aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm/include/llvm/CodeGen/TargetRegisterInfo.h
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/include/llvm/CodeGen/TargetRegisterInfo.h')
-rw-r--r--contrib/llvm/include/llvm/CodeGen/TargetRegisterInfo.h1177
1 files changed, 1177 insertions, 0 deletions
diff --git a/contrib/llvm/include/llvm/CodeGen/TargetRegisterInfo.h b/contrib/llvm/include/llvm/CodeGen/TargetRegisterInfo.h
new file mode 100644
index 000000000000..81907538fb0b
--- /dev/null
+++ b/contrib/llvm/include/llvm/CodeGen/TargetRegisterInfo.h
@@ -0,0 +1,1177 @@
+//==- CodeGen/TargetRegisterInfo.h - Target Register Information -*- C++ -*-==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file describes an abstract interface used to get information about a
+// target machines register file. This information is used for a variety of
+// purposed, especially register allocation.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CODEGEN_TARGETREGISTERINFO_H
+#define LLVM_CODEGEN_TARGETREGISTERINFO_H
+
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/ADT/iterator_range.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/CodeGen/MachineValueType.h"
+#include "llvm/IR/CallingConv.h"
+#include "llvm/MC/LaneBitmask.h"
+#include "llvm/MC/MCRegisterInfo.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/Printable.h"
+#include <cassert>
+#include <cstdint>
+#include <functional>
+
+namespace llvm {
+
+class BitVector;
+class LiveRegMatrix;
+class MachineFunction;
+class MachineInstr;
+class RegScavenger;
+class VirtRegMap;
+class LiveIntervals;
+
+class TargetRegisterClass {
+public:
+ using iterator = const MCPhysReg *;
+ using const_iterator = const MCPhysReg *;
+ using sc_iterator = const TargetRegisterClass* const *;
+
+ // Instance variables filled by tablegen, do not use!
+ const MCRegisterClass *MC;
+ const uint32_t *SubClassMask;
+ const uint16_t *SuperRegIndices;
+ const LaneBitmask LaneMask;
+ /// Classes with a higher priority value are assigned first by register
+ /// allocators using a greedy heuristic. The value is in the range [0,63].
+ const uint8_t AllocationPriority;
+ /// Whether the class supports two (or more) disjunct subregister indices.
+ const bool HasDisjunctSubRegs;
+ /// Whether a combination of subregisters can cover every register in the
+ /// class. See also the CoveredBySubRegs description in Target.td.
+ const bool CoveredBySubRegs;
+ const sc_iterator SuperClasses;
+ ArrayRef<MCPhysReg> (*OrderFunc)(const MachineFunction&);
+
+ /// Return the register class ID number.
+ unsigned getID() const { return MC->getID(); }
+
+ /// begin/end - Return all of the registers in this class.
+ ///
+ iterator begin() const { return MC->begin(); }
+ iterator end() const { return MC->end(); }
+
+ /// Return the number of registers in this class.
+ unsigned getNumRegs() const { return MC->getNumRegs(); }
+
+ iterator_range<SmallVectorImpl<MCPhysReg>::const_iterator>
+ getRegisters() const {
+ return make_range(MC->begin(), MC->end());
+ }
+
+ /// Return the specified register in the class.
+ unsigned getRegister(unsigned i) const {
+ return MC->getRegister(i);
+ }
+
+ /// Return true if the specified register is included in this register class.
+ /// This does not include virtual registers.
+ bool contains(unsigned Reg) const {
+ return MC->contains(Reg);
+ }
+
+ /// Return true if both registers are in this class.
+ bool contains(unsigned Reg1, unsigned Reg2) const {
+ return MC->contains(Reg1, Reg2);
+ }
+
+ /// Return the cost of copying a value between two registers in this class.
+ /// A negative number means the register class is very expensive
+ /// to copy e.g. status flag register classes.
+ int getCopyCost() const { return MC->getCopyCost(); }
+
+ /// Return true if this register class may be used to create virtual
+ /// registers.
+ bool isAllocatable() const { return MC->isAllocatable(); }
+
+ /// Return true if the specified TargetRegisterClass
+ /// is a proper sub-class of this TargetRegisterClass.
+ bool hasSubClass(const TargetRegisterClass *RC) const {
+ return RC != this && hasSubClassEq(RC);
+ }
+
+ /// Returns true if RC is a sub-class of or equal to this class.
+ bool hasSubClassEq(const TargetRegisterClass *RC) const {
+ unsigned ID = RC->getID();
+ return (SubClassMask[ID / 32] >> (ID % 32)) & 1;
+ }
+
+ /// Return true if the specified TargetRegisterClass is a
+ /// proper super-class of this TargetRegisterClass.
+ bool hasSuperClass(const TargetRegisterClass *RC) const {
+ return RC->hasSubClass(this);
+ }
+
+ /// Returns true if RC is a super-class of or equal to this class.
+ bool hasSuperClassEq(const TargetRegisterClass *RC) const {
+ return RC->hasSubClassEq(this);
+ }
+
+ /// Returns a bit vector of subclasses, including this one.
+ /// The vector is indexed by class IDs.
+ ///
+ /// To use it, consider the returned array as a chunk of memory that
+ /// contains an array of bits of size NumRegClasses. Each 32-bit chunk
+ /// contains a bitset of the ID of the subclasses in big-endian style.
+
+ /// I.e., the representation of the memory from left to right at the
+ /// bit level looks like:
+ /// [31 30 ... 1 0] [ 63 62 ... 33 32] ...
+ /// [ XXX NumRegClasses NumRegClasses - 1 ... ]
+ /// Where the number represents the class ID and XXX bits that
+ /// should be ignored.
+ ///
+ /// See the implementation of hasSubClassEq for an example of how it
+ /// can be used.
+ const uint32_t *getSubClassMask() const {
+ return SubClassMask;
+ }
+
+ /// Returns a 0-terminated list of sub-register indices that project some
+ /// super-register class into this register class. The list has an entry for
+ /// each Idx such that:
+ ///
+ /// There exists SuperRC where:
+ /// For all Reg in SuperRC:
+ /// this->contains(Reg:Idx)
+ const uint16_t *getSuperRegIndices() const {
+ return SuperRegIndices;
+ }
+
+ /// Returns a NULL-terminated list of super-classes. The
+ /// classes are ordered by ID which is also a topological ordering from large
+ /// to small classes. The list does NOT include the current class.
