aboutsummaryrefslogtreecommitdiff
path: root/crypto/openssl/ssl/t1_lib.c
diff options
context:
space:
mode:
Diffstat (limited to 'crypto/openssl/ssl/t1_lib.c')
-rw-r--r--crypto/openssl/ssl/t1_lib.c4934
1 files changed, 4934 insertions, 0 deletions
diff --git a/crypto/openssl/ssl/t1_lib.c b/crypto/openssl/ssl/t1_lib.c
new file mode 100644
index 000000000000..2f71f954382d
--- /dev/null
+++ b/crypto/openssl/ssl/t1_lib.c
@@ -0,0 +1,4934 @@
+/*
+ * Copyright 1995-2025 The OpenSSL Project Authors. All Rights Reserved.
+ *
+ * Licensed under the Apache License 2.0 (the "License"). You may not use
+ * this file except in compliance with the License. You can obtain a copy
+ * in the file LICENSE in the source distribution or at
+ * https://www.openssl.org/source/license.html
+ */
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <ctype.h>
+#include <openssl/objects.h>
+#include <openssl/evp.h>
+#include <openssl/hmac.h>
+#include <openssl/core_names.h>
+#include <openssl/ocsp.h>
+#include <openssl/conf.h>
+#include <openssl/x509v3.h>
+#include <openssl/dh.h>
+#include <openssl/bn.h>
+#include <openssl/provider.h>
+#include <openssl/param_build.h>
+#include "internal/nelem.h"
+#include "internal/sizes.h"
+#include "internal/tlsgroups.h"
+#include "internal/ssl_unwrap.h"
+#include "ssl_local.h"
+#include "quic/quic_local.h"
+#include <openssl/ct.h>
+
+static const SIGALG_LOOKUP *find_sig_alg(SSL_CONNECTION *s, X509 *x, EVP_PKEY *pkey);
+static int tls12_sigalg_allowed(const SSL_CONNECTION *s, int op, const SIGALG_LOOKUP *lu);
+
+SSL3_ENC_METHOD const TLSv1_enc_data = {
+ tls1_setup_key_block,
+ tls1_generate_master_secret,
+ tls1_change_cipher_state,
+ tls1_final_finish_mac,
+ TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
+ TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
+ tls1_alert_code,
+ tls1_export_keying_material,
+ 0,
+ ssl3_set_handshake_header,
+ tls_close_construct_packet,
+ ssl3_handshake_write
+};
+
+SSL3_ENC_METHOD const TLSv1_1_enc_data = {
+ tls1_setup_key_block,
+ tls1_generate_master_secret,
+ tls1_change_cipher_state,
+ tls1_final_finish_mac,
+ TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
+ TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
+ tls1_alert_code,
+ tls1_export_keying_material,
+ 0,
+ ssl3_set_handshake_header,
+ tls_close_construct_packet,
+ ssl3_handshake_write
+};
+
+SSL3_ENC_METHOD const TLSv1_2_enc_data = {
+ tls1_setup_key_block,
+ tls1_generate_master_secret,
+ tls1_change_cipher_state,
+ tls1_final_finish_mac,
+ TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
+ TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
+ tls1_alert_code,
+ tls1_export_keying_material,
+ SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF
+ | SSL_ENC_FLAG_TLS1_2_CIPHERS,
+ ssl3_set_handshake_header,
+ tls_close_construct_packet,
+ ssl3_handshake_write
+};
+
+SSL3_ENC_METHOD const TLSv1_3_enc_data = {
+ tls13_setup_key_block,
+ tls13_generate_master_secret,
+ tls13_change_cipher_state,
+ tls13_final_finish_mac,
+ TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
+ TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
+ tls13_alert_code,
+ tls13_export_keying_material,
+ SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF,
+ ssl3_set_handshake_header,
+ tls_close_construct_packet,
+ ssl3_handshake_write
+};
+
+OSSL_TIME tls1_default_timeout(void)
+{
+ /*
