+ }
+
+ // Loop over all of the return instructions adding entries to the PHI node
+ // as appropriate.
+ if (PHI) {
+ for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
+ ReturnInst *RI = Returns[i];
+ assert(RI->getReturnValue()->getType() == PHI->getType() &&
+ "Ret value not consistent in function!");
+ PHI->addIncoming(RI->getReturnValue(), RI->getParent());
+ }
+ }
+
+ // Add a branch to the merge points and remove return instructions.
+ DebugLoc Loc;
+ for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
+ ReturnInst *RI = Returns[i];
+ BranchInst* BI = BranchInst::Create(AfterCallBB, RI);
+ Loc = RI->getDebugLoc();
+ BI->setDebugLoc(Loc);
+ RI->eraseFromParent();
+ }
+ // We need to set the debug location to *somewhere* inside the
+ // inlined function. The line number may be nonsensical, but the
+ // instruction will at least be associated with the right
+ // function.
+ if (CreatedBranchToNormalDest)
+ CreatedBranchToNormalDest->setDebugLoc(Loc);
+ } else if (!Returns.empty()) {
+ // Otherwise, if there is exactly one return value, just replace anything
+ // using the return value of the call with the computed value.
+ if (!TheCall->use_empty()) {
+ if (TheCall == Returns[0]->getReturnValue())
+ TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
+ else
+ TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
+ }
+
+ // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
+ BasicBlock *ReturnBB = Returns[0]->getParent();
+ ReturnBB->replaceAllUsesWith(AfterCallBB);
+
+ // Splice the code from the return block into the block that it will return
+ // to, which contains the code that was after the call.
+ AfterCallBB->getInstList().splice(AfterCallBB->begin(),
+ ReturnBB->getInstList());
+
+ if (CreatedBranchToNormalDest)
+ CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc());
+
+ // Delete the return instruction now and empty ReturnBB now.
+ Returns[0]->eraseFromParent();
+ ReturnBB->eraseFromParent();
+ } else if (!TheCall->use_empty()) {
+ // No returns, but something is using the return value of the call. Just
+ // nuke the result.
+ TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
+ }
+
+ // Since we are now done with the Call/Invoke, we can delete it.
+ TheCall->eraseFromParent();
+
+ // If we inlined any musttail calls and the original return is now
+ // unreachable, delete it. It can only contain a bitcast and ret.
+ if (InlinedMustTailCalls && pred_begin(AfterCallBB) == pred_end(AfterCallBB))
+ AfterCallBB->eraseFromParent();
+
+ // We should always be able to fold the entry block of the function into the
+ // single predecessor of the block...
+ assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
+ BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
+
+ // Splice the code entry block into calling block, right before the
+ // unconditional branch.
+ CalleeEntry->replaceAllUsesWith(OrigBB); // Update PHI nodes
+ OrigBB->getInstList().splice(Br->getIterator(), CalleeEntry->getInstList());
+
+ // Remove the unconditional branch.
+ OrigBB->getInstList().erase(Br);
+
+ // Now we can remove the CalleeEntry block, which is now empty.
+ Caller->getBasicBlockList().erase(CalleeEntry);
+
+ // If we inserted a phi node, check to see if it has a single value (e.g. all
+ // the entries are the same or undef). If so, remove the PHI so it doesn't
+ // block other optimizations.
+ if (PHI) {
+ AssumptionCache *AC =
+ IFI.GetAssumptionCache ? &(*IFI.GetAssumptionCache)(*Caller) : nullptr;
+ auto &DL = Caller->getParent()->getDataLayout();
+ if (Value *V = SimplifyInstruction(PHI, {DL, nullptr, nullptr, AC})) {
+ PHI->replaceAllUsesWith(V);
+ PHI->eraseFromParent();
+ }
+ }
+
+ return true;
+}