+ sc_iterator getSuperClasses() const {
+ return SuperClasses;
+ }
+
+ /// Return true if this TargetRegisterClass is a subset
+ /// class of at least one other TargetRegisterClass.
+ bool isASubClass() const {
+ return SuperClasses[0] != nullptr;
+ }
+
+ /// Returns the preferred order for allocating registers from this register
+ /// class in MF. The raw order comes directly from the .td file and may
+ /// include reserved registers that are not allocatable.
+ /// Register allocators should also make sure to allocate
+ /// callee-saved registers only after all the volatiles are used. The
+ /// RegisterClassInfo class provides filtered allocation orders with
+ /// callee-saved registers moved to the end.
+ ///
+ /// The MachineFunction argument can be used to tune the allocatable
+ /// registers based on the characteristics of the function, subtarget, or
+ /// other criteria.
+ ///
+ /// By default, this method returns all registers in the class.
+ ArrayRef<MCPhysReg> getRawAllocationOrder(const MachineFunction &MF) const {
+ return OrderFunc ? OrderFunc(MF) : makeArrayRef(begin(), getNumRegs());
+ }
+
+ /// Returns the combination of all lane masks of register in this class.
+ /// The lane masks of the registers are the combination of all lane masks
+ /// of their subregisters. Returns 1 if there are no subregisters.
+ LaneBitmask getLaneMask() const {
+ return LaneMask;
+ }
+};
+
+/// Extra information, not in MCRegisterDesc, about registers.
+/// These are used by codegen, not by MC.
+struct TargetRegisterInfoDesc {
+ unsigned CostPerUse; // Extra cost of instructions using register.
+ bool inAllocatableClass; // Register belongs to an allocatable regclass.
+};
+
+/// Each TargetRegisterClass has a per register weight, and weight
+/// limit which must be less than the limits of its pressure sets.
+struct RegClassWeight {
+ unsigned RegWeight;
+ unsigned WeightLimit;
+};
+
+/// TargetRegisterInfo base class - We assume that the target defines a static
+/// array of TargetRegisterDesc objects that represent all of the machine
+/// registers that the target has. As such, we simply have to track a pointer
+/// to this array so that we can turn register number into a register
+/// descriptor.
+///
+class TargetRegisterInfo : public MCRegisterInfo {
+public:
+ using regclass_iterator = const TargetRegisterClass * const *;
+ using vt_iterator = const MVT::SimpleValueType *;
+ struct RegClassInfo {
+ unsigned RegSize, SpillSize, SpillAlignment;
+ vt_iterator VTList;
+ };
+private:
+ const TargetRegisterInfoDesc *InfoDesc; // Extra desc array for codegen
+ const char *const *SubRegIndexNames; // Names of subreg indexes.
+ // Pointer to array of lane masks, one per sub-reg index.
+ const LaneBitmask *SubRegIndexLaneMasks;
+
+ regclass_iterator RegClassBegin, RegClassEnd; // List of regclasses
+ LaneBitmask CoveringLanes;
+ const RegClassInfo *const RCInfos;
+ unsigned HwMode;
+
+protected:
+ TargetRegisterInfo(const TargetRegisterInfoDesc *ID,
+ regclass_iterator RegClassBegin,
+ regclass_iterator RegClassEnd,
+ const char *const *SRINames,
+ const LaneBitmask *SRILaneMasks,
+ LaneBitmask CoveringLanes,
+ const RegClassInfo *const RSI,
+ unsigned Mode = 0);
+ virtual ~TargetRegisterInfo();
+
+public:
+ // Register numbers can represent physical registers, virtual registers, and
+ // sometimes stack slots. The unsigned values are divided into these ranges:
+ //
+ // 0 Not a register, can be used as a sentinel.
+ // [1;2^30) Physical registers assigned by TableGen.
+ // [2^30;2^31) Stack slots. (Rarely used.)
+ // [2^31;2^32) Virtual registers assigned by MachineRegisterInfo.
+ //
+ // Further sentinels can be allocated from the small negative integers.
+ // DenseMapInfo<unsigned> uses -1u and -2u.
+
+ /// isStackSlot - Sometimes it is useful the be able to store a non-negative
+ /// frame index in a variable that normally holds a register. isStackSlot()
+ /// returns true if Reg is in the range used for stack slots.
+ ///
+ /// Note that isVirtualRegister() and isPhysicalRegister() cannot handle stack
+ /// slots, so if a variable may contains a stack slot, always check
+ /// isStackSlot() first.
+ ///
+ static bool isStackSlot(unsigned Reg) {
+ return int(Reg) >= (1 << 30);
+ }
+
+ /// Compute the frame index from a register value representing a stack slot.
+ static int stackSlot2Index(unsigned Reg) {
+ assert(isStackSlot(Reg) && "Not a stack slot");
+ return int(Reg - (1u << 30));
+ }
+
+ /// Convert a non-negative frame index to a stack slot register value.
+ static unsigned index2StackSlot(int FI) {
+ assert(FI >= 0 && "Cannot hold a negative frame index.");
+ return FI + (1u << 30);
+ }
+
+ /// Return true if the specified register number is in
+ /// the physical register namespace.
+ static bool isPhysicalRegister(unsigned Reg) {
+ assert(!isStackSlot(Reg) && "Not a register! Check isStackSlot() first.");
+ return int(Reg) > 0;
+ }
+
+ /// Return true if the specified register number is in
+ /// the virtual register namespace.
+ static bool isVirtualRegister(unsigned Reg) {
+ assert(!isStackSlot(Reg) && "Not a register! Check isStackSlot() first.");
+ return int(Reg) < 0;
+ }
+
+ /// Convert a virtual register number to a 0-based index.
+ /// The first virtual register in a function will get the index 0.
+ static unsigned virtReg2Index(unsigned Reg) {
+ assert(isVirtualRegister(Reg) && "Not a virtual register");
+ return Reg & ~(1u << 31);
+ }
+
+ /// Convert a 0-based index to a virtual register number.
+ /// This is the inverse operation of VirtReg2IndexFunctor below.
