diff options
Diffstat (limited to 'crypto/openssl/ssl/t1_lib.c')
| -rw-r--r-- | crypto/openssl/ssl/t1_lib.c | 4934 |
1 files changed, 4934 insertions, 0 deletions
diff --git a/crypto/openssl/ssl/t1_lib.c b/crypto/openssl/ssl/t1_lib.c new file mode 100644 index 000000000000..2f71f954382d --- /dev/null +++ b/crypto/openssl/ssl/t1_lib.c @@ -0,0 +1,4934 @@ +/* + * Copyright 1995-2025 The OpenSSL Project Authors. All Rights Reserved. + * + * Licensed under the Apache License 2.0 (the "License"). You may not use + * this file except in compliance with the License. You can obtain a copy + * in the file LICENSE in the source distribution or at + * https://www.openssl.org/source/license.html + */ + +#include <stdio.h> +#include <stdlib.h> +#include <ctype.h> +#include <openssl/objects.h> +#include <openssl/evp.h> +#include <openssl/hmac.h> +#include <openssl/core_names.h> +#include <openssl/ocsp.h> +#include <openssl/conf.h> +#include <openssl/x509v3.h> +#include <openssl/dh.h> +#include <openssl/bn.h> +#include <openssl/provider.h> +#include <openssl/param_build.h> +#include "internal/nelem.h" +#include "internal/sizes.h" +#include "internal/tlsgroups.h" +#include "internal/ssl_unwrap.h" +#include "ssl_local.h" +#include "quic/quic_local.h" +#include <openssl/ct.h> + +static const SIGALG_LOOKUP *find_sig_alg(SSL_CONNECTION *s, X509 *x, EVP_PKEY *pkey); +static int tls12_sigalg_allowed(const SSL_CONNECTION *s, int op, const SIGALG_LOOKUP *lu); + +SSL3_ENC_METHOD const TLSv1_enc_data = { + tls1_setup_key_block, + tls1_generate_master_secret, + tls1_change_cipher_state, + tls1_final_finish_mac, + TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE, + TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE, + tls1_alert_code, + tls1_export_keying_material, + 0, + ssl3_set_handshake_header, + tls_close_construct_packet, + ssl3_handshake_write +}; + +SSL3_ENC_METHOD const TLSv1_1_enc_data = { + tls1_setup_key_block, + tls1_generate_master_secret, + tls1_change_cipher_state, + tls1_final_finish_mac, + TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE, + TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE, + tls1_alert_code, + tls1_export_keying_material, + 0, + ssl3_set_handshake_header, + tls_close_construct_packet, + ssl3_handshake_write +}; + +SSL3_ENC_METHOD const TLSv1_2_enc_data = { + tls1_setup_key_block, + tls1_generate_master_secret, + tls1_change_cipher_state, + tls1_final_finish_mac, + TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE, + TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE, + tls1_alert_code, + tls1_export_keying_material, + SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF + | SSL_ENC_FLAG_TLS1_2_CIPHERS, + ssl3_set_handshake_header, + tls_close_construct_packet, + ssl3_handshake_write +}; + +SSL3_ENC_METHOD const TLSv1_3_enc_data = { + tls13_setup_key_block, + tls13_generate_master_secret, + tls13_change_cipher_state, + tls13_final_finish_mac, + TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE, + TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE, + tls13_alert_code, + tls13_export_keying_material, + SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF, + ssl3_set_handshake_header, + tls_close_construct_packet, + ssl3_handshake_write +}; + +OSSL_TIME tls1_default_timeout(void) +{ + /* + * 2 hours, the 24 hours mentioned in the TLSv1 spec is way too long for + * http, the cache would over fill + */ + return ossl_seconds2time(60 * 60 * 2); +} + +int tls1_new(SSL *s) +{ + if (!ssl3_new(s)) + return 0; + if (!s->method->ssl_clear(s)) + return 0; + + return 1; +} + +void tls1_free(SSL *s) +{ + SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); + + if (sc == NULL) + return; + + OPENSSL_free(sc->ext.session_ticket); + ssl3_free(s); +} + +int tls1_clear(SSL *s) +{ + SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); + + if (sc == NULL) + return 0; + + if (!ssl3_clear(s)) + return 0; + + if (s->method->version == TLS_ANY_VERSION) + sc->version = TLS_MAX_VERSION_INTERNAL; + else + sc->version = s->method->version; + + return 1; +} + +/* Legacy NID to group_id mapping. Only works for groups we know about */ +static const struct { + int nid; + uint16_t group_id; +} nid_to_group[] = { + {NID_sect163k1, OSSL_TLS_GROUP_ID_sect163k1}, + {NID_sect163r1, OSSL_TLS_GROUP_ID_sect163r1}, + {NID_sect163r2, OSSL_TLS_GROUP_ID_sect163r2}, + {NID_sect193r1, OSSL_TLS_GROUP_ID_sect193r1}, + {NID_sect193r2, OSSL_TLS_GROUP_ID_sect193r2}, + {NID_sect233k1, OSSL_TLS_GROUP_ID_sect233k1}, + {NID_sect233r1, OSSL_TLS_GROUP_ID_sect233r1}, + {NID_sect239k1, OSSL_TLS_GROUP_ID_sect239k1}, + {NID_sect283k1, OSSL_TLS_GROUP_ID_sect283k1}, + {NID_sect283r1, OSSL_TLS_GROUP_ID_sect283r1}, + {NID_sect409k1, OSSL_TLS_GROUP_ID_sect409k1}, + {NID_sect409r1, OSSL_TLS_GROUP_ID_sect409r1}, + {NID_sect571k1, OSSL_TLS_GROUP_ID_sect571k1}, + {NID_sect571r1, OSSL_TLS_GROUP_ID_sect571r1}, + {NID_secp160k1, OSSL_TLS_GROUP_ID_secp160k1}, + {NID_secp160r1, OSSL_TLS_GROUP_ID_secp160r1}, + {NID_secp160r2, OSSL_TLS_GROUP_ID_secp160r2}, + {NID_secp192k1, OSSL_TLS_GROUP_ID_secp192k1}, + {NID_X9_62_prime192v1, OSSL_TLS_GROUP_ID_secp192r1}, + {NID_secp224k1, OSSL_TLS_GROUP_ID_secp224k1}, + {NID_secp224r1, OSSL_TLS_GROUP_ID_secp224r1}, + {NID_secp256k1, OSSL_TLS_GROUP_ID_secp256k1}, + {NID_X9_62_prime256v1, OSSL_TLS_GROUP_ID_secp256r1}, + {NID_secp384r1, OSSL_TLS_GROUP_ID_secp384r1}, + {NID_secp521r1, OSSL_TLS_GROUP_ID_secp521r1}, + {NID_brainpoolP256r1, OSSL_TLS_GROUP_ID_brainpoolP256r1}, + {NID_brainpoolP384r1, OSSL_TLS_GROUP_ID_brainpoolP384r1}, + {NID_brainpoolP512r1, OSSL_TLS_GROUP_ID_brainpoolP512r1}, + {EVP_PKEY_X25519, OSSL_TLS_GROUP_ID_x25519}, + {EVP_PKEY_X448, OSSL_TLS_GROUP_ID_x448}, + {NID_brainpoolP256r1tls13, OSSL_TLS_GROUP_ID_brainpoolP256r1_tls13}, + {NID_brainpoolP384r1tls13, OSSL_TLS_GROUP_ID_brainpoolP384r1_tls13}, + {NID_brainpoolP512r1tls13, OSSL_TLS_GROUP_ID_brainpoolP512r1_tls13}, + {NID_id_tc26_gost_3410_2012_256_paramSetA, OSSL_TLS_GROUP_ID_gc256A}, + {NID_id_tc26_gost_3410_2012_256_paramSetB, OSSL_TLS_GROUP_ID_gc256B}, + {NID_id_tc26_gost_3410_2012_256_paramSetC, OSSL_TLS_GROUP_ID_gc256C}, + {NID_id_tc26_gost_3410_2012_256_paramSetD, OSSL_TLS_GROUP_ID_gc256D}, + {NID_id_tc26_gost_3410_2012_512_paramSetA, OSSL_TLS_GROUP_ID_gc512A}, + {NID_id_tc26_gost_3410_2012_512_paramSetB, OSSL_TLS_GROUP_ID_gc512B}, + {NID_id_tc26_gost_3410_2012_512_paramSetC, OSSL_TLS_GROUP_ID_gc512C}, + {NID_ffdhe2048, OSSL_TLS_GROUP_ID_ffdhe2048}, + {NID_ffdhe3072, OSSL_TLS_GROUP_ID_ffdhe3072}, + {NID_ffdhe4096, OSSL_TLS_GROUP_ID_ffdhe4096}, + {NID_ffdhe6144, OSSL_TLS_GROUP_ID_ffdhe6144}, + {NID_ffdhe8192, OSSL_TLS_GROUP_ID_ffdhe8192} +}; + +static const unsigned char ecformats_default[] = { + TLSEXT_ECPOINTFORMAT_uncompressed, + TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime, + TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2 +}; + +/* Group list string of the built-in pseudo group DEFAULT */ +#define DEFAULT_GROUP_NAME "DEFAULT" +#define TLS_DEFAULT_GROUP_LIST \ + "?*X25519MLKEM768 / ?*X25519:?secp256r1 / ?X448:?secp384r1:?secp521r1 / ?ffdhe2048:?ffdhe3072" + +static const uint16_t suiteb_curves[] = { + OSSL_TLS_GROUP_ID_secp256r1, + OSSL_TLS_GROUP_ID_secp384r1, +}; + +/* Group list string of the built-in pseudo group DEFAULT_SUITE_B */ +#define SUITE_B_GROUP_NAME "DEFAULT_SUITE_B" +#define SUITE_B_GROUP_LIST "secp256r1:secp384r1", + +struct provider_ctx_data_st { + SSL_CTX *ctx; + OSSL_PROVIDER *provider; +}; + +#define TLS_GROUP_LIST_MALLOC_BLOCK_SIZE 10 +static OSSL_CALLBACK add_provider_groups; +static int add_provider_groups(const OSSL_PARAM params[], void *data) +{ + struct provider_ctx_data_st *pgd = data; + SSL_CTX *ctx = pgd->ctx; + const OSSL_PARAM *p; + TLS_GROUP_INFO *ginf = NULL; + EVP_KEYMGMT *keymgmt; + unsigned int gid; + unsigned int is_kem = 0; + int ret = 0; + + if (ctx->group_list_max_len == ctx->group_list_len) { + TLS_GROUP_INFO *tmp = NULL; + + if (ctx->group_list_max_len == 0) + tmp = OPENSSL_malloc(sizeof(TLS_GROUP_INFO) + * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE); + else + tmp = OPENSSL_realloc(ctx->group_list, + (ctx->group_list_max_len + + TLS_GROUP_LIST_MALLOC_BLOCK_SIZE) + * sizeof(TLS_GROUP_INFO)); + if (tmp == NULL) + return 0; + ctx->group_list = tmp; + memset(tmp + ctx->group_list_max_len, + 0, + sizeof(TLS_GROUP_INFO) * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE); + ctx->group_list_max_len += TLS_GROUP_LIST_MALLOC_BLOCK_SIZE; + } + + ginf = &ctx->group_list[ctx->group_list_len]; + + p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME); + if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) { + ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT); + goto err; + } + ginf->tlsname = OPENSSL_strdup(p->data); + if (ginf->tlsname == NULL) + goto err; + + p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME_INTERNAL); + if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) { + ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT); + goto err; + } + ginf->realname = OPENSSL_strdup(p->data); + if (ginf->realname == NULL) + goto err; + + p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ID); + if (p == NULL || !OSSL_PARAM_get_uint(p, &gid) || gid > UINT16_MAX) { + ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT); + goto err; + } + ginf->group_id = (uint16_t)gid; + + p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ALG); + if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) { + ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT); + goto err; + } + ginf->algorithm = OPENSSL_strdup(p->data); + if (ginf->algorithm == NULL) + goto err; + + p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_SECURITY_BITS); + if (p == NULL || !OSSL_PARAM_get_uint(p, &ginf->secbits)) { + ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT); + goto err; + } + + p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_IS_KEM); + if (p != NULL && (!OSSL_PARAM_get_uint(p, &is_kem) || is_kem > 1)) { + ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT); + goto err; + } + ginf->is_kem = 1 & is_kem; + + p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_TLS); + if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mintls)) { + ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT); + goto err; + } + + p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_TLS); + if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxtls)) { + ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT); + goto err; + } + + p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_DTLS); + if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mindtls)) { + ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT); + goto err; + } + + p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_DTLS); + if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxdtls)) { + ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT); + goto err; + } + /* + * Now check that the algorithm is actually usable for our property query + * string. Regardless of the result we still return success because we have + * successfully processed this group, even though we may decide not to use + * it. + */ + ret = 1; + ERR_set_mark(); + keymgmt = EVP_KEYMGMT_fetch(ctx->libctx, ginf->algorithm, ctx->propq); + if (keymgmt != NULL) { + /* We have successfully fetched the algorithm, we can use the group. */ + ctx->group_list_len++; + ginf = NULL; + EVP_KEYMGMT_free(keymgmt); + } + ERR_pop_to_mark(); + err: + if (ginf != NULL) { + OPENSSL_free(ginf->tlsname); + OPENSSL_free(ginf->realname); + OPENSSL_free(ginf->algorithm); + ginf->algorithm = ginf->tlsname = ginf->realname = NULL; + } + return ret; +} + +static int discover_provider_groups(OSSL_PROVIDER *provider, void *vctx) +{ + struct provider_ctx_data_st pgd; + + pgd.ctx = vctx; + pgd.provider = provider; + return OSSL_PROVIDER_get_capabilities(provider, "TLS-GROUP", + add_provider_groups, &pgd); +} + +int ssl_load_groups(SSL_CTX *ctx) +{ + if (!OSSL_PROVIDER_do_all(ctx->libctx, discover_provider_groups, ctx)) + return 0; + + return SSL_CTX_set1_groups_list(ctx, TLS_DEFAULT_GROUP_LIST); +} + +#define TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE 10 +static OSSL_CALLBACK add_provider_sigalgs; +static int add_provider_sigalgs(const OSSL_PARAM params[], void *data) +{ + struct provider_ctx_data_st *pgd = data; + SSL_CTX *ctx = pgd->ctx; + OSSL_PROVIDER *provider = pgd->provider; + const OSSL_PARAM *p; + TLS_SIGALG_INFO *sinf = NULL; + EVP_KEYMGMT *keymgmt; + const char *keytype; + unsigned int code_point = 0; + int ret = 0; + + if (ctx->sigalg_list_max_len == ctx->sigalg_list_len) { + TLS_SIGALG_INFO *tmp = NULL; + + if (ctx->sigalg_list_max_len == 0) + tmp = OPENSSL_malloc(sizeof(TLS_SIGALG_INFO) + * TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE); + else + tmp = OPENSSL_realloc(ctx->sigalg_list, + (ctx->sigalg_list_max_len + + TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE) + * sizeof(TLS_SIGALG_INFO)); + if (tmp == NULL) + return 0; + ctx->sigalg_list = tmp; + memset(tmp + ctx->sigalg_list_max_len, 0, + sizeof(TLS_SIGALG_INFO) * TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE); + ctx->sigalg_list_max_len += TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE; + } + + sinf = &ctx->sigalg_list[ctx->sigalg_list_len]; + + /* First, mandatory parameters */ + p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_NAME); + if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) { + ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT); + goto err; + } + OPENSSL_free(sinf->sigalg_name); + sinf->sigalg_name = OPENSSL_strdup(p->data); + if (sinf->sigalg_name == NULL) + goto err; + + p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_IANA_NAME); + if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) { + ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT); + goto err; + } + OPENSSL_free(sinf->name); + sinf->name = OPENSSL_strdup(p->data); + if (sinf->name == NULL) + goto err; + + p = OSSL_PARAM_locate_const(params, + OSSL_CAPABILITY_TLS_SIGALG_CODE_POINT); + if (p == NULL + || !OSSL_PARAM_get_uint(p, &code_point) + || code_point > UINT16_MAX) { + ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT); + goto err; + } + sinf->code_point = (uint16_t)code_point; + + p = OSSL_PARAM_locate_const(params, + OSSL_CAPABILITY_TLS_SIGALG_SECURITY_BITS); + if (p == NULL || !OSSL_PARAM_get_uint(p, &sinf->secbits)) { + ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT); + goto err; + } + + /* Now, optional parameters */ + p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_OID); + if (p == NULL) { + sinf->sigalg_oid = NULL; + } else if (p->data_type != OSSL_PARAM_UTF8_STRING) { + goto err; + } else { + OPENSSL_free(sinf->sigalg_oid); + sinf->sigalg_oid = OPENSSL_strdup(p->data); + if (sinf->sigalg_oid == NULL) + goto err; + } + + p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_SIG_NAME); + if (p == NULL) { + sinf->sig_name = NULL; + } else if (p->data_type != OSSL_PARAM_UTF8_STRING) { + goto err; + } else { + OPENSSL_free(sinf->sig_name); + sinf->sig_name = OPENSSL_strdup(p->data); + if (sinf->sig_name == NULL) + goto err; + } + + p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_SIG_OID); + if (p == NULL) { + sinf->sig_oid = NULL; + } else if (p->data_type != OSSL_PARAM_UTF8_STRING) { + goto err; + } else { + OPENSSL_free(sinf->sig_oid); + sinf->sig_oid = OPENSSL_strdup(p->data); + if (sinf->sig_oid == NULL) + goto err; + } + + p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_HASH_NAME); + if (p == NULL) { + sinf->hash_name = NULL; + } else if (p->data_type != OSSL_PARAM_UTF8_STRING) { + goto err; + } else { + OPENSSL_free(sinf->hash_name); + sinf->hash_name = OPENSSL_strdup(p->data); + if (sinf->hash_name == NULL) + goto err; + } + + p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_HASH_OID); + if (p == NULL) { + sinf->hash_oid = NULL; + } else if (p->data_type != OSSL_PARAM_UTF8_STRING) { + goto err; + } else { + OPENSSL_free(sinf->hash_oid); + sinf->hash_oid = OPENSSL_strdup(p->data); + if (sinf->hash_oid == NULL) + goto err; + } + + p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_KEYTYPE); + if (p == NULL) { + sinf->keytype = NULL; + } else if (p->data_type != OSSL_PARAM_UTF8_STRING) { + goto err; + } else { + OPENSSL_free(sinf->keytype); + sinf->keytype = OPENSSL_strdup(p->data); + if (sinf->keytype == NULL) + goto err; + } + + p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_KEYTYPE_OID); + if (p == NULL) { + sinf->keytype_oid = NULL; + } else if (p->data_type != OSSL_PARAM_UTF8_STRING) { + goto err; + } else { + OPENSSL_free(sinf->keytype_oid); + sinf->keytype_oid = OPENSSL_strdup(p->data); + if (sinf->keytype_oid == NULL) + goto err; + } + + /* Optional, not documented prior to 3.5 */ + sinf->mindtls = sinf->maxdtls = -1; + p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MIN_DTLS); + if (p != NULL && !OSSL_PARAM_get_int(p, &sinf->mindtls)) { + ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT); + goto err; + } + p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MAX_DTLS); + if (p != NULL && !OSSL_PARAM_get_int(p, &sinf->maxdtls)) { + ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT); + goto err; + } + /* DTLS version numbers grow downward */ + if ((sinf->maxdtls != 0) && (sinf->maxdtls != -1) && + ((sinf->maxdtls > sinf->mindtls))) { + ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT); + goto err; + } + /* No provider sigalgs are supported in DTLS, reset after checking. */ + sinf->mindtls = sinf->maxdtls = -1; + + /* The remaining parameters below are mandatory again */ + p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MIN_TLS); + if (p == NULL || !OSSL_PARAM_get_int(p, &sinf->mintls)) { + ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT); + goto err; + } + p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MAX_TLS); + if (p == NULL || !OSSL_PARAM_get_int(p, &sinf->maxtls)) { + ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT); + goto err; + } + if ((sinf->maxtls != 0) && (sinf->maxtls != -1) && + ((sinf->maxtls < sinf->mintls))) { + ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT); + goto err; + } + if ((sinf->mintls != 0) && (sinf->mintls != -1) && + ((sinf->mintls > TLS1_3_VERSION))) + sinf->mintls = sinf->maxtls = -1; + if ((sinf->maxtls != 0) && (sinf->maxtls != -1) && + ((sinf->maxtls < TLS1_3_VERSION))) + sinf->mintls = sinf->maxtls = -1; + + /* Ignore unusable sigalgs */ + if (sinf->mintls == -1 && sinf->mindtls == -1) { + ret = 1; + goto err; + } + + /* + * Now check that the algorithm is actually usable for our property query + * string. Regardless of the result we still return success because we have + * successfully processed this signature, even though we may decide not to + * use it. + */ + ret = 1; + ERR_set_mark(); + keytype = (sinf->keytype != NULL + ? sinf->keytype + : (sinf->sig_name != NULL + ? sinf->sig_name + : sinf->sigalg_name)); + keymgmt = EVP_KEYMGMT_fetch(ctx->libctx, keytype, ctx->propq); + if (keymgmt != NULL) { + /* + * We have successfully fetched the algorithm - however if the provider + * doesn't match this one then we ignore it. + * + * Note: We're cheating a little here. Technically if the same algorithm + * is available from more than one provider then it is undefined which + * implementation you will get back. Theoretically this could be + * different every time...we assume here that you'll always get the + * same one back if you repeat the exact same fetch. Is this a reasonable + * assumption to make (in which case perhaps we should document this + * behaviour)? + */ + if (EVP_KEYMGMT_get0_provider(keymgmt) == provider) { + /* + * We have a match - so we could use this signature; + * Check proper object registration first, though. + * Don't care about return value as this may have been + * done within providers or previous calls to + * add_provider_sigalgs. + */ + OBJ_create(sinf->sigalg_oid, sinf->sigalg_name, NULL); + /* sanity check: Without successful registration don't use alg */ + if ((OBJ_txt2nid(sinf->sigalg_name) == NID_undef) || + (OBJ_nid2obj(OBJ_txt2nid(sinf->sigalg_name)) == NULL)) { + ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT); + goto err; + } + if (sinf->sig_name != NULL) + OBJ_create(sinf->sig_oid, sinf->sig_name, NULL); + if (sinf->keytype != NULL) + OBJ_create(sinf->keytype_oid, sinf->keytype, NULL); + if (sinf->hash_name != NULL) + OBJ_create(sinf->hash_oid, sinf->hash_name, NULL); + OBJ_add_sigid(OBJ_txt2nid(sinf->sigalg_name), + (sinf->hash_name != NULL + ? OBJ_txt2nid(sinf->hash_name) + : NID_undef), + OBJ_txt2nid(keytype)); + ctx->sigalg_list_len++; + sinf = NULL; + } + EVP_KEYMGMT_free(keymgmt); + } + ERR_pop_to_mark(); + err: + if (sinf != NULL) { + OPENSSL_free(sinf->name); + sinf->name = NULL; + OPENSSL_free(sinf->sigalg_name); + sinf->sigalg_name = NULL; + OPENSSL_free(sinf->sigalg_oid); + sinf->sigalg_oid = NULL; + OPENSSL_free(sinf->sig_name); + sinf->sig_name = NULL; + OPENSSL_free(sinf->sig_oid); + sinf->sig_oid = NULL; + OPENSSL_free(sinf->hash_name); + sinf->hash_name = NULL; + OPENSSL_free(sinf->hash_oid); + sinf->hash_oid = NULL; + OPENSSL_free(sinf->keytype); + sinf->keytype = NULL; + OPENSSL_free(sinf->keytype_oid); + sinf->keytype_oid = NULL; + } + return ret; +} + +static int discover_provider_sigalgs(OSSL_PROVIDER *provider, void *vctx) +{ + struct provider_ctx_data_st pgd; + + pgd.ctx = vctx; + pgd.provider = provider; + OSSL_PROVIDER_get_capabilities(provider, "TLS-SIGALG", + add_provider_sigalgs, &pgd); + /* + * Always OK, even if provider doesn't support the capability: + * Reconsider testing retval when legacy sigalgs are also loaded this way. + */ + return 1; +} + +int ssl_load_sigalgs(SSL_CTX *ctx) +{ + size_t i; + SSL_CERT_LOOKUP lu; + + if (!OSSL_PROVIDER_do_all(ctx->libctx, discover_provider_sigalgs, ctx)) + return 0; + + /* now populate ctx->ssl_cert_info */ + if (ctx->sigalg_list_len > 0) { + OPENSSL_free(ctx->ssl_cert_info); + ctx->ssl_cert_info = OPENSSL_zalloc(sizeof(lu) * ctx->sigalg_list_len); + if (ctx->ssl_cert_info == NULL) + return 0; + for(i = 0; i < ctx->sigalg_list_len; i++) { + ctx->ssl_cert_info[i].nid = OBJ_txt2nid(ctx->sigalg_list[i].sigalg_name); + ctx->ssl_cert_info[i].amask = SSL_aANY; + } + } + + /* + * For now, leave it at this: legacy sigalgs stay in their own + * data structures until "legacy cleanup" occurs. + */ + + return 1; +} + +static uint16_t tls1_group_name2id(SSL_CTX *ctx, const char *name) +{ + size_t i; + + for (i = 0; i < ctx->group_list_len; i++) { + if (OPENSSL_strcasecmp(ctx->group_list[i].tlsname, name) == 0 + || OPENSSL_strcasecmp(ctx->group_list[i].realname, name) == 0) + return ctx->group_list[i].group_id; + } + + return 0; +} + +const TLS_GROUP_INFO *tls1_group_id_lookup(SSL_CTX *ctx, uint16_t group_id) +{ + size_t i; + + for (i = 0; i < ctx->group_list_len; i++) { + if (ctx->group_list[i].group_id == group_id) + return &ctx->group_list[i]; + } + + return NULL; +} + +const char *tls1_group_id2name(SSL_CTX *ctx, uint16_t group_id) +{ + const TLS_GROUP_INFO *tls_group_info = tls1_group_id_lookup(ctx, group_id); + + if (tls_group_info == NULL) + return NULL; + + return tls_group_info->tlsname; +} + +int tls1_group_id2nid(uint16_t group_id, int include_unknown) +{ + size_t i; + + if (group_id == 0) + return NID_undef; + + /* + * Return well known Group NIDs - for backwards compatibility. This won't + * work for groups we don't know about. + */ + for (i = 0; i < OSSL_NELEM(nid_to_group); i++) + { + if (nid_to_group[i].group_id == group_id) + return nid_to_group[i].nid; + } + if (!include_unknown) + return NID_undef; + return TLSEXT_nid_unknown | (int)group_id; +} + +uint16_t tls1_nid2group_id(int nid) +{ + size_t i; + + /* + * Return well known Group ids - for backwards compatibility. This won't + * work for groups we don't know about. + */ + for (i = 0; i < OSSL_NELEM(nid_to_group); i++) + { + if (nid_to_group[i].nid == nid) + return nid_to_group[i].group_id; + } + + return 0; +} + +/* + * Set *pgroups to the supported groups list and *pgroupslen to + * the number of groups supported. + */ +void tls1_get_supported_groups(SSL_CONNECTION *s, const uint16_t **pgroups, + size_t *pgroupslen) +{ + SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s); + + /* For Suite B mode only include P-256, P-384 */ + switch (tls1_suiteb(s)) { + case SSL_CERT_FLAG_SUITEB_128_LOS: + *pgroups = suiteb_curves; + *pgroupslen = OSSL_NELEM(suiteb_curves); + break; + + case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY: + *pgroups = suiteb_curves; + *pgroupslen = 1; + break; + + case SSL_CERT_FLAG_SUITEB_192_LOS: + *pgroups = suiteb_curves + 1; + *pgroupslen = 1; + break; + + default: + if (s->ext.supportedgroups == NULL) { + *pgroups = sctx->ext.supportedgroups; + *pgroupslen = sctx->ext.supportedgroups_len; + } else { + *pgroups = s->ext.supportedgroups; + *pgroupslen = s->ext.supportedgroups_len; + } + break; + } +} + +/* + * Some comments for the function below: + * s->ext.supportedgroups == NULL means legacy syntax (no [*,/,-]) from built-in group array. + * In this case, we need to send exactly one key share, which MUST be the first (leftmost) + * eligible group from the legacy list. Therefore, we provide the entire list of supported + * groups in this case. + * + * A 'flag' to indicate legacy syntax is created by setting the number of key shares to 1, + * but the groupID to 0. + * The 'flag' is checked right at the beginning in tls_construct_ctos_key_share and either + * the "list of requested key share groups" is used, or the "list of supported groups" in + * combination with setting add_only_one = 1 is applied. + */ +void tls1_get_requested_keyshare_groups(SSL_CONNECTION *s, const uint16_t **pgroups, + size_t *pgroupslen) +{ + SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s); + + if (s->ext.supportedgroups == NULL) { + *pgroups = sctx->ext.supportedgroups; + *pgroupslen = sctx->ext.supportedgroups_len; + } else { + *pgroups = s->ext.keyshares; + *pgroupslen = s->ext.keyshares_len; + } +} + +void tls1_get_group_tuples(SSL_CONNECTION *s, const size_t **ptuples, + size_t *ptupleslen) +{ + SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s); + + if (s->ext.supportedgroups == NULL) { + *ptuples = sctx->ext.tuples; + *ptupleslen = sctx->ext.tuples_len; + } else { + *ptuples = s->ext.tuples; + *ptupleslen = s->ext.tuples_len; + } +} + +int tls_valid_group(SSL_CONNECTION *s, uint16_t group_id, + int minversion, int maxversion, + int isec, int *okfortls13) +{ + const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(SSL_CONNECTION_GET_CTX(s), + group_id); + int ret; + int group_minversion, group_maxversion; + + if (okfortls13 != NULL) + *okfortls13 = 0; + + if (ginfo == NULL) + return 0; + + group_minversion = SSL_CONNECTION_IS_DTLS(s) ? ginfo->mindtls : ginfo->mintls; + group_maxversion = SSL_CONNECTION_IS_DTLS(s) ? ginfo->maxdtls : ginfo->maxtls; + + if (group_minversion < 0 || group_maxversion < 0) + return 0; + if (group_maxversion == 0) + ret = 1; + else + ret = (ssl_version_cmp(s, minversion, group_maxversion) <= 0); + if (group_minversion > 0) + ret &= (ssl_version_cmp(s, maxversion, group_minversion) >= 0); + + if (!SSL_CONNECTION_IS_DTLS(s)) { + if (ret && okfortls13 != NULL && maxversion == TLS1_3_VERSION) + *okfortls13 = (group_maxversion == 0) + || (group_maxversion >= TLS1_3_VERSION); + } + ret &= !isec + || strcmp(ginfo->algorithm, "EC") == 0 + || strcmp(ginfo->algorithm, "X25519") == 0 + || strcmp(ginfo->algorithm, "X448") == 0; + + return ret; +} + +/* See if group is allowed by security callback */ +int tls_group_allowed(SSL_CONNECTION *s, uint16_t group, int op) +{ + const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(SSL_CONNECTION_GET_CTX(s), + group); + unsigned char gtmp[2]; + + if (ginfo == NULL) + return 0; + + gtmp[0] = group >> 8; + gtmp[1] = group & 0xff; + return ssl_security(s, op, ginfo->secbits, + tls1_group_id2nid(ginfo->group_id, 0), (void *)gtmp); +} + +/* Return 1 if "id" is in "list" */ +static int tls1_in_list(uint16_t id, const uint16_t *list, size_t listlen) +{ + size_t i; + for (i = 0; i < listlen; i++) + if (list[i] == id) + return 1; + return 0; +} + +typedef struct { + TLS_GROUP_INFO *grp; + size_t ix; +} TLS_GROUP_IX; + +DEFINE_STACK_OF(TLS_GROUP_IX) + +static void free_wrapper(TLS_GROUP_IX *a) +{ + OPENSSL_free(a); +} + +static int tls_group_ix_cmp(const TLS_GROUP_IX *const *a, + const TLS_GROUP_IX *const *b) +{ + int idcmpab = (*a)->grp->group_id < (*b)->grp->group_id; + int idcmpba = (*b)->grp->group_id < (*a)->grp->group_id; + int ixcmpab = (*a)->ix < (*b)->ix; + int ixcmpba = (*b)->ix < (*a)->ix; + + /* Ascending by group id */ + if (idcmpab != idcmpba) + return (idcmpba - idcmpab); + /* Ascending by original appearance index */ + return ixcmpba - ixcmpab; +} + +int tls1_get0_implemented_groups(int min_proto_version, int max_proto_version, + TLS_GROUP_INFO *grps, size_t num, long all, + STACK_OF(OPENSSL_CSTRING) *out) +{ + STACK_OF(TLS_GROUP_IX) *collect = NULL; + TLS_GROUP_IX *gix; + uint16_t id = 0; + int ret = 0; + size_t ix; + + if (grps == NULL || out == NULL) + return 0; + if ((collect = sk_TLS_GROUP_IX_new(tls_group_ix_cmp)) == NULL) + return 0; + for (ix = 0; ix < num; ++ix, ++grps) { + if (grps->mintls > 0 && max_proto_version > 0 + && grps->mintls > max_proto_version) + continue; + if (grps->maxtls > 0 && min_proto_version > 0 + && grps->maxtls < min_proto_version) + continue; + + if ((gix = OPENSSL_malloc(sizeof(*gix))) == NULL) + goto end; + gix->grp = grps; + gix->ix = ix; + if (sk_TLS_GROUP_IX_push(collect, gix) <= 0) { + OPENSSL_free(gix); + goto end; + } + } + + sk_TLS_GROUP_IX_sort(collect); + num = sk_TLS_GROUP_IX_num(collect); + for (ix = 0; ix < num; ++ix) { + gix = sk_TLS_GROUP_IX_value(collect, ix); + if (!all && gix->grp->group_id == id) + continue; + id = gix->grp->group_id; + if (sk_OPENSSL_CSTRING_push(out, gix->grp->tlsname) <= 0) + goto end; + } + ret = 1; + + end: + sk_TLS_GROUP_IX_pop_free(collect, free_wrapper); + return ret; +} + +/*- + * For nmatch >= 0, return the id of the |nmatch|th shared group or 0 + * if there is no match. + * For nmatch == -1, return number of matches + * For nmatch == -2, return the id of the group to use for + * a tmp key, or 0 if there is no match. + */ +uint16_t tls1_shared_group(SSL_CONNECTION *s, int nmatch) +{ + const uint16_t *pref, *supp; + size_t num_pref, num_supp, i; + int k; + SSL_CTX *ctx = SSL_CONNECTION_GET_CTX(s); + + /* Can't do anything on client side */ + if (s->server == 0) + return 0; + if (nmatch == -2) { + if (tls1_suiteb(s)) { + /* + * For Suite B ciphersuite determines curve: we already know + * these are acceptable due to previous checks. + */ + unsigned long cid = s->s3.tmp.new_cipher->id; + + if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) + return OSSL_TLS_GROUP_ID_secp256r1; + if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) + return OSSL_TLS_GROUP_ID_secp384r1; + /* Should never happen */ + return 0; + } + /* If not Suite B just return first preference shared curve */ + nmatch = 0; + } + /* + * If server preference set, our groups are the preference order + * otherwise peer decides. + */ + if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) { + tls1_get_supported_groups(s, &pref, &num_pref); + tls1_get_peer_groups(s, &supp, &num_supp); + } else { + tls1_get_peer_groups(s, &pref, &num_pref); + tls1_get_supported_groups(s, &supp, &num_supp); + } + + for (k = 0, i = 0; i < num_pref; i++) { + uint16_t id = pref[i]; + const TLS_GROUP_INFO *inf; + int minversion, maxversion; + + if (!tls1_in_list(id, supp, num_supp) + || !tls_group_allowed(s, id, SSL_SECOP_CURVE_SHARED)) + continue; + inf = tls1_group_id_lookup(ctx, id); + if (!ossl_assert(inf != NULL)) + return 0; + + minversion = SSL_CONNECTION_IS_DTLS(s) + ? inf->mindtls : inf->mintls; + maxversion = SSL_CONNECTION_IS_DTLS(s) + ? inf->maxdtls : inf->maxtls; + if (maxversion == -1) + continue; + if ((minversion != 0 && ssl_version_cmp(s, s->version, minversion) < 0) + || (maxversion != 0 + && ssl_version_cmp(s, s->version, maxversion) > 0)) + continue; + + if (nmatch == k) + return id; + k++; + } + if (nmatch == -1) + return k; + /* Out of range (nmatch > k). */ + return 0; +} + +int tls1_set_groups(uint16_t **grpext, size_t *grpextlen, + uint16_t **ksext, size_t *ksextlen, + size_t **tplext, size_t *tplextlen, + int *groups, size_t ngroups) +{ + uint16_t *glist = NULL, *kslist = NULL; + size_t *tpllist = NULL; + size_t i; + /* + * Bitmap of groups included to detect duplicates: two variables are added + * to detect duplicates as some values are more than 32. + */ + unsigned long *dup_list = NULL; + unsigned long dup_list_egrp = 0; + unsigned long dup_list_dhgrp = 0; + + if (ngroups == 0) { + ERR_raise(ERR_LIB_SSL, SSL_R_BAD_LENGTH); + return 0; + } + if ((glist = OPENSSL_malloc(ngroups * sizeof(*glist))) == NULL) + goto err; + if ((kslist = OPENSSL_malloc(1 * sizeof(*kslist))) == NULL) + goto err; + if ((tpllist = OPENSSL_malloc(1 * sizeof(*tpllist))) == NULL) + goto err; + for (i = 0; i < ngroups; i++) { + unsigned long idmask; + uint16_t id; + id = tls1_nid2group_id(groups[i]); + if ((id & 0x00FF) >= (sizeof(unsigned long) * 8)) + goto err; + idmask = 1L << (id & 0x00FF); + dup_list = (id < 0x100) ? &dup_list_egrp : &dup_list_dhgrp; + if (!id || ((*dup_list) & idmask)) + goto err; + *dup_list |= idmask; + glist[i] = id; + } + OPENSSL_free(*grpext); + OPENSSL_free(*ksext); + OPENSSL_free(*tplext); + *grpext = glist; + *grpextlen = ngroups; + kslist[0] = glist[0]; + *ksext = kslist; + *ksextlen = 1; + tpllist[0] = ngroups; + *tplext = tpllist; + *tplextlen = 1; + return 1; +err: + OPENSSL_free(glist); + OPENSSL_free(kslist); + OPENSSL_free(tpllist); + return 0; +} + +/* + * Definition of DEFAULT[_XYZ] pseudo group names. + * A pseudo group name is actually a full list of groups, including prefixes + * and or tuple delimiters. It can be hierarchically defined (for potential future use). + * IMPORTANT REMARK: For ease of use, in the built-in lists of groups, unknown groups or + * groups not backed by a provider will always silently be ignored, even without '?' prefix + */ +typedef struct { + const char *list_name; /* The name of this pseudo group */ + const char *group_string; /* The group string of this pseudo group */ +} default_group_string_st; /* (can include '?', '*'. '-', '/' as needed) */ + +/* Built-in pseudo group-names must start with a (D or d) */ +static const char *DEFAULT_GROUPNAME_FIRST_CHARACTER = "D"; + +/* The list of all built-in pseudo-group-name structures */ +static const default_group_string_st default_group_strings[] = { + {DEFAULT_GROUP_NAME, TLS_DEFAULT_GROUP_LIST}, + {SUITE_B_GROUP_NAME, SUITE_B_GROUP_LIST} +}; + +/* + * Some GOST names are not resolved by tls1_group_name2id, + * hence we'll check for those manually + */ +typedef struct { + const char *group_name; + uint16_t groupID; +} name2id_st; +static const name2id_st name2id_arr[] = { + {"GC256A", OSSL_TLS_GROUP_ID_gc256A }, + {"GC256B", OSSL_TLS_GROUP_ID_gc256B }, + {"GC256C", OSSL_TLS_GROUP_ID_gc256C }, + {"GC256D", OSSL_TLS_GROUP_ID_gc256D }, + {"GC512A", OSSL_TLS_GROUP_ID_gc512A }, + {"GC512B", OSSL_TLS_GROUP_ID_gc512B }, + {"GC512C", OSSL_TLS_GROUP_ID_gc512C }, +}; + +/* + * Group list management: + * We establish three lists along with their related size counters: + * 1) List of (unique) groups + * 2) List of number of groups per group-priority-tuple + * 3) List of (unique) key share groups + */ +#define GROUPLIST_INCREMENT 32 /* Memory allocation chunk size (64 Bytes chunks ~= cache line) */ +#define GROUP_NAME_BUFFER_LENGTH 64 /* Max length of a group name */ + +/* + * Preparation of the prefix used to indicate the desire to send a key share, + * the characters used as separators between groups or tuples of groups, the + * character to indicate that an unknown group should be ignored, and the + * character to indicate that a group should be deleted from a list + */ +#ifndef TUPLE_DELIMITER_CHARACTER +/* The prefix characters to indicate group tuple boundaries */ +# define TUPLE_DELIMITER_CHARACTER '/' +#endif +#ifndef GROUP_DELIMITER_CHARACTER +/* The prefix characters to indicate group tuple boundaries */ +# define GROUP_DELIMITER_CHARACTER ':' +#endif +#ifndef IGNORE_UNKNOWN_GROUP_CHARACTER +/* The prefix character to ignore unknown groups */ +# define IGNORE_UNKNOWN_GROUP_CHARACTER '?' +#endif +#ifndef KEY_SHARE_INDICATOR_CHARACTER +/* The prefix character to trigger a key share addition */ +# define KEY_SHARE_INDICATOR_CHARACTER '*' +#endif +#ifndef REMOVE_GROUP_INDICATOR_CHARACTER +/* The prefix character to trigger a key share removal */ +# define REMOVE_GROUP_INDICATOR_CHARACTER '-' +#endif +static const char prefixes[] = {TUPLE_DELIMITER_CHARACTER, + GROUP_DELIMITER_CHARACTER, + IGNORE_UNKNOWN_GROUP_CHARACTER, + KEY_SHARE_INDICATOR_CHARACTER, + REMOVE_GROUP_INDICATOR_CHARACTER, + '\0'}; + +/* + * High-level description of how group strings are analyzed: + * A first call back function (tuple_cb) is used to process group tuples, and a + * second callback function (gid_cb) is used to process the groups inside a tuple. + * Those callback functions are (indirectly) called by CONF_parse_list with + * different separators (nominally ':' or '/'), a variable based on gid_cb_st + * is used to keep track of the parsing results between the various calls + */ + +typedef struct { + SSL_CTX *ctx; + /* Variables to hold the three lists (groups, requested keyshares, tuple structure) */ + size_t gidmax; /* The memory allocation chunk size for the group IDs */ + size_t gidcnt; /* Number of groups */ + uint16_t *gid_arr; /* The IDs of the supported groups (flat list) */ + size_t tplmax; /* The memory allocation chunk size for the tuple counters */ + size_t tplcnt; /* Number of tuples */ + size_t *tuplcnt_arr; /* The number of groups inside a tuple */ + size_t ksidmax; /* The memory allocation chunk size */ + size_t ksidcnt; /* Number of key shares */ + uint16_t *ksid_arr; /* The IDs of the key share groups (flat list) */ + /* Variable to keep state between execution of callback or helper functions */ + size_t tuple_mode; /* Keeps track whether tuple_cb called from 'the top' or from gid_cb */ + int ignore_unknown_default; /* Flag such that unknown groups for DEFAULT[_XYZ] are ignored */ +} gid_cb_st; + +/* Forward declaration of tuple callback function */ +static int tuple_cb(const char *tuple, int len, void *arg); + +/* + * Extract and process the individual groups (and their prefixes if present) + * present in a tuple. Note: The argument 'elem' is a NON-\0-terminated string + * and must be appended by a \0 if used as \0-terminated string + */ +static int gid_cb(const char *elem, int len, void *arg) +{ + gid_cb_st *garg = arg; + size_t i, j, k; + uint16_t gid = 0; + int found_group = 0; + char etmp[GROUP_NAME_BUFFER_LENGTH]; + int retval = 1; /* We assume success */ + char *current_prefix; + int ignore_unknown = 0; + int add_keyshare = 0; + int remove_group = 0; + size_t restored_prefix_index = 0; + char *restored_default_group_string; + int continue_while_loop = 1; + + /* Sanity checks */ + if (garg == NULL || elem == NULL || len <= 0) { + ERR_raise(ERR_LIB_SSL, SSL_R_UNSUPPORTED_CONFIG_VALUE); + return 0; + } + + /* Check the possible prefixes (remark: Leading and trailing spaces already cleared) */ + while (continue_while_loop && len > 0 + && ((current_prefix = strchr(prefixes, elem[0])) != NULL + || OPENSSL_strncasecmp(current_prefix = (char *)DEFAULT_GROUPNAME_FIRST_CHARACTER, elem, 1) == 0)) { + + switch (*current_prefix) { + case TUPLE_DELIMITER_CHARACTER: + /* tuple delimiter not allowed here -> syntax error */ + return -1; + break; + case GROUP_DELIMITER_CHARACTER: + return -1; /* Not a valid prefix for a single group name-> syntax error */ + break; + case KEY_SHARE_INDICATOR_CHARACTER: + if (add_keyshare) + return -1; /* Only single key share prefix allowed -> syntax error */ + add_keyshare = 1; + ++elem; + --len; + break; + case REMOVE_GROUP_INDICATOR_CHARACTER: + if (remove_group) + return -1; /* Only single remove group prefix allowed -> syntax error */ + remove_group = 1; + ++elem; + --len; + break; + case IGNORE_UNKNOWN_GROUP_CHARACTER: + if (ignore_unknown) + return -1; /* Only single ? allowed -> syntax error */ + ignore_unknown = 1; + ++elem; + --len; + break; + default: + /* + * Check whether a DEFAULT[_XYZ] 'pseudo group' (= a built-in + * list of groups) should be added + */ + for (i = 0; i < OSSL_NELEM(default_group_strings); i++) { + if ((size_t)len == (strlen(default_group_strings[i].list_name)) + && OPENSSL_strncasecmp(default_group_strings[i].list_name, elem, len) == 0) { + /* + * We're asked to insert an entire list of groups from a + * DEFAULT[_XYZ] 'pseudo group' which we do by + * recursively calling this function (indirectly via + * CONF_parse_list and tuple_cb); essentially, we treat a DEFAULT + * group string like a tuple which is appended to the current tuple + * rather then starting a new tuple. Variable tuple_mode is the flag which + * controls append tuple vs start new tuple. + */ + + if (ignore_unknown || remove_group) + return -1; /* removal or ignore not allowed here -> syntax error */ + + /* + * First, we restore any keyshare prefix in a new zero-terminated string + * (if not already present) + */ + restored_default_group_string = OPENSSL_malloc((1 /* max prefix length */ + + strlen(default_group_strings[i].group_string) + + 1 /* \0 */) * sizeof(char)); + if (restored_default_group_string == NULL) + return 0; + if (add_keyshare + /* Remark: we tolerate a duplicated keyshare indicator here */ + && default_group_strings[i].group_string[0] + != KEY_SHARE_INDICATOR_CHARACTER) + restored_default_group_string[restored_prefix_index++] = + KEY_SHARE_INDICATOR_CHARACTER; + + memcpy(restored_default_group_string + restored_prefix_index, + default_group_strings[i].group_string, + strlen(default_group_strings[i].group_string)); + restored_default_group_string[strlen(default_group_strings[i].group_string) + + restored_prefix_index] = '\0'; + /* We execute the recursive call */ + garg->ignore_unknown_default = 1; /* We ignore unknown groups for DEFAULT_XYZ */ + /* we enforce group mode (= append tuple) for DEFAULT_XYZ group lists */ + garg->tuple_mode = 0; + /* We use the tuple_cb callback to process the pseudo group tuple */ + retval = CONF_parse_list(restored_default_group_string, + TUPLE_DELIMITER_CHARACTER, 1, tuple_cb, garg); + garg->tuple_mode = 1; /* next call to tuple_cb will again start new tuple */ + garg->ignore_unknown_default = 0; /* reset to original value */ + /* We don't need the \0-terminated string anymore */ + OPENSSL_free(restored_default_group_string); + + return retval; + } + } + /* + * If we reached this point, a group name started with a 'd' or 'D', but no request + * for a DEFAULT[_XYZ] 'pseudo group' was detected, hence processing of the group + * name can continue as usual (= the while loop checking prefixes can end) + */ + continue_while_loop = 0; + break; + } + } + + if (len == 0) + return -1; /* Seems we have prefxes without a group name -> syntax error */ + + if (garg->ignore_unknown_default == 1) /* Always ignore unknown groups for DEFAULT[_XYZ] */ + ignore_unknown = 1; + + /* Memory management in case more groups are present compared to initial allocation */ + if (garg->gidcnt == garg->gidmax) { + uint16_t *tmp = + OPENSSL_realloc(garg->gid_arr, + (garg->gidmax + GROUPLIST_INCREMENT) * sizeof(*garg->gid_arr)); + + if (tmp == NULL) + return 0; + + garg->gidmax += GROUPLIST_INCREMENT; + garg->gid_arr = tmp; + } + /* Memory management for key share groups */ + if (garg->ksidcnt == garg->ksidmax) { + uint16_t *tmp = + OPENSSL_realloc(garg->ksid_arr, + (garg->ksidmax + GROUPLIST_INCREMENT) * sizeof(*garg->ksid_arr)); + + if (tmp == NULL) + return 0; + garg->ksidmax += GROUPLIST_INCREMENT; + garg->ksid_arr = tmp; + } + + if (len > (int)(sizeof(etmp) - 1)) + return -1; /* group name to long -> syntax error */ + + /* + * Prepare addition or removal of a single group by converting + * a group name into its groupID equivalent + */ + + /* Create a \0-terminated string and get the gid for this group if possible */ + memcpy(etmp, elem, len); + etmp[len] = 0; + + /* Get the groupID */ + gid = tls1_group_name2id(garg->ctx, etmp); + /* + * Handle the case where no valid groupID was returned + * e.g. for an unknown group, which we'd ignore (only) if relevant prefix was set + */ + if (gid == 0) { + /* Is it one of the GOST groups ? */ + for (i = 0; i < OSSL_NELEM(name2id_arr); i++) { + if (OPENSSL_strcasecmp(etmp, name2id_arr[i].group_name) == 0) { + gid = name2id_arr[i].groupID; + break; + } + } + if (gid == 0) { /* still not found */ + /* Unknown group - ignore if ignore_unknown; trigger error otherwise */ + retval = ignore_unknown; + goto done; + } + } + + /* Make sure that at least one provider is supporting this groupID */ + found_group = 0; + for (j = 0; j < garg->ctx->group_list_len; j++) + if (garg->ctx->group_list[j].group_id == gid) { + found_group = 1; + break; + } + + /* + * No provider supports this group - ignore if + * ignore_unknown; trigger error otherwise + */ + if (found_group == 0) { + retval = ignore_unknown; + goto done; + } + /* Remove group (and keyshare) from anywhere in the list if present, ignore if not present */ + if (remove_group) { + /* Is the current group specified anywhere in the entire list so far? */ + found_group = 0; + for (i = 0; i < garg->gidcnt; i++) + if (garg->gid_arr[i] == gid) { + found_group = 1; + break; + } + /* The group to remove is at position i in the list of (zero indexed) groups */ + if (found_group) { + /* We remove that group from its position (which is at i)... */ + for (j = i; j < (garg->gidcnt - 1); j++) + garg->gid_arr[j] = garg->gid_arr[j + 1]; /* ...shift remaining groups left ... */ + garg->gidcnt--; /* ..and update the book keeping for the number of groups */ + + /* + * We also must update the number of groups either in a previous tuple (which we + * must identify and check whether it becomes empty due to the deletion) or in + * the current tuple, pending where the deleted group resides + */ + k = 0; + for (j = 0; j < garg->tplcnt; j++) { + k += garg->tuplcnt_arr[j]; + /* Remark: i is zero-indexed, k is one-indexed */ + if (k > i) { /* remove from one of the previous tuples */ + garg->tuplcnt_arr[j]--; + break; /* We took care not to have group duplicates, hence we can stop here */ + } + } + if (k <= i) /* remove from current tuple */ + garg->tuplcnt_arr[j]--; + + /* We also remove the group from the list of keyshares (if present) */ + found_group = 0; + for (i = 0; i < garg->ksidcnt; i++) + if (garg->ksid_arr[i] == gid) { + found_group = 1; + break; + } + if (found_group) { + /* Found, hence we remove that keyshare from its position (which is at i)... */ + for (j = i; j < (garg->ksidcnt - 1); j++) + garg->ksid_arr[j] = garg->ksid_arr[j + 1]; /* shift remaining key shares */ + /* ... and update the book keeping */ + garg->ksidcnt--; + } + } + } else { /* Processing addition of a single new group */ + + /* Check for duplicates */ + for (i = 0; i < garg->gidcnt; i++) + if (garg->gid_arr[i] == gid) { + /* Duplicate group anywhere in the list of groups - ignore */ + goto done; + } + + /* Add the current group to the 'flat' list of groups */ + garg->gid_arr[garg->gidcnt++] = gid; + /* and update the book keeping for the number of groups in current tuple */ + garg->tuplcnt_arr[garg->tplcnt]++; + + /* We memorize if needed that we want to add a key share for the current group */ + if (add_keyshare) + garg->ksid_arr[garg->ksidcnt++] = gid; + } + +done: + return retval; +} + +/* Extract and process a tuple of groups */ +static int tuple_cb(const char *tuple, int len, void *arg) +{ + gid_cb_st *garg = arg; + int retval = 1; /* We assume success */ + char *restored_tuple_string; + + /* Sanity checks */ + if (garg == NULL || tuple == NULL || len <= 0) { + ERR_raise(ERR_LIB_SSL, SSL_R_UNSUPPORTED_CONFIG_VALUE); + return 0; + } + + /* Memory management for tuples */ + if (garg->tplcnt == garg->tplmax) { + size_t *tmp = + OPENSSL_realloc(garg->tuplcnt_arr, + (garg->tplmax + GROUPLIST_INCREMENT) * sizeof(*garg->tuplcnt_arr)); + + if (tmp == NULL) + return 0; + garg->tplmax += GROUPLIST_INCREMENT; + garg->tuplcnt_arr = tmp; + } + + /* Convert to \0-terminated string */ + restored_tuple_string = OPENSSL_malloc((len + 1 /* \0 */) * sizeof(char)); + if (restored_tuple_string == NULL) + return 0; + memcpy(restored_tuple_string, tuple, len); + restored_tuple_string[len] = '\0'; + + /* Analyze group list of this tuple */ + retval = CONF_parse_list(restored_tuple_string, GROUP_DELIMITER_CHARACTER, 1, gid_cb, arg); + + /* We don't need the \o-terminated string anymore */ + OPENSSL_free(restored_tuple_string); + + if (garg->tuplcnt_arr[garg->tplcnt] > 0) { /* Some valid groups are present in current tuple... */ + if (garg->tuple_mode) { + /* We 'close' the tuple */ + garg->tplcnt++; + garg->tuplcnt_arr[garg->tplcnt] = 0; /* Next tuple is initialized to be empty */ + garg->tuple_mode = 1; /* next call will start a tuple (unless overridden in gid_cb) */ + } + } + + return retval; +} + +/* + * Set groups and prepare generation of keyshares based on a string of groupnames, + * names separated by the group or the tuple delimiter, with per-group prefixes to + * (1) add a key share for this group, (2) ignore the group if unkown to the current + * context, (3) delete a previous occurrence of the group in the current tuple. + * + * The list parsing is done in two hierachical steps: The top-level step extracts the + * string of a tuple using tuple_cb, while the next lower step uses gid_cb to + * parse and process the groups inside a tuple + */ +int tls1_set_groups_list(SSL_CTX *ctx, + uint16_t **grpext, size_t *grpextlen, + uint16_t **ksext, size_t *ksextlen, + size_t **tplext, size_t *tplextlen, + const char *str) +{ + size_t i = 0, j; + int ret = 0, parse_ret = 0; + gid_cb_st gcb; + + /* Sanity check */ + if (ctx == NULL) { + ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_NULL_PARAMETER); + return 0; + } + + memset(&gcb, 0, sizeof(gcb)); + gcb.tuple_mode = 1; /* We prepare to collect the first tuple */ + gcb.ignore_unknown_default = 0; + gcb.gidmax = GROUPLIST_INCREMENT; + gcb.tplmax = GROUPLIST_INCREMENT; + gcb.ksidmax = GROUPLIST_INCREMENT; + gcb.ctx = ctx; + + /* Prepare initial chunks of memory for groups, tuples and keyshares groupIDs */ + gcb.gid_arr = OPENSSL_malloc(gcb.gidmax * sizeof(*gcb.gid_arr)); + if (gcb.gid_arr == NULL) + goto end; + gcb.tuplcnt_arr = OPENSSL_malloc(gcb.tplmax * sizeof(*gcb.tuplcnt_arr)); + if (gcb.tuplcnt_arr == NULL) + goto end; + gcb.tuplcnt_arr[0] = 0; + gcb.ksid_arr = OPENSSL_malloc(gcb.ksidmax * sizeof(*gcb.ksid_arr)); + if (gcb.ksid_arr == NULL) + goto end; + + while (str[0] != '\0' && isspace((unsigned char)*str)) + str++; + if (str[0] == '\0') + goto empty_list; + + /* + * Start the (potentially recursive) tuple processing by calling CONF_parse_list + * with the TUPLE_DELIMITER_CHARACTER (which will call tuple_cb after cleaning spaces) + */ + parse_ret = CONF_parse_list(str, TUPLE_DELIMITER_CHARACTER, 1, tuple_cb, &gcb); + + if (parse_ret == 0) + goto end; + if (parse_ret == -1) { + ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT, + "Syntax error in '%s'", str); + goto end; + } + + /* + * We check whether a tuple was completly emptied by using "-" prefix + * excessively, in which case we remove the tuple + */ + for (i = j = 0; j < gcb.tplcnt; j++) { + if (gcb.tuplcnt_arr[j] == 0) + continue; + /* If there's a gap, move to first unfilled slot */ + if (j == i) + ++i; + else + gcb.tuplcnt_arr[i++] = gcb.tuplcnt_arr[j]; + } + gcb.tplcnt = i; + + if (gcb.ksidcnt > OPENSSL_CLIENT_MAX_KEY_SHARES) { + ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT, + "To many keyshares requested in '%s' (max = %d)", + str, OPENSSL_CLIENT_MAX_KEY_SHARES); + goto end; + } + + /* + * For backward compatibility we let the rest of the code know that a key share + * for the first valid group should be added if no "*" prefix was used anywhere + */ + if (gcb.gidcnt > 0 && gcb.ksidcnt == 0) { + /* + * No key share group prefix character was used, hence we indicate that a single + * key share should be sent and flag that it should come from the supported_groups list + */ + gcb.ksidcnt = 1; + gcb.ksid_arr[0] = 0; + } + + empty_list: + /* + * A call to tls1_set_groups_list with any of the args (other than ctx) set + * to NULL only does a syntax check, hence we're done here and report success + */ + if (grpext == NULL || ksext == NULL || tplext == NULL || + grpextlen == NULL || ksextlen == NULL || tplextlen == NULL) { + ret = 1; + goto end; + } + + /* + * tuple_cb and gid_cb combo ensures there are no duplicates or unknown groups so we + * can just go ahead and set the results (after diposing the existing) + */ + OPENSSL_free(*grpext); + *grpext = gcb.gid_arr; + *grpextlen = gcb.gidcnt; + OPENSSL_free(*ksext); + *ksext = gcb.ksid_arr; + *ksextlen = gcb.ksidcnt; + OPENSSL_free(*tplext); + *tplext = gcb.tuplcnt_arr; + *tplextlen = gcb.tplcnt; + + return 1; + + end: + OPENSSL_free(gcb.gid_arr); + OPENSSL_free(gcb.tuplcnt_arr); + OPENSSL_free(gcb.ksid_arr); + return ret; +} + +/* Check a group id matches preferences */ +int tls1_check_group_id(SSL_CONNECTION *s, uint16_t group_id, + int check_own_groups) + { + const uint16_t *groups; + size_t groups_len; + + if (group_id == 0) + return 0; + + /* Check for Suite B compliance */ + if (tls1_suiteb(s) && s->s3.tmp.new_cipher != NULL) { + unsigned long cid = s->s3.tmp.new_cipher->id; + + if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) { + if (group_id != OSSL_TLS_GROUP_ID_secp256r1) + return 0; + } else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) { + if (group_id != OSSL_TLS_GROUP_ID_secp384r1) + return 0; + } else { + /* Should never happen */ + return 0; + } + } + + if (check_own_groups) { + /* Check group is one of our preferences */ + tls1_get_supported_groups(s, &groups, &groups_len); + if (!tls1_in_list(group_id, groups, groups_len)) + return 0; + } + + if (!tls_group_allowed(s, group_id, SSL_SECOP_CURVE_CHECK)) + return 0; + + /* For clients, nothing more to check */ + if (!s->server) + return 1; + + /* Check group is one of peers preferences */ + tls1_get_peer_groups(s, &groups, &groups_len); + + /* + * RFC 4492 does not require the supported elliptic curves extension + * so if it is not sent we can just choose any curve. + * It is invalid to send an empty list in the supported groups + * extension, so