diff options
Diffstat (limited to 'crypto/openssl/ssl/quic/quic_record_rx.c')
| -rw-r--r-- | crypto/openssl/ssl/quic/quic_record_rx.c | 1603 |
1 files changed, 1603 insertions, 0 deletions
diff --git a/crypto/openssl/ssl/quic/quic_record_rx.c b/crypto/openssl/ssl/quic/quic_record_rx.c new file mode 100644 index 000000000000..1a8194b396d7 --- /dev/null +++ b/crypto/openssl/ssl/quic/quic_record_rx.c @@ -0,0 +1,1603 @@ +/* + * Copyright 2022-2025 The OpenSSL Project Authors. All Rights Reserved. + * + * Licensed under the Apache License 2.0 (the "License"). You may not use + * this file except in compliance with the License. You can obtain a copy + * in the file LICENSE in the source distribution or at + * https://www.openssl.org/source/license.html + */ + +#include <openssl/ssl.h> +#include "internal/quic_record_rx.h" +#include "quic_record_shared.h" +#include "internal/common.h" +#include "internal/list.h" +#include "../ssl_local.h" + +/* + * Mark a packet in a bitfield. + * + * pkt_idx: index of packet within datagram. + */ +static ossl_inline void pkt_mark(uint64_t *bitf, size_t pkt_idx) +{ + assert(pkt_idx < QUIC_MAX_PKT_PER_URXE); + *bitf |= ((uint64_t)1) << pkt_idx; +} + +/* Returns 1 if a packet is in the bitfield. */ +static ossl_inline int pkt_is_marked(const uint64_t *bitf, size_t pkt_idx) +{ + assert(pkt_idx < QUIC_MAX_PKT_PER_URXE); + return (*bitf & (((uint64_t)1) << pkt_idx)) != 0; +} + +/* + * RXE + * === + * + * RX Entries (RXEs) store processed (i.e., decrypted) data received from the + * network. One RXE is used per received QUIC packet. + */ +typedef struct rxe_st RXE; + +struct rxe_st { + OSSL_QRX_PKT pkt; + OSSL_LIST_MEMBER(rxe, RXE); + size_t data_len, alloc_len, refcount; + + /* Extra fields for per-packet information. */ + QUIC_PKT_HDR hdr; /* data/len are decrypted payload */ + + /* Decoded packet number. */ + QUIC_PN pn; + + /* Addresses copied from URXE. */ + BIO_ADDR peer, local; + + /* Time we received the packet (not when we processed it). */ + OSSL_TIME time; + + /* Total length of the datagram which contained this packet. */ + size_t datagram_len; + + /* + * The key epoch the packet was received with. Always 0 for non-1-RTT + * packets. + */ + uint64_t key_epoch; + + /* + * Monotonically increases with each datagram received. + * For diagnostic use only. + */ + uint64_t datagram_id; + + /* + * alloc_len allocated bytes (of which data_len bytes are valid) follow this + * structure. + */ +}; + +DEFINE_LIST_OF(rxe, RXE); +typedef OSSL_LIST(rxe) RXE_LIST; + +static ossl_inline unsigned char *rxe_data(const RXE *e) +{ + return (unsigned char *)(e + 1); +} + +/* + * QRL + * === + */ +struct ossl_qrx_st { + OSSL_LIB_CTX *libctx; + const char *propq; + + /* Demux to receive datagrams from. */ + QUIC_DEMUX *demux; + + /* Length of connection IDs used in short-header packets in bytes. */ + size_t short_conn_id_len; + + /* Maximum number of deferred datagrams buffered at any one time. */ + size_t max_deferred; + + /* Current count of deferred datagrams. */ + size_t num_deferred; + + /* + * List of URXEs which are filled with received encrypted data. + * These are returned to the DEMUX's free list as they are processed. + */ + QUIC_URXE_LIST urx_pending; + + /* + * List of URXEs which we could not decrypt immediately and which are being + * kept in case they can be decrypted later. + */ + QUIC_URXE_LIST urx_deferred; + + /* + * List of RXEs which are not currently in use. These are moved + * to the pending list as they are filled. + */ + RXE_LIST rx_free; + + /* + * List of RXEs which are filled with decrypted packets ready to be passed + * to the user. A RXE is removed from all lists inside the QRL when passed + * to the user, then returned to the free list when the user returns it. + */ + RXE_LIST rx_pending; + + /* Largest PN we have received and processed in a given PN space. */ + QUIC_PN largest_pn[QUIC_PN_SPACE_NUM]; + + /* Per encryption-level state. */ + OSSL_QRL_ENC_LEVEL_SET el_set; + + /* Bytes we have received since this counter was last cleared. */ + uint64_t bytes_received; + + /* + * Number of forged packets we have received since the QRX was instantiated. + * Note that as per RFC 9001, this is connection-level state; it is not per + * EL and is not reset by a key update. + */ + uint64_t forged_pkt_count; + + /* + * The PN the current key epoch started at, inclusive. + */ + uint64_t cur_epoch_start_pn; + + /* Validation callback. */ + ossl_qrx_late_validation_cb *validation_cb; + void *validation_cb_arg; + + /* Key update callback. */ + ossl_qrx_key_update_cb *key_update_cb; + void *key_update_cb_arg; + + /* Initial key phase. For debugging use only; always 0 in real use. */ + unsigned char init_key_phase_bit; + + /* Are we allowed to process 1-RTT packets yet? */ + unsigned char allow_1rtt; + + /* Message callback related arguments */ + ossl_msg_cb msg_callback; + void *msg_callback_arg; + SSL *msg_callback_ssl; +}; + +static RXE *qrx_ensure_free_rxe(OSSL_QRX *qrx, size_t alloc_len); +static int qrx_validate_hdr_early(OSSL_QRX *qrx, RXE *rxe, + const QUIC_CONN_ID *first_dcid); +static int qrx_relocate_buffer(OSSL_QRX *qrx, RXE **prxe, size_t *pi, + const unsigned char **pptr, size_t buf_len); +static int qrx_validate_hdr(OSSL_QRX *qrx, RXE *rxe); +static RXE *qrx_reserve_rxe(RXE_LIST *rxl, RXE *rxe, size_t n); +static int qrx_decrypt_pkt_body(OSSL_QRX *qrx, unsigned char *dst, + const unsigned char *src, + size_t src_len, size_t *dec_len, + const unsigned char *aad, size_t aad_len, + QUIC_PN pn, uint32_t enc_level, + unsigned char key_phase_bit, + uint64_t *rx_key_epoch); +static int qrx_validate_hdr_late(OSSL_QRX *qrx, RXE *rxe); +static uint32_t rxe_determine_pn_space(RXE *rxe); +static void ignore_res(int x); + +OSSL_QRX *ossl_qrx_new(const