+ static unsigned index2VirtReg(unsigned Index) {
+ return Index | (1u << 31);
+ }
+
+ /// Return the size in bits of a register from class RC.
+ unsigned getRegSizeInBits(const TargetRegisterClass &RC) const {
+ return getRegClassInfo(RC).RegSize;
+ }
+
+ /// Return the size in bytes of the stack slot allocated to hold a spilled
+ /// copy of a register from class RC.
+ unsigned getSpillSize(const TargetRegisterClass &RC) const {
+ return getRegClassInfo(RC).SpillSize / 8;
+ }
+
+ /// Return the minimum required alignment in bytes for a spill slot for
+ /// a register of this class.
+ unsigned getSpillAlignment(const TargetRegisterClass &RC) const {
+ return getRegClassInfo(RC).SpillAlignment / 8;
+ }
+
+ /// Return true if the given TargetRegisterClass has the ValueType T.
+ bool isTypeLegalForClass(const TargetRegisterClass &RC, MVT T) const {
+ for (auto I = legalclasstypes_begin(RC); *I != MVT::Other; ++I)
+ if (MVT(*I) == T)
+ return true;
+ return false;
+ }
+
+ /// Loop over all of the value types that can be represented by values
+ /// in the given register class.
+ vt_iterator legalclasstypes_begin(const TargetRegisterClass &RC) const {
+ return getRegClassInfo(RC).VTList;
+ }
+
+ vt_iterator legalclasstypes_end(const TargetRegisterClass &RC) const {
+ vt_iterator I = legalclasstypes_begin(RC);
+ while (*I != MVT::Other)
+ ++I;
+ return I;
+ }
+
+ /// Returns the Register Class of a physical register of the given type,
+ /// picking the most sub register class of the right type that contains this
+ /// physreg.
+ const TargetRegisterClass *
+ getMinimalPhysRegClass(unsigned Reg, MVT VT = MVT::Other) const;
+
+ /// Return the maximal subclass of the given register class that is
+ /// allocatable or NULL.
+ const TargetRegisterClass *
+ getAllocatableClass(const TargetRegisterClass *RC) const;
+
+ /// Returns a bitset indexed by register number indicating if a register is
+ /// allocatable or not. If a register class is specified, returns the subset
+ /// for the class.
+ BitVector getAllocatableSet(const MachineFunction &MF,
+ const TargetRegisterClass *RC = nullptr) const;
+
+ /// Return the additional cost of using this register instead
+ /// of other registers in its class.
+ unsigned getCostPerUse(unsigned RegNo) const {
+ return InfoDesc[RegNo].CostPerUse;
+ }
+
+ /// Return true if the register is in the allocation of any register class.
+ bool isInAllocatableClass(unsigned RegNo) const {
+ return InfoDesc[RegNo].inAllocatableClass;
+ }
+
+ /// Return the human-readable symbolic target-specific
+ /// name for the specified SubRegIndex.
+ const char *getSubRegIndexName(unsigned SubIdx) const {
+ assert(SubIdx && SubIdx < getNumSubRegIndices() &&
+ "This is not a subregister index");
+ return SubRegIndexNames[SubIdx-1];
+ }
+
+ /// Return a bitmask representing the parts of a register that are covered by
+ /// SubIdx \see LaneBitmask.
+ ///
+ /// SubIdx == 0 is allowed, it has the lane mask ~0u.
+ LaneBitmask getSubRegIndexLaneMask(unsigned SubIdx) const {
+ assert(SubIdx < getNumSubRegIndices() && "This is not a subregister index");
+ return SubRegIndexLaneMasks[SubIdx];
+ }
+
+ /// The lane masks returned by getSubRegIndexLaneMask() above can only be
+ /// used to determine if sub-registers overlap - they can't be used to
+ /// determine if a set of sub-registers completely cover another
+ /// sub-register.
+ ///
+ /// The X86 general purpose registers have two lanes corresponding to the
+ /// sub_8bit and sub_8bit_hi sub-registers. Both sub_32bit and sub_16bit have
+ /// lane masks '3', but the sub_16bit sub-register doesn't fully cover the
+ /// sub_32bit sub-register.
+ ///
+ /// On the other hand, the ARM NEON lanes fully cover their registers: The
+ /// dsub_0 sub-register is completely covered by the ssub_0 and ssub_1 lanes.
+ /// This is related to the CoveredBySubRegs property on register definitions.
+ ///
+ /// This function returns a bit mask of lanes that completely cover their
+ /// sub-registers. More precisely, given:
+ ///
+ /// Covering = getCoveringLanes();
+ /// MaskA = getSubRegIndexLaneMask(SubA);
+ /// MaskB = getSubRegIndexLaneMask(SubB);
+ ///
+ /// If (MaskA & ~(MaskB & Covering)) == 0, then SubA is completely covered by
+ /// SubB.
+ LaneBitmask getCoveringLanes() const { return CoveringLanes; }
+
+ /// Returns true if the two registers are equal or alias each other.
+ /// The registers may be virtual registers.
+ bool regsOverlap(unsigned regA, unsigned regB) const {
+ if (regA == regB) return true;
+ if (isVirtualRegister(regA) || isVirtualRegister(regB))
+ return false;
+
+ // Regunits are numerically ordered. Find a common unit.
+ MCRegUnitIterator RUA(regA, this);
+ MCRegUnitIterator RUB(regB, this);
+ do {
+ if (*RUA == *RUB) return true;
+ if (*RUA < *RUB) ++RUA;
+ else ++RUB;
+ } while (RUA.isValid() && RUB.isValid());
+ return false;
+ }
+
+ /// Returns true if Reg contains RegUnit.
+ bool hasRegUnit(unsigned Reg, unsigned RegUnit) const {
+ for (MCRegUnitIterator Units(Reg, this); Units.isValid(); ++Units)
+ if (*Units == RegUnit)
+ return true;
+ return false;
+ }
+
+ /// Return a null-terminated list of all of the callee-saved registers on
+ /// this target. The register should be in the order of desired callee-save
+ /// stack frame offset. The first register is closest to the incoming stack
+ /// pointer if stack grows down, and vice versa.
+ /// Notice: This function does not take into account disabled CSRs.
+ /// In most cases you will want to use instead the function
+ /// getCalleeSavedRegs that is implemented in MachineRegisterInfo.