+ * 2 hours, the 24 hours mentioned in the TLSv1 spec is way too long for
+ * http, the cache would over fill
+ */
+ return ossl_seconds2time(60 * 60 * 2);
+}
+
+int tls1_new(SSL *s)
+{
+ if (!ssl3_new(s))
+ return 0;
+ if (!s->method->ssl_clear(s))
+ return 0;
+
+ return 1;
+}
+
+void tls1_free(SSL *s)
+{
+ SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
+
+ if (sc == NULL)
+ return;
+
+ OPENSSL_free(sc->ext.session_ticket);
+ ssl3_free(s);
+}
+
+int tls1_clear(SSL *s)
+{
+ SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
+
+ if (sc == NULL)
+ return 0;
+
+ if (!ssl3_clear(s))
+ return 0;
+
+ if (s->method->version == TLS_ANY_VERSION)
+ sc->version = TLS_MAX_VERSION_INTERNAL;
+ else
+ sc->version = s->method->version;
+
+ return 1;
+}
+
+/* Legacy NID to group_id mapping. Only works for groups we know about */
+static const struct {
+ int nid;
+ uint16_t group_id;
+} nid_to_group[] = {
+ {NID_sect163k1, OSSL_TLS_GROUP_ID_sect163k1},
+ {NID_sect163r1, OSSL_TLS_GROUP_ID_sect163r1},
+ {NID_sect163r2, OSSL_TLS_GROUP_ID_sect163r2},
+ {NID_sect193r1, OSSL_TLS_GROUP_ID_sect193r1},
+ {NID_sect193r2, OSSL_TLS_GROUP_ID_sect193r2},
+ {NID_sect233k1, OSSL_TLS_GROUP_ID_sect233k1},
+ {NID_sect233r1, OSSL_TLS_GROUP_ID_sect233r1},
+ {NID_sect239k1, OSSL_TLS_GROUP_ID_sect239k1},
+ {NID_sect283k1, OSSL_TLS_GROUP_ID_sect283k1},
+ {NID_sect283r1, OSSL_TLS_GROUP_ID_sect283r1},
+ {NID_sect409k1, OSSL_TLS_GROUP_ID_sect409k1},
+ {NID_sect409r1, OSSL_TLS_GROUP_ID_sect409r1},
+ {NID_sect571k1, OSSL_TLS_GROUP_ID_sect571k1},
+ {NID_sect571r1, OSSL_TLS_GROUP_ID_sect571r1},
+ {NID_secp160k1, OSSL_TLS_GROUP_ID_secp160k1},
+ {NID_secp160r1, OSSL_TLS_GROUP_ID_secp160r1},
+ {NID_secp160r2, OSSL_TLS_GROUP_ID_secp160r2},
+ {NID_secp192k1, OSSL_TLS_GROUP_ID_secp192k1},
+ {NID_X9_62_prime192v1, OSSL_TLS_GROUP_ID_secp192r1},
+ {NID_secp224k1, OSSL_TLS_GROUP_ID_secp224k1},
+ {NID_secp224r1, OSSL_TLS_GROUP_ID_secp224r1},
+ {NID_secp256k1, OSSL_TLS_GROUP_ID_secp256k1},
+ {NID_X9_62_prime256v1, OSSL_TLS_GROUP_ID_secp256r1},
+ {NID_secp384r1, OSSL_TLS_GROUP_ID_secp384r1},
+ {NID_secp521r1, OSSL_TLS_GROUP_ID_secp521r1},
+ {NID_brainpoolP256r1, OSSL_TLS_GROUP_ID_brainpoolP256r1},
+ {NID_brainpoolP384r1, OSSL_TLS_GROUP_ID_brainpoolP384r1},
+ {NID_brainpoolP512r1, OSSL_TLS_GROUP_ID_brainpoolP512r1},
+ {EVP_PKEY_X25519, OSSL_TLS_GROUP_ID_x25519},
+ {EVP_PKEY_X448, OSSL_TLS_GROUP_ID_x448},
+ {NID_brainpoolP256r1tls13, OSSL_TLS_GROUP_ID_brainpoolP256r1_tls13},
+ {NID_brainpoolP384r1tls13, OSSL_TLS_GROUP_ID_brainpoolP384r1_tls13},
+ {NID_brainpoolP512r1tls13, OSSL_TLS_GROUP_ID_brainpoolP512r1_tls13},
+ {NID_id_tc26_gost_3410_2012_256_paramSetA, OSSL_TLS_GROUP_ID_gc256A},
+ {NID_id_tc26_gost_3410_2012_256_paramSetB, OSSL_TLS_GROUP_ID_gc256B},
+ {NID_id_tc26_gost_3410_2012_256_paramSetC, OSSL_TLS_GROUP_ID_gc256C},
+ {NID_id_tc26_gost_3410_2012_256_paramSetD, OSSL_TLS_GROUP_ID_gc256D},
+ {NID_id_tc26_gost_3410_2012_512_paramSetA, OSSL_TLS_GROUP_ID_gc512A},
+ {NID_id_tc26_gost_3410_2012_512_paramSetB, OSSL_TLS_GROUP_ID_gc512B},
+ {NID_id_tc26_gost_3410_2012_512_paramSetC, OSSL_TLS_GROUP_ID_gc512C},
+ {NID_ffdhe2048, OSSL_TLS_GROUP_ID_ffdhe2048},
+ {NID_ffdhe3072, OSSL_TLS_GROUP_ID_ffdhe3072},
+ {NID_ffdhe4096, OSSL_TLS_GROUP_ID_ffdhe4096},
+ {NID_ffdhe6144, OSSL_TLS_GROUP_ID_ffdhe6144},
+ {NID_ffdhe8192, OSSL_TLS_GROUP_ID_ffdhe8192}
+};
+
+static const unsigned char ecformats_default[] = {