OSSL_QRX_ARGS *args) +{ + OSSL_QRX *qrx; + size_t i; + + if (args->demux == NULL || args->max_deferred == 0) + return NULL; + + qrx = OPENSSL_zalloc(sizeof(OSSL_QRX)); + if (qrx == NULL) + return NULL; + + for (i = 0; i < OSSL_NELEM(qrx->largest_pn); ++i) + qrx->largest_pn[i] = args->init_largest_pn[i]; + + qrx->libctx = args->libctx; + qrx->propq = args->propq; + qrx->demux = args->demux; + qrx->short_conn_id_len = args->short_conn_id_len; + qrx->init_key_phase_bit = args->init_key_phase_bit; + qrx->max_deferred = args->max_deferred; + return qrx; +} + +static void qrx_cleanup_rxl(RXE_LIST *l) +{ + RXE *e, *enext; + + for (e = ossl_list_rxe_head(l); e != NULL; e = enext) { + enext = ossl_list_rxe_next(e); + ossl_list_rxe_remove(l, e); + OPENSSL_free(e); + } +} + +static void qrx_cleanup_urxl(OSSL_QRX *qrx, QUIC_URXE_LIST *l) +{ + QUIC_URXE *e, *enext; + + for (e = ossl_list_urxe_head(l); e != NULL; e = enext) { + enext = ossl_list_urxe_next(e); + ossl_list_urxe_remove(l, e); + ossl_quic_demux_release_urxe(qrx->demux, e); + } +} + +void ossl_qrx_update_pn_space(OSSL_QRX *src, OSSL_QRX *dst) +{ + size_t i; + + for (i = 0; i < QUIC_PN_SPACE_NUM; i++) + dst->largest_pn[i] = src->largest_pn[i]; + + return; +} + +void ossl_qrx_free(OSSL_QRX *qrx) +{ + uint32_t i; + + if (qrx == NULL) + return; + + /* Free RXE queue data. */ + qrx_cleanup_rxl(&qrx->rx_free); + qrx_cleanup_rxl(&qrx->rx_pending); + qrx_cleanup_urxl(qrx, &qrx->urx_pending); + qrx_cleanup_urxl(qrx, &qrx->urx_deferred); + + /* Drop keying material and crypto resources. */ + for (i = 0; i < QUIC_ENC_LEVEL_NUM; ++i) + ossl_qrl_enc_level_set_discard(&qrx->el_set, i); + + OPENSSL_free(qrx); +} + +void ossl_qrx_inject_urxe(OSSL_QRX *qrx, QUIC_URXE *urxe) +{ + /* Initialize our own fields inside the URXE and add to the pending list. */ + urxe->processed = 0; + urxe->hpr_removed = 0; + urxe->deferred = 0; + ossl_list_urxe_insert_tail(&qrx->urx_pending, urxe); + + if (qrx->msg_callback != NULL) + qrx->msg_callback(0, OSSL_QUIC1_VERSION, SSL3_RT_QUIC_DATAGRAM, urxe + 1, + urxe->data_len, qrx->msg_callback_ssl, + qrx->msg_callback_arg); +} + +void ossl_qrx_inject_pkt(OSSL_QRX *qrx, OSSL_QRX_PKT *pkt) +{ + RXE *rxe = (RXE *)pkt; + + /* + * port_default_packet_handler() uses ossl_qrx_read_pkt() + * to get pkt. Such packet has refcount 1. + */ + ossl_qrx_pkt_orphan(pkt); + if (ossl_assert(rxe->refcount == 0)) + ossl_list_rxe_insert_tail(&qrx->rx_pending, rxe); +} + +/* + * qrx_validate_initial_pkt() is derived from qrx_process_pkt(). Unlike + * qrx_process_pkt() the qrx_validate_initial_pkt() function can process + * initial packet only. All other packets should be discarded. This allows + * port_default_packet_handler() to validate incoming packet. If packet + * is not valid, then port_default_packet_handler() must discard the + * packet instead of creating a new channel for it. + */ +static int qrx_validate_initial_pkt(OSSL_QRX *qrx, QUIC_URXE *urxe, + const QUIC_CONN_ID *first_dcid, + size_t datagram_len) +{ + PACKET pkt, orig_pkt; + RXE *rxe; + size_t i = 0, aad_len = 0, dec_len = 0; + const unsigned char *sop; + unsigned char *dst; + QUIC_PKT_HDR_PTRS ptrs; + uint32_t pn_space; + OSSL_QRL_ENC_LEVEL *el = NULL; + uint64_t rx_key_epoch = UINT64_MAX; + + if (!PACKET_buf_init(&pkt, ossl_quic_urxe_data(urxe), urxe->data_len)) + return 0; + + orig_pkt = pkt; + sop = PACKET_data(&pkt); + + /* + * Get a free RXE. If we need to allocate a new one, use the packet length + * as a good ballpark figure. + */ + rxe = qrx_ensure_free_rxe(qrx, PACKET_remaining(&pkt)); + if (rxe == NULL) + return 0; + + /* + * we expect INITIAL packet only, therefore it is OK to pass + * short_conn_id_len as 0. + */ + if (!ossl_quic_wire_decode_pkt_hdr(&pkt, + 0, /* short_conn_id_len */ + 1, /* need second decode */ + 0, /* nodata -> want to read data */ + &rxe->hdr, &ptrs, + NULL)) + goto malformed; + + if (rxe->hdr.type != QUIC_PKT_TYPE_INITIAL) + goto malformed; + + if (!qrx_validate_hdr_early(qrx, rxe, NULL)) + goto malformed; + + if (ossl_qrl_enc_level_set_have_el(&qrx->el_set, QUIC_ENC_LEVEL_INITIAL) != 1) + goto malformed; + + if (rxe->hdr.type == QUIC_PKT_TYPE_INITIAL) { + const unsigned char *token = rxe->hdr.token; + + /* + * This may change the value of rxe and change the value of the token + * pointer as well. So we must make a temporary copy of the pointer to + * the token, and then copy it back into the new location of the rxe + */ + if (!qrx_relocate_buffer(qrx, &rxe, &i, &token, rxe->hdr.token_len)) + goto malformed; + + rxe->hdr.token = token; + } + + pkt = orig_pkt; + + el = ossl_qrl_enc_level_set_get(&qrx->el_set, QUIC_ENC_LEVEL_INITIAL, 1); + assert(el != NULL); /* Already checked above */ + + if (!ossl_quic_hdr_protector_decrypt(&el->hpr, &ptrs)) + goto malformed; + + /* + * We have removed header protection, so don't attempt to do it again if + * the packet gets deferred and processed again. + */ + pkt_mark(&urxe->hpr_removed, 0); + + /* Decode the now unprotected header. */ + if (ossl_quic_wire_decode_pkt_hdr(&pkt, 0, + 0, 0, &rxe->hdr, NULL, NULL) != 1) + goto malformed; + + /* Validate header and decode PN. */ + if (!qrx_validate_hdr(qrx, rxe)) + goto malformed; + + /* + * The AAD data is the entire (unprotected) packet header including the PN. + * The packet header has been unprotected in place, so we can just reuse the + * PACKET buffer. The header ends where the payload begins. + */ + aad_len = rxe->hdr.data - sop; + + /* Ensure the RXE buffer size is adequate for our payload. */ + if ((rxe = qrx_reserve_rxe(&qrx->rx_free, rxe, rxe->hdr.len + i)) == NULL) + goto malformed; + + /* + * We decrypt the packet body to immediately after the token at the start of + * the RXE buffer (where present). + * + * Do the decryption from the PACKET (which