+ virtual const MCPhysReg*
+ getCalleeSavedRegs(const MachineFunction *MF) const = 0;
+
+ /// Return a mask of call-preserved registers for the given calling convention
+ /// on the current function. The mask should include all call-preserved
+ /// aliases. This is used by the register allocator to determine which
+ /// registers can be live across a call.
+ ///
+ /// The mask is an array containing (TRI::getNumRegs()+31)/32 entries.
+ /// A set bit indicates that all bits of the corresponding register are
+ /// preserved across the function call. The bit mask is expected to be
+ /// sub-register complete, i.e. if A is preserved, so are all its
+ /// sub-registers.
+ ///
+ /// Bits are numbered from the LSB, so the bit for physical register Reg can
+ /// be found as (Mask[Reg / 32] >> Reg % 32) & 1.
+ ///
+ /// A NULL pointer means that no register mask will be used, and call
+ /// instructions should use implicit-def operands to indicate call clobbered
+ /// registers.
+ ///
+ virtual const uint32_t *getCallPreservedMask(const MachineFunction &MF,
+ CallingConv::ID) const {
+ // The default mask clobbers everything. All targets should override.
+ return nullptr;
+ }
+
+ /// Return a register mask that clobbers everything.
+ virtual const uint32_t *getNoPreservedMask() const {
+ llvm_unreachable("target does not provide no preserved mask");
+ }
+
+ /// Return true if all bits that are set in mask \p mask0 are also set in
+ /// \p mask1.
+ bool regmaskSubsetEqual(const uint32_t *mask0, const uint32_t *mask1) const;
+
+ /// Return all the call-preserved register masks defined for this target.
+ virtual ArrayRef<const uint32_t *> getRegMasks() const = 0;
+ virtual ArrayRef<const char *> getRegMaskNames() const = 0;
+
+ /// Returns a bitset indexed by physical register number indicating if a
+ /// register is a special register that has particular uses and should be
+ /// considered unavailable at all times, e.g. stack pointer, return address.
+ /// A reserved register:
+ /// - is not allocatable
+ /// - is considered always live
+ /// - is ignored by liveness tracking
+ /// It is often necessary to reserve the super registers of a reserved
+ /// register as well, to avoid them getting allocated indirectly. You may use
+ /// markSuperRegs() and checkAllSuperRegsMarked() in this case.
+ virtual BitVector getReservedRegs(const MachineFunction &MF) const = 0;
+
+ /// Returns true if PhysReg is unallocatable and constant throughout the
+ /// function. Used by MachineRegisterInfo::isConstantPhysReg().
+ virtual bool isConstantPhysReg(unsigned PhysReg) const { return false; }
+
+ /// Physical registers that may be modified within a function but are
+ /// guaranteed to be restored before any uses. This is useful for targets that
+ /// have call sequences where a GOT register may be updated by the caller
+ /// prior to a call and is guaranteed to be restored (also by the caller)
+ /// after the call.
+ virtual bool isCallerPreservedPhysReg(unsigned PhysReg,
+ const MachineFunction &MF) const {
+ return false;
+ }
+
+ /// Prior to adding the live-out mask to a stackmap or patchpoint
+ /// instruction, provide the target the opportunity to adjust it (mainly to
+ /// remove pseudo-registers that should be ignored).
+ virtual void adjustStackMapLiveOutMask(uint32_t *Mask) const {}
+
+ /// Return a super-register of the specified register
+ /// Reg so its sub-register of index SubIdx is Reg.
+ unsigned getMatchingSuperReg(unsigned Reg, unsigned SubIdx,
+ const TargetRegisterClass *RC) const {
+ return MCRegisterInfo::getMatchingSuperReg(Reg, SubIdx, RC->MC);
+ }
+
+ /// Return a subclass of the specified register
+ /// class A so that each register in it has a sub-register of the
+ /// specified sub-register index which is in the specified register class B.
+ ///
+ /// TableGen will synthesize missing A sub-classes.
+ virtual const TargetRegisterClass *
+ getMatchingSuperRegClass(const TargetRegisterClass *A,
+ const TargetRegisterClass *B, unsigned Idx) const;
+
+ // For a copy-like instruction that defines a register of class DefRC with
+ // subreg index DefSubReg, reading from another source with class SrcRC and
+ // subregister SrcSubReg return true if this is a preferable copy
+ // instruction or an earlier use should be used.
+ virtual bool shouldRewriteCopySrc(const TargetRegisterClass *DefRC,
+ unsigned DefSubReg,
+ const TargetRegisterClass *SrcRC,
+ unsigned SrcSubReg) const;
+
+ /// Returns the largest legal sub-class of RC that
+ /// supports the sub-register index Idx.
+ /// If no such sub-class exists, return NULL.
+ /// If all registers in RC already have an Idx sub-register, return RC.
+ ///
+ /// TableGen generates a version of this function that is good enough in most
+ /// cases. Targets can override if they have constraints that TableGen
+ /// doesn't understand. For example, the x86 sub_8bit sub-register index is
+ /// supported by the full GR32 register class in 64-bit mode, but only by the
+ /// GR32_ABCD regiister class in 32-bit mode.
+ ///
+ /// TableGen will synthesize missing RC sub-classes.
+ virtual const TargetRegisterClass *
+ getSubClassWithSubReg(const TargetRegisterClass *RC, unsigned Idx) const {
+ assert(Idx == 0 && "Target has no sub-registers");
+ return RC;
+ }
+
+ /// Return the subregister index you get from composing
+ /// two subregister indices.
+ ///
+ /// The special null sub-register index composes as the identity.
+ ///
+ /// If R:a:b is the same register as R:c, then composeSubRegIndices(a, b)
+ /// returns c. Note that composeSubRegIndices does not tell you about illegal
+ /// compositions. If R does not have a subreg a, or R:a does not have a subreg
+ /// b, composeSubRegIndices doesn't tell you.
+ ///
+ /// The ARM register Q0 has two D subregs dsub_0:D0 and dsub_1:D1. It also has
+ /// ssub_0:S0 - ssub_3:S3 subregs.
+ /// If you compose subreg indices dsub_1, ssub_0 you get ssub_2.