+ TLSEXT_ECPOINTFORMAT_uncompressed,
+ TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime,
+ TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2
+};
+
+/* Group list string of the built-in pseudo group DEFAULT */
+#define DEFAULT_GROUP_NAME "DEFAULT"
+#define TLS_DEFAULT_GROUP_LIST \
+ "?*X25519MLKEM768 / ?*X25519:?secp256r1 / ?X448:?secp384r1:?secp521r1 / ?ffdhe2048:?ffdhe3072"
+
+static const uint16_t suiteb_curves[] = {
+ OSSL_TLS_GROUP_ID_secp256r1,
+ OSSL_TLS_GROUP_ID_secp384r1,
+};
+
+/* Group list string of the built-in pseudo group DEFAULT_SUITE_B */
+#define SUITE_B_GROUP_NAME "DEFAULT_SUITE_B"
+#define SUITE_B_GROUP_LIST "secp256r1:secp384r1",
+
+struct provider_ctx_data_st {
+ SSL_CTX *ctx;
+ OSSL_PROVIDER *provider;
+};
+
+#define TLS_GROUP_LIST_MALLOC_BLOCK_SIZE 10
+static OSSL_CALLBACK add_provider_groups;
+static int add_provider_groups(const OSSL_PARAM params[], void *data)
+{
+ struct provider_ctx_data_st *pgd = data;
+ SSL_CTX *ctx = pgd->ctx;
+ const OSSL_PARAM *p;
+ TLS_GROUP_INFO *ginf = NULL;
+ EVP_KEYMGMT *keymgmt;
+ unsigned int gid;
+ unsigned int is_kem = 0;
+ int ret = 0;
+
+ if (ctx->group_list_max_len == ctx->group_list_len) {
+ TLS_GROUP_INFO *tmp = NULL;
+
+ if (ctx->group_list_max_len == 0)
+ tmp = OPENSSL_malloc(sizeof(TLS_GROUP_INFO)
+ * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);
+ else
+ tmp = OPENSSL_realloc(ctx->group_list,
+ (ctx->group_list_max_len
+ + TLS_GROUP_LIST_MALLOC_BLOCK_SIZE)
+ * sizeof(TLS_GROUP_INFO));
+ if (tmp == NULL)
+ return 0;
+ ctx->group_list = tmp;
+ memset(tmp + ctx->group_list_max_len,
+ 0,
+ sizeof(TLS_GROUP_INFO) * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);
+ ctx->group_list_max_len += TLS_GROUP_LIST_MALLOC_BLOCK_SIZE;
+ }
+
+ ginf = &ctx->group_list[ctx->group_list_len];
+
+ p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME);
+ if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
+ ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
+ goto err;
+ }
+ ginf->tlsname = OPENSSL_strdup(p->data);
+ if (ginf->tlsname == NULL)
+ goto err;
+
+ p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME_INTERNAL);
+ if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
+ ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
+ goto err;
+ }
+ ginf->realname = OPENSSL_strdup(p->data);
+ if (ginf->realname == NULL)
+ goto err;
+
+ p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ID);
+ if (p == NULL || !OSSL_PARAM_get_uint(p, &gid) || gid > UINT16_MAX) {
+ ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
+ goto err;
+ }
+ ginf->group_id = (uint16_t)gid;
+
+ p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ALG);
+ if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
+ ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
+ goto err;
+ }
+ ginf->algorithm = OPENSSL_strdup(p->data);
+ if (ginf->algorithm == NULL)
+ goto err;
+
+ p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_SECURITY_BITS);
+ if (p == NULL || !OSSL_PARAM_get_uint(p, &ginf->secbits)) {
+ ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
+ goto err;
+ }
+
+ p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_IS_KEM);
+ if (p != NULL && (!OSSL_PARAM_get_uint(p, &is_kem) || is_kem > 1)) {
+ ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
+ goto err;
+ }
+ ginf->is_kem = 1 & is_kem;
+
+ p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_TLS);
