diff options
Diffstat (limited to 'crypto/openssh/xmss_fast.c')
| -rw-r--r-- | crypto/openssh/xmss_fast.c | 1106 | 
1 files changed, 1106 insertions, 0 deletions
| diff --git a/crypto/openssh/xmss_fast.c b/crypto/openssh/xmss_fast.c new file mode 100644 index 000000000000..421b39a37a9e --- /dev/null +++ b/crypto/openssh/xmss_fast.c @@ -0,0 +1,1106 @@ +/* $OpenBSD: xmss_fast.c,v 1.3 2018/03/22 07:06:11 markus Exp $ */ +/* +xmss_fast.c version 20160722 +Andreas Hülsing +Joost Rijneveld +Public domain. +*/ + +#include "includes.h" +#ifdef WITH_XMSS + +#include <stdlib.h> +#include <string.h> +#ifdef HAVE_STDINT_H +# include <stdint.h> +#endif + +#include "xmss_fast.h" +#include "crypto_api.h" +#include "xmss_wots.h" +#include "xmss_hash.h" + +#include "xmss_commons.h" +#include "xmss_hash_address.h" +// For testing +#include "stdio.h" + + + +/** + * Used for pseudorandom keygeneration, + * generates the seed for the WOTS keypair at address addr + * + * takes n byte sk_seed and returns n byte seed using 32 byte address addr. + */ +static void get_seed(unsigned char *seed, const unsigned char *sk_seed, int n, uint32_t addr[8]) +{ +  unsigned char bytes[32]; +  // Make sure that chain addr, hash addr, and key bit are 0! +  setChainADRS(addr,0); +  setHashADRS(addr,0); +  setKeyAndMask(addr,0); +  // Generate pseudorandom value +  addr_to_byte(bytes, addr); +  prf(seed, bytes, sk_seed, n); +} + +/** + * Initialize xmss params struct + * parameter names are the same as in the draft + * parameter k is K as used in the BDS algorithm + */ +int xmss_set_params(xmss_params *params, int n, int h, int w, int k) +{ +  if (k >= h || k < 2 || (h - k) % 2) { +    fprintf(stderr, "For BDS traversal, H - K must be even, with H > K >= 2!\n"); +    return 1; +  } +  params->h = h; +  params->n = n; +  params->k = k; +  wots_params wots_par; +  wots_set_params(&wots_par, n, w); +  params->wots_par = wots_par; +  return 0; +} + +/** + * Initialize BDS state struct + * parameter names are the same as used in the description of the BDS traversal + */ +void xmss_set_bds_state(bds_state *state, unsigned char *stack, int stackoffset, unsigned char *stacklevels, unsigned char *auth, unsigned char *keep, treehash_inst *treehash, unsigned char *retain, int next_leaf) +{ +  state->stack = stack; +  state->stackoffset = stackoffset; +  state->stacklevels = stacklevels; +  state->auth = auth; +  state->keep = keep; +  state->treehash = treehash; +  state->retain = retain; +  state->next_leaf = next_leaf; +} + +/** + * Initialize xmssmt_params struct + * parameter names are the same as in the draft + * + * Especially h is the total tree height, i.e. the XMSS trees have height h/d + */ +int xmssmt_set_params(xmssmt_params *params, int n, int h, int d, int w, int k) +{ +  if (h % d) { +    fprintf(stderr, "d must divide h without remainder!\n"); +    return 1; +  } +  params->h = h; +  params->d = d; +  params->n = n; +  params->index_len = (h + 7) / 8; +  xmss_params xmss_par; +  if (xmss_set_params(&xmss_par, n, (h/d), w, k)) { +    return 1; +  } +  params->xmss_par = xmss_par; +  return 0; +} + +/** + * Computes a leaf from a WOTS public key using an L-tree. + */ +static void l_tree(unsigned char *leaf, unsigned char *wots_pk, const xmss_params *params, const unsigned char *pub_seed, uint32_t addr[8]) +{ +  unsigned int l = params->wots_par.len; +  unsigned int n = params->n; +  uint32_t i = 0; +  uint32_t height = 0; +  uint32_t bound; + +  //ADRS.setTreeHeight(0); +  setTreeHeight(addr, height); +   +  while (l > 1) { +     bound = l >> 1; //floor(l / 2); +     for (i = 0; i < bound; i++) { +       //ADRS.setTreeIndex(i); +       setTreeIndex(addr, i); +       //wots_pk[i] = RAND_HASH(pk[2i], pk[2i + 1], SEED, ADRS); +       hash_h(wots_pk+i*n, wots_pk+i*2*n, pub_seed, addr, n); +     } +     //if ( l % 2 == 1 ) { +     if (l & 1) { +       //pk[floor(l / 2) + 1] = pk[l]; +       memcpy(wots_pk+(l>>1)*n, wots_pk+(l-1)*n, n); +       //l = ceil(l / 2); +       l=(l>>1)+1; +     } +     else { +       //l = ceil(l / 2); +       l=(l>>1); +     } +     //ADRS.setTreeHeight(ADRS.getTreeHeight() + 1); +     height++; +     setTreeHeight(addr, height); +   } +   //return pk[0]; +   memcpy(leaf, wots_pk, n); +} + +/** + * Computes the leaf at a given address. First generates the WOTS