aboutsummaryrefslogtreecommitdiff
path: root/crypto/openssl/ssl/quic/quic_record_rx.c
diff options
context:
space:
mode:
Diffstat (limited to 'crypto/openssl/ssl/quic/quic_record_rx.c')
-rw-r--r--crypto/openssl/ssl/quic/quic_record_rx.c1603
1 files changed, 1603 insertions, 0 deletions
diff --git a/crypto/openssl/ssl/quic/quic_record_rx.c b/crypto/openssl/ssl/quic/quic_record_rx.c
new file mode 100644
index 000000000000..1a8194b396d7
--- /dev/null
+++ b/crypto/openssl/ssl/quic/quic_record_rx.c
@@ -0,0 +1,1603 @@
+/*
+ * Copyright 2022-2025 The OpenSSL Project Authors. All Rights Reserved.
+ *
+ * Licensed under the Apache License 2.0 (the "License"). You may not use
+ * this file except in compliance with the License. You can obtain a copy
+ * in the file LICENSE in the source distribution or at
+ * https://www.openssl.org/source/license.html
+ */
+
+#include <openssl/ssl.h>
+#include "internal/quic_record_rx.h"
+#include "quic_record_shared.h"
+#include "internal/common.h"
+#include "internal/list.h"
+#include "../ssl_local.h"
+
+/*
+ * Mark a packet in a bitfield.
+ *
+ * pkt_idx: index of packet within datagram.
+ */
+static ossl_inline void pkt_mark(uint64_t *bitf, size_t pkt_idx)
+{
+ assert(pkt_idx < QUIC_MAX_PKT_PER_URXE);
+ *bitf |= ((uint64_t)1) << pkt_idx;
+}
+
+/* Returns 1 if a packet is in the bitfield. */
+static ossl_inline int pkt_is_marked(const uint64_t *bitf, size_t pkt_idx)
+{
+ assert(pkt_idx < QUIC_MAX_PKT_PER_URXE);
+ return (*bitf & (((uint64_t)1) << pkt_idx)) != 0;
+}
+
+/*
+ * RXE
+ * ===
+ *
+ * RX Entries (RXEs) store processed (i.e., decrypted) data received from the
+ * network. One RXE is used per received QUIC packet.
+ */
+typedef struct rxe_st RXE;
+
+struct rxe_st {
+ OSSL_QRX_PKT pkt;
+ OSSL_LIST_MEMBER(rxe, RXE);
+ size_t data_len, alloc_len, refcount;
+
+ /* Extra fields for per-packet information. */
+ QUIC_PKT_HDR hdr; /* data/len are decrypted payload */
+
+ /* Decoded packet number. */
+ QUIC_PN pn;
+
+ /* Addresses copied from URXE. */
+ BIO_ADDR peer, local;
+
+ /* Time we received the packet (not when we processed it). */
+ OSSL_TIME time;
+
+ /* Total length of the datagram which contained this packet. */
+ size_t datagram_len;
+
+ /*
+ * The key epoch the packet was received with. Always 0 for non-1-RTT
+ * packets.
+ */
+ uint64_t key_epoch;
+
+ /*
+ * Monotonically increases with each datagram received.
+ * For diagnostic use only.
+ */
+ uint64_t datagram_id;
+
+ /*
+ * alloc_len allocated bytes (of which data_len bytes are valid) follow this
+ * structure.
+ */
+};
+
+DEFINE_LIST_OF(rxe, RXE);
+typedef OSSL_LIST(rxe) RXE_LIST;
+
+static ossl_inline unsigned char *rxe_data(const RXE *e)
+{
+ return (unsigned char *)(e + 1);
+}
+
+/*
+ * QRL
+ * ===
+ */
+struct ossl_qrx_st {
+ OSSL_LIB_CTX *libctx;
+ const char *propq;
+
+ /* Demux to receive datagrams from. */
+ QUIC_DEMUX *demux;
+
+ /* Length of connection IDs used in short-header packets in bytes. */
+ size_t short_conn_id_len;
+
+ /* Maximum number of deferred datagrams buffered at any one time. */
+ size_t max_deferred;
+
+ /* Current count of deferred datagrams. */
+ size_t num_deferred;
+
+ /*
+ * List of URXEs which are filled with received encrypted data.
+ * These are returned to the DEMUX's free list as they are processed.
+ */
+ QUIC_URXE_LIST urx_pending;
+
+ /*
+ * List of URXEs which we could not decrypt immediately and which are being
+ * kept in case they can be decrypted later.
+ */
+ QUIC_URXE_LIST urx_deferred;
+
+ /*
+ * List of RXEs which are not currently in use. These are moved
+ * to the pending list as they are filled.
+ */
+ RXE_LIST rx_free;
+
+ /*
+ * List of RXEs which are filled with decrypted packets ready to be passed
+ * to the user. A RXE is removed from all lists inside the QRL when passed
+ * to the user, then returned to the free list when the user returns it.
+ */
+ RXE_LIST rx_pending;
+
+ /* Largest PN we have received and processed in a given PN space. */
+ QUIC_PN largest_pn[QUIC_PN_SPACE_NUM];
+
+ /* Per encryption-level state. */
+ OSSL_QRL_ENC_LEVEL_SET el_set;
+
+ /* Bytes we have received since this counter was last cleared. */
+ uint64_t bytes_received;
+
+ /*
+ * Number of forged packets we have received since the QRX was instantiated.
+ * Note that as per RFC 9001, this is connection-level state; it is not per
+ * EL and is not reset by a key update.
+ */
+ uint64_t forged_pkt_count;
+
+ /*
+ * The PN the current key epoch started at, inclusive.