points into URXE memory) to our + * RXE payload (single-copy decryption), then fixup the pointers in the + * header to point to our new buffer. + * + * If decryption fails this is considered a permanent error; we defer + * packets we don't yet have decryption keys for above, so if this fails, + * something has gone wrong with the handshake process or a packet has been + * corrupted. + */ + dst = (unsigned char *)rxe_data(rxe) + i; + if (!qrx_decrypt_pkt_body(qrx, dst, rxe->hdr.data, rxe->hdr.len, + &dec_len, sop, aad_len, rxe->pn, QUIC_ENC_LEVEL_INITIAL, + rxe->hdr.key_phase, &rx_key_epoch)) + goto malformed; + + /* + * ----------------------------------------------------- + * IMPORTANT: ANYTHING ABOVE THIS LINE IS UNVERIFIED + * AND MUST BE TIMING-CHANNEL SAFE. + * ----------------------------------------------------- + * + * At this point, we have successfully authenticated the AEAD tag and no + * longer need to worry about exposing the PN, PN length or Key Phase bit in + * timing channels. Invoke any configured validation callback to allow for + * rejection of duplicate PNs. + */ + if (!qrx_validate_hdr_late(qrx, rxe)) + goto malformed; + + pkt_mark(&urxe->processed, 0); + + /* + * Update header to point to the decrypted buffer, which may be shorter + * due to AEAD tags, block padding, etc. + */ + rxe->hdr.data = dst; + rxe->hdr.len = dec_len; + rxe->data_len = dec_len; + rxe->datagram_len = datagram_len; + rxe->key_epoch = rx_key_epoch; + + /* We processed the PN successfully, so update largest processed PN. */ + pn_space = rxe_determine_pn_space(rxe); + if (rxe->pn > qrx->largest_pn[pn_space]) + qrx->largest_pn[pn_space] = rxe->pn; + + /* Copy across network addresses and RX time from URXE to RXE. */ + rxe->peer = urxe->peer; + rxe->local = urxe->local; + rxe->time = urxe->time; + rxe->datagram_id = urxe->datagram_id; + + /* + * The packet is decrypted, we are going to move it from + * rx_pending queue where it waits to be further processed + * by ch_rx(). + */ + ossl_list_rxe_remove(&qrx->rx_free, rxe); + ossl_list_rxe_insert_tail(&qrx->rx_pending, rxe); + + return 1; + +malformed: + /* caller (port_default_packet_handler()) should discard urxe */ + return 0; +} + +int ossl_qrx_validate_initial_packet(OSSL_QRX *qrx, QUIC_URXE *urxe, + const QUIC_CONN_ID *dcid) +{ + urxe->processed = 0; + urxe->hpr_removed = 0; + urxe->deferred = 0; + + return qrx_validate_initial_pkt(qrx, urxe, dcid, urxe->data_len); +} + +static void qrx_requeue_deferred(OSSL_QRX *qrx) +{ + QUIC_URXE *e; + + while ((e = ossl_list_urxe_head(&qrx->urx_deferred)) != NULL) { + ossl_list_urxe_remove(&qrx->urx_deferred, e); + ossl_list_urxe_insert_tail(&qrx->urx_pending, e); + } +} + +int ossl_qrx_provide_secret(OSSL_QRX *qrx, uint32_t enc_level, + uint32_t suite_id, EVP_MD *md, + const unsigned char *secret, size_t secret_len) +{ + if (enc_level >= QUIC_ENC_LEVEL_NUM) + return 0; + + if (!ossl_qrl_enc_level_set_provide_secret(&qrx->el_set, + qrx->libctx, + qrx->propq, + enc_level, + suite_id, + md, + secret, + secret_len, + qrx->init_key_phase_bit, + /*is_tx=*/0)) + return 0; + + /* + * Any packets we previously could not decrypt, we may now be able to + * decrypt, so move any datagrams containing deferred packets from the + * deferred to the pending queue. + */ + qrx_requeue_deferred(qrx); + return 1; +} + +int ossl_qrx_discard_enc_level(OSSL_QRX *qrx, uint32_t enc_level) +{ + if (enc_level >= QUIC_ENC_LEVEL_NUM) + return 0; + + ossl_qrl_enc_level_set_discard(&qrx->el_set, enc_level); + return 1; +} + +/* Returns 1 if there are one or more pending RXEs. */ +int ossl_qrx_processed_read_pending(OSSL_QRX *qrx) +{ + return !ossl_list_rxe_is_empty(&qrx->rx_pending); +} + +/* Returns 1 if there are yet-unprocessed packets. */ +int ossl_qrx_unprocessed_read_pending(OSSL_QRX *qrx) +{ + return !ossl_list_urxe_is_empty(&qrx->urx_pending) + || !ossl_list_urxe_is_empty(&qrx->urx_deferred); +} + +/* Pop the next pending RXE. Returns NULL if no RXE is pending. */ +static RXE *qrx_pop_pending_rxe(OSSL_QRX *qrx) +{ + RXE *rxe = ossl_list_rxe_head(&qrx->rx_pending); + + if (rxe == NULL) + return NULL; + + ossl_list_rxe_remove(&qrx->rx_pending, rxe); + return rxe; +} + +/* Allocate a new RXE. */ +static RXE *qrx_alloc_rxe(size_t alloc_len) +{ + RXE *rxe; + + if (alloc_len >= SIZE_MAX - sizeof(RXE)) + return NULL; + + rxe = OPENSSL_malloc(sizeof(RXE) + alloc_len); + if (rxe == NULL) + return NULL; + + ossl_list_rxe_init_elem(rxe); + rxe->alloc_len = alloc_len; + rxe->data_len = 0; + rxe->refcount = 0; + return rxe; +} + +/* + * Ensures there is at least one RXE in the RX free list, allocating a new entry + * if necessary. The returned RXE is in the RX free list; it is not popped. + * + * alloc_len is a hint which may be used to determine the RXE size if allocation + * is necessary. Returns NULL on allocation failure. + */ +static RXE *qrx_ensure_free_rxe(OSSL_QRX *qrx, size_t alloc_len) +{ + RXE *rxe; + + if (ossl_list_rxe_head(&qrx->rx_free) != NULL) + return ossl_list_rxe_head(&qrx->rx_free); + + rxe = qrx_alloc_rxe(alloc_len); + if (rxe == NULL) + return NULL; + + ossl_list_rxe_insert_tail(&qrx->rx_free, rxe); + return rxe; +} + +/* + * Resize the data buffer attached to an RXE to be n bytes in size. The address + * of the RXE might change; the new address is returned, or NULL on failure, in + * which case the original RXE remains valid. + */ +static RXE *qrx_resize_rxe(RXE_LIST *rxl, RXE *rxe, size_t n) +{ + RXE *rxe2, *p; + + /* Should never happen. */ + if (rxe == NULL) + return NULL; + + if (n >= SIZE_MAX - sizeof(RXE)) + return NULL; + + /* Remove the item from the list to avoid accessing freed memory */ + p = ossl_list_rxe_prev(rxe); + ossl_list_rxe_remove(rxl, rxe); + + /* Should never resize an RXE which has been handed