key pair, then computes leaf using l_tree. As this happens position independent, we only require that addr encodes the right ltree-address. + */ +static void gen_leaf_wots(unsigned char *leaf, const unsigned char *sk_seed, const xmss_params *params, const unsigned char *pub_seed, uint32_t ltree_addr[8], uint32_t ots_addr[8]) +{ +  unsigned char seed[params->n]; +  unsigned char pk[params->wots_par.keysize]; + +  get_seed(seed, sk_seed, params->n, ots_addr); +  wots_pkgen(pk, seed, &(params->wots_par), pub_seed, ots_addr); + +  l_tree(leaf, pk, params, pub_seed, ltree_addr); +} + +static int treehash_minheight_on_stack(bds_state* state, const xmss_params *params, const treehash_inst *treehash) { +  unsigned int r = params->h, i; +  for (i = 0; i < treehash->stackusage; i++) { +    if (state->stacklevels[state->stackoffset - i - 1] < r) { +      r = state->stacklevels[state->stackoffset - i - 1]; +    } +  } +  return r; +} + +/** + * Merkle's TreeHash algorithm. The address only needs to initialize the first 78 bits of addr. Everything else will be set by treehash. + * Currently only used for key generation. + * + */ +static void treehash_setup(unsigned char *node, int height, int index, bds_state *state, const unsigned char *sk_seed, const xmss_params *params, const unsigned char *pub_seed, const uint32_t addr[8]) +{ +  unsigned int idx = index; +  unsigned int n = params->n; +  unsigned int h = params->h; +  unsigned int k = params->k; +  // use three different addresses because at this point we use all three formats in parallel +  uint32_t ots_addr[8]; +  uint32_t ltree_addr[8]; +  uint32_t  node_addr[8]; +  // only copy layer and tree address parts +  memcpy(ots_addr, addr, 12); +  // type = ots +  setType(ots_addr, 0); +  memcpy(ltree_addr, addr, 12); +  setType(ltree_addr, 1); +  memcpy(node_addr, addr, 12); +  setType(node_addr, 2); + +  uint32_t lastnode, i; +  unsigned char stack[(height+1)*n]; +  unsigned int stacklevels[height+1]; +  unsigned int stackoffset=0; +  unsigned int nodeh; + +  lastnode = idx+(1<<height); + +  for (i = 0; i < h-k; i++) { +    state->treehash[i].h = i; +    state->treehash[i].completed = 1; +    state->treehash[i].stackusage = 0; +  } + +  i = 0; +  for (; idx < lastnode; idx++) { +    setLtreeADRS(ltree_addr, idx); +    setOTSADRS(ots_addr, idx); +    gen_leaf_wots(stack+stackoffset*n, sk_seed, params, pub_seed, ltree_addr, ots_addr); +    stacklevels[stackoffset] = 0; +    stackoffset++; +    if (h - k > 0 && i == 3) { +      memcpy(state->treehash[0].node, stack+stackoffset*n, n); +    } +    while (stackoffset>1 && stacklevels[stackoffset-1] == stacklevels[stackoffset-2]) +    { +      nodeh = stacklevels[stackoffset-1]; +      if (i >> nodeh == 1) { +        memcpy(state->auth + nodeh*n, stack+(stackoffset-1)*n, n); +      } +      else { +        if (nodeh < h - k && i >> nodeh == 3) { +          memcpy(state->treehash[nodeh].node, stack+(stackoffset-1)*n, n); +        } +        else if (nodeh >= h - k) { +          memcpy(state->retain + ((1 << (h - 1 - nodeh)) + nodeh - h + (((i >> nodeh) - 3) >> 1)) * n, stack+(stackoffset-1)*n, n); +        } +      } +      setTreeHeight(node_addr, stacklevels[stackoffset-1]); +      setTreeIndex(node_addr, (idx >> (stacklevels[stackoffset-1]+1))); +      hash_h(stack+(stackoffset-2)*n, stack+(stackoffset-2)*n, pub_seed, +          node_addr, n); +      stacklevels[stackoffset-2]++; +      stackoffset--; +    } +    i++; +  } + +  for (i = 0; i < n; i++) +    node[i] = stack[i]; +} + +static void treehash_update(treehash_inst *treehash, bds_state *state, const unsigned char *sk_seed, const xmss_params *params, const unsigned char *pub_seed, const uint32_t addr[8]) { +  int n = params->n; + +  uint32_t ots_addr[8]; +  uint32_t ltree_addr[8]; +  uint32_t  node_addr[8]; +  // only copy layer and tree address parts +  memcpy(ots_addr, addr, 12); +  // type = ots +  setType(ots_addr, 0); +  memcpy(ltree_addr, addr, 12); +  setType(ltree_addr, 1); +  memcpy(node_addr, addr, 12); +  setType(node_addr, 2); + +  setLtreeADRS(ltree_addr, treehash->next_idx); +  setOTSADRS(ots_addr, treehash->next_idx); + +  unsigned char nodebuffer[2 * n]; +  unsigned int nodeheight = 0; +  gen_leaf_wots(nodebuffer, sk_seed, params, pub_seed, ltree_addr, ots_addr); +  while (treehash->stackusage > 0 && state->stacklevels[state->stackoffset-1] == nodeheight) { +    memcpy(nodebuffer + n, nodebuffer, n); +    memcpy(nodebuffer, state->stack + (state->stackoffset-1)*n, n); +    setTreeHeight(node_addr, nodeheight); +    setTreeIndex(node_addr, (treehash->next_idx >> (nodeheight+1))); +    hash_h(nodebuffer, nodebuffer, pub_seed, node_addr, n); +    nodeheight++; +    treehash->stackusage--; +    state->stackoffset--; +  } +  if (nodeheight == treehash->h) { // this also implies stackusage == 0 +    memcpy(treehash->node, nodebuffer, n); +    treehash->completed = 1; +  } +  else { +    memcpy(state->stack + state->stackoffset*n, nodebuffer, n); +    treehash->stackusage++; +    state->stacklevels[state->stackoffset] = nodeheight; +    state->stackoffset++; +    treehash->next_idx++; +  } +} + +/** + * Computes a root node given a leaf and an authapth + */ +static void validate_authpath(unsigned char *root, const unsigned char *leaf, unsigned long leafidx, const unsigned char *authpath, const xmss_params *params, const unsigned char *pub_seed, uint32_t addr[8]) +{ +  unsigned int n = params->n; + +  uint32_t i, j; +  unsigned char buffer[2*n]; + +  // If leafidx is odd (last bit = 1), current path element is a right child and authpath has to go to the left. +  // Otherwise, it is the other way around +  if (leafidx & 1) { +    for (j = 0; j < n; j++) +      buffer[n+j] = leaf[j]; +    for (j = 0; j < n; j++) +      buffer[j] = authpath[j]; +  } +  else { +    for (j = 0; j < n; j++) +      buffer[j] = leaf[j]; +    for (j = 0; j < n; j++) +      buffer[n+j] = authpath[j]; +  } +  authpath += n; + +  for (i=0; i < params->h-1; i++) { +    setTreeHeight(addr, i); +    leafidx >>= 1; +    setTreeIndex(addr, leafidx); +    if (leafidx&1) { +      hash_h(buffer+n, buffer, pub_seed, addr, n); +      for (j = 0; j < n; j++) +        buffer[j] = authpath[j]; +    } +    else { +      hash_h(buffer, buffer, pub_seed, addr, n); +      for (j = 0; j < n; j++) +        buffer[j+n] = authpath[j]; +    } +    authpath += n; +  } +  setTreeHeight(addr, (params->h-1)); +  leafidx >>= 1; +  setTreeIndex(addr, leafidx); +  hash_h(root, buffer, pub_seed, addr, n); +} + +/** + * Performs one treehash update on the instance that needs it the most. + * Returns 1 if such an instance was not found + **/ +static char bds_treehash_update(bds_state *state, unsigned int updates, const unsigned char *sk_seed, const xmss_params *params, unsigned char *pub_seed, const uint32_t addr[8]) { +  uint32_t i, j; +  unsigned int level, l_min, low; +  unsigned int h = params->h; +  unsigned int k = params->k; +  unsigned int used = 0; + +  for (j = 0; j < updates; j++) { +    l_min = h; +    level = h - k; +    for (i = 0; i < h - k; i++) { +      if (state->treehash[i].completed) { +        low = h; +      } +      else if (state->treehash[i].stackusage == 0) { +        low = i; +      } +      else { +        low = treehash_minheight_on_stack(state, params, &(state->treehash[i])); +      } +      if (low < l_min) { +        level = i; +        l_min = low; +      } +    } +    if (level == h - k) { +      break; +    } +    treehash_update(&(state->treehash[level]), state, sk_seed, params, pub_seed, addr); +    used++; +  } +  return updates - used; +} + +/** + * Updates the state (typically NEXT_i) by adding a leaf and updating the stack + * Returns 1 if all leaf nodes have already been processed + **/ +static char bds_state_update(bds_state *state, const unsigned char *sk_seed, const xmss_params *params, unsigned char *pub_seed, const uint32_t addr[8]) { +  uint32_t ltree_addr[8]; +  uint32_t node_addr[8]; +  uint32_t ots_addr[8]; + +  int n = params->n; +  int h = params->h; +  int k = params->k; + +  int nodeh; +  int idx = state->next_leaf; +  if (idx == 1 << h) { +    return 1; +  } + +  // only copy layer and tree address parts +  memcpy(ots_addr, addr, 12); +  // type = ots +  setType(ots_addr, 0); +  memcpy(ltree_addr, addr, 12); +  setType(ltree_addr, 1); +  memcpy(node_addr, addr, 12); +  setType(node_addr, 2); +   +  setOTSADRS(ots_addr, idx); +  setLtreeADRS(ltree_addr, idx); + +  gen_leaf_wots(state->stack+state->stackoffset*n, sk_seed, params, pub_seed, ltree_addr, ots_addr); + +  state->stacklevels[state->stackoffset] = 0; +  state->stackoffset++; +  if (h - k > 0 && idx == 3) { +    memcpy(state->treehash[0].node, state->stack+state->stackoffset*n, n); +  } +  while (state->stackoffset>1 && state->stacklevels[state->stackoffset-1] == state->stacklevels[state->stackoffset-2]) { +    nodeh = state->stacklevels[state->stackoffset-1]; +    if (idx >> nodeh == 1) { +      memcpy(state->auth + nodeh*n, state->stack+(state->stackoffset-1)*n, n); +    } +    else { +      if (nodeh < h - k && idx >> nodeh == 3) { +        memcpy(state->treehash[nodeh].node, state->stack+(state->stackoffset-1)*n, n); +      } +      else if (nodeh >= h - k) { +        memcpy(state->retain + ((1 << (h - 1 - nodeh)) + nodeh - h + (((idx >> nodeh) - 3) >> 1)) * n, state->stack+(state->stackoffset-1)*n, n); +      } +    } +    setTreeHeight(node_addr, state->stacklevels[state->stackoffset-1]); +    setTreeIndex(node_addr, (idx >> (state->stacklevels[state->stackoffset-1]+1))); +    hash_h(state->stack+(state->stackoffset-2)*n, state->stack+(state->stackoffset-2)*n, pub_seed, node_addr, n); + +    state->stacklevels[state->stackoffset-2]++; +    state->stackoffset--; +  } +  state->next_leaf++; +  return 0; +} + +/** + * Returns the auth path for node leaf_idx and computes the auth path for the + * next leaf node, using the algorithm described by Buchmann, Dahmen and Szydlo + * in "Post Quantum Cryptography", Springer 2009. + */ +static void bds_round(bds_state *state, const unsigned long leaf_idx, const unsigned char *sk_seed, const xmss_params *params, unsigned char *pub_seed, uint32_t addr[8]) +{ +  unsigned int i; +  unsigned int n = params->n; +  unsigned int h = params->h; +  unsigned int k = params->k; + +  unsigned int tau = h; +  unsigned int startidx; +  unsigned int offset, rowidx; +  unsigned char buf[2 * n]; + +  uint32_t ots_addr[8]; +  uint32_t ltree_addr[8]; +  uint32_t  node_addr[8]; +  // only copy layer and tree address parts +  memcpy(ots_addr, addr, 12); +  // type = ots +  setType(ots_addr, 0); +  memcpy(ltree_addr, addr, 12); +  setType(ltree_addr, 1); +  memcpy(node_addr, addr, 12); +  setType(node_addr, 2); + +  for (i = 0; i < h; i++) { +    if (! ((leaf_idx >> i) & 1)) { +      tau = i; +      break; +    } +  } + +  if (tau > 0) { +    memcpy(buf,     state->auth + (tau-1) * n, n); +    // we need to do this before refreshing state->keep to prevent overwriting +    memcpy(buf + n, state->keep + ((tau-1) >> 1) * n, n); +  } +  if (!((leaf_idx >> (tau + 1)) & 1) && (tau < h - 1)) { +    memcpy(state->keep + (tau >> 1)*n, state->auth + tau*n, n); +  } +  if (tau == 0) { +    setLtreeADRS(ltree_addr, leaf_idx); +    setOTSADRS(ots_addr, leaf_idx); +    gen_leaf_wots(state->auth, sk_seed, params, pub_seed, ltree_addr, ots_addr); +  } +  else { +    setTreeHeight(node_addr, (tau-1)); +    setTreeIndex(node_addr, leaf_idx >> tau); +    hash_h(state->auth + tau * n, buf, pub_seed, node_addr, n); +    for (i = 0; i < tau; i++) { +      if (i < h - k) { +        memcpy(state->auth + i * n, state->treehash[i].node, n); +      } +      else { +        offset = (1 << (h - 1 - i)) + i - h; +        rowidx = ((leaf_idx >> i) - 1) >> 1; +        memcpy(state->auth + i * n, state->retain + (offset + rowidx) * n, n); +      } +    } + +    for (i = 0; i < ((tau < h - k) ? tau : (h - k)); i++) { +      startidx = leaf_idx + 1 + 3 * (1 << i); +      if (startidx < 1U << h) { +        state->treehash[i].h = i; +        state->treehash[i].next_idx = startidx; +        state->treehash[i].completed = 0; +        state->treehash[i].stackusage = 0; +      } +    } +  } +} + +/* + * Generates a XMSS key pair for a given parameter set. + * Format sk: [(32bit) idx || SK_SEED || SK_PRF || PUB_SEED || root] + * Format pk: [root || PUB_SEED] omitting algo oid. + */ +int xmss_keypair(unsigned char *pk, unsigned char *sk, bds_state *state, xmss_params *params) +{ +  unsigned int n = params->n; +  // Set idx = 0 +  sk[0] = 0; +  sk[1] = 0; +  sk[2] = 0; +  sk[3] = 0; +  // Init SK_SEED (n byte), SK_PRF (n byte), and PUB_SEED (n byte) +  randombytes(sk+4, 3*n); +  // Copy PUB_SEED to public key +  memcpy(pk+n, sk+4+2*n, n); + +  uint32_t addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; + +  // Compute root +  treehash_setup(pk, params->h, 0, state, sk+4, params, sk+4+2*n, addr); +  // copy root to sk +  memcpy(sk+4+3*n, pk, n); +  