groups_len == 0 always means no extension. + */ + if (groups_len == 0) + return 1; + return tls1_in_list(group_id, groups, groups_len); +} + +void tls1_get_formatlist(SSL_CONNECTION *s, const unsigned char **pformats, + size_t *num_formats) +{ + /* + * If we have a custom point format list use it otherwise use default + */ + if (s->ext.ecpointformats) { + *pformats = s->ext.ecpointformats; + *num_formats = s->ext.ecpointformats_len; + } else { + *pformats = ecformats_default; + /* For Suite B we don't support char2 fields */ + if (tls1_suiteb(s)) + *num_formats = sizeof(ecformats_default) - 1; + else + *num_formats = sizeof(ecformats_default); + } +} + +/* Check a key is compatible with compression extension */ +static int tls1_check_pkey_comp(SSL_CONNECTION *s, EVP_PKEY *pkey) +{ + unsigned char comp_id; + size_t i; + int point_conv; + + /* If not an EC key nothing to check */ + if (!EVP_PKEY_is_a(pkey, "EC")) + return 1; + + + /* Get required compression id */ + point_conv = EVP_PKEY_get_ec_point_conv_form(pkey); + if (point_conv == 0) + return 0; + if (point_conv == POINT_CONVERSION_UNCOMPRESSED) { + comp_id = TLSEXT_ECPOINTFORMAT_uncompressed; + } else if (SSL_CONNECTION_IS_TLS13(s)) { + /* + * ec_point_formats extension is not used in TLSv1.3 so we ignore + * this check. + */ + return 1; + } else { + int field_type = EVP_PKEY_get_field_type(pkey); + + if (field_type == NID_X9_62_prime_field) + comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime; + else if (field_type == NID_X9_62_characteristic_two_field) + comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2; + else + return 0; + } + /* + * If point formats extension present check it, otherwise everything is + * supported (see RFC4492). + */ + if (s->ext.peer_ecpointformats == NULL) + return 1; + + for (i = 0; i < s->ext.peer_ecpointformats_len; i++) { + if (s->ext.peer_ecpointformats[i] == comp_id) + return 1; + } + return 0; +} + +/* Return group id of a key */ +static uint16_t tls1_get_group_id(EVP_PKEY *pkey) +{ + int curve_nid = ssl_get_EC_curve_nid(pkey); + + if (curve_nid == NID_undef) + return 0; + return tls1_nid2group_id(curve_nid); +} + +/* + * Check cert parameters compatible with extensions: currently just checks EC + * certificates have compatible curves and compression. + */ +static int tls1_check_cert_param(SSL_CONNECTION *s, X509 *x, int check_ee_md) +{ + uint16_t group_id; + EVP_PKEY *pkey; + pkey = X509_get0_pubkey(x); + if (pkey == NULL) + return 0; + /* If not EC nothing to do */ + if (!EVP_PKEY_is_a(pkey, "EC")) + return 1; + /* Check compression */ + if (!tls1_check_pkey_comp(s, pkey)) + return 0; + group_id = tls1_get_group_id(pkey); + /* + * For a server we allow the certificate to not be in our list of supported + * groups. + */ + if (!tls1_check_group_id(s, group_id, !s->server)) + return 0; + /* + * Special case for suite B. We *MUST* sign using SHA256+P-256 or + * SHA384+P-384. + */ + if (check_ee_md && tls1_suiteb(s)) { + int check_md; + size_t i; + + /* Check to see we have necessary signing algorithm */ + if (group_id == OSSL_TLS_GROUP_ID_secp256r1) + check_md = NID_ecdsa_with_SHA256; + else if (group_id == OSSL_TLS_GROUP_ID_secp384r1) + check_md = NID_ecdsa_with_SHA384; + else + return 0; /* Should never happen */ + for (i = 0; i < s->shared_sigalgslen; i++) { + if (check_md == s->shared_sigalgs[i]->sigandhash) + return 1; + } + return 0; + } + return 1; +} + +/* + * tls1_check_ec_tmp_key - Check EC temporary key compatibility + * @s: SSL connection + * @cid: Cipher ID we're considering using + * + * Checks that the kECDHE cipher suite we're considering using + * is compatible with the client extensions. + * + * Returns 0 when the cipher can't be used or 1 when it can. + */ +int tls1_check_ec_tmp_key(SSL_CONNECTION *s, unsigned long cid) +{ + /* If not Suite B just need a shared group */ + if (!tls1_suiteb(s)) + return tls1_shared_group(s, 0) != 0; + /* + * If Suite B, AES128 MUST use P-256 and AES256 MUST use P-384, no other + * curves permitted. + */ + if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) + return tls1_check_group_id(s, OSSL_TLS_GROUP_ID_secp256r1, 1); + if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) + return tls1_check_group_id(s, OSSL_TLS_GROUP_ID_secp384r1, 1); + + return 0; +} + +/* Default sigalg schemes */ +static const uint16_t tls12_sigalgs[] = { + TLSEXT_SIGALG_mldsa65, + TLSEXT_SIGALG_mldsa87, + TLSEXT_SIGALG_mldsa44, + TLSEXT_SIGALG_ecdsa_secp256r1_sha256, + TLSEXT_SIGALG_ecdsa_secp384r1_sha384, + TLSEXT_SIGALG_ecdsa_secp521r1_sha512, + TLSEXT_SIGALG_ed25519, + TLSEXT_SIGALG_ed448, + TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256, + TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384, + TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512, + + TLSEXT_SIGALG_rsa_pss_pss_sha256, + TLSEXT_SIGALG_rsa_pss_pss_sha384, + TLSEXT_SIGALG_rsa_pss_pss_sha512, + TLSEXT_SIGALG_rsa_pss_rsae_sha256, + TLSEXT_SIGALG_rsa_pss_rsae_sha384, + TLSEXT_SIGALG_rsa_pss_rsae_sha512, + + TLSEXT_SIGALG_rsa_pkcs1_sha256, + TLSEXT_SIGALG_rsa_pkcs1_sha384, + TLSEXT_SIGALG_rsa_pkcs1_sha512, + + TLSEXT_SIGALG_ecdsa_sha224, + TLSEXT_SIGALG_ecdsa_sha1, + + TLSEXT_SIGALG_rsa_pkcs1_sha224, + TLSEXT_SIGALG_rsa_pkcs1_sha1, + + TLSEXT_SIGALG_dsa_sha224, + TLSEXT_SIGALG_dsa_sha1, + + TLSEXT_SIGALG_dsa_sha256, + TLSEXT_SIGALG_dsa_sha384, + TLSEXT_SIGALG_dsa_sha512, + +#ifndef OPENSSL_NO_GOST + TLSEXT_SIGALG_gostr34102012_256_intrinsic, + TLSEXT_SIGALG_gostr34102012_512_intrinsic, + TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256, + TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512, + TLSEXT_SIGALG_gostr34102001_gostr3411, +#endif +}; + + +static const uint16_t suiteb_sigalgs[] = { + TLSEXT_SIGALG_ecdsa_secp256r1_sha256, + TLSEXT_SIGALG_ecdsa_secp384r1_sha384 +}; + +static const SIGALG_LOOKUP sigalg_lookup_tbl[] = { + {TLSEXT_SIGALG_ecdsa_secp256r1_sha256_name, + "ECDSA+SHA256", TLSEXT_SIGALG_ecdsa_secp256r1_sha256, + NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC, + NID_ecdsa_with_SHA256, NID_X9_62_prime256v1, 1, 0, + TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0}, + {TLSEXT_SIGALG_ecdsa_secp384r1_sha384_name, + "ECDSA+SHA384", TLSEXT_SIGALG_ecdsa_secp384r1_sha384, + NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC, + NID_ecdsa_with_SHA384, NID_secp384r1, 1, 0, + TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0}, + {TLSEXT_SIGALG_ecdsa_secp521r1_sha512_name, + "ECDSA+SHA512", TLSEXT_SIGALG_ecdsa_secp521r1_sha512, + NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC, + NID_ecdsa_with_SHA512, NID_secp521r1, 1, 0, + TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0}, + + {TLSEXT_SIGALG_ed25519_name, + NULL, TLSEXT_SIGALG_ed25519, + NID_undef, -1, EVP_PKEY_ED25519, SSL_PKEY_ED25519, + NID_undef, NID_undef, 1, 0, + TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0}, + {TLSEXT_SIGALG_ed448_name, + NULL, TLSEXT_SIGALG_ed448, + NID_undef, -1, EVP_PKEY_ED448, SSL_PKEY_ED448, + NID_undef, NID_undef, 1, 0, + TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0}, + + {TLSEXT_SIGALG_ecdsa_sha224_name, + "ECDSA+SHA224", TLSEXT_SIGALG_ecdsa_sha224, + NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_EC, SSL_PKEY_ECC, + NID_ecdsa_with_SHA224, NID_undef, 1, 0, + TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION}, + {TLSEXT_SIGALG_ecdsa_sha1_name, + "ECDSA+SHA1", TLSEXT_SIGALG_ecdsa_sha1, + NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_EC, SSL_PKEY_ECC, + NID_ecdsa_with_SHA1, NID_undef, 1, 0, + TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION}, + + {TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256_name, + TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256_alias, + TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256, + NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC, + NID_ecdsa_with_SHA256, NID_brainpoolP256r1, 1, 0, + TLS1_3_VERSION, 0, -1, -1}, + {TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384_name, + TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384_alias, + TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384, + NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC, + NID_ecdsa_with_SHA384, NID_brainpoolP384r1, 1, 0, + TLS1_3_VERSION, 0, -1, -1}, + {TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512_name, + TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512_alias, + TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512, + NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC, + NID_ecdsa_with_SHA512, NID_brainpoolP512r1, 1, 0, + TLS1_3_VERSION, 0, -1, -1}, + + {TLSEXT_SIGALG_rsa_pss_rsae_sha256_name, + "PSS+SHA256", TLSEXT_SIGALG_rsa_pss_rsae_sha256, + NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA, + NID_undef, NID_undef, 1, 0, + TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0}, + {TLSEXT_SIGALG_rsa_pss_rsae_sha384_name, + "PSS+SHA384", TLSEXT_SIGALG_rsa_pss_rsae_sha384, + NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA, + NID_undef, NID_undef, 1, 0, + TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0}, + {TLSEXT_SIGALG_rsa_pss_rsae_sha512_name, + "PSS+SHA512", TLSEXT_SIGALG_rsa_pss_rsae_sha512, + NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA, + NID_undef, NID_undef, 1, 0, + TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0}, + + {TLSEXT_SIGALG_rsa_pss_pss_sha256_name, + NULL, TLSEXT_SIGALG_rsa_pss_pss_sha256, + NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN, + NID_undef, NID_undef, 1, 0, + TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0}, + {TLSEXT_SIGALG_rsa_pss_pss_sha384_name, + NULL, TLSEXT_SIGALG_rsa_pss_pss_sha384, + NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN, + NID_undef, NID_undef, 1, 0, + TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0}, + {TLSEXT_SIGALG_rsa_pss_pss_sha512_name, + NULL, TLSEXT_SIGALG_rsa_pss_pss_sha512, + NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN, + NID_undef, NID_undef, 1, 0, + TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0}, + + {TLSEXT_SIGALG_rsa_pkcs1_sha256_name, + "RSA+SHA256", TLSEXT_SIGALG_rsa_pkcs1_sha256, + NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA, + NID_sha256WithRSAEncryption, NID_undef, 1, 0, + TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0}, + {TLSEXT_SIGALG_rsa_pkcs1_sha384_name, + "RSA+SHA384", TLSEXT_SIGALG_rsa_pkcs1_sha384, + NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA, + NID_sha384WithRSAEncryption, NID_undef, 1, 0, + TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0}, + {TLSEXT_SIGALG_rsa_pkcs1_sha512_name, + "RSA+SHA512", TLSEXT_SIGALG_rsa_pkcs1_sha512, + NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA, + NID_sha512WithRSAEncryption, NID_undef, 1, 0, + TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0}, + + {TLSEXT_SIGALG_rsa_pkcs1_sha224_name, + "RSA+SHA224", TLSEXT_SIGALG_rsa_pkcs1_sha224, + NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA, + NID_sha224WithRSAEncryption, NID_undef, 1, 0, + TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION}, + {TLSEXT_SIGALG_rsa_pkcs1_sha1_name, + "RSA+SHA1", TLSEXT_SIGALG_rsa_pkcs1_sha1, + NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA, + NID_sha1WithRSAEncryption, NID_undef, 1, 0, + TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION}, + + {TLSEXT_SIGALG_dsa_sha256_name, + "DSA+SHA256", TLSEXT_SIGALG_dsa_sha256, + NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN, + NID_dsa_with_SHA256, NID_undef, 1, 0, + TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION}, + {TLSEXT_SIGALG_dsa_sha384_name, + "DSA+SHA384", TLSEXT_SIGALG_dsa_sha384, + NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN, + NID_undef, NID_undef, 1, 0, + TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION}, + {TLSEXT_SIGALG_dsa_sha512_name, + "DSA+SHA512", TLSEXT_SIGALG_dsa_sha512, + NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN, + NID_undef, NID_undef, 1, 0, + TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION}, + {TLSEXT_SIGALG_dsa_sha224_name, + "DSA+SHA224", TLSEXT_SIGALG_dsa_sha224, + NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN, + NID_undef, NID_undef, 1, 0, + TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION}, + {TLSEXT_SIGALG_dsa_sha1_name, + "DSA+SHA1", TLSEXT_SIGALG_dsa_sha1, + NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN, + NID_dsaWithSHA1, NID_undef, 1, 0, + TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION}, + +#ifndef OPENSSL_NO_GOST + {TLSEXT_SIGALG_gostr34102012_256_intrinsic_alias, /* RFC9189 */ + TLSEXT_SIGALG_gostr34102012_256_intrinsic_name, + TLSEXT_SIGALG_gostr34102012_256_intrinsic, + NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX, + NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256, + NID_undef, NID_undef, 1, 0, + TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION}, + {TLSEXT_SIGALG_gostr34102012_256_intrinsic_alias, /* RFC9189 */ + TLSEXT_SIGALG_gostr34102012_256_intrinsic_name, + TLSEXT_SIGALG_gostr34102012_512_intrinsic, + NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX, + NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512, + NID_undef, NID_undef, 1, 0, + TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION}, + + {TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256_name, + NULL, TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256, + NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX, + NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256, + NID_undef, NID_undef, 1, 0, + TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION}, + {TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512_name, + NULL, TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512, + NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX, + NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512, + NID_undef, NID_undef, 1, 0, + TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION}, + {TLSEXT_SIGALG_gostr34102001_gostr3411_name, + NULL, TLSEXT_SIGALG_gostr34102001_gostr3411, + NID_id_GostR3411_94, SSL_MD_GOST94_IDX, + NID_id_GostR3410_2001, SSL_PKEY_GOST01, + NID_undef, NID_undef, 1, 0, + TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION}, +#endif +}; +/* Legacy sigalgs for TLS < 1.2 RSA TLS signatures */ +static const SIGALG_LOOKUP legacy_rsa_sigalg = { + "rsa_pkcs1_md5_sha1", NULL, 0, + NID_md5_sha1, SSL_MD_MD5_SHA1_IDX, + EVP_PKEY_RSA, SSL_PKEY_RSA, + NID_undef, NID_undef, 1, 0, + TLS1_VERSION, TLS1_2_VERSION, DTLS1_VERSION, DTLS1_2_VERSION +}; + +/* + * Default signature algorithm values used if signature algorithms not present. + * From RFC5246. Note: order must match certificate index order. + */ +static const uint16_t tls_default_sigalg[] = { + TLSEXT_SIGALG_rsa_pkcs1_sha1, /* SSL_PKEY_RSA */ + 0, /* SSL_PKEY_RSA_PSS_SIGN */ + TLSEXT_SIGALG_dsa_sha1, /* SSL_PKEY_DSA_SIGN */ + TLSEXT_SIGALG_ecdsa_sha1, /* SSL_PKEY_ECC */ + TLSEXT_SIGALG_gostr34102001_gostr3411, /* SSL_PKEY_GOST01 */ + TLSEXT_SIGALG_gostr34102012_256_intrinsic, /* SSL_PKEY_GOST12_256 */ + TLSEXT_SIGALG_gostr34102012_512_intrinsic, /* SSL_PKEY_GOST12_512 */ + 0, /* SSL_PKEY_ED25519 */ + 0, /* SSL_PKEY_ED448 */ +}; + +int ssl_setup_sigalgs(SSL_CTX *ctx) +{ + size_t i, cache_idx, sigalgs_len, enabled; + const SIGALG_LOOKUP *lu; + SIGALG_LOOKUP *cache = NULL; + uint16_t *tls12_sigalgs_list = NULL; + EVP_PKEY *tmpkey = EVP_PKEY_new(); + int istls; + int ret = 0; + + if (ctx == NULL) + goto err; + + istls = !SSL_CTX_IS_DTLS(ctx); + + sigalgs_len = OSSL_NELEM(sigalg_lookup_tbl) + ctx->sigalg_list_len; + + cache = OPENSSL_zalloc(sizeof(const SIGALG_LOOKUP) * sigalgs_len); + if (cache == NULL || tmpkey == NULL) + goto err; + + tls12_sigalgs_list = OPENSSL_zalloc(sizeof(uint16_t) * sigalgs_len); + if (tls12_sigalgs_list == NULL) + goto err; + + ERR_set_mark(); + /* First fill cache and tls12_sigalgs list from legacy algorithm list */ + for (i = 0, lu = sigalg_lookup_tbl; + i < OSSL_NELEM(sigalg_lookup_tbl); lu++, i++) { + EVP_PKEY_CTX *pctx; + + cache[i] = *lu; + + /* + * Check hash is available. + * This test is not perfect. A provider could have support + * for a signature scheme, but not a particular hash. However the hash + * could be available from some other loaded provider. In that case it + * could be that the signature is available, and the hash is available + * independently - but not as a combination. We ignore this for now. + */ + if (lu->hash != NID_undef + && ctx->ssl_digest_methods[lu->hash_idx] == NULL) { + cache[i].available = 0; + continue; + } + + if (!EVP_PKEY_set_type(tmpkey, lu->sig)) { + cache[i].available = 0; + continue; + } + pctx = EVP_PKEY_CTX_new_from_pkey(ctx->libctx, tmpkey, ctx->propq); + /* If unable to create pctx we assume the sig algorithm is unavailable */ + if (pctx == NULL) + cache[i].available = 0; + EVP_PKEY_CTX_free(pctx); + } + + /* Now complete cache and tls12_sigalgs list with provider sig information */ + cache_idx = OSSL_NELEM(sigalg_lookup_tbl); + for (i = 0; i < ctx->sigalg_list_len; i++) { + TLS_SIGALG_INFO si = ctx->sigalg_list[i]; + cache[cache_idx].name = si.name; + cache[cache_idx].name12 = si.sigalg_name; + cache[cache_idx].sigalg = si.code_point; + tls12_sigalgs_list[cache_idx] = si.code_point; + cache[cache_idx].hash = si.hash_name?OBJ_txt2nid(si.hash_name):NID_undef; + cache[cache_idx].hash_idx = ssl_get_md_idx(cache[cache_idx].hash); + cache[cache_idx].sig = OBJ_txt2nid(si.sigalg_name); + cache[cache_idx].sig_idx = i + SSL_PKEY_NUM; + cache[cache_idx].sigandhash = OBJ_txt2nid(si.sigalg_name); + cache[cache_idx].curve = NID_undef; + cache[cache_idx].mintls = TLS1_3_VERSION; + cache[cache_idx].maxtls = TLS1_3_VERSION; + cache[cache_idx].mindtls = -1; + cache[cache_idx].maxdtls = -1; + /* Compatibility with TLS 1.3 is checked on load */ + cache[cache_idx].available = istls; + cache[cache_idx].advertise = 0; + cache_idx++; + } + ERR_pop_to_mark(); + + enabled = 0; + for (i = 0; i < OSSL_NELEM(tls12_sigalgs); ++i) { + SIGALG_LOOKUP *ent = cache; + size_t j; + + for (j = 0; j < sigalgs_len; ent++, j++) { + if (ent->sigalg != tls12_sigalgs[i]) + continue; + /* Dedup by marking cache entry as default enabled. */ + if (ent->available && !ent->advertise) { + ent->advertise = 