out. */ + if (!ossl_assert(rxe->refcount == 0)) + return NULL; + + /* + * NOTE: We do not clear old memory, although it does contain decrypted + * data. + */ + rxe2 = OPENSSL_realloc(rxe, sizeof(RXE) + n); + if (rxe2 == NULL) { + /* Resize failed, restore old allocation. */ + if (p == NULL) + ossl_list_rxe_insert_head(rxl, rxe); + else + ossl_list_rxe_insert_after(rxl, p, rxe); + return NULL; + } + + if (p == NULL) + ossl_list_rxe_insert_head(rxl, rxe2); + else + ossl_list_rxe_insert_after(rxl, p, rxe2); + + rxe2->alloc_len = n; + return rxe2; +} + +/* + * Ensure the data buffer attached to an RXE is at least n bytes in size. + * Returns NULL on failure. + */ +static RXE *qrx_reserve_rxe(RXE_LIST *rxl, + RXE *rxe, size_t n) +{ + if (rxe->alloc_len >= n) + return rxe; + + return qrx_resize_rxe(rxl, rxe, n); +} + +/* Return a RXE handed out to the user back to our freelist. */ +static void qrx_recycle_rxe(OSSL_QRX *qrx, RXE *rxe) +{ + /* RXE should not be in any list */ + assert(ossl_list_rxe_prev(rxe) == NULL && ossl_list_rxe_next(rxe) == NULL); + rxe->pkt.hdr = NULL; + rxe->pkt.peer = NULL; + rxe->pkt.local = NULL; + ossl_list_rxe_insert_tail(&qrx->rx_free, rxe); +} + +/* + * Given a pointer to a pointer pointing to a buffer and the size of that + * buffer, copy the buffer into *prxe, expanding the RXE if necessary (its + * pointer may change due to realloc). *pi is the offset in bytes to copy the + * buffer to, and on success is updated to be the offset pointing after the + * copied buffer. *pptr is updated to point to the new location of the buffer. + */ +static int qrx_relocate_buffer(OSSL_QRX *qrx, RXE **prxe, size_t *pi, + const unsigned char **pptr, size_t buf_len) +{ + RXE *rxe; + unsigned char *dst; + + if (!buf_len) + return 1; + + if ((rxe = qrx_reserve_rxe(&qrx->rx_free, *prxe, *pi + buf_len)) == NULL) + return 0; + + *prxe = rxe; + dst = (unsigned char *)rxe_data(rxe) + *pi; + + memcpy(dst, *pptr, buf_len); + *pi += buf_len; + *pptr = dst; + return 1; +} + +static uint32_t qrx_determine_enc_level(const QUIC_PKT_HDR *hdr) +{ + switch (hdr->type) { + case QUIC_PKT_TYPE_INITIAL: + return QUIC_ENC_LEVEL_INITIAL; + case QUIC_PKT_TYPE_HANDSHAKE: + return QUIC_ENC_LEVEL_HANDSHAKE; + case QUIC_PKT_TYPE_0RTT: + return QUIC_ENC_LEVEL_0RTT; + case QUIC_PKT_TYPE_1RTT: + return QUIC_ENC_LEVEL_1RTT; + + default: + assert(0); + case QUIC_PKT_TYPE_RETRY: + case QUIC_PKT_TYPE_VERSION_NEG: + return QUIC_ENC_LEVEL_INITIAL; /* not used */ + } +} + +static uint32_t rxe_determine_pn_space(RXE *rxe) +{ + uint32_t enc_level; + + enc_level = qrx_determine_enc_level(&rxe->hdr); + return ossl_quic_enc_level_to_pn_space(enc_level); +} + +static int qrx_validate_hdr_early(OSSL_QRX *qrx, RXE *rxe, + const QUIC_CONN_ID *first_dcid) +{ + /* Ensure version is what we want. */ + if (rxe->hdr.version != QUIC_VERSION_1 + && rxe->hdr.version != QUIC_VERSION_NONE) + return 0; + + /* Clients should never receive 0-RTT packets. */ + if (rxe->hdr.type == QUIC_PKT_TYPE_0RTT) + return 0; + + /* Version negotiation and retry packets must be the first packet. */ + if (first_dcid != NULL && !ossl_quic_pkt_type_can_share_dgram(rxe->hdr.type)) + return 0; + + /* + * If this is not the first packet in a datagram, the destination connection + * ID must match the one in that packet. + */ + if (first_dcid != NULL) { + if (!ossl_assert(first_dcid->id_len < QUIC_MAX_CONN_ID_LEN) + || !ossl_quic_conn_id_eq(first_dcid, + &rxe->hdr.dst_conn_id)) + return 0; + } + + return 1; +} + +/* Validate header and decode PN. */ +static int qrx_validate_hdr(OSSL_QRX *qrx, RXE *rxe) +{ + int pn_space = rxe_determine_pn_space(rxe); + + if (!ossl_quic_wire_decode_pkt_hdr_pn(rxe->hdr.pn, rxe->hdr.pn_len, + qrx->largest_pn[pn_space], + &rxe->pn)) + return 0; + + return 1; +} + +/* Late packet header validation. */ +static int qrx_validate_hdr_late(OSSL_QRX *qrx, RXE *rxe) +{ + int pn_space = rxe_determine_pn_space(rxe); + + /* + * Allow our user to decide whether to discard the packet before we try and + * decrypt it. + */ + if (qrx->validation_cb != NULL + && !qrx->validation_cb(rxe->pn, pn_space, qrx->validation_cb_arg)) + return 0; + + return 1; +} + +/* + * Retrieves the correct cipher context for an EL and key phase. Writes the key + * epoch number actually used for packet decryption to *rx_key_epoch. + */ +static size_t qrx_get_cipher_ctx_idx(OSSL_QRX *qrx, OSSL_QRL_ENC_LEVEL *el, + uint32_t enc_level, + unsigned char key_phase_bit, + uint64_t *rx_key_epoch, + int *is_old_key) +{ + size_t idx; + + *is_old_key = 0; + + if (enc_level != QUIC_ENC_LEVEL_1RTT) { + *rx_key_epoch = 0; + return 0; + } + + if (!ossl_assert(key_phase_bit <= 1)) + return SIZE_MAX; + + /* + * RFC 9001 requires that we not create timing channels which could reveal + * the decrypted value of the Key Phase bit. We usually handle this by + * keeping the cipher contexts for both the current and next key epochs + * around, so that we just select a cipher context blindly using the key + * phase bit, which is time-invariant. + * + * In the COOLDOWN state, we only have one keyslot/cipher context. RFC 9001 + * suggests an implementation strategy to avoid creating a timing channel in + * this case: + * + * Endpoints can use randomized packet protection keys in place of + * discarded keys when key updates are not yet permitted. + * + * Rather than use a randomised key, we simply use our existing key as it + * will fail AEAD verification anyway. This avoids the need to keep around a + * dedicated garbage key. + * + * Note: Accessing different cipher contexts is technically not + * timing-channel safe due to microarchitectural side channels, but this is + * the best we can reasonably do and appears to be directly suggested by the + * RFC. + */ + idx = (el->state == QRL_EL_STATE_PROV_COOLDOWN ? el->key_epoch & 1 + : key_phase_bit); + + /* + * We also need to determine the key epoch number which this index + * corresponds to. This is so we can report the key epoch number in the + * OSSL_QRX_PKT structure, which callers need to validate whether it was OK + * for a packet to be sent using a given key epoch's keys. + */ + switch (el->state) { + case QRL_EL_STATE_PROV_NORMAL: + /* + * If we are in the NORMAL state, usually the KP bit will match the LSB + * of our key epoch, meaning no new key update is being signalled. If it + * does not match, this means the packet (purports to) belong to + * the next key epoch. + * + * IMPORTANT: The AEAD tag has not been verified yet when this function + * is called, so this code must be timing-channel safe, hence use of + * XOR. Moreover, the value output below is not yet authenticated. + */ + *rx_key_epoch + = el->key_epoch + ((el->key_epoch & 1) ^ (uint64_t)key_phase_bit); + break; + + case QRL_EL_STATE_PROV_UPDATING: + /* + * If we are in the UPDATING state, usually the KP bit will match the + * LSB of our key epoch. If it does not match, this means that the + * packet (purports to) belong to the previous key epoch. + * + * As above, must be timing-channel safe. + */ + *is_old_key = (el->key_epoch & 1) ^ (uint64_t)key_phase_bit; + *rx_key_epoch = el->key_epoch - (uint64_t)*is_old_key; + break; + + case QRL_EL_STATE_PROV_COOLDOWN: + /* + * If we are in COOLDOWN, there is only one key epoch we can possibly + * decrypt with, so just try that. If AEAD decryption fails, the + * value we output here isn't used anyway. + */ + *rx_key_epoch = el->key_epoch; + break; + } + + return idx; +} + +/* + * Tries to decrypt a packet payload. + * + * Returns 1 on success or 0 on failure (which is permanent). The payload is + * decrypted from src and written to dst. The buffer dst must be of at least + * src_len bytes in length. The actual length of the output in bytes is written + * to *dec_len on success, which will always be equal to or less than (usually + * less than) src_len. + */ +static int qrx_decrypt_pkt_body(OSSL_QRX *qrx, unsigned char *dst, + const unsigned char *src, + size_t src_len, size_t *dec_len, + const unsigned char *aad, size_t aad_len, + QUIC_PN pn, uint32_t enc_level, + unsigned char key_phase_bit, + uint64_t *rx_key_epoch) +{ + int l = 0, l2 = 0, is_old_key, nonce_len; + unsigned char nonce[EVP_MAX_IV_LENGTH]; + size_t i, cctx_idx; + OSSL_QRL_ENC_LEVEL *el = ossl_qrl_enc_level_set_get(&qrx->el_set, + enc_level, 1); + EVP_CIPHER_CTX *cctx; + + if (src_len > INT_MAX || aad_len > INT_MAX) + return 0; + + /* We should not have been called if we do not have key material. */ + if (!ossl_assert(el != NULL)) + return 0; + + if (el->tag_len >= src_len) + return 0; + + /* + * If we have failed to authenticate a certain number of ciphertexts, refuse + * to decrypt any more ciphertexts. + */ + if (qrx->forged_pkt_count >= ossl_qrl_get_suite_max_forged_pkt(el->suite_id)) + return 0; + + cctx_idx = qrx_get_cipher_ctx_idx(qrx, el, enc_level, key_phase_bit, + rx_key_epoch, &is_old_key); + if (!ossl_assert(cctx_idx < OSSL_NELEM(el->cctx))) + return 0; + + if (is_old_key && pn >= qrx->cur_epoch_start_pn) + /* + * RFC 9001 s. 5.5: Once an endpoint successfully receives a packet with + * a given PN, it MUST discard all packets in the same PN space with + * higher PNs if they cannot be successfully unprotected with the same + * key, or -- if there is a key update -- a subsequent packet protection + * key. + * + * In other words, once a PN x triggers a KU, it is invalid for us to + * receive a packet with a newer PN y (y > x) using the old keys. + */ + return 0; + + cctx = el->cctx[cctx_idx]; + + /* Construct nonce (nonce=IV ^ PN). */ + nonce_len = EVP_CIPHER_CTX_get_iv_length(cctx); + if (!ossl_assert(nonce_len >= (int)sizeof(QUIC_PN))) + return 0; + + memcpy(nonce, el->iv[cctx_idx], nonce_len); + for (i = 0; i < sizeof(QUIC_PN); ++i) + nonce[nonce_len - i - 1] ^= (unsigned char)(pn >> (i * 8)); + + /* type and key will already have been setup; feed the IV. */ + if (EVP_CipherInit_ex(cctx, NULL, + NULL, NULL, nonce, /*enc=*/0) != 1) + return 0; + + /* Feed the AEAD tag we got so the cipher can validate it. */ + if (EVP_CIPHER_CTX_ctrl(cctx, EVP_CTRL_AEAD_SET_TAG, + el->tag_len, + (unsigned char *)src + src_len - el->tag_len) != 1) + return 0; + + /* Feed AAD data. */ + if (EVP_CipherUpdate(cctx, NULL, &l, aad, aad_len) != 1) + return 0; + + /* Feed encrypted packet body. */ + if (EVP_CipherUpdate(cctx, dst, &l, src, src_len - el->tag_len) != 1) + return 0; + +#ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION + /* + * Throw away what we just decrypted and just use the ciphertext instead + * (which should be unencrypted) + */ + memcpy(dst, src, l); + + /* Pretend to authenticate the tag but ignore it */ + if (EVP_CipherFinal_ex(cctx, NULL, &l2) != 1) { + /* We don't care */ + } +#else + /* Ensure authentication succeeded. */ + if (EVP_CipherFinal_ex(cctx, NULL, &l2) != 1) { + /* Authentication failed, increment failed auth counter. */ + ++qrx->forged_pkt_count; + return 0; + } +#endif + + *dec_len = l; + return 1; +} + +static ossl_inline void ignore_res(int x) +{ + /* No-op. */ +} + +static void qrx_key_update_initiated(OSSL_QRX *qrx, QUIC_PN pn) +{ + if (!ossl_qrl_enc_level_set_key_update(&qrx->el_set, QUIC_ENC_LEVEL_1RTT)) + /* We are already in RXKU, so we don't call the callback again. */ + return; + + qrx->cur_epoch_start_pn = pn; + + if (qrx->key_update_cb != NULL) + qrx->key_update_cb(pn, qrx->key_update_cb_arg); +} + +/* Process a single packet in a datagram. */ +static int qrx_process_pkt(OSSL_QRX *qrx, QUIC_URXE *urxe, + PACKET *pkt, size_t pkt_idx, + QUIC_CONN_ID *first_dcid, + size_t datagram_len) +{ + RXE *rxe; + const