return 0; +} + +/** + * Signs a message. + * Returns + * 1. an array containing the signature followed by the message AND + * 2. an updated secret key! + * + */ +int xmss_sign(unsigned char *sk, bds_state *state, unsigned char *sig_msg, unsigned long long *sig_msg_len, const unsigned char *msg, unsigned long long msglen, const xmss_params *params) +{ +  unsigned int h = params->h; +  unsigned int n = params->n; +  unsigned int k = params->k; +  uint16_t i = 0; + +  // Extract SK +  unsigned long idx = ((unsigned long)sk[0] << 24) | ((unsigned long)sk[1] << 16) | ((unsigned long)sk[2] << 8) | sk[3]; +  unsigned char sk_seed[n]; +  memcpy(sk_seed, sk+4, n); +  unsigned char sk_prf[n]; +  memcpy(sk_prf, sk+4+n, n); +  unsigned char pub_seed[n]; +  memcpy(pub_seed, sk+4+2*n, n); +   +  // index as 32 bytes string +  unsigned char idx_bytes_32[32]; +  to_byte(idx_bytes_32, idx, 32); +   +  unsigned char hash_key[3*n];  +   +  // Update SK +  sk[0] = ((idx + 1) >> 24) & 255; +  sk[1] = ((idx + 1) >> 16) & 255; +  sk[2] = ((idx + 1) >> 8) & 255; +  sk[3] = (idx + 1) & 255; +  // -- Secret key for this non-forward-secure version is now updated. +  // -- A productive implementation should use a file handle instead and write the updated secret key at this point! + +  // Init working params +  unsigned char R[n]; +  unsigned char msg_h[n]; +  unsigned char ots_seed[n]; +  uint32_t ots_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; + +  // --------------------------------- +  // Message Hashing +  // --------------------------------- + +  // Message Hash: +  // First compute pseudorandom value +  prf(R, idx_bytes_32, sk_prf, n); +  // Generate hash key (R || root || idx) +  memcpy(hash_key, R, n); +  memcpy(hash_key+n, sk+4+3*n, n); +  to_byte(hash_key+2*n, idx, n); +  // Then use it for message digest +  h_msg(msg_h, msg, msglen, hash_key, 3*n, n); + +  // Start collecting signature +  *sig_msg_len = 0; + +  // Copy index to signature +  sig_msg[0] = (idx >> 24) & 255; +  sig_msg[1] = (idx >> 16) & 255; +  sig_msg[2] = (idx >> 8) & 255; +  sig_msg[3] = idx & 255; + +  sig_msg += 4; +  *sig_msg_len += 4; + +  // Copy R to signature +  for (i = 0; i < n; i++) +    sig_msg[i] = R[i]; + +  sig_msg += n; +  *sig_msg_len += n; + +  // ---------------------------------- +  // Now we start to "really sign" +  // ---------------------------------- + +  // Prepare Address +  setType(ots_addr, 0); +  setOTSADRS(ots_addr, idx); + +  // Compute seed for OTS key pair +  get_seed(ots_seed, sk_seed, n, ots_addr); + +  // Compute WOTS signature +  wots_sign(sig_msg, msg_h, ots_seed, &(params->wots_par), pub_seed, ots_addr); + +  sig_msg += params->wots_par.keysize; +  *sig_msg_len += params->wots_par.keysize; + +  // the auth path was already computed during the previous round +  memcpy(sig_msg, state->auth, h*n); + +  if (idx < (1U << h) - 1) { +    bds_round(state, idx, sk_seed, params, pub_seed, ots_addr); +    bds_treehash_update(state, (h - k) >> 1, sk_seed, params, pub_seed, ots_addr); +  } + +/* TODO: save key/bds state here! */ + +  sig_msg += params->h*n; +  *sig_msg_len += params->h*n; + +  //Whipe secret elements? +  //zerobytes(tsk, CRYPTO_SECRETKEYBYTES); + + +  memcpy(sig_msg, msg, msglen); +  *sig_msg_len += msglen; + +  return 0; +} + +/** + * Verifies a given message signature pair under a given public key. + */ +int xmss_sign_open(unsigned char *msg, unsigned long long *msglen, const unsigned char *sig_msg, unsigned long long sig_msg_len, const unsigned char *pk, const xmss_params *params) +{ +  unsigned int n = params->n; + +  unsigned long long i, m_len; +  unsigned long idx=0; +  unsigned char wots_pk[params->wots_par.keysize]; +  unsigned char pkhash[n]; +  unsigned char root[n]; +  unsigned char msg_h[n]; +  unsigned char hash_key[3*n]; + +  unsigned char pub_seed[n]; +  memcpy(pub_seed, pk+n, n); + +  // Init addresses +  uint32_t ots_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; +  uint32_t ltree_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; +  uint32_t node_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; + +  setType(ots_addr, 0); +  setType(ltree_addr, 1); +  setType(node_addr, 2); + +  // Extract index +  idx = ((unsigned long)sig_msg[0] << 24) | ((unsigned long)sig_msg[1] << 16) | ((unsigned long)sig_msg[2] << 