+ */
+ uint64_t cur_epoch_start_pn;
+
+ /* Validation callback. */
+ ossl_qrx_late_validation_cb *validation_cb;
+ void *validation_cb_arg;
+
+ /* Key update callback. */
+ ossl_qrx_key_update_cb *key_update_cb;
+ void *key_update_cb_arg;
+
+ /* Initial key phase. For debugging use only; always 0 in real use. */
+ unsigned char init_key_phase_bit;
+
+ /* Are we allowed to process 1-RTT packets yet? */
+ unsigned char allow_1rtt;
+
+ /* Message callback related arguments */
+ ossl_msg_cb msg_callback;
+ void *msg_callback_arg;
+ SSL *msg_callback_ssl;
+};
+
+static RXE *qrx_ensure_free_rxe(OSSL_QRX *qrx, size_t alloc_len);
+static int qrx_validate_hdr_early(OSSL_QRX *qrx, RXE *rxe,
+ const QUIC_CONN_ID *first_dcid);
+static int qrx_relocate_buffer(OSSL_QRX *qrx, RXE **prxe, size_t *pi,
+ const unsigned char **pptr, size_t buf_len);
+static int qrx_validate_hdr(OSSL_QRX *qrx, RXE *rxe);
+static RXE *qrx_reserve_rxe(RXE_LIST *rxl, RXE *rxe, size_t n);
+static int qrx_decrypt_pkt_body(OSSL_QRX *qrx, unsigned char *dst,
+ const unsigned char *src,
+ size_t src_len, size_t *dec_len,
+ const unsigned char *aad, size_t aad_len,
+ QUIC_PN pn, uint32_t enc_level,
+ unsigned char key_phase_bit,
+ uint64_t *rx_key_epoch);
+static int qrx_validate_hdr_late(OSSL_QRX *qrx, RXE *rxe);
+static uint32_t rxe_determine_pn_space(RXE *rxe);
+static void ignore_res(int x);
+
+OSSL_QRX *ossl_qrx_new(const OSSL_QRX_ARGS *args)
+{
+ OSSL_QRX *qrx;
+ size_t i;
+
+ if (args->demux == NULL || args->max_deferred == 0)
+ return NULL;
+
+ qrx = OPENSSL_zalloc(sizeof(OSSL_QRX));
+ if (qrx == NULL)
+ return NULL;
+
+ for (i = 0; i < OSSL_NELEM(qrx->largest_pn); ++i)
+ qrx->largest_pn[i] = args->init_largest_pn[i];
+
+ qrx->libctx = args->libctx;
+ qrx->propq = args->propq;
+ qrx->demux = args->demux;
+ qrx->short_conn_id_len = args->short_conn_id_len;
+ qrx->init_key_phase_bit = args->init_key_phase_bit;
+ qrx->max_deferred = args->max_deferred;
+ return qrx;
+}
+
+static void qrx_cleanup_rxl(RXE_LIST *l)
+{
+ RXE *e, *enext;
+
+ for (e = ossl_list_rxe_head(l); e != NULL; e = enext) {
+ enext = ossl_list_rxe_next(e);
+ ossl_list_rxe_remove(l, e);
+ OPENSSL_free(e);
+ }
+}
+
+static void qrx_cleanup_urxl(OSSL_QRX *qrx, QUIC_URXE_LIST *l)
+{
+ QUIC_URXE *e, *enext;
+
+ for (e = ossl_list_urxe_head(l); e != NULL; e = enext) {
+ enext = ossl_list_urxe_next(e);
+ ossl_list_urxe_remove(l, e);
+ ossl_quic_demux_release_urxe(qrx->demux, e);
+ }
+}
+
+void ossl_qrx_update_pn_space(OSSL_QRX *src, OSSL_QRX *dst)
+{
+ size_t i;
+
+ for (i = 0; i < QUIC_PN_SPACE_NUM; i++)
+ dst->largest_pn[i] = src->largest_pn[i];
+
+ return;
+}
+
+void ossl_qrx_free(OSSL_QRX *qrx)
+{
+ uint32_t i;
+
+ if (qrx == NULL)
+ return;
+
+ /* Free RXE queue data. */
+ qrx_cleanup_rxl(&qrx->rx_free);
+ qrx_cleanup_rxl(&qrx->rx_pending);
+ qrx_cleanup_urxl(qrx, &qrx->urx_pending);
+ qrx_cleanup_urxl(qrx, &qrx->urx_deferred);
+
+ /* Drop keying material and crypto resources. */
+ for (i = 0; i < QUIC_ENC_LEVEL_NUM; ++i)
+ ossl_qrl_enc_level_set_discard(&qrx->el_set, i);
+
+ OPENSSL_free(qrx);
+}
+
+void ossl_qrx_inject_urxe(OSSL_QRX *qrx, QUIC_URXE *urxe)
+{
+ /* Initialize our own fields inside the URXE and add to the pending list. */
+ urxe->processed = 0;
+ urxe->hpr_removed = 0;
+ urxe->deferred = 0;
+ ossl_list_urxe_insert_tail(&qrx->urx_pending, urxe);
+
+ if (qrx->msg_callback != NULL)
+ qrx->msg_callback(0, OSSL_QUIC1_VERSION, SSL3_RT_QUIC_DATAGRAM, urxe + 1,
+ urxe->data_len, qrx->msg_callback_ssl,
+ qrx->msg_callback_arg);
+}
+
+void ossl_qrx_inject_pkt(OSSL_QRX *qrx, OSSL_QRX_PKT *pkt)
+{
+ RXE *rxe = (RXE *)pkt;
+
+ /*
+ * port_default_packet_handler() uses ossl_qrx_read_pkt()
+ * to get pkt. Such packet has refcount 1.
+ */
+ ossl_qrx_pkt_orphan(pkt);
+ if (ossl_assert(rxe->refcount == 0))
+ ossl_list_rxe_insert_tail(&qrx->rx_pending, rxe);
+}
+
+/*
+ * qrx_validate_initial_pkt() is derived from qrx_process_pkt(). Unlike
+ * qrx_process_pkt() the qrx_validate_initial_pkt() function can process
+ * initial packet only. All other packets should be discarded. This allows
+ * port_default_packet_handler() to validate incoming packet. If packet
+ * is not valid, then port_default_packet_handler() must discard the
+ * packet instead of creating a new channel for it.
+ */
+static int qrx_validate_initial_pkt(OSSL_QRX *qrx, QUIC_URXE *urxe,
+ const QUIC_CONN_ID *first_dcid,
+ size_t datagram_len)
+{
+ PACKET pkt, orig_pkt;
+ RXE *rxe;
+ size_t i = 0, aad_len = 0, dec_len = 0;
+ const unsigned char *sop;
+ unsigned char *dst;
+ QUIC_PKT_HDR_PTRS ptrs;
+ uint32_t pn_space;
+ OSSL_QRL_ENC_LEVEL *el = NULL;
+ uint64_t rx_key_epoch = UINT64_MAX;
+
+ if (!PACKET_buf_init(&pkt, ossl_quic_urxe_data(urxe), urxe->data_len))
+ return 0;
+
+ orig_pkt = pkt;
+ sop = PACKET_data(&pkt);
+
+ /*
+ * Get a free RXE. If we need to allocate a new one, use the packet length
+ * as a good ballpark figure.
+ */
+ rxe = qrx_ensure_free_rxe(qrx, PACKET_remaining(&pkt));
+ if (rxe == NULL)
+ return 0;
+
+ /*
+ * we expect INITIAL packet only, therefore it is OK to pass
+ * short_conn_id_len as 0.
+ */
+ if (!ossl_quic_wire_decode_pkt_hdr(&pkt,
+ 0, /* short_conn_id_len */
+ 1, /* need second decode */
+ 0, /* nodata -> want to read data */
+ &rxe->hdr, &ptrs,
+ NULL))
+ goto malformed;
+
+ if (rxe->hdr.type != QUIC_PKT_TYPE_INITIAL)
+ goto malformed;
+
+ if (!qrx_validate_hdr_early(qrx, rxe, NULL))
+ goto malformed;
+
+ if (ossl_qrl_enc_level_set_have_el(&qrx->el_set, QUIC_ENC_LEVEL_INITIAL) != 1)
+ goto malformed;
+
+ if (rxe->hdr.type == QUIC_PKT_TYPE_INITIAL) {
+ const unsigned char *token = rxe->hdr.token;
+
+ /*
+ * This may change the value of rxe and change the value of the token
+ * pointer as well. So we must make a temporary copy of the pointer to
+ * the token, and then copy it back into the new location of the rxe
+ */
+ if (!qrx_relocate_buffer(qrx, &rxe, &i, &token, rxe->hdr.token_len))
+ goto malformed;
+
+ rxe->hdr.token = token;
+ }
+
+ pkt = orig_pkt;
+
+ el = ossl_qrl_enc_level_set_get(&qrx->el_set, QUIC_ENC_LEVEL_INITIAL, 1);
+ assert(el != NULL); /* Already checked above */
+
+ if (!ossl_quic_hdr_protector_decrypt(&el->hpr, &ptrs))
+ goto malformed;
+
+ /*
+ * We have removed header protection, so don't attempt to do it again if
+ * the packet gets deferred and processed again.
+ */
+ pkt_mark(&urxe->hpr_removed, 0);
+
+ /* Decode the now unprotected header. */
+ if (ossl_quic_wire_decode_pkt_hdr(&pkt, 0,
+ 0, 0, &rxe->hdr, NULL, NULL) != 1)
+ goto malformed;
+
+ /* Validate header and decode PN. */
+ if (!qrx_validate_hdr(qrx, rxe))
+ goto malformed;
+
+ /*
+ * The AAD data is the entire (unprotected) packet header including the PN.
+ * The packet header has been unprotected in place, so we can just reuse the
+ * PACKET buffer. The header ends where the payload begins.