1; + tls12_sigalgs_list[enabled++] = tls12_sigalgs[i]; + } + break; + } + } + + /* Append any provider sigalgs not yet handled */ + for (i = OSSL_NELEM(sigalg_lookup_tbl); i < sigalgs_len; ++i) { + SIGALG_LOOKUP *ent = &cache[i]; + + if (ent->available && !ent->advertise) + tls12_sigalgs_list[enabled++] = ent->sigalg; + } + + ctx->sigalg_lookup_cache = cache; + ctx->sigalg_lookup_cache_len = sigalgs_len; + ctx->tls12_sigalgs = tls12_sigalgs_list; + ctx->tls12_sigalgs_len = enabled; + cache = NULL; + tls12_sigalgs_list = NULL; + + ret = 1; + err: + OPENSSL_free(cache); + OPENSSL_free(tls12_sigalgs_list); + EVP_PKEY_free(tmpkey); + return ret; +} + +#define SIGLEN_BUF_INCREMENT 100 + +char *SSL_get1_builtin_sigalgs(OSSL_LIB_CTX *libctx) +{ + size_t i, maxretlen = SIGLEN_BUF_INCREMENT; + const SIGALG_LOOKUP *lu; + EVP_PKEY *tmpkey = EVP_PKEY_new(); + char *retval = OPENSSL_malloc(maxretlen); + + if (retval == NULL) + return NULL; + + /* ensure retval string is NUL terminated */ + retval[0] = (char)0; + + for (i = 0, lu = sigalg_lookup_tbl; + i < OSSL_NELEM(sigalg_lookup_tbl); lu++, i++) { + EVP_PKEY_CTX *pctx; + int enabled = 1; + + ERR_set_mark(); + /* Check hash is available in some provider. */ + if (lu->hash != NID_undef) { + EVP_MD *hash = EVP_MD_fetch(libctx, OBJ_nid2ln(lu->hash), NULL); + + /* If unable to create we assume the hash algorithm is unavailable */ + if (hash == NULL) { + enabled = 0; + ERR_pop_to_mark(); + continue; + } + EVP_MD_free(hash); + } + + if (!EVP_PKEY_set_type(tmpkey, lu->sig)) { + enabled = 0; + ERR_pop_to_mark(); + continue; + } + pctx = EVP_PKEY_CTX_new_from_pkey(libctx, tmpkey, NULL); + /* If unable to create pctx we assume the sig algorithm is unavailable */ + if (pctx == NULL) + enabled = 0; + ERR_pop_to_mark(); + EVP_PKEY_CTX_free(pctx); + + if (enabled) { + const char *sa = lu->name; + + if (sa != NULL) { + if (strlen(sa) + strlen(retval) + 1 >= maxretlen) { + char *tmp; + + maxretlen += SIGLEN_BUF_INCREMENT; + tmp = OPENSSL_realloc(retval, maxretlen); + if (tmp == NULL) { + OPENSSL_free(retval); + return NULL; + } + retval = tmp; + } + if (strlen(retval) > 0) + OPENSSL_strlcat(retval, ":", maxretlen); + OPENSSL_strlcat(retval, sa, maxretlen); + } else { + /* lu->name must not be NULL */ + ERR_raise(ERR_LIB_SSL, ERR_R_INTERNAL_ERROR); + } + } + } + + EVP_PKEY_free(tmpkey); + return retval; +} + +/* Lookup TLS signature algorithm */ +static const SIGALG_LOOKUP *tls1_lookup_sigalg(const SSL_CTX *ctx, + uint16_t sigalg) +{ + size_t i; + const SIGALG_LOOKUP *lu = ctx->sigalg_lookup_cache; + + for (i = 0; i < ctx->sigalg_lookup_cache_len; lu++, i++) { + if (lu->sigalg == sigalg) { + if (!lu->available) + return NULL; + return lu; + } + } + return NULL; +} + +/* Lookup hash: return 0 if invalid or not enabled */ +int tls1_lookup_md(SSL_CTX *ctx, const SIGALG_LOOKUP *lu, const EVP_MD **pmd) +{ + const EVP_MD *md; + + if (lu == NULL) + return 0; + /* lu->hash == NID_undef means no associated digest */ + if (lu->hash == NID_undef) { + md = NULL; + } else { + md = ssl_md(ctx, lu->hash_idx); + if (md == NULL) + return 0; + } + if (pmd) + *pmd = md; + return 1; +} + +/* + * Check if key is large enough to generate RSA-PSS signature. + * + * The key must greater than or equal to 2 * hash length + 2. + * SHA512 has a hash length of 64 bytes, which is incompatible + * with a 128 byte (1024 bit) key. + */ +#define RSA_PSS_MINIMUM_KEY_SIZE(md) (2 * EVP_MD_get_size(md) + 2) +static int rsa_pss_check_min_key_size(SSL_CTX *ctx, const EVP_PKEY *pkey, + const SIGALG_LOOKUP *lu) +{ + const EVP_MD *md; + + if (pkey == NULL) + return 0; + if (!tls1_lookup_md(ctx, lu, &md) || md == NULL) + return 0; + if (EVP_MD_get_size(md) <= 0) + return 0; + if (EVP_PKEY_get_size(pkey) < RSA_PSS_MINIMUM_KEY_SIZE(md)) + return 0; + return 1; +} + +/* + * Returns a signature algorithm when the peer did not send a list of supported + * signature algorithms. The signature algorithm is fixed for the certificate + * type. |idx| is a certificate type index (SSL_PKEY_*). When |idx| is -1 the + * certificate type from |s| will be used. + * Returns the signature algorithm to use, or NULL on error. + */ +static const SIGALG_LOOKUP *tls1_get_legacy_sigalg(const SSL_CONNECTION *s, + int idx) +{ + if (idx == -1) { + if (s->server) { + size_t i; + + /* Work out index corresponding to ciphersuite */ + for (i = 0; i < s->ssl_pkey_num; i++) { + const SSL_CERT_LOOKUP *clu + = ssl_cert_lookup_by_idx(i, SSL_CONNECTION_GET_CTX(s)); + + if (clu == NULL) + continue; + if (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) { + idx = i; + break; + } + } + + /* + * Some GOST ciphersuites allow more than one signature algorithms + * */ + if (idx == SSL_PKEY_GOST01 && s->s3.tmp.new_cipher->algorithm_auth != SSL_aGOST01) { + int real_idx; + + for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST01; + real_idx--) { + if (s->cert->pkeys[real_idx].privatekey != NULL) { + idx = real_idx; + break; + } + } + } + /* + * As both SSL_PKEY_GOST12_512 and SSL_PKEY_GOST12_256 indices can be used + * with new (aGOST12-only) ciphersuites, we should find out which one is available really. + */ + else if (idx == SSL_PKEY_GOST12_256) { + int real_idx; + + for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST12_256; + real_idx--) { + if (s->cert->pkeys[real_idx].privatekey != NULL) { + idx = real_idx; + break; + } + } + } + } else { + idx = s->cert->key - s->cert->pkeys; + } + } + if (idx < 0 || idx >= (int)OSSL_NELEM(tls_default_sigalg)) + return NULL; + + if (SSL_USE_SIGALGS(s) || idx != SSL_PKEY_RSA) { + const SIGALG_LOOKUP *lu = + tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), + tls_default_sigalg[idx]); + + if (lu == NULL) + return NULL; + if (!tls1_lookup_md(SSL_CONNECTION_GET_CTX(s), lu, NULL)) + return NULL; + if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu)) + return NULL; + return lu; + } + if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, &legacy_rsa_sigalg)) + return NULL; + return &legacy_rsa_sigalg; +} +/* Set peer sigalg based key type */ +int tls1_set_peer_legacy_sigalg(SSL_CONNECTION *s, const EVP_PKEY *pkey) +{ + size_t idx; + const SIGALG_LOOKUP *lu; + + if (ssl_cert_lookup_by_pkey(pkey, &idx, SSL_CONNECTION_GET_CTX(s)) == NULL) + return 0; + lu = tls1_get_legacy_sigalg(s, idx); + if (lu == NULL) + return 0; + s->s3.tmp.peer_sigalg = lu; + return 1; +} + +size_t tls12_get_psigalgs(SSL_CONNECTION *s, int sent, const uint16_t **psigs) +{ + /* + * If Suite B mode use Suite B sigalgs only, ignore any other + * preferences. + */ + switch (tls1_suiteb(s)) { + case SSL_CERT_FLAG_SUITEB_128_LOS: + *psigs = suiteb_sigalgs; + return OSSL_NELEM(suiteb_sigalgs); + + case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY: + *psigs = suiteb_sigalgs; + return 1; + + case SSL_CERT_FLAG_SUITEB_192_LOS: + *psigs = suiteb_sigalgs + 1; + return 1; + } + /* + * We use client_sigalgs (if not NULL) if we're a server + * and sending a certificate request or if we're a client and + * determining which shared algorithm to use. + */ + if ((s->server == sent) && s->cert->client_sigalgs != NULL) { + *psigs = s->cert->client_sigalgs; + return s->cert->client_sigalgslen; + } else if (s->cert->conf_sigalgs) { + *psigs = s->cert->conf_sigalgs; + return s->cert->conf_sigalgslen; + } else { + *psigs = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs; + return SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs_len; + } +} + +/* + * Called by servers only. Checks that we have a sig alg that supports the + * specified EC curve. + */ +int tls_check_sigalg_curve(const SSL_CONNECTION *s, int curve) +{ + const uint16_t *sigs; + size_t siglen, i; + + if (s->cert->conf_sigalgs) { + sigs = s->cert->conf_sigalgs; + siglen = s->cert->conf_sigalgslen; + } else { + sigs = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs; + siglen = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs_len; + } + + for (i = 0; i < siglen; i++) { + const SIGALG_LOOKUP *lu = + tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), sigs[i]); + + if (lu == NULL) + continue; + if (lu->sig == EVP_PKEY_EC + && lu->curve != NID_undef + && curve == lu->curve) + return 1; + } + + return 0; +} + +/* + * Return the number of security bits for the signature algorithm, or 0 on + * error. + */ +static int sigalg_security_bits(SSL_CTX *ctx, const SIGALG_LOOKUP *lu) +{ + const EVP_MD *md = NULL; + int secbits = 0; + + if (!tls1_lookup_md(ctx, lu, &md)) + return 0; + if (md != NULL) + { + int md_type = EVP_MD_get_type(md); + + /* Security bits: half digest bits */ + secbits = EVP_MD_get_size(md) * 4; + if (secbits <= 0) + return 0; + /* + * SHA1 and MD5 are known to be broken. Reduce security bits so that + * they're no longer accepted at security level 1. The real values don't + * really matter as long as they're lower than 80, which is our + * security level 1. + * https://eprint.iacr.org/2020/014 puts a chosen-prefix attack for + * SHA1 at 2^63.4 and MD5+SHA1 at 2^67.2 + * https://documents.epfl.ch/users/l/le/lenstra/public/papers/lat.pdf + * puts a chosen-prefix attack for MD5 at 2^39. + */ + if (md_type == NID_sha1) + secbits = 64; + else if (md_type == NID_md5_sha1) + secbits = 67; + else if (md_type == NID_md5) + secbits = 39; + } else { + /* Values from https://tools.ietf.org/html/rfc8032#section-8.5 */ + if (lu->sigalg == TLSEXT_SIGALG_ed25519) + secbits = 128; + else if (lu->sigalg == TLSEXT_SIGALG_ed448) + secbits = 224; + } + /* + * For provider-based sigalgs we have secbits information available + * in the (provider-loaded) sigalg_list structure + */ + if ((secbits == 0) && (lu->sig_idx >= SSL_PKEY_NUM) + && ((lu->sig_idx - SSL_PKEY_NUM) < (int)ctx->sigalg_list_len)) { + secbits = ctx->sigalg_list[lu->sig_idx - SSL_PKEY_NUM].secbits; + } + return secbits; +} + +static int tls_sigalg_compat(SSL_CONNECTION *sc, const SIGALG_LOOKUP *lu) +{ + int minversion, maxversion; + int minproto, maxproto; + + if (!lu->available) + return 0; + + if (SSL_CONNECTION_IS_DTLS(sc)) { + if (sc->ssl.method->version == DTLS_ANY_VERSION) { + minproto = sc->min_proto_version; + maxproto = sc->max_proto_version; + } else { + maxproto = minproto = sc->version; + } + minversion = lu->mindtls; + maxversion = lu->maxdtls; + } else { + if (sc->ssl.method->version == TLS_ANY_VERSION) { + minproto = sc->min_proto_version; + maxproto = sc->max_proto_version; + } else { + maxproto = minproto = sc->version; + } + minversion = lu->mintls; + maxversion = lu->maxtls; + } + if (minversion == -1 || maxversion == -1 + || (minversion != 0 && maxproto != 0 + && ssl_version_cmp(sc, minversion, maxproto) > 0) + || (maxversion != 0 && minproto != 0 + && ssl_version_cmp(sc, maxversion, minproto) < 0) + || !tls12_sigalg_allowed(sc, SSL_SECOP_SIGALG_SUPPORTED, lu)) + return 0; + return 1; +} + +/* + * Check signature algorithm is consistent with sent supported signature + * algorithms and if so set relevant digest and signature scheme in + * s. + */ +int tls12_check_peer_sigalg(SSL_CONNECTION *s, uint16_t sig, EVP_PKEY *pkey) +{ + const uint16_t *sent_sigs; + const EVP_MD *md = NULL; + char sigalgstr[2]; + size_t sent_sigslen, i, cidx; + int pkeyid = -1; + const SIGALG_LOOKUP *lu; + int secbits = 0; + + pkeyid = EVP_PKEY_get_id(pkey); + + if (SSL_CONNECTION_IS_TLS13(s)) { + /* Disallow DSA for TLS 1.3 */ + if (pkeyid == EVP_PKEY_DSA) { + SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE); + return 0; + } + /* Only allow PSS for TLS 1.3 */ + if (pkeyid == EVP_PKEY_RSA) + pkeyid = EVP_PKEY_RSA_PSS; + } + + /* Is this code point available and compatible with the protocol */ + lu = tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), sig); + if (lu == NULL || !tls_sigalg_compat(s, lu)) { + SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE); + return 0; + } + + /* if this sigalg is loaded, set so far unknown pkeyid to its sig NID */ + if (pkeyid == EVP_PKEY_KEYMGMT) + pkeyid = lu->sig; + + /* Should never happen */ + if (pkeyid == -1) { + SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE); + return -1; + } + + /* + * Check sigalgs is known. Disallow SHA1/SHA224 with TLS 1.3. Check key type + * is consistent with signature: RSA keys can be used for RSA-PSS + */ + if ((SSL_CONNECTION_IS_TLS13(s) + && (lu->hash == NID_sha1 || lu->hash == NID_sha224)) + || (pkeyid != lu->sig + && (lu->sig != EVP_PKEY_RSA_PSS || pkeyid != EVP_PKEY_RSA))) { + SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE); + return 0; + } + /* Check the sigalg is consistent with the key OID */ + if (!ssl_cert_lookup_by_nid( + (pkeyid == EVP_PKEY_RSA_PSS) ? EVP_PKEY_get_id(pkey) : pkeyid, + &cidx, SSL_CONNECTION_GET_CTX(s)) + || lu->sig_idx != (int)cidx) { + SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE); + return 0; + } + + if (pkeyid == EVP_PKEY_EC) { + + /* Check point compression is permitted */ + if (!tls1_check_pkey_comp(s, pkey)) { + SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, + SSL_R_ILLEGAL_POINT_COMPRESSION); + return 0; + } + + /* For TLS 1.3 or Suite B check curve matches signature algorithm */ + if (SSL_CONNECTION_IS_TLS13(s) || tls1_suiteb(s)) { + int curve = ssl_get_EC_curve_nid(pkey); + + if (lu->curve != NID_undef && curve != lu->curve) { + SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE); + return 0; + } + } + if (!SSL_CONNECTION_IS_TLS13(s)) { + /* Check curve matches extensions */ + if (!tls1_check_group_id(s, tls1_get_group_id(pkey), 1)) { + SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE); + return 0; + } + if (tls1_suiteb(s)) { + /* Check sigalg matches a permissible Suite B value */ + if (sig != TLSEXT_SIGALG_ecdsa_secp256r1_sha256 + && sig != TLSEXT_SIGALG_ecdsa_secp384r1_sha384) { + SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, + SSL_R_WRONG_SIGNATURE_TYPE); + return 0; + } + } + } + } else if (tls1_suiteb(s)) { + SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE); + return 0; + } + + /* Check signature matches a type we sent */ + sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs); + for (i = 0; i < sent_sigslen; i++, sent_sigs++) { + if (sig == *sent_sigs) + break; + } + /* Allow fallback to SHA1 if not strict mode */ + if (i == sent_sigslen && (lu->hash != NID_sha1 + || s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)) { + SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE); + return 0; + } + if (!tls1_lookup_md(SSL_CONNECTION_GET_CTX(s), lu, &md)) { + SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_UNKNOWN_DIGEST); + return 0; + } + /* + * Make sure security callback allows algorithm. For historical + * reasons we have to pass the sigalg as a two byte char array. + */ + sigalgstr[0] = (sig >> 8) & 0xff; + sigalgstr[1] = sig & 0xff; + secbits = sigalg_security_bits(SSL_CONNECTION_GET_CTX(s), lu); + if (secbits == 0 || + !ssl_security(s, SSL_SECOP_SIGALG_CHECK, secbits, + md != NULL ? EVP_MD_get_type(md) : NID_undef, + (void *)sigalgstr)) { + SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE); + return 0; + } + /* Store the sigalg the peer uses */ + s->s3.tmp.peer_sigalg = lu; + return 1; +} + +int SSL_get_peer_signature_type_nid(const SSL *s, int *pnid) +{ + const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s); + + if (sc == NULL) + return 0; + + if (sc->s3.tmp.peer_sigalg == NULL) + return 0; + *pnid = sc->s3.tmp.peer_sigalg->sig; + return 1; +} + +int SSL_get_signature_type_nid(const SSL *s, int *pnid) +{ + const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s); + + if (sc == NULL) + return 0; + + if (sc->s3.tmp.sigalg == NULL) + return 0; + *pnid = sc->s3.tmp.sigalg->sig; + return 1; +} + +/* + * Set a mask of disabled algorithms: an algorithm is disabled if it isn't + * supported, doesn't appear in supported signature algorithms, isn't supported + * by the enabled protocol versions or by the security level. + * + * This function should only be used for checking which ciphers are supported + * by the client. + * + * Call ssl_cipher_disabled() to check that it's enabled or not. + */ +int ssl_set_client_disabled(SSL_CONNECTION *s) +{ + s->s3.tmp.mask_a = 0; + s->s3.tmp.mask_k = 0; + ssl_set_sig_mask(&s->s3.tmp.mask_a, s, SSL_SECOP_SIGALG_MASK); + if (ssl_get_min_max_version(s, &s->s3.tmp.min_ver, + &s->s3.tmp.max_ver, NULL) != 0) + return 0; +#ifndef OPENSSL_NO_PSK + /* with PSK there must be client callback set */ + if (!s->psk_client_callback) { + s->s3.tmp.mask_a |= SSL_aPSK; + s->s3.tmp.mask_k |= SSL_PSK; + } +#endif /* OPENSSL_NO_PSK */ +#ifndef OPENSSL_NO_SRP + if (!