+ unsigned composeSubRegIndices(unsigned a, unsigned b) const {
+ if (!a) return b;
+ if (!b) return a;
+ return composeSubRegIndicesImpl(a, b);
+ }
+
+ /// Transforms a LaneMask computed for one subregister to the lanemask that
+ /// would have been computed when composing the subsubregisters with IdxA
+ /// first. @sa composeSubRegIndices()
+ LaneBitmask composeSubRegIndexLaneMask(unsigned IdxA,
+ LaneBitmask Mask) const {
+ if (!IdxA)
+ return Mask;
+ return composeSubRegIndexLaneMaskImpl(IdxA, Mask);
+ }
+
+ /// Transform a lanemask given for a virtual register to the corresponding
+ /// lanemask before using subregister with index \p IdxA.
+ /// This is the reverse of composeSubRegIndexLaneMask(), assuming Mask is a
+ /// valie lane mask (no invalid bits set) the following holds:
+ /// X0 = composeSubRegIndexLaneMask(Idx, Mask)
+ /// X1 = reverseComposeSubRegIndexLaneMask(Idx, X0)
+ /// => X1 == Mask
+ LaneBitmask reverseComposeSubRegIndexLaneMask(unsigned IdxA,
+ LaneBitmask LaneMask) const {
+ if (!IdxA)
+ return LaneMask;
+ return reverseComposeSubRegIndexLaneMaskImpl(IdxA, LaneMask);
+ }
+
+ /// Debugging helper: dump register in human readable form to dbgs() stream.
+ static void dumpReg(unsigned Reg, unsigned SubRegIndex = 0,
+ const TargetRegisterInfo* TRI = nullptr);
+
+protected:
+ /// Overridden by TableGen in targets that have sub-registers.
+ virtual unsigned composeSubRegIndicesImpl(unsigned, unsigned) const {
+ llvm_unreachable("Target has no sub-registers");
+ }
+
+ /// Overridden by TableGen in targets that have sub-registers.
+ virtual LaneBitmask
+ composeSubRegIndexLaneMaskImpl(unsigned, LaneBitmask) const {
+ llvm_unreachable("Target has no sub-registers");
+ }
+
+ virtual LaneBitmask reverseComposeSubRegIndexLaneMaskImpl(unsigned,
+ LaneBitmask) const {
+ llvm_unreachable("Target has no sub-registers");
+ }
+
+public:
+ /// Find a common super-register class if it exists.
+ ///
+ /// Find a register class, SuperRC and two sub-register indices, PreA and
+ /// PreB, such that:
+ ///
+ /// 1. PreA + SubA == PreB + SubB (using composeSubRegIndices()), and
+ ///
+ /// 2. For all Reg in SuperRC: Reg:PreA in RCA and Reg:PreB in RCB, and
+ ///
+ /// 3. SuperRC->getSize() >= max(RCA->getSize(), RCB->getSize()).
+ ///
+ /// SuperRC will be chosen such that no super-class of SuperRC satisfies the
+ /// requirements, and there is no register class with a smaller spill size
+ /// that satisfies the requirements.
+ ///
+ /// SubA and SubB must not be 0. Use getMatchingSuperRegClass() instead.
+ ///
+ /// Either of the PreA and PreB sub-register indices may be returned as 0. In
+ /// that case, the returned register class will be a sub-class of the
+ /// corresponding argument register class.
+ ///
+ /// The function returns NULL if no register class can be found.
+ const TargetRegisterClass*
+ getCommonSuperRegClass(const TargetRegisterClass *RCA, unsigned SubA,
+ const TargetRegisterClass *RCB, unsigned SubB,
+ unsigned &PreA, unsigned &PreB) const;
+
+ //===--------------------------------------------------------------------===//
+ // Register Class Information
+ //
+protected:
+ const RegClassInfo &getRegClassInfo(const TargetRegisterClass &RC) const {
+ return RCInfos[getNumRegClasses() * HwMode + RC.getID()];
+ }
+
+public:
+ /// Register class iterators
+ regclass_iterator regclass_begin() const { return RegClassBegin; }
+ regclass_iterator regclass_end() const { return RegClassEnd; }
+ iterator_range<regclass_iterator> regclasses() const {
+ return make_range(regclass_begin(), regclass_end());
+ }
+
+ unsigned getNumRegClasses() const {
+ return (unsigned)(regclass_end()-regclass_begin());
+ }
+
+ /// Returns the register class associated with the enumeration value.
+ /// See class MCOperandInfo.
+ const TargetRegisterClass *getRegClass(unsigned i) const {
+ assert(i < getNumRegClasses() && "Register Class ID out of range");
+ return RegClassBegin[i];
+ }
+
+ /// Returns the name of the register class.
+ const char *getRegClassName(const TargetRegisterClass *Class) const {
+ return MCRegisterInfo::getRegClassName(Class->MC);
+ }
+
+ /// Find the largest common subclass of A and B.
+ /// Return NULL if there is no common subclass.
+ /// The common subclass should contain
+ /// simple value type SVT if it is not the Any type.
+ const TargetRegisterClass *
+ getCommonSubClass(const TargetRegisterClass *A,
+ const TargetRegisterClass *B,
+ const MVT::SimpleValueType SVT =
+ MVT::SimpleValueType::Any) const;
+
+ /// Returns a TargetRegisterClass used for pointer values.
+ /// If a target supports multiple different pointer register classes,
+ /// kind specifies which one is indicated.
+ virtual const TargetRegisterClass *
+ getPointerRegClass(const MachineFunction &MF, unsigned Kind=0) const {
+ llvm_unreachable("Target didn't implement getPointerRegClass!");
+ }
+
+ /// Returns a legal register class to copy a register in the specified class
+ /// to or from. If it is possible to copy the register directly without using
+ /// a cross register class copy, return the specified RC. Returns NULL if it
+ /// is not possible to copy between two registers of the specified class.
+ virtual const TargetRegisterClass *
+ getCrossCopyRegClass(const TargetRegisterClass *RC) const {
+ return RC;
+ }
+
+ /// Returns the largest super class of RC that is legal to use in the current
+ /// sub-target and has the same spill size.
+ /// The returned register class can be used to create virtual registers which
+ /// means that all its registers can be copied and spilled.
