aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp35
1 files changed, 32 insertions, 3 deletions
diff --git a/contrib/llvm-project/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp b/contrib/llvm-project/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp
index 3290439ecd07..21c16f07e237 100644
--- a/contrib/llvm-project/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp
+++ b/contrib/llvm-project/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp
@@ -1701,6 +1701,11 @@ public:
private:
unsigned NumPredStores = 0;
+ /// Convenience function that returns the value of vscale_range iff
+ /// vscale_range.min == vscale_range.max or otherwise returns the value
+ /// returned by the corresponding TLI method.
+ Optional<unsigned> getVScaleForTuning() const;
+
/// \return An upper bound for the vectorization factors for both
/// fixed and scalable vectorization, where the minimum-known number of
/// elements is a power-of-2 larger than zero. If scalable vectorization is
@@ -5600,6 +5605,18 @@ ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget(
return MaxVF;
}
+Optional<unsigned> LoopVectorizationCostModel::getVScaleForTuning() const {
+ if (TheFunction->hasFnAttribute(Attribute::VScaleRange)) {
+ auto Attr = TheFunction->getFnAttribute(Attribute::VScaleRange);
+ auto Min = Attr.getVScaleRangeMin();
+ auto Max = Attr.getVScaleRangeMax();
+ if (Max && Min == Max)
+ return Max;
+ }
+
+ return TTI.getVScaleForTuning();
+}
+
bool LoopVectorizationCostModel::isMoreProfitable(
const VectorizationFactor &A, const VectorizationFactor &B) const {
InstructionCost CostA = A.Cost;
@@ -5624,7 +5641,7 @@ bool LoopVectorizationCostModel::isMoreProfitable(
// Improve estimate for the vector width if it is scalable.
unsigned EstimatedWidthA = A.Width.getKnownMinValue();
unsigned EstimatedWidthB = B.Width.getKnownMinValue();
- if (Optional<unsigned> VScale = TTI.getVScaleForTuning()) {
+ if (Optional<unsigned> VScale = getVScaleForTuning()) {
if (A.Width.isScalable())
EstimatedWidthA *= VScale.getValue();
if (B.Width.isScalable())
@@ -5673,7 +5690,7 @@ VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor(
#ifndef NDEBUG
unsigned AssumedMinimumVscale = 1;
- if (Optional<unsigned> VScale = TTI.getVScaleForTuning())
+ if (Optional<unsigned> VScale = getVScaleForTuning())
AssumedMinimumVscale = VScale.getValue();
unsigned Width =
Candidate.Width.isScalable()
@@ -5885,8 +5902,20 @@ LoopVectorizationCostModel::selectEpilogueVectorizationFactor(
return Result;
}
+ // If MainLoopVF = vscale x 2, and vscale is expected to be 4, then we know
+ // the main loop handles 8 lanes per iteration. We could still benefit from
+ // vectorizing the epilogue loop with VF=4.
+ ElementCount EstimatedRuntimeVF = MainLoopVF;
+ if (MainLoopVF.isScalable()) {
+ EstimatedRuntimeVF = ElementCount::getFixed(MainLoopVF.getKnownMinValue());
+ if (Optional<unsigned> VScale = getVScaleForTuning())
+ EstimatedRuntimeVF *= VScale.getValue();
+ }
+
for (auto &NextVF : ProfitableVFs)
- if (ElementCount::isKnownLT(NextVF.Width, MainLoopVF) &&
+ if (((!NextVF.Width.isScalable() && MainLoopVF.isScalable() &&
+ ElementCount::isKnownLT(NextVF.Width, EstimatedRuntimeVF)) ||
+ ElementCount::isKnownLT(NextVF.Width, MainLoopVF)) &&
(Result.Width.isScalar() || isMoreProfitable(NextVF, Result)) &&
LVP.hasPlanWithVF(NextVF.Width))
Result = NextVF;