+ if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mintls)) {
+ ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
+ goto err;
+ }
+
+ p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_TLS);
+ if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxtls)) {
+ ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
+ goto err;
+ }
+
+ p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_DTLS);
+ if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mindtls)) {
+ ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
+ goto err;
+ }
+
+ p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_DTLS);
+ if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxdtls)) {
+ ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
+ goto err;
+ }
+ /*
+ * Now check that the algorithm is actually usable for our property query
+ * string. Regardless of the result we still return success because we have
+ * successfully processed this group, even though we may decide not to use
+ * it.
+ */
+ ret = 1;
+ ERR_set_mark();
+ keymgmt = EVP_KEYMGMT_fetch(ctx->libctx, ginf->algorithm, ctx->propq);
+ if (keymgmt != NULL) {
+ /* We have successfully fetched the algorithm, we can use the group. */
+ ctx->group_list_len++;
+ ginf = NULL;
+ EVP_KEYMGMT_free(keymgmt);
+ }
+ ERR_pop_to_mark();
+ err:
+ if (ginf != NULL) {
+ OPENSSL_free(ginf->tlsname);
+ OPENSSL_free(ginf->realname);
+ OPENSSL_free(ginf->algorithm);
+ ginf->algorithm = ginf->tlsname = ginf->realname = NULL;
+ }
+ return ret;
+}
+
+static int discover_provider_groups(OSSL_PROVIDER *provider, void *vctx)
+{
+ struct provider_ctx_data_st pgd;
+
+ pgd.ctx = vctx;
+ pgd.provider = provider;
+ return OSSL_PROVIDER_get_capabilities(provider, "TLS-GROUP",
+ add_provider_groups, &pgd);
+}
+
+int ssl_load_groups(SSL_CTX *ctx)
+{
+ if (!OSSL_PROVIDER_do_all(ctx->libctx, discover_provider_groups, ctx))
+ return 0;
+
+ return SSL_CTX_set1_groups_list(ctx, TLS_DEFAULT_GROUP_LIST);
+}
+
+#define TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE 10
+static OSSL_CALLBACK add_provider_sigalgs;
+static int add_provider_sigalgs(const OSSL_PARAM params[], void *data)
+{
+ struct provider_ctx_data_st *pgd = data;
+ SSL_CTX *ctx = pgd->ctx;
+ OSSL_PROVIDER *provider = pgd->provider;
+ const OSSL_PARAM *p;
+ TLS_SIGALG_INFO *sinf = NULL;
+ EVP_KEYMGMT *keymgmt;
+ const char *keytype;
+ unsigned int code_point = 0;
+ int ret = 0;
+
+ if (ctx->sigalg_list_max_len == ctx->sigalg_list_len) {
+ TLS_SIGALG_INFO *tmp = NULL;
+
+ if (ctx->sigalg_list_max_len == 0)
+ tmp = OPENSSL_malloc(sizeof(TLS_SIGALG_INFO)
+ * TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE);
+ else
+ tmp = OPENSSL_realloc(ctx->sigalg_list,
+ (ctx->sigalg_list_max_len
+ + TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE)
+ * sizeof(TLS_SIGALG_INFO));
+ if (tmp == NULL)
+ return 0;
+ ctx->sigalg_list = tmp;
+ memset(tmp + ctx->sigalg_list_max_len, 0,
+ sizeof(TLS_SIGALG_INFO) * TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE);
+ ctx->sigalg_list_max_len += TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE;
+ }
+
+ sinf = &ctx->sigalg_list[ctx->sigalg_list_len];
+
+ /* First, mandatory parameters */
+ p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_NAME);
+ if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
+ ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
+ goto err;
+ }
+ OPENSSL_free(sinf->sigalg_name);