+ virtual const TargetRegisterClass *
+ getLargestLegalSuperClass(const TargetRegisterClass *RC,
+ const MachineFunction &) const {
+ /// The default implementation is very conservative and doesn't allow the
+ /// register allocator to inflate register classes.
+ return RC;
+ }
+
+ /// Return the register pressure "high water mark" for the specific register
+ /// class. The scheduler is in high register pressure mode (for the specific
+ /// register class) if it goes over the limit.
+ ///
+ /// Note: this is the old register pressure model that relies on a manually
+ /// specified representative register class per value type.
+ virtual unsigned getRegPressureLimit(const TargetRegisterClass *RC,
+ MachineFunction &MF) const {
+ return 0;
+ }
+
+ /// Return a heuristic for the machine scheduler to compare the profitability
+ /// of increasing one register pressure set versus another. The scheduler
+ /// will prefer increasing the register pressure of the set which returns
+ /// the largest value for this function.
+ virtual unsigned getRegPressureSetScore(const MachineFunction &MF,
+ unsigned PSetID) const {
+ return PSetID;
+ }
+
+ /// Get the weight in units of pressure for this register class.
+ virtual const RegClassWeight &getRegClassWeight(
+ const TargetRegisterClass *RC) const = 0;
+
+ /// Get the weight in units of pressure for this register unit.
+ virtual unsigned getRegUnitWeight(unsigned RegUnit) const = 0;
+
+ /// Get the number of dimensions of register pressure.
+ virtual unsigned getNumRegPressureSets() const = 0;
+
+ /// Get the name of this register unit pressure set.
+ virtual const char *getRegPressureSetName(unsigned Idx) const = 0;
+
+ /// Get the register unit pressure limit for this dimension.
+ /// This limit must be adjusted dynamically for reserved registers.
+ virtual unsigned getRegPressureSetLimit(const MachineFunction &MF,
+ unsigned Idx) const = 0;
+
+ /// Get the dimensions of register pressure impacted by this register class.
+ /// Returns a -1 terminated array of pressure set IDs.
+ virtual const int *getRegClassPressureSets(
+ const TargetRegisterClass *RC) const = 0;
+
+ /// Get the dimensions of register pressure impacted by this register unit.
+ /// Returns a -1 terminated array of pressure set IDs.
+ virtual const int *getRegUnitPressureSets(unsigned RegUnit) const = 0;
+
+ /// Get a list of 'hint' registers that the register allocator should try
+ /// first when allocating a physical register for the virtual register
+ /// VirtReg. These registers are effectively moved to the front of the
+ /// allocation order. If true is returned, regalloc will try to only use
+ /// hints to the greatest extent possible even if it means spilling.
+ ///
+ /// The Order argument is the allocation order for VirtReg's register class
+ /// as returned from RegisterClassInfo::getOrder(). The hint registers must
+ /// come from Order, and they must not be reserved.
+ ///
+ /// The default implementation of this function will only add target
+ /// independent register allocation hints. Targets that override this
+ /// function should typically call this default implementation as well and
+ /// expect to see generic copy hints added.
+ virtual bool getRegAllocationHints(unsigned VirtReg,
+ ArrayRef<MCPhysReg> Order,
+ SmallVectorImpl<MCPhysReg> &Hints,
+ const MachineFunction &MF,
+ const VirtRegMap *VRM = nullptr,
+ const LiveRegMatrix *Matrix = nullptr)
+ const;
+
+ /// A callback to allow target a chance to update register allocation hints
+ /// when a register is "changed" (e.g. coalesced) to another register.
+ /// e.g. On ARM, some virtual registers should target register pairs,
+ /// if one of pair is coalesced to another register, the allocation hint of
+ /// the other half of the pair should be changed to point to the new register.
+ virtual void updateRegAllocHint(unsigned Reg, unsigned NewReg,
+ MachineFunction &MF) const {
+ // Do nothing.
+ }
+
+ /// The creation of multiple copy hints have been implemented in
+ /// weightCalcHelper(), but since this affects so many tests for many
+ /// targets, this is temporarily disabled per default. THIS SHOULD BE
+ /// "GENERAL GOODNESS" and hopefully all targets will update their tests
+ /// and enable this soon. This hook should then be removed.
+ virtual bool enableMultipleCopyHints() const { return false; }
+
+ /// Allow the target to reverse allocation order of local live ranges. This
+ /// will generally allocate shorter local live ranges first. For targets with
+ /// many registers, this could reduce regalloc compile time by a large
+ /// factor. It is disabled by default for three reasons:
+ /// (1) Top-down allocation is simpler and easier to debug for targets that
+ /// don't benefit from reversing the order.
+ /// (2) Bottom-up allocation could result in poor evicition decisions on some
+ /// targets affecting the performance of compiled code.
+ /// (3) Bottom-up allocation is no longer guaranteed to optimally color.
+ virtual bool reverseLocalAssignment() const { return false; }
+
+ /// Allow the target to override the cost of using a callee-saved register for
+ /// the first time. Default value of 0 means we will use a callee-saved
+ /// register if it is available.
+ virtual unsigned getCSRFirstUseCost() const { return 0; }
+
+ /// Returns true if the target requires (and can make use of) the register
+ /// scavenger.
+ virtual bool requiresRegisterScavenging(const MachineFunction &MF) const {
+ return false;
+ }
+
+ /// Returns true if the target wants to use frame pointer based accesses to
+ /// spill to the scavenger emergency spill slot.
+ virtual bool useFPForScavengingIndex(const MachineFunction &MF) const {
+ return true;
+ }
+
+ /// Returns true if the target requires post PEI scavenging of registers for
+ /// materializing frame index constants.
+ virtual bool requiresFrameIndexScavenging(const MachineFunction &MF) const {
+ return false;
+ }
+
+ /// Returns true if the target requires using the RegScavenger directly for
+ /// frame elimination despite using requiresFrameIndexScavenging.
+ virtual bool requiresFrameIndexReplacementScavenging(
+ const MachineFunction &MF) const {
+ return false;
+ }
+
+ /// Returns true if the target wants the LocalStackAllocation pass to be run
+ /// and virtual base registers used for more efficient stack access.