(s->srp_ctx.srp_Mask & SSL_kSRP)) { + s->s3.tmp.mask_a |= SSL_aSRP; + s->s3.tmp.mask_k |= SSL_kSRP; + } +#endif + return 1; +} + +/* + * ssl_cipher_disabled - check that a cipher is disabled or not + * @s: SSL connection that you want to use the cipher on + * @c: cipher to check + * @op: Security check that you want to do + * @ecdhe: If set to 1 then TLSv1 ECDHE ciphers are also allowed in SSLv3 + * + * Returns 1 when it's disabled, 0 when enabled. + */ +int ssl_cipher_disabled(const SSL_CONNECTION *s, const SSL_CIPHER *c, + int op, int ecdhe) +{ + int minversion = SSL_CONNECTION_IS_DTLS(s) ? c->min_dtls : c->min_tls; + int maxversion = SSL_CONNECTION_IS_DTLS(s) ? c->max_dtls : c->max_tls; + + if (c->algorithm_mkey & s->s3.tmp.mask_k + || c->algorithm_auth & s->s3.tmp.mask_a) + return 1; + if (s->s3.tmp.max_ver == 0) + return 1; + + if (SSL_IS_QUIC_INT_HANDSHAKE(s)) + /* For QUIC, only allow these ciphersuites. */ + switch (SSL_CIPHER_get_id(c)) { + case TLS1_3_CK_AES_128_GCM_SHA256: + case TLS1_3_CK_AES_256_GCM_SHA384: + case TLS1_3_CK_CHACHA20_POLY1305_SHA256: + break; + default: + return 1; + } + + /* + * For historical reasons we will allow ECHDE to be selected by a server + * in SSLv3 if we are a client + */ + if (minversion == TLS1_VERSION + && ecdhe + && (c->algorithm_mkey & (SSL_kECDHE | SSL_kECDHEPSK)) != 0) + minversion = SSL3_VERSION; + + if (ssl_version_cmp(s, minversion, s->s3.tmp.max_ver) > 0 + || ssl_version_cmp(s, maxversion, s->s3.tmp.min_ver) < 0) + return 1; + + return !ssl_security(s, op, c->strength_bits, 0, (void *)c); +} + +int tls_use_ticket(SSL_CONNECTION *s) +{ + if ((s->options & SSL_OP_NO_TICKET)) + return 0; + return ssl_security(s, SSL_SECOP_TICKET, 0, 0, NULL); +} + +int tls1_set_server_sigalgs(SSL_CONNECTION *s) +{ + size_t i; + + /* Clear any shared signature algorithms */ + OPENSSL_free(s->shared_sigalgs); + s->shared_sigalgs = NULL; + s->shared_sigalgslen = 0; + + /* Clear certificate validity flags */ + if (s->s3.tmp.valid_flags) + memset(s->s3.tmp.valid_flags, 0, s->ssl_pkey_num * sizeof(uint32_t)); + else + s->s3.tmp.valid_flags = OPENSSL_zalloc(s->ssl_pkey_num * sizeof(uint32_t)); + if (s->s3.tmp.valid_flags == NULL) + return 0; + /* + * If peer sent no signature algorithms check to see if we support + * the default algorithm for each certificate type + */ + if (s->s3.tmp.peer_cert_sigalgs == NULL + && s->s3.tmp.peer_sigalgs == NULL) { + const uint16_t *sent_sigs; + size_t sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs); + + for (i = 0; i < s->ssl_pkey_num; i++) { + const SIGALG_LOOKUP *lu = tls1_get_legacy_sigalg(s, i); + size_t j; + + if (lu == NULL) + continue; + /* Check default matches a type we sent */ + for (j = 0; j < sent_sigslen; j++) { + if (lu->sigalg == sent_sigs[j]) { + s->s3.tmp.valid_flags[i] = CERT_PKEY_SIGN; + break; + } + } + } + return 1; + } + + if (!tls1_process_sigalgs(s)) { + SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); + return 0; + } + if (s->shared_sigalgs != NULL) + return 1; + + /* Fatal error if no shared signature algorithms */ + SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, + SSL_R_NO_SHARED_SIGNATURE_ALGORITHMS); + return 0; +} + +/*- + * Gets the ticket information supplied by the client if any. + * + * hello: The parsed ClientHello data + * ret: (output) on return, if a ticket was decrypted, then this is set to + * point to the resulting session. + */ +SSL_TICKET_STATUS tls_get_ticket_from_client(SSL_CONNECTION *s, + CLIENTHELLO_MSG *hello, + SSL_SESSION **ret) +{ + size_t size; + RAW_EXTENSION *ticketext; + + *ret = NULL; + s->ext.ticket_expected = 0; + + /* + * If tickets disabled or not supported by the protocol version + * (e.g. TLSv1.3) behave as if no ticket present to permit stateful + * resumption. + */ + if (s->version <= SSL3_VERSION || !tls_use_ticket(s)) + return SSL_TICKET_NONE; + + ticketext = &hello->pre_proc_exts[TLSEXT_IDX_session_ticket]; + if (!ticketext->present) + return SSL_TICKET_NONE; + + size = PACKET_remaining(&ticketext->data); + + return tls_decrypt_ticket(s, PACKET_data(&ticketext->data), size, + hello->session_id, hello->session_id_len, ret); +} + +/*- + * tls_decrypt_ticket attempts to decrypt a session ticket. + * + * If s->tls_session_secret_cb is set and we're not doing TLSv1.3 then we are + * expecting a pre-shared key ciphersuite, in which case we have no use for + * session tickets and one will never be decrypted, nor will + * s->ext.ticket_expected be set to 1. + * + * Side effects: + * Sets s->ext.ticket_expected to 1 if the server will have to issue + * a new session ticket to the client because the client indicated support + * (and s->tls_session_secret_cb is NULL) but the client either doesn't have + * a session ticket or we couldn't use the one it gave us, or if + * s->ctx->ext.ticket_key_cb asked to renew the client's ticket. + * Otherwise, s->ext.ticket_expected is set to 0. + * + * etick: points to the body of the session ticket extension. + * eticklen: the length of the session tickets extension. + * sess_id: points at the session ID. + * sesslen: the length of the session ID. + * psess: (output) on return, if a ticket was decrypted, then this is set to + * point to the resulting session. + */ +SSL_TICKET_STATUS tls_decrypt_ticket(SSL_CONNECTION *s, + const unsigned char *etick, + size_t eticklen, + const unsigned char *sess_id, + size_t sesslen, SSL_SESSION **psess) +{ + SSL_SESSION *sess = NULL; + unsigned char *sdec; + const unsigned char *p; + int slen, ivlen, renew_ticket = 0, declen; + SSL_TICKET_STATUS ret = SSL_TICKET_FATAL_ERR_OTHER; + size_t mlen; + unsigned char tick_hmac[EVP_MAX_MD_SIZE]; + SSL_HMAC *hctx = NULL; + EVP_CIPHER_CTX *ctx = NULL; + SSL_CTX *tctx = s->session_ctx; + SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s); + + if (eticklen == 0) { + /* + * The client will accept a ticket but doesn't currently have + * one (TLSv1.2 and below), or treated as a fatal error in TLSv1.3 + */ + ret = SSL_TICKET_EMPTY; + goto end; + } + if (!SSL_CONNECTION_IS_TLS13(s) && s->ext.session_secret_cb) { + /* + * Indicate that the ticket couldn't be decrypted rather than + * generating the session from ticket now, trigger + * abbreviated handshake based on external mechanism to + * calculate the master secret later. + */ + ret = SSL_TICKET_NO_DECRYPT; + goto end; + } + + /* Need at least keyname + iv */ + if (eticklen < TLSEXT_KEYNAME_LENGTH + EVP_MAX_IV_LENGTH) { + ret = SSL_TICKET_NO_DECRYPT; + goto end; + } + + /* Initialize session ticket encryption and HMAC contexts */ + hctx = ssl_hmac_new(tctx); + if (hctx == NULL) { + ret = SSL_TICKET_FATAL_ERR_MALLOC; + goto end; + } + ctx = EVP_CIPHER_CTX_new(); + if (ctx == NULL) { + ret = SSL_TICKET_FATAL_ERR_MALLOC; + goto end; + } +#ifndef OPENSSL_NO_DEPRECATED_3_0 + if (tctx->ext.ticket_key_evp_cb != NULL || tctx->ext.ticket_key_cb != NULL) +#else + if (tctx->ext.ticket_key_evp_cb != NULL) +#endif + { + unsigned char *nctick = (unsigned char *)etick; + int rv = 0; + + if (tctx->ext.ticket_key_evp_cb != NULL) + rv = tctx->ext.ticket_key_evp_cb(SSL_CONNECTION_GET_USER_SSL(s), + nctick, + nctick + TLSEXT_KEYNAME_LENGTH, + ctx, + ssl_hmac_get0_EVP_MAC_CTX(hctx), + 0); +#ifndef OPENSSL_NO_DEPRECATED_3_0 + else if (tctx->ext.ticket_key_cb != NULL) + /* if 0 is returned, write an empty ticket */ + rv = tctx->ext.ticket_key_cb(SSL_CONNECTION_GET_USER_SSL(s), nctick, + nctick + TLSEXT_KEYNAME_LENGTH, + ctx, ssl_hmac_get0_HMAC_CTX(hctx), 0); +#endif + if (rv < 0) { + ret = SSL_TICKET_FATAL_ERR_OTHER; + goto end; + } + if (rv == 0) { + ret = SSL_TICKET_NO_DECRYPT; + goto end; + } + if (rv == 2) + renew_ticket = 1; + } else { + EVP_CIPHER *aes256cbc = NULL; + + /* Check key name matches */ + if (memcmp(etick, tctx->ext.tick_key_name, + TLSEXT_KEYNAME_LENGTH) != 0) { + ret = SSL_TICKET_NO_DECRYPT; + goto end; + } + + aes256cbc = EVP_CIPHER_fetch(sctx->libctx, "AES-256-CBC", + sctx->propq); + if (aes256cbc == NULL + || ssl_hmac_init(hctx, tctx->ext.secure->tick_hmac_key, + sizeof(tctx->ext.secure->tick_hmac_key), + "SHA256") <= 0 + || EVP_DecryptInit_ex(ctx, aes256cbc, NULL, + tctx->ext.secure->tick_aes_key, + etick + TLSEXT_KEYNAME_LENGTH) <= 0) { + EVP_CIPHER_free(aes256cbc); + ret = SSL_TICKET_FATAL_ERR_OTHER; + goto end; + } + EVP_CIPHER_free(aes256cbc); + if (SSL_CONNECTION_IS_TLS13(s)) + renew_ticket = 1; + } + /* + * Attempt to process session ticket, first conduct sanity and integrity + * checks on ticket. + */ + mlen = ssl_hmac_size(hctx); + if (mlen == 0) { + ret = SSL_TICKET_FATAL_ERR_OTHER; + goto end; + } + + ivlen = EVP_CIPHER_CTX_get_iv_length(ctx); + if (ivlen < 0) { + ret = SSL_TICKET_FATAL_ERR_OTHER; + goto end; + } + + /* Sanity check ticket length: must exceed keyname + IV + HMAC */ + if (eticklen <= TLSEXT_KEYNAME_LENGTH + ivlen + mlen) { + ret = SSL_TICKET_NO_DECRYPT; + goto end; + } + eticklen -= mlen; + /* Check HMAC of encrypted ticket */ + if (ssl_hmac_update(hctx, etick, eticklen) <= 0 + || ssl_hmac_final(hctx, tick_hmac, NULL, sizeof(tick_hmac)) <= 0) { + ret = SSL_TICKET_FATAL_ERR_OTHER; + goto end; + } + + if (CRYPTO_memcmp(tick_hmac, etick + eticklen, mlen)) { + ret = SSL_TICKET_NO_DECRYPT; + goto end; + } + /* Attempt to decrypt session data */ + /* Move p after IV to start of encrypted ticket, update length */ + p = etick + TLSEXT_KEYNAME_LENGTH + ivlen; + eticklen -= TLSEXT_KEYNAME_LENGTH + ivlen; + sdec = OPENSSL_malloc(eticklen); + if (sdec == NULL || EVP_DecryptUpdate(ctx, sdec, &slen, p, + (int)eticklen) <= 0) { + OPENSSL_free(sdec); + ret = SSL_TICKET_FATAL_ERR_OTHER; + goto end; + } + if (EVP_DecryptFinal(ctx, sdec + slen, &declen) <= 0) { + OPENSSL_free(sdec); + ret = SSL_TICKET_NO_DECRYPT; + goto end; + } + slen += declen; + p = sdec; + + sess = d2i_SSL_SESSION_ex(NULL, &p, slen, sctx->libctx, sctx->propq); + slen -= p - sdec; + OPENSSL_free(sdec); + if (sess) { + /* Some additional consistency checks */ + if (slen != 0) { + SSL_SESSION_free(sess); + sess = NULL; + ret = SSL_TICKET_NO_DECRYPT; + goto end; + } + /* + * The session ID, if non-empty, is used by some clients to detect + * that the ticket has been accepted. So we copy it to the session + * structure. If it is empty set length to zero as required by + * standard. + */ + if (sesslen) { + memcpy(sess->session_id, sess_id, sesslen); + sess->session_id_length = sesslen; + } + if (renew_ticket) + ret = SSL_TICKET_SUCCESS_RENEW; + else + ret = SSL_TICKET_SUCCESS; + goto end; + } + ERR_clear_error(); + /* + * For session parse failure, indicate that we need to send a new ticket. + */ + ret = SSL_TICKET_NO_DECRYPT; + + end: + EVP_CIPHER_CTX_free(ctx); + ssl_hmac_free(hctx); + + /* + * If set, the decrypt_ticket_cb() is called unless a fatal error was + * detected above. The callback is responsible for checking |ret| before it + * performs any action + */ + if (s->session_ctx->decrypt_ticket_cb != NULL + && (ret == SSL_TICKET_EMPTY + || ret == SSL_TICKET_NO_DECRYPT + || ret == SSL_TICKET_SUCCESS + || ret == SSL_TICKET_SUCCESS_RENEW)) { + size_t keyname_len = eticklen; + int retcb; + + if (keyname_len > TLSEXT_KEYNAME_LENGTH) + keyname_len = TLSEXT_KEYNAME_LENGTH; + retcb = s->session_ctx->decrypt_ticket_cb(SSL_CONNECTION_GET_SSL(s), + sess, etick, keyname_len, + ret, + s->session_ctx->ticket_cb_data); + switch (retcb) { + case SSL_TICKET_RETURN_ABORT: + ret = SSL_TICKET_FATAL_ERR_OTHER; + break; + + case SSL_TICKET_RETURN_IGNORE: + ret = SSL_TICKET_NONE; + SSL_SESSION_free(sess); + sess = NULL; + break; + + case SSL_TICKET_RETURN_IGNORE_RENEW: + if (ret != SSL_TICKET_EMPTY && ret != SSL_TICKET_NO_DECRYPT) + ret = SSL_TICKET_NO_DECRYPT; + /* else the value of |ret| will already do the right thing */ + SSL_SESSION_free(sess); + sess = NULL; + break; + + case SSL_TICKET_RETURN_USE: + case SSL_TICKET_RETURN_USE_RENEW: + if (ret != SSL_TICKET_SUCCESS + && ret != SSL_TICKET_SUCCESS_RENEW) + ret = SSL_TICKET_FATAL_ERR_OTHER; + else if (retcb == SSL_TICKET_RETURN_USE) + ret = SSL_TICKET_SUCCESS; + else + ret = SSL_TICKET_SUCCESS_RENEW; + break; + + default: + ret = SSL_TICKET_FATAL_ERR_OTHER; + } + } + + if (s->ext.session_secret_cb == NULL || SSL_CONNECTION_IS_TLS13(s)) { + switch (ret) { + case SSL_TICKET_NO_DECRYPT: + case SSL_TICKET_SUCCESS_RENEW: + case SSL_TICKET_EMPTY: + s->ext.ticket_expected = 1; + } + } + + *psess = sess; + + return ret; +} + +/* Check to see if a signature algorithm is allowed */ +static int tls12_sigalg_allowed(const SSL_CONNECTION *s, int op, + const SIGALG_LOOKUP *lu) +{ + unsigned char sigalgstr[2]; + int secbits; + + if (lu == NULL || !lu->available) + return 0; + /* DSA is not allowed in TLS 1.3 */ + if (SSL_CONNECTION_IS_TLS13(s) && lu->sig == EVP_PKEY_DSA) + return 0; + /* + * At some point we should fully axe DSA/etc. in ClientHello as per TLS 1.3 + * spec + */ + if (!s->server && !SSL_CONNECTION_IS_DTLS(s) + && s->s3.tmp.min_ver >= TLS1_3_VERSION + && (lu->sig == EVP_PKEY_DSA || lu->hash_idx == SSL_MD_SHA1_IDX + || lu->hash_idx == SSL_MD_MD5_IDX + || lu->hash_idx == SSL_MD_SHA224_IDX)) + return 0; + + /* See if public key algorithm allowed */ + if (ssl_cert_is_disabled(SSL_CONNECTION_GET_CTX(s), lu->sig_idx)) + return 0; + + if (lu->sig == NID_id_GostR3410_2012_256 + || lu->sig == NID_id_GostR3410_2012_512 + || lu->sig == NID_id_GostR3410_2001) { + /* We never allow GOST sig algs on the server with TLSv1.3 */ + if (s->server && SSL_CONNECTION_IS_TLS13(s)) + return 0; + if (!s->server + && SSL_CONNECTION_GET_SSL(s)->method->version == TLS_ANY_VERSION + && s->s3.tmp.max_ver >= TLS1_3_VERSION) { + int i, num; + STACK_OF(SSL_CIPHER) *sk; + + /* + * We're a client that could negotiate TLSv1.3. We only allow GOST + * sig algs if we could negotiate TLSv1.2 or below and we have GOST + * ciphersuites enabled. + */ + + if (s->s3.tmp.min_ver >= TLS1_3_VERSION) + return 0; + + sk = SSL_get_ciphers(SSL_CONNECTION_GET_SSL(s)); + num = sk != NULL ? sk_SSL_CIPHER_num(sk) : 0; + for (i = 0; i < num; i++) { + const SSL_CIPHER *c; + + c = sk_SSL_CIPHER_value(sk, i); + /* Skip disabled ciphers */ + if (ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0)) + continue; + + if ((c->algorithm_mkey & (SSL_kGOST | SSL_kGOST18)) != 0) + break; + } + if (i == num) + return 0; + } + } + + /* Finally see if security callback allows it */ + secbits = sigalg_security_bits(SSL_CONNECTION_GET_CTX(s), lu); + sigalgstr[0] = (lu->sigalg >> 8) & 0xff; + sigalgstr[1] = lu->sigalg & 0xff; + return ssl_security(s, op, secbits, lu->hash, (void *)sigalgstr); +} + +/* + * Get a mask of disabled public key algorithms based on supported signature + * algorithms. For example if no signature algorithm supports RSA then RSA is + * disabled. + */ + +void ssl_set_sig_mask(uint32_t *pmask_a, SSL_CONNECTION *s, int op) +{ + const uint16_t *sigalgs; + size_t i, sigalgslen; + uint32_t disabled_mask = SSL_aRSA | SSL_aDSS | SSL_aECDSA; + /* + * Go through all signature algorithms seeing if we support any + * in disabled_mask. + */ + sigalgslen = tls12_get_psigalgs(s, 1, &sigalgs); + for (i = 0; i < sigalgslen; i++, sigalgs++) { + const SIGALG_LOOKUP *lu = + tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), *sigalgs); + const SSL_CERT_LOOKUP *clu; + + if (lu == NULL) + continue; + + clu = ssl_cert_lookup_by_idx(lu->sig_idx, + SSL_CONNECTION_GET_CTX(s)); + if (clu == NULL) + continue; + + /* If algorithm is disabled see if we can enable it */ + if ((clu->amask & disabled_mask) != 0 + && tls12_sigalg_allowed(s, op, lu)) + disabled_mask &= ~clu->amask; + } + *pmask_a |= disabled_mask; +} + +int tls12_copy_sigalgs(SSL_CONNECTION *s, WPACKET *pkt, + const uint16_t *psig, size_t psiglen) +{ + size_t i; + int rv = 0; + + for (i = 0; i < psiglen; i++, psig++) { + const SIGALG_LOOKUP *lu = + tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), *psig); + + if (lu == NULL || !tls_sigalg_compat(s, lu)) + continue; + if (!WPACKET_put_bytes_u16(pkt, *psig)) + return 0; + /* + * If TLS 1.3 must have at least one valid TLS 1.3 message + * signing algorithm: i.e. neither RSA nor SHA1/SHA224 + */ + if (rv == 0 && (!SSL_CONNECTION_IS_TLS13(s) + || (lu->sig != EVP_PKEY_RSA + && lu->hash != NID_sha1 + && lu->hash != NID_sha224))) + rv = 1; + } + if (rv == 0) + ERR_raise(ERR_LIB_SSL, SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM); + return rv; +} + +/* Given preference and allowed sigalgs set shared sigalgs */ +static size_t tls12_shared_sigalgs(SSL_CONNECTION *s, + const SIGALG_LOOKUP **shsig, + const uint16_t *pref, size_t preflen, + const uint16_t *allow, size_t allowlen) +{ + const uint16_t *ptmp, *atmp; + size_t i, j, nmatch = 0; + for (i = 0, ptmp = pref; i < preflen; i++, ptmp++) { + const SIGALG_LOOKUP *lu = + tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), *ptmp); + + /* Skip disabled hashes or signature algorithms */ + if (lu == NULL + || !tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SHARED, lu)) + continue; + for (j = 0, atmp = allow; j < allowlen; j++, atmp++) { + if (*ptmp == *atmp) { + nmatch++; + if (shsig) + *shsig++ = lu; + break; + } + } + } + return nmatch; +} + +/* Set shared signature algorithms for SSL structures */ +static int tls1_set_shared_sigalgs(SSL_CONNECTION *s) +{ + const uint16_t *pref, *allow, *conf; + size_t preflen, allowlen, conflen; + size_t nmatch; + const SIGALG_LOOKUP **salgs = NULL; + CERT *c = s->cert; + unsigned int is_suiteb = tls1_suiteb(s); + + OPENSSL_free(s->shared_sigalgs); + s->shared_sigalgs = NULL; + s->shared_sigalgslen = 0; + /* If client use client signature algorithms if not NULL */ + if (!s->server && c->client_sigalgs && !is_suiteb) { + conf = c->client_sigalgs; + conflen = c->client_sigalgslen; + } else if (c->conf_sigalgs && !is_suiteb) { + conf = c->conf_sigalgs; + conflen = c->conf_sigalgslen; + } else + conflen = tls12_get_psigalgs(s, 0, &conf); + if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE || is_suiteb) { + pref = conf; + preflen = conflen; + allow = s->s3.tmp.peer_sigalgs; + allowlen = s->s3.tmp.peer_sigalgslen; + } else { + allow = conf; + allowlen = conflen; + pref = s->s3.tmp.peer_sigalgs; + preflen = s->s3.tmp.peer_sigalgslen; + } + nmatch = tls12_shared_sigalgs(s, NULL, pref, preflen, allow, allowlen); + if (nmatch) { + if ((salgs = OPENSSL_malloc(nmatch * sizeof(*salgs))) == NULL) + return 0; + nmatch = tls12_shared_sigalgs(s, salgs, pref, preflen, allow, allowlen); + } else { + salgs = NULL; + } + s->shared_sigalgs = salgs; + s->shared_sigalgslen = nmatch; + return 1; +} + +int tls1_save_u16(PACKET *pkt, uint16_t **pdest, size_t *pdestlen) +{ + unsigned int stmp; + size_t size, i; + uint16_t *buf; + + size = PACKET_remaining(pkt); + + /* Invalid data length */ + if (size == 0 || (size & 1) != 0) + return 0; + + size >>= 1; + + if ((buf = OPENSSL_malloc(size * sizeof(*buf))) == NULL) + return 0; + for (i = 0; i < size && PACKET_get_net_2(pkt, &stmp); i++) + buf[i] = stmp; + + if (i != size) { + OPENSSL_free(buf); + return 0; + } + + OPENSSL_free(*pdest); + *pdest = buf; + *pdestlen = size; + + return 1; +} + +int tls1_save_sigalgs(SSL_CONNECTION *s, PACKET *pkt, int cert) +{ + /* Extension ignored for inappropriate versions */ + if (!SSL_USE_SIGALGS(s)) + return 1; + /* Should never happen */ + if (s->cert == NULL) + return 0; + + if (cert) + return tls1_save_u16(pkt, &s->s3.tmp.peer_cert_sigalgs, + &s->s3.tmp.peer_cert_sigalgslen); + else + return tls1_save_u16(pkt, &s->s3.tmp.peer_sigalgs, + &s->s3.tmp.peer_sigalgslen); + +} + +/* Set preferred digest for each key type */ + +int tls1_process_sigalgs(SSL_CONNECTION *s) +{ + size_t i; + uint32_t *pvalid = s->s3.tmp.valid_flags; + + if (!tls1_set_shared_sigalgs(s)) + return 0; + + for (i = 0; i < s->ssl_pkey_num; i++) + pvalid[i] = 0; + + for (i = 0; i < s->shared_sigalgslen; i++) { + const SIGALG_LOOKUP *sigptr = s->shared_sigalgs[i]; + int idx = sigptr->sig_idx; + + /* Ignore PKCS1 based sig algs in TLSv1.3 */ + if (SSL_CONNECTION_IS_TLS13(s) && sigptr->sig == EVP_PKEY_RSA) + continue; + /* If not disabled indicate we can explicitly sign */ + if (pvalid[idx] == 0 + && !ssl_cert_is_disabled(SSL_CONNECTION_GET_CTX(s), idx)) + pvalid[idx] = CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN; + } + return 1; +} + +int SSL_get_sigalgs(SSL *s, int idx, + int *psign, int *phash, int *psignhash, + unsigned char *rsig, unsigned char *rhash) +{ + uint16_t *psig; + size_t numsigalgs; + SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); + + if (sc == NULL) + return 0; + + psig = sc->s3.tmp.peer_sigalgs; + numsigalgs = sc->s3.tmp.peer_sigalgslen; + + if (psig == NULL || numsigalgs > INT_MAX) + return 0; + if (idx >= 0) { + const SIGALG_LOOKUP *lu; + + if (idx >= (int)numsigalgs) + return 0; + psig += idx; + if (rhash != NULL) + *rhash = (unsigned char)((*psig >> 8) & 0xff); + if (rsig != NULL) + *rsig = (unsigned char)(*psig & 0xff); + lu = tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(sc), *psig); + if (psign != NULL) + *psign = lu != NULL ? lu->sig : NID_undef; + if (phash != NULL) + *phash = lu != NULL ? lu->hash : NID_undef; + if (psignhash != NULL) + *psignhash = lu != NULL ? lu->sigandhash : NID_undef; + } + return (int)numsigalgs; +} + +int SSL_get_shared_sigalgs(SSL *s, int idx, + int *psign, int *phash, int *psignhash, + unsigned char *rsig, unsigned char *rhash) +{ + const SIGALG_LOOKUP *shsigalgs; + SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); + + if (sc == NULL) + return 0; + + if (sc->shared_sigalgs == NULL + || idx < 0 + || idx >= (int)sc->shared_sigalgslen + || sc->shared_sigalgslen > INT_MAX) + return 0; + shsigalgs = sc->shared_sigalgs[idx]; + if (phash != NULL) + *phash = shsigalgs->hash; + if (psign != NULL) + *psign = shsigalgs->sig; + if (psignhash != NULL) + *psignhash = shsigalgs->sigandhash; + if (rsig != NULL) + *rsig = (unsigned char)(shsigalgs->sigalg & 0xff); + if (rhash != NULL) + *rhash = (unsigned char)((shsigalgs->sigalg >> 8) & 0xff); + return (int)sc->shared_sigalgslen; +} + +/* Maximum possible number of unique entries in sigalgs array */ +#define TLS_MAX_SIGALGCNT (OSSL_NELEM(sigalg_lookup_tbl) * 2) + +typedef struct { + size_t sigalgcnt; + /* TLSEXT_SIGALG_XXX values */ + uint16_t sigalgs[TLS_MAX_SIGALGCNT]; + SSL_CTX *ctx; +} sig_cb_st; + +static void get_sigorhash(int *psig, int *phash, const char *str) +{ + if (OPENSSL_strcasecmp(str, "RSA") == 0) { + *psig = EVP_PKEY_RSA; + } else if (OPENSSL_strcasecmp(str, "RSA-PSS") == 0 + || OPENSSL_strcasecmp(str, "PSS") == 0) { + *psig = EVP_PKEY_RSA_PSS; + } else if (OPENSSL_strcasecmp(str, "DSA") == 0) { + *psig = EVP_PKEY_DSA; + } else if (OPENSSL_strcasecmp(str, "ECDSA") == 0) { + *psig = EVP_PKEY_EC; + } else { + *phash = OBJ_sn2nid(str); + if (*phash == NID_undef) + *phash = OBJ_ln2nid(str); + } +} +/* Maximum length of a signature algorithm string component */ +#define TLS_MAX_SIGSTRING_LEN 40 + +static int sig_cb(const char *elem, int len, void *arg) +{ + sig_cb_st *sarg = arg; + size_t i = 0; + const SIGALG_LOOKUP *s; + char etmp[TLS_MAX_SIGSTRING_LEN], *p; + const char *iana, *alias; + int sig_alg = NID_undef, hash_alg = NID_undef; + int ignore_unknown = 0; + + if (elem == NULL) + return 0; + if (elem[0] == '?') { + ignore_unknown = 1; + ++elem; + --len; + } + if (sarg->sigalgcnt == TLS_MAX_SIGALGCNT) + return 0; + if (len > (int)(sizeof(etmp) - 1)) + return 0; + memcpy(etmp, elem, len); + etmp[len] = 0; + p = strchr(etmp, '+'); + /* + * We only allow SignatureSchemes listed in the sigalg_lookup_tbl; + * if there's no '+' in the provided name, look for the new-style combined + * name. If not, match both sig+hash to find the needed SIGALG_LOOKUP. + * Just sig+hash is not unique since TLS 1.3 adds rsa_pss_pss_* and + * rsa_pss_rsae_* that differ only by public key OID; in such cases + * we will pick the _rsae_ variant, by virtue of them appearing earlier + * in the table. + */ + if (p == NULL) { + if (sarg->ctx != NULL) { + for (i = 0; i < sarg->ctx->sigalg_lookup_cache_len; i++) { + iana = sarg->ctx->sigalg_lookup_cache[i].name; + alias = sarg->ctx->sigalg_lookup_cache[i].name12; + if ((alias != NULL && OPENSSL_strcasecmp(etmp, alias) == 0) + || OPENSSL_strcasecmp(etmp, iana) == 0) { + /* Ignore known, but unavailable sigalgs. */ + if (!sarg->ctx->sigalg_lookup_cache[i].available) + return 1; + sarg->sigalgs[sarg->sigalgcnt++] = + sarg->ctx->sigalg_lookup_cache[i].sigalg; + goto found; + } + } + } else { + /* Syntax checks use the built-in sigalgs */ + for (i = 0, s = sigalg_lookup_tbl; + i < OSSL_NELEM(sigalg_lookup_tbl); i++, s++) { + iana = s->name; + alias = s->name12; + if ((alias != NULL && OPENSSL_strcasecmp(etmp, alias) == 0) + || OPENSSL_strcasecmp(etmp, iana) == 0) { + sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg; + goto found; + } + } + } + } else { + *p = 0; + p++; + if (*p == 0) + return 0; + get_sigorhash(&sig_alg, &hash_alg, etmp); + get_sigorhash(&sig_alg, &hash_alg, p); + if (sig_alg != NID_undef && hash_alg != NID_undef) { + if (sarg->ctx != NULL) { + for (i = 0; i < sarg->ctx->sigalg_lookup_cache_len; i++) { + s = &sarg->ctx->sigalg_lookup_cache[i]; + if (s->hash == hash_alg && s->sig == sig_alg) { + /* Ignore known, but unavailable sigalgs. */ + if (!sarg->ctx->sigalg_lookup_cache[i].available) + return 1; + sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg; + goto found; + } + } + } else { + for (i = 0; i < OSSL_NELEM(sigalg_lookup_tbl); i++) { + s = &sigalg_lookup_tbl[i]; + if (s->hash == hash_alg && s->sig == sig_alg) { + sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg; + goto found; + } + } + } + } + } + /* Ignore unknown algorithms if ignore_unknown */ + return ignore_unknown; + + found: + /* Ignore duplicates */ + for (i = 0; i < sarg->sigalgcnt - 1; i++) { + if (sarg->sigalgs[i] == sarg->sigalgs[sarg->sigalgcnt - 1]) { + sarg->sigalgcnt--; + return 1; + } + } + return 1; +} + +/* + * Set supported signature algorithms based on a colon separated list of the + * form sig+hash e.g. RSA+SHA512:DSA+SHA512 + */ +int tls1_set_sigalgs_list(SSL_CTX *ctx, CERT *c, const char *str, int client) +{ + sig_cb_st sig; + sig.sigalgcnt = 0; + + if (ctx != NULL) + sig.ctx = ctx; + if (!CONF_parse_list(str, ':', 1, sig_cb, &sig)) + return 0; + if (sig.sigalgcnt == 0) { + ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT, + "No valid signature algorithms in '%s'", str); + return 0; + } + if (c == NULL) + return 1; + return tls1_set_raw_sigalgs(c, sig.sigalgs, sig.sigalgcnt, client); +} + +int tls1_set_raw_sigalgs(CERT *c, const uint16_t *psigs, size_t salglen, + int client) +{ + uint16_t *sigalgs; + + if ((sigalgs = OPENSSL_malloc(salglen * sizeof(*sigalgs))) == NULL) + return 0; + memcpy(sigalgs, psigs, salglen * sizeof(*sigalgs)); + + if (client) { + OPENSSL_free(c->client_sigalgs); + c->client_sigalgs = sigalgs; + c->client_sigalgslen = salglen; + } else { + OPENSSL_free(c->conf_sigalgs); + c->conf_sigalgs = sigalgs; + c->conf_sigalgslen = salglen; + } + + return 1; +} + +int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen, int client) +{ + uint16_t *sigalgs, *sptr; + size_t i; + + if (salglen & 1) + return 0; + if ((sigalgs = OPENSSL_malloc((salglen / 2) * sizeof(*sigalgs))) == NULL) + return 0; + for (i = 0, sptr = sigalgs; i < salglen; i += 2) { + size_t j; + const SIGALG_LOOKUP *curr; + int md_id = *psig_nids++; + int sig_id = *psig_nids++; + + for (j = 0, curr = sigalg_lookup_tbl; j < OSSL_NELEM(sigalg_lookup_tbl); + j++, curr++) { + if (curr->hash == md_id && curr->sig == sig_id) { + *sptr++ = curr->sigalg; + break; + } + } + + if (j == OSSL_NELEM(sigalg_lookup_tbl)) + goto err; + } + + if (client) { + OPENSSL_free(c->client_sigalgs); + c->client_sigalgs = sigalgs; + c->client_sigalgslen = salglen / 2; + } else { + OPENSSL_free(c->conf_sigalgs); + c->conf_sigalgs = sigalgs; + c->conf_sigalgslen = salglen / 2; + } + + return 1; + + err: + OPENSSL_free(sigalgs); + return 0; +} + +static int tls1_check_sig_alg(SSL_CONNECTION *s, X509 *x, int default_nid) +{ + int sig_nid, use_pc_sigalgs = 0; + size_t i; + const SIGALG_LOOKUP *sigalg; + size_t sigalgslen; + + /*- + * RFC 8446, section 4.2.3: + * + * The signatures on certificates that are self-signed or certificates + * that are trust anchors are not validated, since they begin a + * certification path (see [RFC5280], Section 3.2). A certificate that + * begins a certification path MAY use a signature algorithm that is not + * advertised as being supported in the "signature_algorithms" + * extension. + */ + if (default_nid == -1 || X509_self_signed(x, 0)) + return 1; + sig_nid = X509_get_signature_nid(x); + if (default_nid) + return sig_nid == default_nid ? 1 : 0; + + if (SSL_CONNECTION_IS_TLS13(s) && s->s3.tmp.peer_cert_sigalgs != NULL) { + /* + * If we're in TLSv1.3 then we only get here if we're checking the + * chain. If the peer has specified peer_cert_sigalgs then we use them + * otherwise we default to normal sigalgs. + */ + sigalgslen = s->s3.tmp.peer_cert_sigalgslen; + use_pc_sigalgs = 1; + } else { + sigalgslen = s->shared_sigalgslen; + } + for (i = 0; i < sigalgslen; i++) { + int mdnid, pknid; + + sigalg = use_pc_sigalgs + ? tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), + s->s3.tmp.peer_cert_sigalgs[i]) + : s->shared_sigalgs[i]; + if (sigalg == NULL) + continue; + if (sig_nid == sigalg->sigandhash) + return 1; + if (sigalg->sig != EVP_PKEY_RSA_PSS) + continue; + /* + * Accept RSA PKCS#1 signatures in certificates when the signature + * algorithms include RSA-PSS with a matching digest algorithm. + * + * When a TLS 1.3 peer inadvertently omits the legacy RSA PKCS#1 code + * points, and we're doing strict checking of the certificate chain (in + * a cert_cb via SSL_check_chain()) we may then reject RSA signed + * certificates in the chain, but the TLS requirement on PSS should not + * extend to certificates. Though the peer can in fact list the legacy + * sigalgs for just this purpose, it is not likely that a better chain + * signed with RSA-PSS is available. + */ + if (!OBJ_find_sigid_algs(sig_nid, &mdnid, &pknid)) + continue; + if (pknid == EVP_PKEY_RSA && mdnid == sigalg->hash) + return 1; + } + return 0; +} + +/* Check to see if a certificate issuer name matches list of CA names */ +static int ssl_check_ca_name(STACK_OF(X509_NAME) *names, X509 *x) +{ + const X509_NAME *nm; + int i; + nm = X509_get_issuer_name(x); + for (i = 0; i < sk_X509_NAME_num(names); i++) { + if (!X509_NAME_cmp(nm, sk_X509_NAME_value(names, i))) + return 1; + } + return 0; +} + +/* + * Check certificate chain is consistent with TLS extensions and is usable by + * server. This servers two purposes: it allows users to check chains before + * passing them to the server and it allows the server to check chains before + * attempting to use them. + */ + +/* Flags which need to be set for a certificate when strict mode not set */ + +#define CERT_PKEY_VALID_FLAGS \ + (CERT_PKEY_EE_SIGNATURE|CERT_PKEY_EE_PARAM) +/* Strict mode flags */ +#define CERT_PKEY_STRICT_FLAGS \ + (CERT_PKEY_VALID_FLAGS|CERT_PKEY_CA_SIGNATURE|CERT_PKEY_CA_PARAM \ + | CERT_PKEY_ISSUER_NAME|CERT_PKEY_CERT_TYPE) + +int tls1_check_chain(SSL_CONNECTION *s, X509 *x, EVP_PKEY *pk, + STACK_OF(X509) *chain, int idx) +{ + int i; + int rv = 0; + int check_flags = 0, strict_mode; + CERT_PKEY *cpk = NULL; + CERT *c = s->cert; + uint32_t *pvalid; + unsigned int suiteb_flags = tls1_suiteb(s); + + /* + * Meaning of idx: + * idx == -1 means SSL_check_chain() invocation + * idx == -2 means checking client certificate chains + * idx >= 0 means checking SSL_PKEY index + * + * For RPK, where there may be no cert, we ignore -1 + */ + if (idx != -1) { + if (idx == -2) { + cpk = c->key; + idx = (int)(cpk - c->pkeys); + } else + cpk = c->pkeys + idx; + pvalid = s->s3.tmp.valid_flags + idx; + x = cpk->x509; + pk = cpk->privatekey; + chain = cpk->chain; + strict_mode = c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT; + if (tls12_rpk_and_privkey(s, idx)) { + if (EVP_PKEY_is_a(pk, "EC") && !tls1_check_pkey_comp(s, pk)) + return 0; + *pvalid = rv = CERT_PKEY_RPK; + return rv; + } + /* If no cert or key, forget it */ + if (x == NULL || pk == NULL) + goto end; + } else { + size_t certidx; + + if (x == NULL || pk == NULL) + return 0; + + if (ssl_cert_lookup_by_pkey(pk, &certidx, + SSL_CONNECTION_GET_CTX(s)) == NULL) + return 0; + idx = certidx; + pvalid = s->s3.tmp.valid_flags + idx; + + if (c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT) + check_flags = CERT_PKEY_STRICT_FLAGS; + else + check_flags = CERT_PKEY_VALID_FLAGS; + strict_mode = 1; + } + + if (suiteb_flags) { + int ok; + if (check_flags) + check_flags |= CERT_PKEY_SUITEB; + ok = X509_chain_check_suiteb(NULL, x, chain, suiteb_flags); + if (ok == X509_V_OK) + rv |= CERT_PKEY_SUITEB; + else if (!check_flags) + goto end; + } + + /* + * Check all signature algorithms are consistent with signature + * algorithms extension if TLS 1.2 or later and strict mode. + */ + if (TLS1_get_version(SSL_CONNECTION_GET_SSL(s)) >= TLS1_2_VERSION + && strict_mode) { + int default_nid; + int rsign = 0; + + if (s->s3.tmp.peer_cert_sigalgs != NULL + || s->s3.tmp.peer_sigalgs != NULL) { + default_nid = 0; + /* If no sigalgs extension use defaults from RFC5246 */ + } else { + switch (idx) { + case SSL_PKEY_RSA: + rsign = EVP_PKEY_RSA; + default_nid = NID_sha1WithRSAEncryption; + break; + + case SSL_PKEY_DSA_SIGN: + rsign = EVP_PKEY_DSA; + default_nid = NID_dsaWithSHA1; + break; + + case SSL_PKEY_ECC: + rsign = EVP_PKEY_EC; + default_nid = NID_ecdsa_with_SHA1; + break; + + case SSL_PKEY_GOST01: + rsign = NID_id_GostR3410_2001; + default_nid = NID_id_GostR3411_94_with_GostR3410_2001; + break; + + case SSL_PKEY_GOST12_256: + rsign = NID_id_GostR3410_2012_256; + default_nid = NID_id_tc26_signwithdigest_gost3410_2012_256; + break; + + case SSL_PKEY_GOST12_512: + rsign = NID_id_GostR3410_2012_512; + default_nid = NID_id_tc26_signwithdigest_gost3410_2012_512; + break; + + default: + default_nid = -1; + break; + } + } + /* + * If peer sent no signature algorithms extension and we have set + * preferred signature algorithms check we support sha1. + */ + if (default_nid > 0 && c->conf_sigalgs) { + size_t j; + const uint16_t *p = c->conf_sigalgs; + for (j = 0; j < c->conf_sigalgslen; j++, p++) { + const SIGALG_LOOKUP *lu = + tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), *p); + + if (lu != NULL && lu->hash == NID_sha1 && lu->sig == rsign) + break; + } + if (j == c->conf_sigalgslen) { + if (check_flags) + goto skip_sigs; + else + goto end; + } + } + /* Check signature algorithm of each cert in chain */ + if (SSL_CONNECTION_IS_TLS13(s)) { + /* + * We only get here if the application has called SSL_check_chain(), + * so check_flags is always set. + */ + if (find_sig_alg(s, x, pk) != NULL) + rv |= CERT_PKEY_EE_SIGNATURE; + } else if (!tls1_check_sig_alg(s, x, default_nid)) { + if (!check_flags) + goto end; + } else + rv |= CERT_PKEY_EE_SIGNATURE; + rv |= CERT_PKEY_CA_SIGNATURE; + for (i = 0; i < sk_X509_num(chain); i++) { + if (!tls1_check_sig_alg(s, sk_X509_value(chain, i), default_nid)) { + if (check_flags) { + rv &= ~CERT_PKEY_CA_SIGNATURE; + break; + } else + goto end; + } + } + } + /* Else not TLS 1.2, so mark EE and CA signing algorithms OK */ + else if (check_flags) + rv |= CERT_PKEY_EE_SIGNATURE | CERT_PKEY_CA_SIGNATURE; + skip_sigs: + /* Check cert parameters are consistent */ + if (tls1_check_cert_param(s, x, 1)) + rv |= CERT_PKEY_EE_PARAM; + else if (!check_flags) + goto end; + if (!s->server) + rv |= CERT_PKEY_CA_PARAM; + /* In strict mode check rest of chain too */ + else if (strict_mode) { + rv |= CERT_PKEY_CA_PARAM; + for (i = 0; i < sk_X509_num(chain); i++) { + X509 *ca = sk_X509_value(chain, i); + if (!tls1_check_cert_param(s, ca, 0)) { + if (check_flags) { + rv &= ~CERT_PKEY_CA_PARAM; + break; + } else + goto end; + } + } + } + if (!s->server && strict_mode) { + STACK_OF(X509_NAME) *ca_dn; + int check_type = 0; + + if (EVP_PKEY_is_a(pk, "RSA")) + check_type = TLS_CT_RSA_SIGN; + else if (EVP_PKEY_is_a(pk, "DSA")) + check_type = TLS_CT_DSS_SIGN; + else if (EVP_PKEY_is_a(pk, "EC")) + check_type = TLS_CT_ECDSA_SIGN; + + if (check_type) { + const uint8_t *ctypes = s->s3.tmp.ctype; + size_t j; + + for (j = 0; j < s->s3.tmp.ctype_len; j++, ctypes++) { + if (*ctypes == check_type) { + rv |= CERT_PKEY_CERT_TYPE; + break; + } + } + if (!(rv & CERT_PKEY_CERT_TYPE) && !check_flags) + goto end; + } else { + rv |= CERT_PKEY_CERT_TYPE; + } + + ca_dn = s->s3.tmp.peer_ca_names; + + if (ca_dn == NULL + || sk_X509_NAME_num(ca_dn) == 0 + || ssl_check_ca_name(ca_dn, x)) + rv |= CERT_PKEY_ISSUER_NAME; + else + for (i = 0; i < sk_X509_num(chain); i++) { + X509 *xtmp = sk_X509_value(chain, i); + + if (ssl_check_ca_name(ca_dn, xtmp)) { + rv |= CERT_PKEY_ISSUER_NAME; + break; + } + } + + if (!check_flags && !