8) | sig_msg[3]; +  printf("verify:: idx = %lu\n", idx); +   +  // Generate hash key (R || root || idx) +  memcpy(hash_key, sig_msg+4,n); +  memcpy(hash_key+n, pk, n); +  to_byte(hash_key+2*n, idx, n); +   +  sig_msg += (n+4); +  sig_msg_len -= (n+4); + +  // hash message  +  unsigned long long tmp_sig_len = params->wots_par.keysize+params->h*n; +  m_len = sig_msg_len - tmp_sig_len; +  h_msg(msg_h, sig_msg + tmp_sig_len, m_len, hash_key, 3*n, n); + +  //----------------------- +  // Verify signature +  //----------------------- + +  // Prepare Address +  setOTSADRS(ots_addr, idx); +  // Check WOTS signature +  wots_pkFromSig(wots_pk, sig_msg, msg_h, &(params->wots_par), pub_seed, ots_addr); + +  sig_msg += params->wots_par.keysize; +  sig_msg_len -= params->wots_par.keysize; + +  // Compute Ltree +  setLtreeADRS(ltree_addr, idx); +  l_tree(pkhash, wots_pk, params, pub_seed, ltree_addr); + +  // Compute root +  validate_authpath(root, pkhash, idx, sig_msg, params, pub_seed, node_addr); + +  sig_msg += params->h*n; +  sig_msg_len -= params->h*n; + +  for (i = 0; i < n; i++) +    if (root[i] != pk[i]) +      goto fail; + +  *msglen = sig_msg_len; +  for (i = 0; i < *msglen; i++) +    msg[i] = sig_msg[i]; + +  return 0; + + +fail: +  *msglen = sig_msg_len; +  for (i = 0; i < *msglen; i++) +    msg[i] = 0; +  *msglen = -1; +  return -1; +} + +/* + * Generates a XMSSMT key pair for a given parameter set. + * Format sk: [(ceil(h/8) bit) idx || SK_SEED || SK_PRF || PUB_SEED || root] + * Format pk: [root || PUB_SEED] omitting algo oid. + */ +int xmssmt_keypair(unsigned char *pk, unsigned char *sk, bds_state *states, unsigned char *wots_sigs, xmssmt_params *params) +{ +  unsigned int n = params->n; +  unsigned int i; +  unsigned char ots_seed[params->n]; +  // Set idx = 0 +  for (i = 0; i < params->index_len; i++) { +    sk[i] = 0; +  } +  // Init SK_SEED (n byte), SK_PRF (n byte), and PUB_SEED (n byte) +  randombytes(sk+params->index_len, 3*n); +  // Copy PUB_SEED to public key +  memcpy(pk+n, sk+params->index_len+2*n, n); + +  // Set address to point on the single tree on layer d-1 +  uint32_t addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; +  setLayerADRS(addr, (params->d-1)); +  // Set up state and compute wots signatures for all but topmost tree root +  for (i = 0; i < params->d - 1; i++) { +    // Compute seed for OTS key pair +    treehash_setup(pk, params->xmss_par.h, 0, states + i, sk+params->index_len, &(params->xmss_par), pk+n, addr); +    setLayerADRS(addr, (i+1)); +    get_seed(ots_seed, sk+params->index_len, n, addr); +    wots_sign(wots_sigs + i*params->xmss_par.wots_par.keysize, pk, ots_seed, &(params->xmss_par.wots_par), pk+n, addr); +  } +  treehash_setup(pk, params->xmss_par.h, 0, states + i, sk+params->index_len, &(params->xmss_par), pk+n, addr); +  memcpy(sk+params->index_len+3*n, pk, n); +  return 0; +} + +/** + * Signs a message. + * Returns + * 1. an array containing the signature followed by the message AND + * 2. an updated secret key! + * + */ +int xmssmt_sign(unsigned char *sk, bds_state *states, unsigned char *wots_sigs, unsigned char *sig_msg, unsigned long long *sig_msg_len, const unsigned char *msg, unsigned long long msglen, const xmssmt_params *params) +{ +  unsigned int n = params->n; +   +  unsigned int tree_h = params->xmss_par.h; +  unsigned int h = params->h; +  unsigned int k = params->xmss_par.k; +  unsigned int idx_len = params->index_len; +  uint64_t idx_tree; +  uint32_t idx_leaf; +  uint64_t i, j; +  int needswap_upto = -1; +  unsigned int updates; + +  unsigned char sk_seed[n]; +  unsigned char sk_prf[n]; +  unsigned char pub_seed[n]; +  // Init working params +  unsigned char R[n]; +  unsigned char msg_h[n]; +  unsigned char hash_key[3*n]; +  unsigned char ots_seed[n]; +  uint32_t addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; +  uint32_t ots_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; +  unsigned char idx_bytes_32[32]; +  bds_state tmp; + +  // Extract SK  +  unsigned long long idx = 0; +  for (i = 0; i < idx_len; i++) { +    idx |= ((unsigned long long)sk[i]) << 8*(idx_len - 1 - i); +  } + +  memcpy(sk_seed, sk+idx_len, n); +  memcpy(sk_prf, sk+idx_len+n, n); +  memcpy(pub_seed, sk+idx_len+2*n, n); + +  // Update SK +  for (i = 0; i < idx_len; i++) { +    sk[i] = ((idx + 1) >> 