+ virtual bool requiresVirtualBaseRegisters(const MachineFunction &MF) const {
+ return false;
+ }
+
+ /// Return true if target has reserved a spill slot in the stack frame of
+ /// the given function for the specified register. e.g. On x86, if the frame
+ /// register is required, the first fixed stack object is reserved as its
+ /// spill slot. This tells PEI not to create a new stack frame
+ /// object for the given register. It should be called only after
+ /// determineCalleeSaves().
+ virtual bool hasReservedSpillSlot(const MachineFunction &MF, unsigned Reg,
+ int &FrameIdx) const {
+ return false;
+ }
+
+ /// Returns true if the live-ins should be tracked after register allocation.
+ virtual bool trackLivenessAfterRegAlloc(const MachineFunction &MF) const {
+ return false;
+ }
+
+ /// True if the stack can be realigned for the target.
+ virtual bool canRealignStack(const MachineFunction &MF) const;
+
+ /// True if storage within the function requires the stack pointer to be
+ /// aligned more than the normal calling convention calls for.
+ /// This cannot be overriden by the target, but canRealignStack can be
+ /// overridden.
+ bool needsStackRealignment(const MachineFunction &MF) const;
+
+ /// Get the offset from the referenced frame index in the instruction,
+ /// if there is one.
+ virtual int64_t getFrameIndexInstrOffset(const MachineInstr *MI,
+ int Idx) const {
+ return 0;
+ }
+
+ /// Returns true if the instruction's frame index reference would be better
+ /// served by a base register other than FP or SP.
+ /// Used by LocalStackFrameAllocation to determine which frame index
+ /// references it should create new base registers for.
+ virtual bool needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const {
+ return false;
+ }
+
+ /// Insert defining instruction(s) for BaseReg to be a pointer to FrameIdx
+ /// before insertion point I.
+ virtual void materializeFrameBaseRegister(MachineBasicBlock *MBB,
+ unsigned BaseReg, int FrameIdx,
+ int64_t Offset) const {
+ llvm_unreachable("materializeFrameBaseRegister does not exist on this "
+ "target");
+ }
+
+ /// Resolve a frame index operand of an instruction
+ /// to reference the indicated base register plus offset instead.
+ virtual void resolveFrameIndex(MachineInstr &MI, unsigned BaseReg,
+ int64_t Offset) const {
+ llvm_unreachable("resolveFrameIndex does not exist on this target");
+ }
+
+ /// Determine whether a given base register plus offset immediate is
+ /// encodable to resolve a frame index.
+ virtual bool isFrameOffsetLegal(const MachineInstr *MI, unsigned BaseReg,
+ int64_t Offset) const {
+ llvm_unreachable("isFrameOffsetLegal does not exist on this target");
+ }
+
+ /// Spill the register so it can be used by the register scavenger.
+ /// Return true if the register was spilled, false otherwise.
+ /// If this function does not spill the register, the scavenger
+ /// will instead spill it to the emergency spill slot.
+ virtual bool saveScavengerRegister(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I,
+ MachineBasicBlock::iterator &UseMI,
+ const TargetRegisterClass *RC,
+ unsigned Reg) const {
+ return false;
+ }
+
+ /// This method must be overriden to eliminate abstract frame indices from
+ /// instructions which may use them. The instruction referenced by the
+ /// iterator contains an MO_FrameIndex operand which must be eliminated by
+ /// this method. This method may modify or replace the specified instruction,
+ /// as long as it keeps the iterator pointing at the finished product.
+ /// SPAdj is the SP adjustment due to call frame setup instruction.
+ /// FIOperandNum is the FI operand number.
+ virtual void eliminateFrameIndex(MachineBasicBlock::iterator MI,
+ int SPAdj, unsigned FIOperandNum,
+ RegScavenger *RS = nullptr) const = 0;
+
+ /// Return the assembly name for \p Reg.
+ virtual StringRef getRegAsmName(unsigned Reg) const {
+ // FIXME: We are assuming that the assembly name is equal to the TableGen
+ // name converted to lower case
+ //
+ // The TableGen name is the name of the definition for this register in the
+ // target's tablegen files. For example, the TableGen name of
+ // def EAX : Register <...>; is "EAX"
+ return StringRef(getName(Reg));
+ }
+
+ //===--------------------------------------------------------------------===//
+ /// Subtarget Hooks
+
+ /// \brief SrcRC and DstRC will be morphed into NewRC if this returns true.
+ virtual bool shouldCoalesce(MachineInstr *MI,
+ const TargetRegisterClass *SrcRC,
+ unsigned SubReg,
+ const TargetRegisterClass *DstRC,
+ unsigned DstSubReg,
+ const TargetRegisterClass *NewRC,
+ LiveIntervals &LIS) const
+ { return true; }
+
+ //===--------------------------------------------------------------------===//
+ /// Debug information queries.
+
+ /// getFrameRegister - This method should return the register used as a base
+ /// for values allocated in the current stack frame.
+ virtual unsigned getFrameRegister(const MachineFunction &MF) const = 0;
+
+ /// Mark a register and all its aliases as reserved in the given set.
+ void markSuperRegs(BitVector &RegisterSet, unsigned Reg) const;
+
+ /// Returns true if for every register in the set all super registers are part
+ /// of the set as well.
+ bool checkAllSuperRegsMarked(const BitVector &RegisterSet,
+ ArrayRef<MCPhysReg> Exceptions = ArrayRef<MCPhysReg>()) const;
+};
+
+//===----------------------------------------------------------------------===//
+// SuperRegClassIterator
+//===----------------------------------------------------------------------===//
+//
+// Iterate over the possible super-registers for a given register class. The
+// iterator will visit a list of pairs (Idx, Mask) corresponding to the
+// possible classes of super-registers.
+//
+// Each bit mask will have at least one set bit, and each set bit in Mask
+// corresponds to a SuperRC such that:
+//
+// For all Reg in SuperRC: Reg:Idx is in RC.
+//
+// The iterator can include (O, RC->getSubClassMask()) as the first entry which
+// also satisfies the above requirement, assuming Reg:0 == Reg.
+//
+class SuperRegClassIterator {
+ const unsigned RCMaskWords;
+ unsigned SubReg = 0;
+ const uint16_t *Idx;
+ const uint32_t *Mask;
+
+public:
+ /// Create a SuperRegClassIterator that visits all the super-register classes
+ /// of RC. When IncludeSelf is set, also include the (0, sub-classes) entry.