+ */
+ aad_len = rxe->hdr.data - sop;
+
+ /* Ensure the RXE buffer size is adequate for our payload. */
+ if ((rxe = qrx_reserve_rxe(&qrx->rx_free, rxe, rxe->hdr.len + i)) == NULL)
+ goto malformed;
+
+ /*
+ * We decrypt the packet body to immediately after the token at the start of
+ * the RXE buffer (where present).
+ *
+ * Do the decryption from the PACKET (which points into URXE memory) to our
+ * RXE payload (single-copy decryption), then fixup the pointers in the
+ * header to point to our new buffer.
+ *
+ * If decryption fails this is considered a permanent error; we defer
+ * packets we don't yet have decryption keys for above, so if this fails,
+ * something has gone wrong with the handshake process or a packet has been
+ * corrupted.
+ */
+ dst = (unsigned char *)rxe_data(rxe) + i;
+ if (!qrx_decrypt_pkt_body(qrx, dst, rxe->hdr.data, rxe->hdr.len,
+ &dec_len, sop, aad_len, rxe->pn, QUIC_ENC_LEVEL_INITIAL,
+ rxe->hdr.key_phase, &rx_key_epoch))
+ goto malformed;
+
+ /*
+ * -----------------------------------------------------
+ * IMPORTANT: ANYTHING ABOVE THIS LINE IS UNVERIFIED
+ * AND MUST BE TIMING-CHANNEL SAFE.
+ * -----------------------------------------------------
+ *
+ * At this point, we have successfully authenticated the AEAD tag and no
+ * longer need to worry about exposing the PN, PN length or Key Phase bit in
+ * timing channels. Invoke any configured validation callback to allow for
+ * rejection of duplicate PNs.
+ */
+ if (!qrx_validate_hdr_late(qrx, rxe))
+ goto malformed;
+
+ pkt_mark(&urxe->processed, 0);
+
+ /*
+ * Update header to point to the decrypted buffer, which may be shorter
+ * due to AEAD tags, block padding, etc.
+ */
+ rxe->hdr.data = dst;
+ rxe->hdr.len = dec_len;
+ rxe->data_len = dec_len;
+ rxe->datagram_len = datagram_len;
+ rxe->key_epoch = rx_key_epoch;
+
+ /* We processed the PN successfully, so update largest processed PN. */
+ pn_space = rxe_determine_pn_space(rxe);
+ if (rxe->pn > qrx->largest_pn[pn_space])
+ qrx->largest_pn[pn_space] = rxe->pn;
+
+ /* Copy across network addresses and RX time from URXE to RXE. */
+ rxe->peer = urxe->peer;
+ rxe->local = urxe->local;
+ rxe->time = urxe->time;
+ rxe->datagram_id = urxe->datagram_id;
+
+ /*
+ * The packet is decrypted, we are going to move it from
+ * rx_pending queue where it waits to be further processed
+ * by ch_rx().
+ */
+ ossl_list_rxe_remove(&qrx->rx_free, rxe);
+ ossl_list_rxe_insert_tail(&qrx->rx_pending, rxe);
+
+ return 1;
+
+malformed:
+ /* caller (port_default_packet_handler()) should discard urxe */
+ return 0;
+}
+
+int ossl_qrx_validate_initial_packet(OSSL_QRX *qrx, QUIC_URXE *urxe,
+ const QUIC_CONN_ID *dcid)
+{
+ urxe->processed = 0;
+ urxe->hpr_removed = 0;
+ urxe->deferred = 0;
+
+ return qrx_validate_initial_pkt(qrx, urxe, dcid, urxe->data_len);
+}
+
+static void qrx_requeue_deferred(OSSL_QRX *qrx)
+{
+ QUIC_URXE *e;
+
+ while ((e = ossl_list_urxe_head(&qrx->urx_deferred)) != NULL) {
+ ossl_list_urxe_remove(&qrx->urx_deferred, e);
+ ossl_list_urxe_insert_tail(&qrx->urx_pending, e);
+ }
+}
+
+int ossl_qrx_provide_secret(OSSL_QRX *qrx, uint32_t enc_level,
+ uint32_t suite_id, EVP_MD *md,
+ const unsigned char *secret, size_t secret_len)
+{
+ if (enc_level >= QUIC_ENC_LEVEL_NUM)
+ return 0;
+
+ if (!ossl_qrl_enc_level_set_provide_secret(&qrx->el_set,
+ qrx->libctx,
+ qrx->propq,
+ enc_level,
+ suite_id,
+ md,
+ secret,
+ secret_len,
+ qrx->init_key_phase_bit,
+ /*is_tx=*/0))
+ return 0;
+
+ /*
+ * Any packets we previously could not decrypt, we may now be able to
+ * decrypt, so move any datagrams containing deferred packets from the
+ * deferred to the pending queue.
+ */
+ qrx_requeue_deferred(qrx);
+ return 1;
+}
+
+int ossl_qrx_discard_enc_level(OSSL_QRX *qrx, uint32_t enc_level)
+{
+ if (enc_level >= QUIC_ENC_LEVEL_NUM)
+ return 0;
+
+ ossl_qrl_enc_level_set_discard(&qrx->el_set, enc_level);
+ return 1;
+}
+
+/* Returns 1 if there are one or more pending RXEs. */
+int ossl_qrx_processed_read_pending(OSSL_QRX *qrx)
+{
+ return !ossl_list_rxe_is_empty(&qrx->rx_pending);
+}
+
+/* Returns 1 if there are yet-unprocessed packets. */
+int ossl_qrx_unprocessed_read_pending(OSSL_QRX *qrx)
+{
+ return !ossl_list_urxe_is_empty(&qrx->urx_pending)
+ || !ossl_list_urxe_is_empty(&qrx->urx_deferred);
+}
+
+/* Pop the next pending RXE. Returns NULL if no RXE is pending. */
+static RXE *qrx_pop_pending_rxe(OSSL_QRX *qrx)
+{
+ RXE *rxe = ossl_list_rxe_head(&qrx->rx_pending);
+
+ if (rxe == NULL)
+ return NULL;
+
+ ossl_list_rxe_remove(&qrx->rx_pending, rxe);
+ return rxe;
+}
+
+/* Allocate a new RXE. */
+static RXE *qrx_alloc_rxe(size_t alloc_len)
+{
+ RXE *rxe;
+
+ if (alloc_len >= SIZE_MAX - sizeof(RXE))
+ return NULL;
+
+ rxe = OPENSSL_malloc(sizeof(RXE) + alloc_len);
+ if (rxe == NULL)
+ return NULL;
+
+ ossl_list_rxe_init_elem(rxe);
+ rxe->alloc_len = alloc_len;
+ rxe->data_len = 0;
+ rxe->refcount = 0;
+ return rxe;
+}
+
+/*
+ * Ensures there is at least one RXE in the RX free list, allocating a new entry
+ * if necessary. The returned RXE is in the RX free list; it is not popped.
+ *
+ * alloc_len is a hint which may be used to determine the RXE size if allocation
+ * is necessary. Returns NULL on allocation failure.
+ */
+static RXE *qrx_ensure_free_rxe(OSSL_QRX *qrx, size_t alloc_len)
+{
+ RXE *rxe;
+
+ if (ossl_list_rxe_head(&qrx->rx_free) != NULL)
+ return ossl_list_rxe_head(&qrx->rx_free);
+
+ rxe = qrx_alloc_rxe(alloc_len);
+ if (rxe == NULL)
+ return NULL;
+
+ ossl_list_rxe_insert_tail(&qrx->rx_free, rxe);
+ return rxe;
+}
+
+/*
+ * Resize the data buffer attached to an RXE to be n bytes in size. The address
+ * of the RXE might change; the new address is returned, or NULL on failure, in
+ * which case the original RXE remains valid.