8*(idx_len - 1 - i)) & 255; +  } +  // -- Secret key for this non-forward-secure version is now updated. +  // -- A productive implementation should use a file handle instead and write the updated secret key at this point! + + +  // --------------------------------- +  // Message Hashing +  // --------------------------------- + +  // Message Hash: +  // First compute pseudorandom value +  to_byte(idx_bytes_32, idx, 32); +  prf(R, idx_bytes_32, sk_prf, n); +  // Generate hash key (R || root || idx) +  memcpy(hash_key, R, n); +  memcpy(hash_key+n, sk+idx_len+3*n, n); +  to_byte(hash_key+2*n, idx, n); +   +  // Then use it for message digest +  h_msg(msg_h, msg, msglen, hash_key, 3*n, n); + +  // Start collecting signature +  *sig_msg_len = 0; + +  // Copy index to signature +  for (i = 0; i < idx_len; i++) { +    sig_msg[i] = (idx >> 8*(idx_len - 1 - i)) & 255; +  } + +  sig_msg += idx_len; +  *sig_msg_len += idx_len; + +  // Copy R to signature +  for (i = 0; i < n; i++) +    sig_msg[i] = R[i]; + +  sig_msg += n; +  *sig_msg_len += n; + +  // ---------------------------------- +  // Now we start to "really sign" +  // ---------------------------------- + +  // Handle lowest layer separately as it is slightly different... + +  // Prepare Address +  setType(ots_addr, 0); +  idx_tree = idx >> tree_h; +  idx_leaf = (idx & ((1 << tree_h)-1)); +  setLayerADRS(ots_addr, 0); +  setTreeADRS(ots_addr, idx_tree); +  setOTSADRS(ots_addr, idx_leaf); + +  // Compute seed for OTS key pair +  get_seed(ots_seed, sk_seed, n, ots_addr); + +  // Compute WOTS signature +  wots_sign(sig_msg, msg_h, ots_seed, &(params->xmss_par.wots_par), pub_seed, ots_addr); + +  sig_msg += params->xmss_par.wots_par.keysize; +  *sig_msg_len += params->xmss_par.wots_par.keysize; + +  memcpy(sig_msg, states[0].auth, tree_h*n); +  sig_msg += tree_h*n; +  *sig_msg_len += tree_h*n; + +  // prepare signature of remaining layers +  for (i = 1; i < params->d; i++) { +    // put WOTS signature in place +    memcpy(sig_msg, wots_sigs + (i-1)*params->xmss_par.wots_par.keysize, params->xmss_par.wots_par.keysize); + +    sig_msg += params->xmss_par.wots_par.keysize; +    *sig_msg_len += params->xmss_par.wots_par.keysize; + +    // put AUTH nodes in place +    memcpy(sig_msg, states[i].auth, tree_h*n); +    sig_msg += tree_h*n; +    *sig_msg_len += tree_h*n; +  } + +  updates = (tree_h - k) >> 1; + +  setTreeADRS(addr, (idx_tree + 1)); +  // mandatory update for NEXT_0 (does not count towards h-k/2) if NEXT_0 exists +  if ((1 + idx_tree) * (1 << tree_h) + idx_leaf < (1ULL << h)) { +    bds_state_update(&states[params->d], sk_seed, &(params->xmss_par), pub_seed, addr); +  } + +  for (i = 0; i < params->d; i++) { +    // check if we're not at the end of a tree +    if (! (((idx + 1) & ((1ULL << ((i+1)*tree_h)) - 1)) == 0)) { +      idx_leaf = (idx >> (tree_h * i)) & ((1 << tree_h)-1); +      idx_tree = (idx >> (tree_h * (i+1))); +      setLayerADRS(addr, i); +      setTreeADRS(addr, idx_tree); +      if (i == (unsigned int) (needswap_upto + 1)) { +        bds_round(&states[i], idx_leaf, sk_seed, &(params->xmss_par), pub_seed, addr); +      } +      updates = bds_treehash_update(&states[i], updates, sk_seed, &(params->xmss_par), pub_seed, addr); +      setTreeADRS(addr, (idx_tree + 1)); +      // if a NEXT-tree exists for this level; +      if ((1 + idx_tree) * (1 << tree_h) + idx_leaf < (1ULL << (h - tree_h * i))) { +        if (i > 0 && updates > 0 && states[params->d + i].next_leaf < (1ULL << h)) { +          bds_state_update(&states[params->d + i], sk_seed, &(params->xmss_par), pub_seed, addr); +          updates--; +        } +      } +    } +    else if (idx < (1ULL << h) - 1) { +      memcpy(&tmp, states+params->d + i, sizeof(bds_state)); +      memcpy(states+params->d + i, states + i, sizeof(bds_state)); +      memcpy(states + i, &tmp, sizeof(bds_state)); + +      setLayerADRS(ots_addr, (i+1)); +      setTreeADRS(ots_addr, ((idx + 1) >> ((i+2) * tree_h))); +      setOTSADRS(ots_addr, (((idx >> ((i+1) * tree_h)) + 1) & ((1 << tree_h)-1))); + +      get_seed(ots_seed, sk+params->index_len, n, ots_addr); +      wots_sign(wots_sigs + i*params->xmss_par.wots_par.keysize, states[i].stack, ots_seed, &(params->xmss_par.wots_par), pub_seed, ots_addr); + +      states[params->d + i].stackoffset = 0; +      