unsigned char *eop = NULL; + size_t i, aad_len = 0, dec_len = 0; + PACKET orig_pkt = *pkt; + const unsigned char *sop = PACKET_data(pkt); + unsigned char *dst; + char need_second_decode = 0, already_processed = 0; + QUIC_PKT_HDR_PTRS ptrs; + uint32_t pn_space, enc_level; + OSSL_QRL_ENC_LEVEL *el = NULL; + uint64_t rx_key_epoch = UINT64_MAX; + + /* + * Get a free RXE. If we need to allocate a new one, use the packet length + * as a good ballpark figure. + */ + rxe = qrx_ensure_free_rxe(qrx, PACKET_remaining(pkt)); + if (rxe == NULL) + return 0; + + /* Have we already processed this packet? */ + if (pkt_is_marked(&urxe->processed, pkt_idx)) + already_processed = 1; + + /* + * Decode the header into the RXE structure. We first decrypt and read the + * unprotected part of the packet header (unless we already removed header + * protection, in which case we decode all of it). + */ + need_second_decode = !pkt_is_marked(&urxe->hpr_removed, pkt_idx); + if (!ossl_quic_wire_decode_pkt_hdr(pkt, + qrx->short_conn_id_len, + need_second_decode, 0, &rxe->hdr, &ptrs, + NULL)) + goto malformed; + + /* + * Our successful decode above included an intelligible length and the + * PACKET is now pointing to the end of the QUIC packet. + */ + eop = PACKET_data(pkt); + + /* + * Make a note of the first packet's DCID so we can later ensure the + * destination connection IDs of all packets in a datagram match. + */ + if (pkt_idx == 0) + *first_dcid = rxe->hdr.dst_conn_id; + + /* + * Early header validation. Since we now know the packet length, we can also + * now skip over it if we already processed it. + */ + if (already_processed + || !qrx_validate_hdr_early(qrx, rxe, pkt_idx == 0 ? NULL : first_dcid)) + /* + * Already processed packets are handled identically to malformed + * packets; i.e., they are ignored. + */ + goto malformed; + + if (!ossl_quic_pkt_type_is_encrypted(rxe->hdr.type)) { + /* + * Version negotiation and retry packets are a special case. They do not + * contain a payload which needs decrypting and have no header + * protection. + */ + + /* Just copy the payload from the URXE to the RXE. */ + if ((rxe = qrx_reserve_rxe(&qrx->rx_free, rxe, rxe->hdr.len)) == NULL) + /* + * Allocation failure. EOP will be pointing to the end of the + * datagram so processing of this datagram will end here. + */ + goto malformed; + + /* We are now committed to returning the packet. */ + memcpy(rxe_data(rxe), rxe->hdr.data, rxe->hdr.len); + pkt_mark(&urxe->processed, pkt_idx); + + rxe->hdr.data = rxe_data(rxe); + rxe->pn = QUIC_PN_INVALID; + + rxe->data_len = rxe->hdr.len; + rxe->datagram_len = datagram_len; + rxe->key_epoch = 0; + rxe->peer = urxe->peer; + rxe->local = urxe->local; + rxe->time = urxe->time; + rxe->datagram_id = urxe->datagram_id; + + /* Move RXE to pending. */ + ossl_list_rxe_remove(&qrx->rx_free, rxe); + ossl_list_rxe_insert_tail(&qrx->rx_pending, rxe); + return 0; /* success, did not defer */ + } + + /* Determine encryption level of packet. */ + enc_level = qrx_determine_enc_level(&rxe->hdr); + + /* If we do not have keying material for this encryption level yet, defer. */ + switch (ossl_qrl_enc_level_set_have_el(&qrx->el_set, enc_level)) { + case 1: + /* We have keys. */ + if (enc_level == QUIC_ENC_LEVEL_1RTT && !qrx->allow_1rtt) + /* + * But we cannot process 1-RTT packets until the handshake is + * completed (RFC 9000 s. 5.7). + */ + goto cannot_decrypt; + + break; + case 0: + /* No keys yet. */ + goto cannot_decrypt; + default: + /* We already discarded keys for this EL, we will never process this.*/ + goto malformed; + } + + /* + * We will copy any token included in the packet to the start of our RXE + * data buffer (so that we don't reference the URXE buffer any more and can + * recycle it). Track our position in the RXE buffer by index instead of + * pointer as the pointer may change as reallocs occur. + */ + i = 0; + + /* + * rxe->hdr.data is now pointing at the (encrypted) packet payload. rxe->hdr + * also has fields pointing into the PACKET buffer which will be going away + * soon (the URXE will be reused for another incoming packet). + * + * Firstly, relocate some of these fields into the RXE as needed. + * + * Relocate token buffer and fix pointer. + */ + if (rxe->hdr.type == QUIC_PKT_TYPE_INITIAL) { + const unsigned char *token = rxe->hdr.token; + + /* + * This may change the value of rxe and change the value of the token + * pointer as well. So we must make a temporary copy of the pointer to + * the token, and then copy it back into the new location of the rxe + */ + if (!qrx_relocate_buffer(qrx, &rxe, &i, &token, rxe->hdr.token_len)) + goto malformed; + + rxe->hdr.token = token; + } + + /* Now remove header protection. */ + *pkt = orig_pkt; + + el = ossl_qrl_enc_level_set_get(&qrx->el_set, enc_level, 1); + assert(el != NULL); /* Already checked above */ + + if (need_second_decode) { + if (!ossl_quic_hdr_protector_decrypt(&el->hpr, &ptrs)) + goto malformed; + + /* + * We have removed header protection, so don't attempt to do it again if + * the packet gets deferred and processed again. + */ + pkt_mark(&urxe->hpr_removed, pkt_idx); + + /* Decode the now unprotected header. */ + if (ossl_quic_wire_decode_pkt_hdr(pkt, qrx->short_conn_id_len, + 0, 0, &rxe->hdr, NULL, NULL) != 1) + goto malformed; + } + + /* Validate header and decode PN. */ + if (!qrx_validate_hdr(qrx, rxe)) + goto malformed; + + if (qrx->msg_callback != NULL) + qrx->msg_callback(0, OSSL_QUIC1_VERSION, SSL3_RT_QUIC_PACKET, sop, + eop - sop - rxe->hdr.len, qrx->msg_callback_ssl, + qrx->msg_callback_arg); + + /* + * The AAD data is the entire (unprotected) packet header including the PN. + * The packet header has been unprotected in place, so we can just reuse the + * PACKET buffer. The header ends where the payload