+ */
+static RXE *qrx_resize_rxe(RXE_LIST *rxl, RXE *rxe, size_t n)
+{
+ RXE *rxe2, *p;
+
+ /* Should never happen. */
+ if (rxe == NULL)
+ return NULL;
+
+ if (n >= SIZE_MAX - sizeof(RXE))
+ return NULL;
+
+ /* Remove the item from the list to avoid accessing freed memory */
+ p = ossl_list_rxe_prev(rxe);
+ ossl_list_rxe_remove(rxl, rxe);
+
+ /* Should never resize an RXE which has been handed out. */
+ if (!ossl_assert(rxe->refcount == 0))
+ return NULL;
+
+ /*
+ * NOTE: We do not clear old memory, although it does contain decrypted
+ * data.
+ */
+ rxe2 = OPENSSL_realloc(rxe, sizeof(RXE) + n);
+ if (rxe2 == NULL) {
+ /* Resize failed, restore old allocation. */
+ if (p == NULL)
+ ossl_list_rxe_insert_head(rxl, rxe);
+ else
+ ossl_list_rxe_insert_after(rxl, p, rxe);
+ return NULL;
+ }
+
+ if (p == NULL)
+ ossl_list_rxe_insert_head(rxl, rxe2);
+ else
+ ossl_list_rxe_insert_after(rxl, p, rxe2);
+
+ rxe2->alloc_len = n;
+ return rxe2;
+}
+
+/*
+ * Ensure the data buffer attached to an RXE is at least n bytes in size.
+ * Returns NULL on failure.
+ */
+static RXE *qrx_reserve_rxe(RXE_LIST *rxl,
+ RXE *rxe, size_t n)
+{
+ if (rxe->alloc_len >= n)
+ return rxe;
+
+ return qrx_resize_rxe(rxl, rxe, n);
+}
+
+/* Return a RXE handed out to the user back to our freelist. */
+static void qrx_recycle_rxe(OSSL_QRX *qrx, RXE *rxe)
+{
+ /* RXE should not be in any list */
+ assert(ossl_list_rxe_prev(rxe) == NULL && ossl_list_rxe_next(rxe) == NULL);
+ rxe->pkt.hdr = NULL;
+ rxe->pkt.peer = NULL;
+ rxe->pkt.local = NULL;
+ ossl_list_rxe_insert_tail(&qrx->rx_free, rxe);
+}
+
+/*
+ * Given a pointer to a pointer pointing to a buffer and the size of that
+ * buffer, copy the buffer into *prxe, expanding the RXE if necessary (its
+ * pointer may change due to realloc). *pi is the offset in bytes to copy the
+ * buffer to, and on success is updated to be the offset pointing after the
+ * copied buffer. *pptr is updated to point to the new location of the buffer.
+ */
+static int qrx_relocate_buffer(OSSL_QRX *qrx, RXE **prxe, size_t *pi,
+ const unsigned char **pptr, size_t buf_len)
+{
+ RXE *rxe;
+ unsigned char *dst;
+
+ if (!buf_len)
+ return 1;
+
+ if ((rxe = qrx_reserve_rxe(&qrx->rx_free, *prxe, *pi + buf_len)) == NULL)
+ return 0;
+
+ *prxe = rxe;
+ dst = (unsigned char *)rxe_data(rxe) + *pi;
+
+ memcpy(dst, *pptr, buf_len);
+ *pi += buf_len;
+ *pptr = dst;
+ return 1;
+}
+
+static uint32_t qrx_determine_enc_level(const QUIC_PKT_HDR *hdr)
+{
+ switch (hdr->type) {
+ case QUIC_PKT_TYPE_INITIAL:
+ return QUIC_ENC_LEVEL_INITIAL;
+ case QUIC_PKT_TYPE_HANDSHAKE:
+ return QUIC_ENC_LEVEL_HANDSHAKE;
+ case QUIC_PKT_TYPE_0RTT:
+ return QUIC_ENC_LEVEL_0RTT;
+ case QUIC_PKT_TYPE_1RTT:
+ return QUIC_ENC_LEVEL_1RTT;
+
+ default:
+ assert(0);
+ case QUIC_PKT_TYPE_RETRY:
+ case QUIC_PKT_TYPE_VERSION_NEG:
+ return QUIC_ENC_LEVEL_INITIAL; /* not used */
+ }
+}
+
+static uint32_t rxe_determine_pn_space(RXE *rxe)
+{
+ uint32_t enc_level;
+
+ enc_level = qrx_determine_enc_level(&rxe->hdr);
+ return ossl_quic_enc_level_to_pn_space(enc_level);
+}
+
+static int qrx_validate_hdr_early(OSSL_QRX *qrx, RXE *rxe,
+ const QUIC_CONN_ID *first_dcid)
+{
+ /* Ensure version is what we want. */
+ if (rxe->hdr.version != QUIC_VERSION_1
+ && rxe->hdr.version != QUIC_VERSION_NONE)
+ return 0;
+
+ /* Clients should never receive 0-RTT packets. */
+ if (rxe->hdr.type == QUIC_PKT_TYPE_0RTT)
+ return 0;
+
+ /* Version negotiation and retry packets must be the first packet. */
+ if (first_dcid != NULL && !ossl_quic_pkt_type_can_share_dgram(rxe->hdr.type))
+ return 0;
+
+ /*
+ * If this is not the first packet in a datagram, the destination connection
+ * ID must match the one in that packet.
+ */
+ if (first_dcid != NULL) {
+ if (!ossl_assert(first_dcid->id_len < QUIC_MAX_CONN_ID_LEN)
+ || !ossl_quic_conn_id_eq(first_dcid,
+ &rxe->hdr.dst_conn_id))
+ return 0;
+ }
+
+ return 1;
+}
+
+/* Validate header and decode PN. */
+static int qrx_validate_hdr(OSSL_QRX *qrx, RXE *rxe)
+{
+ int pn_space = rxe_determine_pn_space(rxe);
+
+ if (!ossl_quic_wire_decode_pkt_hdr_pn(rxe->hdr.pn, rxe->hdr.pn_len,
+ qrx->largest_pn[pn_space],
+ &rxe->pn))
+ return 0;
+
+ return 1;
+}
+
+/* Late packet header validation. */
+static int qrx_validate_hdr_late(OSSL_QRX *qrx, RXE *rxe)
+{
+ int pn_space = rxe_determine_pn_space(rxe);
+
+ /*
+ * Allow our user to decide whether to discard the packet before we try and
+ * decrypt it.
+ */
+ if (qrx->validation_cb != NULL
+ && !qrx->validation_cb(rxe->pn, pn_space, qrx->validation_cb_arg))
+ return 0;
+
+ return 1;
+}
+
+/*
+ * Retrieves the correct cipher context for an EL and key phase. Writes the key
+ * epoch number actually used for packet decryption to *rx_key_epoch.
+ */
+static size_t qrx_get_cipher_ctx_idx(OSSL_QRX *qrx, OSSL_QRL_ENC_LEVEL *el,
+ uint32_t enc_level,
+ unsigned char key_phase_bit,
+ uint64_t *rx_key_epoch,
+ int *is_old_key)
+{
+ size_t idx;
+
+ *is_old_key = 0;
+
+ if (enc_level != QUIC_ENC_LEVEL_1RTT) {
+ *rx_key_epoch = 0;
+ return 0;
+ }
+
+ if (!ossl_assert(key_phase_bit <= 1))
+ return SIZE_MAX;
+
+ /*
+ * RFC 9001 requires that we not create timing channels which could reveal
+ * the decrypted value of the Key Phase bit. We usually handle this by
+ * keeping the cipher contexts for both the current and next key epochs
+ * around, so that we just select a cipher context blindly using the key
+ * phase bit, which is time-invariant.