+ SuperRegClassIterator(const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI,
+ bool IncludeSelf = false)
+ : RCMaskWords((TRI->getNumRegClasses() + 31) / 32),
+ Idx(RC->getSuperRegIndices()), Mask(RC->getSubClassMask()) {
+ if (!IncludeSelf)
+ ++*this;
+ }
+
+ /// Returns true if this iterator is still pointing at a valid entry.
+ bool isValid() const { return Idx; }
+
+ /// Returns the current sub-register index.
+ unsigned getSubReg() const { return SubReg; }
+
+ /// Returns the bit mask of register classes that getSubReg() projects into
+ /// RC.
+ /// See TargetRegisterClass::getSubClassMask() for how to use it.
+ const uint32_t *getMask() const { return Mask; }
+
+ /// Advance iterator to the next entry.
+ void operator++() {
+ assert(isValid() && "Cannot move iterator past end.");
+ Mask += RCMaskWords;
+ SubReg = *Idx++;
+ if (!SubReg)
+ Idx = nullptr;
+ }
+};
+
+//===----------------------------------------------------------------------===//
+// BitMaskClassIterator
+//===----------------------------------------------------------------------===//
+/// This class encapuslates the logic to iterate over bitmask returned by
+/// the various RegClass related APIs.
+/// E.g., this class can be used to iterate over the subclasses provided by
+/// TargetRegisterClass::getSubClassMask or SuperRegClassIterator::getMask.
+class BitMaskClassIterator {
+ /// Total number of register classes.
+ const unsigned NumRegClasses;
+ /// Base index of CurrentChunk.
+ /// In other words, the number of bit we read to get at the
+ /// beginning of that chunck.
+ unsigned Base = 0;
+ /// Adjust base index of CurrentChunk.
+ /// Base index + how many bit we read within CurrentChunk.
+ unsigned Idx = 0;
+ /// Current register class ID.
+ unsigned ID = 0;
+ /// Mask we are iterating over.
+ const uint32_t *Mask;
+ /// Current chunk of the Mask we are traversing.
+ uint32_t CurrentChunk;
+
+ /// Move ID to the next set bit.
+ void moveToNextID() {
+ // If the current chunk of memory is empty, move to the next one,
+ // while making sure we do not go pass the number of register
+ // classes.
+ while (!CurrentChunk) {
+ // Move to the next chunk.
+ Base += 32;
+ if (Base >= NumRegClasses) {
+ ID = NumRegClasses;
+ return;
+ }
+ CurrentChunk = *++Mask;
+ Idx = Base;
+ }
+ // Otherwise look for the first bit set from the right
+ // (representation of the class ID is big endian).
+ // See getSubClassMask for more details on the representation.
+ unsigned Offset = countTrailingZeros(CurrentChunk);
+ // Add the Offset to the adjusted base number of this chunk: Idx.
+ // This is the ID of the register class.
+ ID = Idx + Offset;
+
+ // Consume the zeros, if any, and the bit we just read
+ // so that we are at the right spot for the next call.
+ // Do not do Offset + 1 because Offset may be 31 and 32
+ // will be UB for the shift, though in that case we could
+ // have make the chunk being equal to 0, but that would
+ // have introduced a if statement.
+ moveNBits(Offset);
+ moveNBits(1);
+ }
+
+ /// Move \p NumBits Bits forward in CurrentChunk.
+ void moveNBits(unsigned NumBits) {
+ assert(NumBits < 32 && "Undefined behavior spotted!");
+ // Consume the bit we read for the next call.
+ CurrentChunk >>= NumBits;
+ // Adjust the base for the chunk.
+ Idx += NumBits;
+ }
+
+public:
+ /// Create a BitMaskClassIterator that visits all the register classes
+ /// represented by \p Mask.
+ ///
+ /// \pre \p Mask != nullptr
+ BitMaskClassIterator(const uint32_t *Mask, const TargetRegisterInfo &TRI)
+ : NumRegClasses(TRI.getNumRegClasses()), Mask(Mask), CurrentChunk(*Mask) {
+ // Move to the first ID.
+ moveToNextID();
+ }
+
+ /// Returns true if this iterator is still pointing at a valid entry.
+ bool isValid() const { return getID() != NumRegClasses; }
+
+ /// Returns the current register class ID.
+ unsigned getID() const { return ID; }
+
+ /// Advance iterator to the next entry.
+ void operator++() {
+ assert(isValid() && "Cannot move iterator past end.");
+ moveToNextID();
+ }
+};
+
+// This is useful when building IndexedMaps keyed on virtual registers
+struct VirtReg2IndexFunctor {
+ using argument_type = unsigned;
+ unsigned operator()(unsigned Reg) const {
+ return TargetRegisterInfo::virtReg2Index(Reg);
+ }
+};
+
+/// Prints virtual and physical registers with or without a TRI instance.
+///
+/// The format is:
+/// %noreg - NoRegister
+/// %5 - a virtual register.
+/// %5:sub_8bit - a virtual register with sub-register index (with TRI).
+/// %eax - a physical register
+/// %physreg17 - a physical register when no TRI instance given.
+///
+/// Usage: OS << printReg(Reg, TRI, SubRegIdx) << '\n';
+Printable printReg(unsigned Reg, const TargetRegisterInfo *TRI = nullptr,
+ unsigned SubRegIdx = 0);
+
+/// Create Printable object to print register units on a \ref raw_ostream.
+///
+/// Register units are named after their root registers:
+///
+/// al - Single root.
+/// fp0~st7 - Dual roots.
+///
+/// Usage: OS << printRegUnit(Unit, TRI) << '\n';
+Printable printRegUnit(unsigned Unit, const TargetRegisterInfo *TRI);
+
+/// \brief Create Printable object to print virtual registers and physical
+/// registers on a \ref raw_ostream.
+Printable printVRegOrUnit(unsigned VRegOrUnit, const TargetRegisterInfo *TRI);
+
+/// \brief Create Printable object to print register classes or register banks
+/// on a \ref raw_ostream.
+Printable printRegClassOrBank(unsigned Reg, const MachineRegisterInfo &RegInfo,
+ const TargetRegisterInfo *TRI);
+
+} // end namespace llvm
+
+#endif // LLVM_CODEGEN_TARGETREGISTERINFO_H