(rv & CERT_PKEY_ISSUER_NAME)) + goto end; + } else + rv |= CERT_PKEY_ISSUER_NAME | CERT_PKEY_CERT_TYPE; + + if (!check_flags || (rv & check_flags) == check_flags) + rv |= CERT_PKEY_VALID; + + end: + + if (TLS1_get_version(SSL_CONNECTION_GET_SSL(s)) >= TLS1_2_VERSION) + rv |= *pvalid & (CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN); + else + rv |= CERT_PKEY_SIGN | CERT_PKEY_EXPLICIT_SIGN; + + /* + * When checking a CERT_PKEY structure all flags are irrelevant if the + * chain is invalid. + */ + if (!check_flags) { + if (rv & CERT_PKEY_VALID) { + *pvalid = rv; + } else { + /* Preserve sign and explicit sign flag, clear rest */ + *pvalid &= CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN; + return 0; + } + } + return rv; +} + +/* Set validity of certificates in an SSL structure */ +void tls1_set_cert_validity(SSL_CONNECTION *s) +{ + tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA); + tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_PSS_SIGN); + tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DSA_SIGN); + tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ECC); + tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST01); + tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_256); + tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_512); + tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED25519); + tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED448); +} + +/* User level utility function to check a chain is suitable */ +int SSL_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain) +{ + SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); + + if (sc == NULL) + return 0; + + return tls1_check_chain(sc, x, pk, chain, -1); +} + +EVP_PKEY *ssl_get_auto_dh(SSL_CONNECTION *s) +{ + EVP_PKEY *dhp = NULL; + BIGNUM *p; + int dh_secbits = 80, sec_level_bits; + EVP_PKEY_CTX *pctx = NULL; + OSSL_PARAM_BLD *tmpl = NULL; + OSSL_PARAM *params = NULL; + SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s); + + if (s->cert->dh_tmp_auto != 2) { + if (s->s3.tmp.new_cipher->algorithm_auth & (SSL_aNULL | SSL_aPSK)) { + if (s->s3.tmp.new_cipher->strength_bits == 256) + dh_secbits = 128; + else + dh_secbits = 80; + } else { + if (s->s3.tmp.cert == NULL) + return NULL; + dh_secbits = EVP_PKEY_get_security_bits(s->s3.tmp.cert->privatekey); + } + } + + /* Do not pick a prime that is too weak for the current security level */ + sec_level_bits = ssl_get_security_level_bits(SSL_CONNECTION_GET_SSL(s), + NULL, NULL); + if (dh_secbits < sec_level_bits) + dh_secbits = sec_level_bits; + + if (dh_secbits >= 192) + p = BN_get_rfc3526_prime_8192(NULL); + else if (dh_secbits >= 152) + p = BN_get_rfc3526_prime_4096(NULL); + else if (dh_secbits >= 128) + p = BN_get_rfc3526_prime_3072(NULL); + else if (dh_secbits >= 112) + p = BN_get_rfc3526_prime_2048(NULL); + else + p = BN_get_rfc2409_prime_1024(NULL); + if (p == NULL) + goto err; + + pctx = EVP_PKEY_CTX_new_from_name(sctx->libctx, "DH", sctx->propq); + if (pctx == NULL + || EVP_PKEY_fromdata_init(pctx) != 1) + goto err; + + tmpl = OSSL_PARAM_BLD_new(); + if (tmpl == NULL + || !OSSL_PARAM_BLD_push_BN(tmpl, OSSL_PKEY_PARAM_FFC_P, p) + || !OSSL_PARAM_BLD_push_uint(tmpl, OSSL_PKEY_PARAM_FFC_G, 2)) + goto err; + + params = OSSL_PARAM_BLD_to_param(tmpl); + if (params == NULL + || EVP_PKEY_fromdata(pctx, &dhp, EVP_PKEY_KEY_PARAMETERS, params) != 1) + goto err; + +err: + OSSL_PARAM_free(params); + OSSL_PARAM_BLD_free(tmpl); + EVP_PKEY_CTX_free(pctx); + BN_free(p); + return dhp; +} + +static int ssl_security_cert_key(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x, + int op) +{ + int secbits = -1; + EVP_PKEY *pkey = X509_get0_pubkey(x); + + if (pkey) { + /* + * If no parameters this will return -1 and fail using the default + * security callback for any non-zero security level. This will + * reject keys which omit parameters but this only affects DSA and + * omission of parameters is never (?) done in practice. + */ + secbits = EVP_PKEY_get_security_bits(pkey); + } + if (s != NULL) + return ssl_security(s, op, secbits, 0, x); + else + return ssl_ctx_security(ctx, op, secbits, 0, x); +} + +static int ssl_security_cert_sig(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x, + int op) +{ + /* Lookup signature algorithm digest */ + int secbits, nid, pknid; + + /* Don't check signature if self signed */ + if ((X509_get_extension_flags(x) & EXFLAG_SS) != 0) + return 1; + if (!X509_get_signature_info(x, &nid, &pknid, &secbits, NULL)) + secbits = -1; + /* If digest NID not defined use signature NID */ + if (nid == NID_undef) + nid = pknid; + if (s != NULL) + return ssl_security(s, op, secbits, nid, x); + else + return ssl_ctx_security(ctx, op, secbits, nid, x); +} + +int ssl_security_cert(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x, int vfy, + int is_ee) +{ + if (vfy) + vfy = SSL_SECOP_PEER; + if (is_ee) { + if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_EE_KEY | vfy)) + return SSL_R_EE_KEY_TOO_SMALL; + } else { + if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_CA_KEY | vfy)) + return SSL_R_CA_KEY_TOO_SMALL; + } + if (!ssl_security_cert_sig(s, ctx, x, SSL_SECOP_CA_MD | vfy)) + return SSL_R_CA_MD_TOO_WEAK; + return 1; +} + +/* + * Check security of a chain, if |sk| includes the end entity certificate then + * |x| is NULL. If |vfy| is 1 then we are verifying a peer chain and not sending + * one to the peer. Return values: 1 if ok otherwise error code to use + */ + +int ssl_security_cert_chain(SSL_CONNECTION *s, STACK_OF(X509) *sk, + X509 *x, int vfy) +{ + int rv, start_idx, i; + + if (x == NULL) { + x = sk_X509_value(sk, 0); + if (x == NULL) + return ERR_R_INTERNAL_ERROR; + start_idx = 1; + } else + start_idx = 0; + + rv = ssl_security_cert(s, NULL, x, vfy, 1); + if (rv != 1) + return rv; + + for (i = start_idx; i < sk_X509_num(sk); i++) { + x = sk_X509_value(sk, i); + rv = ssl_security_cert(s, NULL, x, vfy, 0); + if (rv != 1) + return rv; + } + return 1; +} + +/* + * For TLS 1.2 servers check if we have a certificate which can be used + * with the signature algorithm "lu" and return index of certificate. + */ + +static int tls12_get_cert_sigalg_idx(const SSL_CONNECTION *s, + const SIGALG_LOOKUP *lu) +{ + int sig_idx = lu->sig_idx; + const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(sig_idx, + SSL_CONNECTION_GET_CTX(s)); + + /* If not recognised or not supported by cipher mask it is not suitable */ + if (clu == NULL + || (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) == 0 + || (clu->nid == EVP_PKEY_RSA_PSS + && (s->s3.tmp.new_cipher->algorithm_mkey & SSL_kRSA) != 0)) + return -1; + + /* If doing RPK, the CERT_PKEY won't be "valid" */ + if (tls12_rpk_and_privkey(s, sig_idx)) + return s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_RPK ? sig_idx : -1; + + return s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_VALID ? sig_idx : -1; +} + +/* + * Checks the given cert against signature_algorithm_cert restrictions sent by + * the peer (if any) as well as whether the hash from the sigalg is usable with + * the key. + * Returns true if the cert is usable and false otherwise. + */ +static int check_cert_usable(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig, + X509 *x, EVP_PKEY *pkey) +{ + const SIGALG_LOOKUP *lu; + int mdnid, pknid, supported; + size_t i; + const char *mdname = NULL; + SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s); + + /* + * If the given EVP_PKEY cannot support signing with this digest, + * the answer is simply 'no'. + */ + if (sig->hash != NID_undef) + mdname = OBJ_nid2sn(sig->hash); + supported = EVP_PKEY_digestsign_supports_digest(pkey, sctx->libctx, + mdname, + sctx->propq); + if (supported <= 0) + return 0; + + /* + * The TLS 1.3 signature_algorithms_cert extension places restrictions + * on the sigalg with which the certificate was signed (by its issuer). + */ + if (s->s3.tmp.peer_cert_sigalgs != NULL) { + if (!X509_get_signature_info(x, &mdnid, &pknid, NULL, NULL)) + return 0; + for (i = 0; i < s->s3.tmp.peer_cert_sigalgslen; i++) { + lu = tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), + s->s3.tmp.peer_cert_sigalgs[i]); + if (lu == NULL) + continue; + + /* + * This does not differentiate between the + * rsa_pss_pss_* and rsa_pss_rsae_* schemes since we do not + * have a chain here that lets us look at the key OID in the + * signing certificate. + */ + if (mdnid == lu->hash && pknid == lu->sig) + return 1; + } + return 0; + } + + /* + * Without signat_algorithms_cert, any certificate for which we have + * a viable public key is permitted. + */ + return 1; +} + +/* + * Returns true if |s| has a usable certificate configured for use + * with signature scheme |sig|. + * "Usable" includes a check for presence as well as applying + * the signature_algorithm_cert restrictions sent by the peer (if any). + * Returns false if no usable certificate is found. + */ +static int has_usable_cert(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig, int idx) +{ + /* TLS 1.2 callers can override sig->sig_idx, but not TLS 1.3 callers. */ + if (idx == -1) + idx = sig->sig_idx; + if (!ssl_has_cert(s, idx)) + return 0; + + return check_cert_usable(s, sig, s->cert->pkeys[idx].x509, + s->cert->pkeys[idx].privatekey); +} + +/* + * Returns true if the supplied cert |x| and key |pkey| is usable with the + * specified signature scheme |sig|, or false otherwise. + */ +static int is_cert_usable(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig, X509 *x, + EVP_PKEY *pkey) +{ + size_t idx; + + if (ssl_cert_lookup_by_pkey(pkey, &idx, SSL_CONNECTION_GET_CTX(s)) == NULL) + return 0; + + /* Check the key is consistent with the sig alg */ + if ((int)idx != sig->sig_idx) + return 0; + + return check_cert_usable(s, sig, x, pkey); +} + +/* + * Find a signature scheme that works with the supplied certificate |x| and key + * |pkey|. |x| and |pkey| may be NULL in which case we additionally look at our + * available certs/keys to find one that works. + */ +static const SIGALG_LOOKUP *find_sig_alg(SSL_CONNECTION *s, X509 *x, + EVP_PKEY *pkey) +{ + const SIGALG_LOOKUP *lu = NULL; + size_t i; + int curve = -1; + EVP_PKEY *tmppkey; + SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s); + + /* Look for a shared sigalgs matching possible certificates */ + for (i = 0; i < s->shared_sigalgslen; i++) { + /* Skip SHA1, SHA224, DSA and RSA if not PSS */ + lu = s->shared_sigalgs[i]; + if (lu->hash == NID_sha1 + || lu->hash == NID_sha224 + || lu->sig == EVP_PKEY_DSA + || lu->sig == EVP_PKEY_RSA + || !tls_sigalg_compat(s, lu)) + continue; + + /* Check that we have a cert, and signature_algorithms_cert */ + if (!tls1_lookup_md(sctx, lu, NULL)) + continue; + if ((pkey == NULL && !has_usable_cert(s, lu, -1)) + || (pkey != NULL && !is_cert_usable(s, lu, x, pkey))) + continue; + + tmppkey = (pkey != NULL) ? pkey + : s->cert->pkeys[lu->sig_idx].privatekey; + + if (lu->sig == EVP_PKEY_EC) { + if (curve == -1) + curve = ssl_get_EC_curve_nid(tmppkey); + if (lu->curve != NID_undef && curve != lu->curve) + continue; + } else if (lu->sig == EVP_PKEY_RSA_PSS) { + /* validate that key is large enough for the signature algorithm */ + if (!rsa_pss_check_min_key_size(sctx, tmppkey, lu)) + continue; + } + break; + } + + if (i == s->shared_sigalgslen) + return NULL; + + return lu; +} + +/* + * Choose an appropriate signature algorithm based on available certificates + * Sets chosen certificate and signature algorithm. + * + * For servers if we fail to find a required certificate it is a fatal error, + * an appropriate error code is set and a TLS alert is sent. + * + * For clients fatalerrs is set to 0. If a certificate is not suitable it is not + * a fatal error: we will either try another certificate or not present one + * to the server. In this case no error is set. + */ +int tls_choose_sigalg(SSL_CONNECTION *s, int fatalerrs) +{ + const SIGALG_LOOKUP *lu = NULL; + int sig_idx = -1; + + s->s3.tmp.cert = NULL; + s->s3.tmp.sigalg = NULL; + + if (SSL_CONNECTION_IS_TLS13(s)) { + lu = find_sig_alg(s, NULL, NULL); + if (lu == NULL) { + if (!fatalerrs) + return 1; + SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, + SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM); + return 0; + } + } else { + /* If ciphersuite doesn't require a cert nothing to do */ + if (!(s->s3.tmp.new_cipher->algorithm_auth & SSL_aCERT)) + return 1; + if (!s->server && !ssl_has_cert(s, s->cert->key - s->cert->pkeys)) + return 1; + + if (SSL_USE_SIGALGS(s)) { + size_t i; + if (s->s3.tmp.peer_sigalgs != NULL) { + int curve = -1; + SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s); + + /* For Suite B need to match signature algorithm to curve */ + if (tls1_suiteb(s)) + curve = ssl_get_EC_curve_nid(s->cert->pkeys[SSL_PKEY_ECC] + .privatekey); + + /* + * Find highest preference signature algorithm matching + * cert type + */ + for (i = 0; i < s->shared_sigalgslen; i++) { + /* Check the sigalg version bounds */ + lu = s->shared_sigalgs[i]; + if (!tls_sigalg_compat(s, lu)) + continue; + if (s->server) { + if ((sig_idx = tls12_get_cert_sigalg_idx(s, lu)) == -1) + continue; + } else { + int cc_idx = s->cert->key - s->cert->pkeys; + + sig_idx = lu->sig_idx; + if (cc_idx != sig_idx) + continue; + } + /* Check that we have a cert, and sig_algs_cert */ + if (!has_usable_cert(s, lu, sig_idx)) + continue; + if (lu->sig == EVP_PKEY_RSA_PSS) { + /* validate that key is large enough for the signature algorithm */ + EVP_PKEY *pkey = s->cert->pkeys[sig_idx].privatekey; + + if (!rsa_pss_check_min_key_size(sctx, pkey, lu)) + continue; + } + if (curve == -1 || lu->curve == curve) + break; + } +#ifndef OPENSSL_NO_GOST + /* + * Some Windows-based implementations do not send GOST algorithms indication + * in supported_algorithms extension, so when we have GOST-based ciphersuite, + * we have to assume GOST support. + */ + if (i == s->shared_sigalgslen + && (s->s3.tmp.new_cipher->algorithm_auth + & (SSL_aGOST01 | SSL_aGOST12)) != 0) { + if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) { + if (!fatalerrs) + return 1; + SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, + SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM); + return 0; + } else { + i = 0; + sig_idx = lu->sig_idx; + } + } +#endif + if (i == s->shared_sigalgslen) { + if (!fatalerrs) + return 1; + SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, + SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM); + return 0; + } + } else { + /* + * If we have no sigalg use defaults + */ + const uint16_t *sent_sigs; + size_t sent_sigslen; + + if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) { + if (!fatalerrs) + return 1; + SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, + SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM); + return 0; + } + + /* Check signature matches a type we sent */ + sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs); + for (i = 0; i < sent_sigslen; i++, sent_sigs++) { + if (lu->sigalg == *sent_sigs + && has_usable_cert(s, lu, lu->sig_idx)) + break; + } + if (i == sent_sigslen) { + if (!fatalerrs) + return 1; + SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, + SSL_R_WRONG_SIGNATURE_TYPE); + return 0; + } + } + } else { + if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) { + if (!fatalerrs) + return 1; + SSLfatal(s, SSL_AD_INTERNAL_ERROR, + SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM); + return 0; + } + } + } + if (sig_idx == -1) + sig_idx = lu->sig_idx; + s->s3.tmp.cert = &s->cert->pkeys[sig_idx]; + s->cert->key = s->s3.tmp.cert; + s->s3.tmp.sigalg = lu; + return 1; +} + +int SSL_CTX_set_tlsext_max_fragment_length(SSL_CTX *ctx, uint8_t mode) +{ + if (mode != TLSEXT_max_fragment_length_DISABLED + && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) { + ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH); + return 0; + } + + ctx->ext.max_fragment_len_mode = mode; + return 1; +} + +int SSL_set_tlsext_max_fragment_length(SSL *ssl, uint8_t mode) +{ + SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(ssl); + + if (sc == NULL + || (IS_QUIC(ssl) && mode != TLSEXT_max_fragment_length_DISABLED)) + return 0; + + if (mode != TLSEXT_max_fragment_length_DISABLED + && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) { + ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH); + return 0; + } + + sc->ext.max_fragment_len_mode = mode; + return 1; +} + +uint8_t SSL_SESSION_get_max_fragment_length(const SSL_SESSION *session) +{ + if (session->ext.max_fragment_len_mode == TLSEXT_max_fragment_length_UNSPECIFIED) + return TLSEXT_max_fragment_length_DISABLED; + return session->ext.max_fragment_len_mode; +} + +/* + * Helper functions for HMAC access with legacy support included. + */ +SSL_HMAC *ssl_hmac_new(const SSL_CTX *ctx) +{ + SSL_HMAC *ret = OPENSSL_zalloc(sizeof(*ret)); + EVP_MAC *mac = NULL; + + if (ret == NULL) + return NULL; +#ifndef OPENSSL_NO_DEPRECATED_3_0 + if (ctx->ext.ticket_key_evp_cb == NULL + && ctx->ext.ticket_key_cb != NULL) { + if (!ssl_hmac_old_new(ret)) + goto err; + return ret; + } +#endif + mac = EVP_MAC_fetch(ctx->libctx, "HMAC", ctx->propq); + if (mac == NULL || (ret->ctx = EVP_MAC_CTX_new(mac)) == NULL) + goto err; + EVP_MAC_free(mac); + return ret; + err: + EVP_MAC_CTX_free(ret->ctx); + EVP_MAC_free(mac); + OPENSSL_free(ret); + return NULL; +} + +void ssl_hmac_free(SSL_HMAC *ctx) +{ + if (ctx != NULL) { + EVP_MAC_CTX_free(ctx->ctx); +#ifndef OPENSSL_NO_DEPRECATED_3_0 + ssl_hmac_old_free(ctx); +#endif + OPENSSL_free(ctx); + } +} + +EVP_MAC_CTX *ssl_hmac_get0_EVP_MAC_CTX(SSL_HMAC *ctx) +{ + return ctx->ctx; +} + +int ssl_hmac_init(SSL_HMAC *ctx, void *key, size_t len, char *md) +{ + OSSL_PARAM params[2], *p = params; + + if (ctx->ctx != NULL) { + *p++ = OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST, md, 0); + *p = OSSL_PARAM_construct_end(); + if (EVP_MAC_init(ctx->ctx, key, len, params)) + return 1; + } +#ifndef OPENSSL_NO_DEPRECATED_3_0 + if (ctx->old_ctx != NULL) + return ssl_hmac_old_init(ctx, key, len, md); +#endif + return 0; +} + +int ssl_hmac_update(SSL_HMAC *ctx, const unsigned char *data, size_t len) +{ + if (ctx->ctx != NULL) + return EVP_MAC_update(ctx->ctx, data, len); +#ifndef OPENSSL_NO_DEPRECATED_3_0 + if (ctx->old_ctx != NULL) + return ssl_hmac_old_update(ctx, data, len); +#endif + return 0; +} + +int ssl_hmac_final(SSL_HMAC *ctx, unsigned char *md, size_t *len, + size_t max_size) +{ + if (ctx->ctx != NULL) + return EVP_MAC_final(ctx->ctx, md, len, max_size); +#ifndef OPENSSL_NO_DEPRECATED_3_0 + if (ctx->old_ctx != NULL) + return ssl_hmac_old_final(ctx, md, len); +#endif + return 0; +} + +size_t ssl_hmac_size(const SSL_HMAC *ctx) +{ + if (ctx->ctx != NULL) + return EVP_MAC_CTX_get_mac_size(ctx->ctx); +#ifndef OPENSSL_NO_DEPRECATED_3_0 + if (ctx->old_ctx != NULL) + return ssl_hmac_old_size(ctx); +#endif + return 0; +} + +int ssl_get_EC_curve_nid(const EVP_PKEY *pkey) +{ + char gname[OSSL_MAX_NAME_SIZE]; + + if (EVP_PKEY_get_group_name(pkey, gname, sizeof(gname), NULL) > 0) + return OBJ_txt2nid(gname); + + return NID_undef; +} + +__owur int tls13_set_encoded_pub_key(EVP_PKEY *pkey, + const unsigned char *enckey, + size_t enckeylen) +{ + if (EVP_PKEY_is_a(pkey, "DH")) { + int bits = EVP_PKEY_get_bits(pkey); + + if (bits <= 0 || enckeylen != (size_t)bits / 8) + /* the encoded key must be padded to the length of the p */ + return 0; + } else if (EVP_PKEY_is_a(pkey, "EC")) { + if (enckeylen < 3 /* point format and at least 1 byte for x and y */ + || enckey[0] != 0x04) + return 0; + } + + return EVP_PKEY_set1_encoded_public_key(pkey, enckey, enckeylen); +} |