+ *
+ * In the COOLDOWN state, we only have one keyslot/cipher context. RFC 9001
+ * suggests an implementation strategy to avoid creating a timing channel in
+ * this case:
+ *
+ * Endpoints can use randomized packet protection keys in place of
+ * discarded keys when key updates are not yet permitted.
+ *
+ * Rather than use a randomised key, we simply use our existing key as it
+ * will fail AEAD verification anyway. This avoids the need to keep around a
+ * dedicated garbage key.
+ *
+ * Note: Accessing different cipher contexts is technically not
+ * timing-channel safe due to microarchitectural side channels, but this is
+ * the best we can reasonably do and appears to be directly suggested by the
+ * RFC.
+ */
+ idx = (el->state == QRL_EL_STATE_PROV_COOLDOWN ? el->key_epoch & 1
+ : key_phase_bit);
+
+ /*
+ * We also need to determine the key epoch number which this index
+ * corresponds to. This is so we can report the key epoch number in the
+ * OSSL_QRX_PKT structure, which callers need to validate whether it was OK
+ * for a packet to be sent using a given key epoch's keys.
+ */
+ switch (el->state) {
+ case QRL_EL_STATE_PROV_NORMAL:
+ /*
+ * If we are in the NORMAL state, usually the KP bit will match the LSB
+ * of our key epoch, meaning no new key update is being signalled. If it
+ * does not match, this means the packet (purports to) belong to
+ * the next key epoch.
+ *
+ * IMPORTANT: The AEAD tag has not been verified yet when this function
+ * is called, so this code must be timing-channel safe, hence use of
+ * XOR. Moreover, the value output below is not yet authenticated.
+ */
+ *rx_key_epoch
+ = el->key_epoch + ((el->key_epoch & 1) ^ (uint64_t)key_phase_bit);
+ break;
+
+ case QRL_EL_STATE_PROV_UPDATING:
+ /*
+ * If we are in the UPDATING state, usually the KP bit will match the
+ * LSB of our key epoch. If it does not match, this means that the
+ * packet (purports to) belong to the previous key epoch.
+ *
+ * As above, must be timing-channel safe.
+ */
+ *is_old_key = (el->key_epoch & 1) ^ (uint64_t)key_phase_bit;
+ *rx_key_epoch = el->key_epoch - (uint64_t)*is_old_key;
+ break;
+
+ case QRL_EL_STATE_PROV_COOLDOWN:
+ /*
+ * If we are in COOLDOWN, there is only one key epoch we can possibly
+ * decrypt with, so just try that. If AEAD decryption fails, the
+ * value we output here isn't used anyway.
+ */
+ *rx_key_epoch = el->key_epoch;
+ break;
+ }
+
+ return idx;
+}
+
+/*
+ * Tries to decrypt a packet payload.
+ *
+ * Returns 1 on success or 0 on failure (which is permanent). The payload is
+ * decrypted from src and written to dst. The buffer dst must be of at least
+ * src_len bytes in length. The actual length of the output in bytes is written
+ * to *dec_len on success, which will always be equal to or less than (usually
+ * less than) src_len.
+ */
+static int qrx_decrypt_pkt_body(OSSL_QRX *qrx, unsigned char *dst,
+ const unsigned char *src,
+ size_t src_len, size_t *dec_len,
+ const unsigned char *aad, size_t aad_len,
+ QUIC_PN pn, uint32_t enc_level,
+ unsigned char key_phase_bit,
+ uint64_t *rx_key_epoch)
+{
+ int l = 0, l2 = 0, is_old_key, nonce_len;
+ unsigned char nonce[EVP_MAX_IV_LENGTH];
+ size_t i, cctx_idx;
+ OSSL_QRL_ENC_LEVEL *el = ossl_qrl_enc_level_set_get(&qrx->el_set,
+ enc_level, 1);
+ EVP_CIPHER_CTX *cctx;
+
+ if (src_len > INT_MAX || aad_len > INT_MAX)
+ return 0;
+
+ /* We should not have been called if we do not have key material. */
+ if (!ossl_assert(el != NULL))
+ return 0;
+
+ if (el->tag_len >= src_len)
+ return 0;
+
+ /*
+ * If we have failed to authenticate a certain number of ciphertexts, refuse
+ * to decrypt any more ciphertexts.
+ */
+ if (qrx->forged_pkt_count >= ossl_qrl_get_suite_max_forged_pkt(el->suite_id))
+ return 0;
+
+ cctx_idx = qrx_get_cipher_ctx_idx(qrx, el, enc_level, key_phase_bit,
+ rx_key_epoch, &is_old_key);
+ if (!ossl_assert(cctx_idx < OSSL_NELEM(el->cctx)))
+ return 0;
+
+ if (is_old_key && pn >= qrx->cur_epoch_start_pn)
+ /*
+ * RFC 9001 s. 5.5: Once an endpoint successfully receives a packet with
+ * a given PN, it MUST discard all packets in the same PN space with
+ * higher PNs if they cannot be successfully unprotected with the same
+ * key, or -- if there is a key update -- a subsequent packet protection
+ * key.
+ *
+ * In other words, once a PN x triggers a KU, it is invalid for us to
+ * receive a packet with a newer PN y (y > x) using the old keys.
+ */
+ return 0;
+
+ cctx = el->cctx[cctx_idx];
+
+ /* Construct nonce (nonce=IV ^ PN). */
+ nonce_len = EVP_CIPHER_CTX_get_iv_length(cctx);
+ if (!ossl_assert(nonce_len >= (int)sizeof(QUIC_PN)))
+ return 0;
+
+ memcpy(nonce, el->iv[cctx_idx], nonce_len);
+ for (i = 0; i < sizeof(QUIC_PN); ++i)
+ nonce[nonce_len - i - 1] ^= (unsigned char)(pn >> (i * 8));
+
+ /* type and key will already have been setup; feed the IV. */
+ if (EVP_CipherInit_ex(cctx, NULL,
+ NULL, NULL, nonce, /*enc=*/0) != 1)
+ return 0;
+
+ /* Feed the AEAD tag we got so the cipher can validate it. */
+ if (EVP_CIPHER_CTX_ctrl(cctx, EVP_CTRL_AEAD_SET_TAG,
+ el->tag_len,
+ (unsigned char *)src + src_len - el->tag_len) != 1)
+ return 0;
+
+ /* Feed AAD data. */
+ if (EVP_CipherUpdate(cctx, NULL, &l, aad, aad_len) != 1)
+ return 0;
+
+ /* Feed encrypted packet body. */
+ if (EVP_CipherUpdate(cctx, dst, &l, src, src_len - el->tag_len) != 1)
+ return 0;
+
+#ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
+ /*
+ * Throw away what we just decrypted and just use the ciphertext instead
+ * (which should be unencrypted)
+ */
+ memcpy(dst, src, l);
+
+ /* Pretend to authenticate the tag but ignore it */
+ if (EVP_CipherFinal_ex(cctx, NULL, &l2) != 1) {
+ /* We don't care */
+ }
+#else
+ /* Ensure authentication succeeded. */
+ if (EVP_CipherFinal_ex(cctx, NULL, &l2) != 1) {
+ /* Authentication failed, increment failed auth counter. */
+ ++qrx->forged_pkt_count;
+ return 0;
+ }
+#endif
+
+ *dec_len = l;
+ return 1;
+}
+
+static ossl_inline void ignore_res(int x)
+{
+ /* No-op. */
+}
+
+static void qrx_key_update_initiated(OSSL_QRX *qrx, QUIC_PN pn)
+{
+ if (!ossl_qrl_enc_level_set_key_update(&qrx->el_set, QUIC_ENC_LEVEL_1RTT))
+ /* We are already in RXKU, so we don't call the callback again. */
+ return;
+
+ qrx->cur_epoch_start_pn = pn;
+
+ if (qrx->key_update_cb != NULL)
+ qrx->key_update_cb(pn, qrx->key_update_cb_arg);
+}
+
+/* Process a single packet in a datagram. */
+static int qrx_process_pkt(OSSL_QRX *qrx, QUIC_URXE *urxe,
+ PACKET *pkt, size_t pkt_idx,
+ QUIC_CONN_ID *first_dcid,
+ size_t datagram_len)
+{
+ RXE *rxe;
+ const unsigned char *eop = NULL;
+ size_t i, aad_len = 0, dec_len = 0;
+ PACKET orig_pkt = *pkt;
+ const unsigned char *sop = PACKET_data(pkt);
+ unsigned char *dst;
+ char need_second_decode = 0, already_processed = 0;
+ QUIC_PKT_HDR_PTRS ptrs;
+ uint32_t pn_space, enc_level;
+ OSSL_QRL_ENC_LEVEL *el = NULL;
+ uint64_t rx_key_epoch = UINT64_MAX;
+
+ /*
+ * Get a free RXE. If we need to allocate a new one, use the packet length
+ * as a good ballpark figure.