states[params->d + i].next_leaf = 0; + +      updates--; // WOTS-signing counts as one update +      needswap_upto = i; +      for (j = 0; j < tree_h-k; j++) { +        states[i].treehash[j].completed = 1; +      } +    } +  } + +  //Whipe secret elements? +  //zerobytes(tsk, CRYPTO_SECRETKEYBYTES); + +  memcpy(sig_msg, msg, msglen); +  *sig_msg_len += msglen; + +  return 0; +} + +/** + * Verifies a given message signature pair under a given public key. + */ +int xmssmt_sign_open(unsigned char *msg, unsigned long long *msglen, const unsigned char *sig_msg, unsigned long long sig_msg_len, const unsigned char *pk, const xmssmt_params *params) +{ +  unsigned int n = params->n; + +  unsigned int tree_h = params->xmss_par.h; +  unsigned int idx_len = params->index_len; +  uint64_t idx_tree; +  uint32_t idx_leaf; + +  unsigned long long i, m_len; +  unsigned long long idx=0; +  unsigned char wots_pk[params->xmss_par.wots_par.keysize]; +  unsigned char pkhash[n]; +  unsigned char root[n]; +  unsigned char msg_h[n]; +  unsigned char hash_key[3*n]; + +  unsigned char pub_seed[n]; +  memcpy(pub_seed, pk+n, n); + +  // Init addresses +  uint32_t ots_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; +  uint32_t ltree_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; +  uint32_t node_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; + +  // Extract index +  for (i = 0; i < idx_len; i++) { +    idx |= ((unsigned long long)sig_msg[i]) << (8*(idx_len - 1 - i)); +  } +  printf("verify:: idx = %llu\n", idx); +  sig_msg += idx_len; +  sig_msg_len -= idx_len; +   +  // Generate hash key (R || root || idx) +  memcpy(hash_key, sig_msg,n); +  memcpy(hash_key+n, pk, n); +  to_byte(hash_key+2*n, idx, n); + +  sig_msg += n; +  sig_msg_len -= n; +   + +  // hash message (recall, R is now on pole position at sig_msg +  unsigned long long tmp_sig_len = (params->d * params->xmss_par.wots_par.keysize) + (params->h * n); +  m_len = sig_msg_len - tmp_sig_len; +  h_msg(msg_h, sig_msg + tmp_sig_len, m_len, hash_key, 3*n, n); + +   +  //----------------------- +  // Verify signature +  //----------------------- + +  // Prepare Address +  idx_tree = idx >> tree_h; +  idx_leaf = (idx & ((1 << tree_h)-1)); +  setLayerADRS(ots_addr, 0); +  setTreeADRS(ots_addr, idx_tree); +  setType(ots_addr, 0); + +  memcpy(ltree_addr, ots_addr, 12); +  setType(ltree_addr, 1); + +  memcpy(node_addr, ltree_addr, 12); +  setType(node_addr, 2); +   +  setOTSADRS(ots_addr, idx_leaf); + +  // Check WOTS signature +  wots_pkFromSig(wots_pk, sig_msg, msg_h, &(params->xmss_par.wots_par), pub_seed, ots_addr); + +  sig_msg += params->xmss_par.wots_par.keysize; +  sig_msg_len -= params->xmss_par.wots_par.keysize; + +  // Compute Ltree +  setLtreeADRS(ltree_addr, idx_leaf); +  l_tree(pkhash, wots_pk, &(params->xmss_par), pub_seed, ltree_addr); + +  // Compute root +  validate_authpath(root, pkhash, idx_leaf, sig_msg, &(params->xmss_par), pub_seed, node_addr); + +  sig_msg += tree_h*n; +  sig_msg_len -= tree_h*n; + +  for (i = 1; i < params->d; i++) { +    // Prepare Address +    idx_leaf = (idx_tree & ((1 << tree_h)-1)); +    idx_tree = idx_tree >> tree_h; + +    setLayerADRS(ots_addr, i); +    setTreeADRS(ots_addr, idx_tree); +    setType(ots_addr, 0); + +    memcpy(ltree_addr, ots_addr, 12); +    setType(ltree_addr, 1); + +    memcpy(node_addr, ltree_addr, 12); +    setType(node_addr, 2); + +    setOTSADRS(ots_addr, idx_leaf); + +    // Check WOTS signature +    wots_pkFromSig(wots_pk, sig_msg, root, &(params->xmss_par.wots_par), pub_seed, ots_addr); + +    sig_msg += params->xmss_par.wots_par.keysize; +    sig_msg_len -= params->xmss_par.wots_par.keysize; + +    // Compute Ltree +    setLtreeADRS(ltree_addr, idx_leaf); +    l_tree(pkhash, wots_pk, &(params->xmss_par), pub_seed, ltree_addr); + +    // Compute root +    validate_authpath(root, pkhash, idx_leaf, sig_msg, &(params->xmss_par), pub_seed, node_addr); + +    sig_msg += tree_h*n; +    sig_msg_len -= tree_h*n; + +  } + +  for (i = 0; i < n; i++) +    if (root[i] != pk[i]) +      goto fail; + +  *msglen = sig_msg_len; +  for (i = 0; i < *msglen; i++) +    msg[i] = sig_msg[i]; + +  return 0; + + +fail: +  *msglen = sig_msg_len; +  for (i = 0; i < *msglen; i++) +    msg[i] = 0; +  *msglen = -1; +  return -1; +} +#endif /* WITH_XMSS */ | 