begins. + */ + aad_len = rxe->hdr.data - sop; + + /* Ensure the RXE buffer size is adequate for our payload. */ + if ((rxe = qrx_reserve_rxe(&qrx->rx_free, rxe, rxe->hdr.len + i)) == NULL) { + /* + * Allocation failure, treat as malformed and do not bother processing + * any further packets in the datagram as they are likely to also + * encounter allocation failures. + */ + eop = NULL; + goto malformed; + } + + /* + * We decrypt the packet body to immediately after the token at the start of + * the RXE buffer (where present). + * + * Do the decryption from the PACKET (which points into URXE memory) to our + * RXE payload (single-copy decryption), then fixup the pointers in the + * header to point to our new buffer. + * + * If decryption fails this is considered a permanent error; we defer + * packets we don't yet have decryption keys for above, so if this fails, + * something has gone wrong with the handshake process or a packet has been + * corrupted. + */ + dst = (unsigned char *)rxe_data(rxe) + i; + if (!qrx_decrypt_pkt_body(qrx, dst, rxe->hdr.data, rxe->hdr.len, + &dec_len, sop, aad_len, rxe->pn, enc_level, + rxe->hdr.key_phase, &rx_key_epoch)) + goto malformed; + + /* + * ----------------------------------------------------- + * IMPORTANT: ANYTHING ABOVE THIS LINE IS UNVERIFIED + * AND MUST BE TIMING-CHANNEL SAFE. + * ----------------------------------------------------- + * + * At this point, we have successfully authenticated the AEAD tag and no + * longer need to worry about exposing the PN, PN length or Key Phase bit in + * timing channels. Invoke any configured validation callback to allow for + * rejection of duplicate PNs. + */ + if (!qrx_validate_hdr_late(qrx, rxe)) + goto malformed; + + /* Check for a Key Phase bit differing from our expectation. */ + if (rxe->hdr.type == QUIC_PKT_TYPE_1RTT + && rxe->hdr.key_phase != (el->key_epoch & 1)) + qrx_key_update_initiated(qrx, rxe->pn); + + /* + * We have now successfully decrypted the packet payload. If there are + * additional packets in the datagram, it is possible we will fail to + * decrypt them and need to defer them until we have some key material we + * don't currently possess. If this happens, the URXE will be moved to the + * deferred queue. Since a URXE corresponds to one datagram, which may + * contain multiple packets, we must ensure any packets we have already + * processed in the URXE are not processed again (this is an RFC + * requirement). We do this by marking the nth packet in the datagram as + * processed. + * + * We are now committed to returning this decrypted packet to the user, + * meaning we now consider the packet processed and must mark it + * accordingly. + */ + pkt_mark(&urxe->processed, pkt_idx); + + /* + * Update header to point to the decrypted buffer, which may be shorter + * due to AEAD tags, block padding, etc. + */ + rxe->hdr.data = dst; + rxe->hdr.len = dec_len; + rxe->data_len = dec_len; + rxe->datagram_len = datagram_len; + rxe->key_epoch = rx_key_epoch; + + /* We processed the PN successfully, so update largest processed PN. */ + pn_space = rxe_determine_pn_space(rxe); + if (rxe->pn > qrx->largest_pn[pn_space]) + qrx->largest_pn[pn_space] = rxe->pn; + + /* Copy across network addresses and RX time from URXE to RXE. */ + rxe->peer = urxe->peer; + rxe->local = urxe->local; + rxe->time = urxe->time; + rxe->datagram_id = urxe->datagram_id; + + /* Move RXE to pending. */ + ossl_list_rxe_remove(&qrx->rx_free, rxe); + ossl_list_rxe_insert_tail(&qrx->rx_pending, rxe); + return 0; /* success, did not defer; not distinguished from failure */ + +cannot_decrypt: + /* + * We cannot process this packet right now (but might be able to later). We + * MUST attempt to process any other packets in the datagram, so defer it + * and skip over it. + */ + assert(eop != NULL && eop >= PACKET_data(pkt)); + /* + * We don't care if this fails as it will just result in the packet being at + * the end of the datagram buffer. + */ + ignore_res(PACKET_forward(pkt, eop - PACKET_data(pkt))); + return 1; /* deferred */ + +malformed: + if (eop != NULL) { + /* + * This packet cannot be processed and will never be processable. We + * were at least able to decode its header and determine its length, so + * we can skip over it and try to process any subsequent packets in the + * datagram. + * + * Mark as processed as an optimization. + */ + assert(eop >= PACKET_data(pkt)); + pkt_mark(&urxe->processed, pkt_idx); + /* We don't care if this fails (see above) */ + ignore_res(PACKET_forward(pkt, eop - PACKET_data(pkt))); + } else { + /* + * This packet cannot be processed and will never be processable. + * Because even its header is not intelligible, we cannot examine any + * further packets in the datagram because its length cannot be + * discerned. + * + * Advance over the entire remainder of the datagram, and mark it as + * processed as an optimization. + */ + pkt_mark(&urxe->processed, pkt_idx); + /* We don't care if this fails (see above) */ + ignore_res(PACKET_forward(pkt, PACKET_remaining(pkt))); + } + return 0; /* failure, did not defer; not distinguished from success */ +} + +/* Process a datagram which was received. */ +static int qrx_process_datagram(OSSL_QRX *qrx, QUIC_URXE *e, + const unsigned char *data, + size_t data_len) +{ + int have_deferred = 0; + PACKET pkt; + size_t pkt_idx = 0; + QUIC_CONN_ID first_dcid = { 255 }; + + qrx->bytes_received += data_len; + + if (!PACKET_buf_init(&pkt, data, data_len)) + return 0; + + for (; PACKET_remaining(&pkt) > 0; ++pkt_idx) { + /* + * A packet smaller than the minimum possible QUIC packet size is not + * considered valid. We also ignore more than a certain number of + * packets within the same datagram. + */ + if (PACKET_remaining(&pkt) < QUIC_MIN_VALID_PKT_LEN + || pkt_idx >= QUIC_MAX_PKT_PER_URXE) + break; + + /* + * We note whether packet processing resulted in a deferral since + * this means we need to move the URXE to the deferred list rather + * than the free list after we're finished dealing with it for now. + * + * However, we don't otherwise care here whether processing succeeded or + * failed, as the RFC says even if a packet in a datagram is malformed, + * we should still try to process any packets following it. + * + * In the case where the packet is so malformed we can't determine its + * length, qrx_process_pkt will take care of advancing to the end of + * the packet, so we will exit the loop automatically in this case. + */ + if (qrx_process_pkt(qrx, e, &pkt, pkt_idx, &first_dcid, data_len)) + have_deferred = 1; + } + + /* Only report whether there were any deferrals. */ + return have_deferred; +} + +/* Process a single pending URXE. */ +static int qrx_process_one_urxe(OSSL_QRX *qrx, QUIC_URXE *e) +{ + int was_deferred; + + /* The next URXE we process should be at the head of the pending list. */ + if (!ossl_assert(e == ossl_list_urxe_head(&qrx->urx_pending))) + return 0; + + /* + * Attempt to process the datagram. The return value indicates only if + * processing of the datagram was deferred. If we failed to process the + * datagram, we do not attempt to process it again and silently eat the + * error. + */ + was_deferred = qrx_process_datagram(qrx, e, ossl_quic_urxe_data(e), + e->data_len); + + /* + * Remove the URXE from the pending list and return it to + * either the free or deferred list. + */ + ossl_list_urxe_remove(&qrx->urx_pending, e); + if (was_deferred > 0 && + (e->deferred || qrx->num_deferred < qrx->max_deferred)) { + ossl_list_urxe_insert_tail(&qrx->urx_deferred, e); + if (!e->deferred) { + e->deferred = 1; + ++qrx->num_deferred; + } + } else { + if (e->deferred) { + e->deferred = 0; + --qrx->num_deferred; + } + ossl_quic_demux_release_urxe(qrx->demux, e); + } + + return 1; +} + +/* Process any pending URXEs to generate pending RXEs. */ +static int qrx_process_pending_urxl(OSSL_QRX *qrx) +{ + QUIC_URXE *e; + + while ((e = ossl_list_urxe_head(&qrx->urx_pending)) != NULL) + if (!qrx_process_one_urxe(qrx, e)) + return 0; + + return 1; +} + +int ossl_qrx_read_pkt(OSSL_QRX *qrx, OSSL_QRX_PKT **ppkt) +{ + RXE *rxe; + + if (!ossl_qrx_processed_read_pending(qrx)) { + if (!qrx_process_pending_urxl(qrx)) + return 0; + + if (!ossl_qrx_processed_read_pending(qrx)) + return 0; + } + + rxe = qrx_pop_pending_rxe(qrx); + if (!ossl_assert(rxe != NULL)) + return 0; + + assert(rxe->refcount == 0); + rxe->refcount = 1; + + rxe->pkt.hdr = &rxe->hdr; + rxe->pkt.pn = rxe->pn; + rxe->pkt.time = rxe->time; + rxe->pkt.datagram_len = rxe->datagram_len; + rxe->pkt.peer + = BIO_ADDR_family(&rxe->peer) != AF_UNSPEC ? &rxe->peer : NULL; + rxe->pkt.local + = BIO_ADDR_family(&rxe->local) != AF_UNSPEC ? &rxe->local : NULL; + rxe->pkt.key_epoch = rxe->key_epoch; + rxe->pkt.datagram_id = rxe->datagram_id; + rxe->pkt.qrx = qrx; + *ppkt = &rxe->pkt; + + return 1; +} + +void ossl_qrx_pkt_release(OSSL_QRX_PKT *pkt) +{ + RXE *rxe; + + if (pkt == NULL) + return; + + rxe = (RXE *)pkt; + assert(rxe->refcount > 0); + if (--rxe->refcount == 0) + qrx_recycle_rxe(pkt->qrx, rxe); +} + +void ossl_qrx_pkt_orphan(OSSL_QRX_PKT *pkt) +{ + RXE *rxe; + + if (pkt == NULL) + return; + rxe = (RXE *)pkt; + assert(rxe->refcount > 0); + rxe->refcount--; + assert(ossl_list_rxe_prev(rxe) == NULL && ossl_list_rxe_next(rxe) == NULL); + return; +} + +void ossl_qrx_pkt_up_ref(OSSL_QRX_PKT *pkt) +{ + RXE *rxe = (RXE *)pkt; + + assert(rxe->refcount > 0); + ++rxe->refcount; +} + +uint64_t ossl_qrx_get_bytes_received(OSSL_QRX *qrx, int clear) +{ + uint64_t v = qrx->bytes_received; + + if (clear) + qrx->bytes_received = 0; + + return v; +} + +int ossl_qrx_set_late_validation_cb(OSSL_QRX *qrx, + ossl_qrx_late_validation_cb *cb, + void *cb_arg) +{ + qrx->validation_cb = cb; + qrx->validation_cb_arg = cb_arg; + return 1; +} + +int ossl_qrx_set_key_update_cb(OSSL_QRX *qrx, + ossl_qrx_key_update_cb *cb, + void *cb_arg) +{ + qrx->key_update_cb = cb; + qrx->key_update_cb_arg = cb_arg; + return 1; +} + +uint64_t ossl_qrx_get_key_epoch(OSSL_QRX *qrx) +{ + OSSL_QRL_ENC_LEVEL *el = ossl_qrl_enc_level_set_get(&qrx->el_set, + QUIC_ENC_LEVEL_1RTT, 1); + + return el == NULL ? UINT64_MAX : el->key_epoch; +} + +int ossl_qrx_key_update_timeout(OSSL_QRX *qrx, int normal) +{ + OSSL_QRL_ENC_LEVEL *el = ossl_qrl_enc_level_set_get(&qrx->el_set, + QUIC_ENC_LEVEL_1RTT, 1); + + if (el == NULL) + return 0; + + if (el->state == QRL_EL_STATE_PROV_UPDATING + && !ossl_qrl_enc_level_set_key_update_done(&qrx->el_set, + QUIC_ENC_LEVEL_1RTT)) + return 0; + + if (normal && el->state == QRL_EL_STATE_PROV_COOLDOWN + && !ossl_qrl_enc_level_set_key_cooldown_done(&qrx->el_set, + QUIC_ENC_LEVEL_1RTT)) + return 0; + + return 1; +} + +uint64_t ossl_qrx_get_cur_forged_pkt_count(OSSL_QRX *qrx) +{ + return qrx->forged_pkt_count; +} + +uint64_t ossl_qrx_get_max_forged_pkt_count(OSSL_QRX *qrx, + uint32_t enc_level) +{ + OSSL_QRL_ENC_LEVEL *el = ossl_qrl_enc_level_set_get(&qrx->el_set, + enc_level, 1); + + return el == NULL ? UINT64_MAX + : ossl_qrl_get_suite_max_forged_pkt(el->suite_id); +} + +void ossl_qrx_allow_1rtt_processing(OSSL_QRX *qrx) +{ + if (qrx->allow_1rtt) + return; + + qrx->allow_1rtt = 1; + qrx_requeue_deferred(qrx); +} + +void ossl_qrx_set_msg_callback(OSSL_QRX *qrx, ossl_msg_cb msg_callback, + SSL *msg_callback_ssl) +{ + qrx->msg_callback = msg_callback; + qrx->msg_callback_ssl = msg_callback_ssl; +} + +void ossl_qrx_set_msg_callback_arg(OSSL_QRX *qrx, void *msg_callback_arg) +{ + qrx->msg_callback_arg = msg_callback_arg; +} + +size_t ossl_qrx_get_short_hdr_conn_id_len(OSSL_QRX *qrx) +{ + return qrx->short_conn_id_len; +} |