+ */
+ rxe = qrx_ensure_free_rxe(qrx, PACKET_remaining(pkt));
+ if (rxe == NULL)
+ return 0;
+
+ /* Have we already processed this packet? */
+ if (pkt_is_marked(&urxe->processed, pkt_idx))
+ already_processed = 1;
+
+ /*
+ * Decode the header into the RXE structure. We first decrypt and read the
+ * unprotected part of the packet header (unless we already removed header
+ * protection, in which case we decode all of it).
+ */
+ need_second_decode = !pkt_is_marked(&urxe->hpr_removed, pkt_idx);
+ if (!ossl_quic_wire_decode_pkt_hdr(pkt,
+ qrx->short_conn_id_len,
+ need_second_decode, 0, &rxe->hdr, &ptrs,
+ NULL))
+ goto malformed;
+
+ /*
+ * Our successful decode above included an intelligible length and the
+ * PACKET is now pointing to the end of the QUIC packet.
+ */
+ eop = PACKET_data(pkt);
+
+ /*
+ * Make a note of the first packet's DCID so we can later ensure the
+ * destination connection IDs of all packets in a datagram match.
+ */
+ if (pkt_idx == 0)
+ *first_dcid = rxe->hdr.dst_conn_id;
+
+ /*
+ * Early header validation. Since we now know the packet length, we can also
+ * now skip over it if we already processed it.
+ */
+ if (already_processed
+ || !qrx_validate_hdr_early(qrx, rxe, pkt_idx == 0 ? NULL : first_dcid))
+ /*
+ * Already processed packets are handled identically to malformed
+ * packets; i.e., they are ignored.
+ */
+ goto malformed;
+
+ if (!ossl_quic_pkt_type_is_encrypted(rxe->hdr.type)) {
+ /*
+ * Version negotiation and retry packets are a special case. They do not
+ * contain a payload which needs decrypting and have no header
+ * protection.
+ */
+
+ /* Just copy the payload from the URXE to the RXE. */
+ if ((rxe = qrx_reserve_rxe(&qrx->rx_free, rxe, rxe->hdr.len)) == NULL)
+ /*
+ * Allocation failure. EOP will be pointing to the end of the
+ * datagram so processing of this datagram will end here.
+ */
+ goto malformed;
+
+ /* We are now committed to returning the packet. */
+ memcpy(rxe_data(rxe), rxe->hdr.data, rxe->hdr.len);
+ pkt_mark(&urxe->processed, pkt_idx);
+
+ rxe->hdr.data = rxe_data(rxe);
+ rxe->pn = QUIC_PN_INVALID;
+
+ rxe->data_len = rxe->hdr.len;
+ rxe->datagram_len = datagram_len;
+ rxe->key_epoch = 0;
+ rxe->peer = urxe->peer;
+ rxe->local = urxe->local;
+ rxe->time = urxe->time;
+ rxe->datagram_id = urxe->datagram_id;
+
+ /* Move RXE to pending. */
+ ossl_list_rxe_remove(&qrx->rx_free, rxe);
+ ossl_list_rxe_insert_tail(&qrx->rx_pending, rxe);
+ return 0; /* success, did not defer */
+ }
+
+ /* Determine encryption level of packet. */
+ enc_level = qrx_determine_enc_level(&rxe->hdr);
+
+ /* If we do not have keying material for this encryption level yet, defer. */
+ switch (ossl_qrl_enc_level_set_have_el(&qrx->el_set, enc_level)) {
+ case 1:
+ /* We have keys. */
+ if (enc_level == QUIC_ENC_LEVEL_1RTT && !qrx->allow_1rtt)
+ /*
+ * But we cannot process 1-RTT packets until the handshake is
+ * completed (RFC 9000 s. 5.7).
+ */
+ goto cannot_decrypt;
+
+ break;
+ case 0:
+ /* No keys yet. */
+ goto cannot_decrypt;
+ default:
+ /* We already discarded keys for this EL, we will never process this.*/
+ goto malformed;
+ }
+
+ /*
+ * We will copy any token included in the packet to the start of our RXE
+ * data buffer (so that we don't reference the URXE buffer any more and can
+ * recycle it). Track our position in the RXE buffer by index instead of
+ * pointer as the pointer may change as reallocs occur.
+ */
+ i = 0;
+
+ /*
+ * rxe->hdr.data is now pointing at the (encrypted) packet payload. rxe->hdr
+ * also has fields pointing into the PACKET buffer which will be going away
+ * soon (the URXE will be reused for another incoming packet).
+ *
+ * Firstly, relocate some of these fields into the RXE as needed.
+ *
+ * Relocate token buffer and fix pointer.
+ */
+ if (rxe->hdr.type == QUIC_PKT_TYPE_INITIAL) {
+ const unsigned char *token = rxe->hdr.token;
+
+ /*
+ * This may change the value of rxe and change the value of the token
+ * pointer as well. So we must make a temporary copy of the pointer to
+ * the token, and then copy it back into the new location of the rxe
+ */
+ if (!qrx_relocate_buffer(qrx, &rxe, &i, &token, rxe->hdr.token_len))
+ goto malformed;
+
+ rxe->hdr.token = token;
+ }
+
+ /* Now remove header protection. */
+ *pkt = orig_pkt;
+
+ el = ossl_qrl_enc_level_set_get(&qrx->el_set, enc_level, 1);
+ assert(el != NULL); /* Already checked above */
+
+ if (need_second_decode) {
+ if (!ossl_quic_hdr_protector_decrypt(&el->hpr, &ptrs))
+ goto malformed;
+
+ /*
+ * We have removed header protection, so don't attempt to do it again if
+ * the packet gets deferred and processed again.
+ */
+ pkt_mark(&urxe->hpr_removed, pkt_idx);
+
+ /* Decode the now unprotected header. */
+ if (ossl_quic_wire_decode_pkt_hdr(pkt, qrx->short_conn_id_len,
+ 0, 0, &rxe->hdr, NULL, NULL) != 1)
+ goto malformed;
+ }
+
+ /* Validate header and decode PN. */
+ if (!qrx_validate_hdr(qrx, rxe))
+ goto malformed;
+
+ if (qrx->msg_callback != NULL)
+ qrx->msg_callback(0, OSSL_QUIC1_VERSION, SSL3_RT_QUIC_PACKET, sop,
+ eop - sop - rxe->hdr.len, qrx->msg_callback_ssl,
+ qrx->msg_callback_arg);
+
+ /*
+ * The AAD data is the entire (unprotected) packet header including the PN.
+ * The packet header has been unprotected in place, so we can just reuse the
+ * PACKET buffer. The header ends where the payload begins.
+ */
+ aad_len = rxe->hdr.data - sop;
+
+ /* Ensure the RXE buffer size is adequate for our payload. */
+ if ((rxe = qrx_reserve_rxe(&qrx->rx_free, rxe, rxe->hdr.len + i)) == NULL) {
+ /*
+ * Allocation failure, treat as malformed and do not bother processing
+ * any further packets in the datagram as they are likely to also
+ * encounter allocation failures.
+ */
+ eop = NULL;
+ goto malformed;
+ }
+
+ /*
+ * We decrypt the packet body to immediately after the token at the start of
+ * the RXE buffer (where present).
+ *
+ * Do the decryption from the PACKET (which points into URXE memory) to our
+ * RXE payload (single-copy decryption), then fixup the pointers in the
+ * header to point to our new buffer.
+ *
+ * If decryption fails this is considered a permanent error; we defer
+ * packets we don't yet have decryption keys for above, so if this fails,
+ * something has gone wrong with the handshake process or a packet has been
+ * corrupted.
+ */
+ dst = (unsigned char *)rxe_data(rxe) + i;
+ if (!qrx_decrypt_pkt_body(qrx, dst, rxe->hdr.data, rxe->hdr.len,
+ &dec_len, sop, aad_len, rxe->pn, enc_level,
+ rxe->hdr.key_phase, &rx_key_epoch))
+ goto malformed;
+
+ /*
+ * -----------------------------------------------------
+ * IMPORTANT: ANYTHING ABOVE THIS LINE IS UNVERIFIED
+ * AND MUST BE TIMING-CHANNEL SAFE.
+ * -----------------------------------------------------
+ *
+ * At this point, we have successfully authenticated the AEAD tag and no
+ * longer need to worry about exposing the PN, PN length or Key Phase bit in
+ * timing channels. Invoke any configured validation callback to allow for
+ * rejection of duplicate PNs.
+ */
+ if (!qrx_validate_hdr_late(qrx, rxe))
+ goto malformed;
+
+ /* Check for a Key Phase bit differing from our expectation. */
+ if (rxe->hdr.type == QUIC_PKT_TYPE_1RTT
+ && rxe->hdr.key_phase != (el->key_epoch & 1))
+ qrx_key_update_initiated(qrx, rxe->pn);
+
+ /*
+ * We have now successfully decrypted the packet payload. If there are
+ * additional packets in the datagram, it is possible we will fail to
+ * decrypt them and need to defer them until we have some key material we
+ * don't currently possess. If this happens, the URXE will be moved to the
+ * deferred queue. Since a URXE corresponds to one datagram, which may
+ * contain multiple packets, we must ensure any packets we have already
+ * processed in the URXE are not processed again (this is an RFC
+ * requirement). We do this by marking the nth packet in the datagram as
+ * processed.
+ *
+ * We are now committed to returning this decrypted packet to the user,
+ * meaning we now consider the packet processed and must mark it
+ * accordingly.
+ */
+ pkt_mark(&urxe->processed, pkt_idx);
+
+ /*
+ * Update header to point to the decrypted buffer, which may be shorter
+ * due to AEAD tags, block padding, etc.
+ */
+ rxe->hdr.data = dst;
+ rxe->hdr.len = dec_len;
+ rxe->data_len = dec_len;
+ rxe->datagram_len = datagram_len;
+ rxe->key_epoch = rx_key_epoch;
+
+ /* We processed the PN successfully, so update largest processed PN. */
+ pn_space = rxe_determine_pn_space(rxe);
+ if (rxe->pn > qrx->largest_pn[pn_space])
+ qrx->largest_pn[pn_space] = rxe->pn;
+
+ /* Copy across network addresses and RX time from URXE to RXE. */
+ rxe->peer = urxe->peer;
+ rxe->local = urxe->local;
+ rxe->time = urxe->time;
+ rxe->datagram_id = urxe->datagram_id;
+
+ /* Move RXE to pending. */
+ ossl_list_rxe_remove(&qrx->rx_free, rxe);
+ ossl_list_rxe_insert_tail(&qrx->rx_pending, rxe);
+ return 0; /* success, did not defer; not distinguished from failure */
+
+cannot_decrypt:
+ /*
+ * We cannot process this packet right now (but might be able to later). We
+ * MUST attempt to process any other packets in the datagram, so defer it
+ * and skip over it.
+ */
+ assert(eop != NULL && eop >= PACKET_data(pkt));
+ /*
+ * We don't care if this fails as it will just result in the packet being at
+ * the end of the datagram buffer.
+ */
+ ignore_res(PACKET_forward(pkt, eop - PACKET_data(pkt)));
+ return 1; /* deferred */
+
+malformed:
+ if (eop != NULL) {
+ /*
+ * This packet cannot be processed and will never be processable. We
+ * were at least able to decode its header and determine its length, so
+ * we can skip over it and try to process any subsequent packets in the
+ * datagram.
+ *
+ * Mark as processed as an optimization.
+ */
+ assert(eop >= PACKET_data(pkt));
+ pkt_mark(&urxe->processed, pkt_idx);
+ /* We don't care if this fails (see above) */
+ ignore_res(PACKET_forward(pkt, eop - PACKET_data(pkt)));
+ } else {
+ /*
+ * This packet cannot be processed and will never be processable.
+ * Because even its header is not intelligible, we cannot examine any
+ * further packets in the datagram because its length cannot be
+ * discerned.
+ *
+ * Advance over the entire remainder of the datagram, and mark it as
+ * processed as an optimization.
+ */
+ pkt_mark(&urxe->processed, pkt_idx);
+ /* We don't care if this fails (see above) */
+ ignore_res(PACKET_forward(pkt, PACKET_remaining(pkt)));
+ }
+ return 0; /* failure, did not defer; not distinguished from success */
+}
+
+/* Process a datagram which was received. */
+static int qrx_process_datagram(OSSL_QRX *qrx, QUIC_URXE *e,
+ const unsigned char *data,
+ size_t data_len)
+{
+ int have_deferred = 0;
+ PACKET pkt;
+ size_t pkt_idx = 0;
+ QUIC_CONN_ID first_dcid = { 255 };
+
+ qrx->bytes_received += data_len;
+
+ if (!PACKET_buf_init(&pkt, data, data_len))
+ return 0;
+
+ for (; PACKET_remaining(&pkt) > 0; ++pkt_idx) {
+ /*
+ * A packet smaller than the minimum possible QUIC packet size is not
+ * considered valid. We also ignore more than a certain number of
+ * packets within the same datagram.
+ */
+ if (PACKET_remaining(&pkt) < QUIC_MIN_VALID_PKT_LEN
+ || pkt_idx >= QUIC_MAX_PKT_PER_URXE)
+ break;
+
+ /*
+ * We note whether packet processing resulted in a deferral since
+ * this means we need to move the URXE to the deferred list rather
+ * than the free list after we're finished dealing with it for now.
+ *
+ * However, we don't otherwise care here whether processing succeeded or
+ * failed, as the RFC says even if a packet in a datagram is malformed,
+ * we should still try to process any packets following it.
+ *
+ * In the case where the packet is so malformed we can't determine its
+ * length, qrx_process_pkt will take care of advancing to the end of
+ * the packet, so we will exit the loop automatically in this case.
+ */
+ if (qrx_process_pkt(qrx, e, &pkt, pkt_idx, &first_dcid, data_len))
+ have_deferred = 1;
+ }
+
+ /* Only report whether there were any deferrals. */
+ return have_deferred;
+}
+
+/* Process a single pending URXE. */
+static int qrx_process_one_urxe(OSSL_QRX *qrx, QUIC_URXE *e)
+{
+ int was_deferred;
+
+ /* The next URXE we process should be at the head of the pending list. */
+ if (!ossl_assert(e == ossl_list_urxe_head(&qrx->urx_pending)))
+ return 0;
+
+ /*
+ * Attempt to process the datagram. The return value indicates only if
+ * processing of the datagram was deferred. If we failed to process the
+ * datagram, we do not attempt to process it again and silently eat the
+ * error.
+ */
+ was_deferred = qrx_process_datagram(qrx, e, ossl_quic_urxe_data(e),
+ e->data_len);
+
+ /*
+ * Remove the URXE from the pending list and return it to
+ * either the free or deferred list.
+ */
+ ossl_list_urxe_remove(&qrx->urx_pending, e);
+ if (was_deferred > 0 &&
+ (e->deferred || qrx->num_deferred < qrx->max_deferred)) {
+ ossl_list_urxe_insert_tail(&qrx->urx_deferred, e);
+ if (!e->deferred) {
+ e->deferred = 1;
+ ++qrx->num_deferred;
+ }
+ } else {
+ if (e->deferred) {
+ e->deferred = 0;
+ --qrx->num_deferred;
+ }
+ ossl_quic_demux_release_urxe(qrx->demux, e);
+ }
+
+ return 1;
+}
+
+/* Process any pending URXEs to generate pending RXEs. */
+static int qrx_process_pending_urxl(OSSL_QRX *qrx)
+{
+ QUIC_URXE *e;
+
+ while ((e = ossl_list_urxe_head(&qrx->urx_pending)) != NULL)
+ if (!qrx_process_one_urxe(qrx, e))
+ return 0;
+
+ return 1;
+}
+
+int ossl_qrx_read_pkt(OSSL_QRX *qrx, OSSL_QRX_PKT **ppkt)
+{
+ RXE *rxe;
+
+ if (!ossl_qrx_processed_read_pending(qrx)) {
+ if (!qrx_process_pending_urxl(qrx))
+ return 0;
+
+ if (!ossl_qrx_processed_read_pending(qrx))
+ return 0;
+ }
+
+ rxe = qrx_pop_pending_rxe(qrx);
+ if (!ossl_assert(rxe != NULL))
+ return 0;
+
+ assert(rxe->refcount == 0);
+ rxe->refcount = 1;
+
+ rxe->pkt.hdr = &rxe->hdr;
+ rxe->pkt.pn = rxe->pn;
+ rxe->pkt.time = rxe->time;
+ rxe->pkt.datagram_len = rxe->datagram_len;
+ rxe->pkt.peer
+ = BIO_ADDR_family(&rxe->peer) != AF_UNSPEC ? &rxe->peer : NULL;
+ rxe->pkt.local
+ = BIO_ADDR_family(&rxe->local) != AF_UNSPEC ? &rxe->local : NULL;
+ rxe->pkt.key_epoch = rxe->key_epoch;
+ rxe->pkt.datagram_id = rxe->datagram_id;
+ rxe->pkt.qrx = qrx;
+ *ppkt = &rxe->pkt;
+
+ return 1;
+}
+
+void ossl_qrx_pkt_release(OSSL_QRX_PKT *pkt)
+{
+ RXE *rxe;
+
+ if (pkt == NULL)
+ return;
+
+ rxe = (RXE *)pkt;
+ assert(rxe->refcount > 0);
+ if (--rxe->refcount == 0)
+ qrx_recycle_rxe(pkt->qrx, rxe);
+}
+
+void ossl_qrx_pkt_orphan(OSSL_QRX_PKT *pkt)
+{
+ RXE *rxe;
+
+ if (pkt == NULL)
+ return;
+ rxe = (RXE *)pkt;
+ assert(rxe->refcount > 0);
+ rxe->refcount--;
+ assert(ossl_list_rxe_prev(rxe) == NULL && ossl_list_rxe_next(rxe) == NULL);
+ return;
+}
+
+void ossl_qrx_pkt_up_ref(OSSL_QRX_PKT *pkt)
+{
+ RXE *rxe = (RXE *)pkt;
+
+ assert(rxe->refcount > 0);
+ ++rxe->refcount;
+}
+
+uint64_t ossl_qrx_get_bytes_received(OSSL_QRX *qrx, int clear)
+{
+ uint64_t v = qrx->bytes_received;
+
+ if (clear)
+ qrx->bytes_received = 0;
+
+ return v;
+}
+
+int ossl_qrx_set_late_validation_cb(OSSL_QRX *qrx,
+ ossl_qrx_late_validation_cb *cb,
+ void *cb_arg)
+{
+ qrx->validation_cb = cb;
+ qrx->validation_cb_arg = cb_arg;
+ return 1;
+}
+
+int ossl_qrx_set_key_update_cb(OSSL_QRX *qrx,
+ ossl_qrx_key_update_cb *cb,
+ void *cb_arg)
+{
+ qrx->key_update_cb = cb;
+ qrx->key_update_cb_arg = cb_arg;
+ return 1;
+}
+
+uint64_t ossl_qrx_get_key_epoch(OSSL_QRX *qrx)
+{
+ OSSL_QRL_ENC_LEVEL *el = ossl_qrl_enc_level_set_get(&qrx->el_set,
+ QUIC_ENC_LEVEL_1RTT, 1);
+
+ return el == NULL ? UINT64_MAX : el->key_epoch;
+}
+
+int ossl_qrx_key_update_timeout(OSSL_QRX *qrx, int normal)
+{
+ OSSL_QRL_ENC_LEVEL *el = ossl_qrl_enc_level_set_get(&qrx->el_set,
+ QUIC_ENC_LEVEL_1RTT, 1);
+
+ if (el == NULL)
+ return 0;
+
+ if (el->state == QRL_EL_STATE_PROV_UPDATING
+ && !ossl_qrl_enc_level_set_key_update_done(&qrx->el_set,
+ QUIC_ENC_LEVEL_1RTT))
+ return 0;
+
+ if (normal && el->state == QRL_EL_STATE_PROV_COOLDOWN
+ && !ossl_qrl_enc_level_set_key_cooldown_done(&qrx->el_set,
+ QUIC_ENC_LEVEL_1RTT))
+ return 0;
+
+ return 1;
+}
+
+uint64_t ossl_qrx_get_cur_forged_pkt_count(OSSL_QRX *qrx)
+{
+ return qrx->forged_pkt_count;
+}
+
+uint64_t ossl_qrx_get_max_forged_pkt_count(OSSL_QRX *qrx,
+ uint32_t enc_level)
+{
+ OSSL_QRL_ENC_LEVEL *el = ossl_qrl_enc_level_set_get(&qrx->el_set,
+ enc_level, 1);
+
+ return el == NULL ? UINT64_MAX
+ : ossl_qrl_get_suite_max_forged_pkt(el->suite_id);
+}
+
+void ossl_qrx_allow_1rtt_processing(OSSL_QRX *qrx)
+{
+ if (qrx->allow_1rtt)
+ return;
+
+ qrx->allow_1rtt = 1;
+ qrx_requeue_deferred(qrx);
+}
+
+void ossl_qrx_set_msg_callback(OSSL_QRX *qrx, ossl_msg_cb msg_callback,
+ SSL *msg_callback_ssl)
+{
+ qrx->msg_callback = msg_callback;
+ qrx->msg_callback_ssl = msg_callback_ssl;
+}
+
+void ossl_qrx_set_msg_callback_arg(OSSL_QRX *qrx, void *msg_callback_arg)
+{
+ qrx->msg_callback_arg = msg_callback_arg;
+}
+
+size_t ossl_qrx_get_short_hdr_conn_id_len(OSSL_QRX *qrx)
+{
+ return qrx->short_conn_id_len;
+}