+ sinf->sigalg_name = OPENSSL_strdup(p->data);
+ if (sinf->sigalg_name == NULL)
+ goto err;
+
+ p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_IANA_NAME);
+ if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
+ ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
+ goto err;
+ }
+ OPENSSL_free(sinf->name);
+ sinf->name = OPENSSL_strdup(p->data);
+ if (sinf->name == NULL)
+ goto err;
+
+ p = OSSL_PARAM_locate_const(params,
+ OSSL_CAPABILITY_TLS_SIGALG_CODE_POINT);
+ if (p == NULL
+ || !OSSL_PARAM_get_uint(p, &code_point)
+ || code_point > UINT16_MAX) {
+ ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
+ goto err;
+ }
+ sinf->code_point = (uint16_t)code_point;
+
+ p = OSSL_PARAM_locate_const(params,
+ OSSL_CAPABILITY_TLS_SIGALG_SECURITY_BITS);
+ if (p == NULL || !OSSL_PARAM_get_uint(p, &sinf->secbits)) {
+ ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
+ goto err;
+ }
+
+ /* Now, optional parameters */
+ p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_OID);
+ if (p == NULL) {
+ sinf->sigalg_oid = NULL;
+ } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
+ goto err;
+ } else {
+ OPENSSL_free(sinf->sigalg_oid);
+ sinf->sigalg_oid = OPENSSL_strdup(p->data);
+ if (sinf->sigalg_oid == NULL)
+ goto err;
+ }
+
+ p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_SIG_NAME);
+ if (p == NULL) {
+ sinf->sig_name = NULL;
+ } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
+ goto err;
+ } else {
+ OPENSSL_free(sinf->sig_name);
+ sinf->sig_name = OPENSSL_strdup(p->data);
+ if (sinf->sig_name == NULL)
+ goto err;
+ }
+
+ p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_SIG_OID);
+ if (p == NULL) {
+ sinf->sig_oid = NULL;
+ } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
+ goto err;
+ } else {
+ OPENSSL_free(sinf->sig_oid);
+ sinf->sig_oid = OPENSSL_strdup(p->data);
+ if (sinf->sig_oid == NULL)
+ goto err;
+ }
+
+ p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_HASH_NAME);
+ if (p == NULL) {
+ sinf->hash_name = NULL;
+ } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
+ goto err;
+ } else {
+ OPENSSL_free(sinf->hash_name);
+ sinf->hash_name = OPENSSL_strdup(p->data);
+ if (sinf->hash_name == NULL)
+ goto err;
+ }
+
+ p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_HASH_OID);
+ if (p == NULL) {
+ sinf->hash_oid = NULL;
+ } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
+ goto err;
+ } else {
+ OPENSSL_free(sinf->hash_oid);
+ sinf->hash_oid = OPENSSL_strdup(p->data);
+ if (sinf->hash_oid == NULL)
+ goto err;
+ }
+
+ p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_KEYTYPE);
+ if (p == NULL) {
+ sinf->keytype = NULL;
+ } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
+ goto err;
+ } else {
+ OPENSSL_free(sinf->keytype);
+ sinf->keytype = OPENSSL_strdup(p->data);
+ if (sinf->keytype == NULL)
+ goto err;
+ }
+
+ p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_KEYTYPE_OID);
+ if (p == NULL) {
+ sinf->keytype_oid = NULL;
+ } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
+ goto err;
+ } else {
+ OPENSSL_free(sinf->keytype_oid);
+ sinf->keytype_oid = OPENSSL_strdup(p->data);
+ if (sinf->keytype_oid == NULL)
+ goto err;
+ }
+
+ /* Optional, not documented prior to 3.5 */
+ sinf->mindtls = sinf->maxdtls = -1;
+ p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MIN_DTLS);
+ if (p != NULL && !OSSL_PARAM_get_int(p, &sinf->mindtls)) {
+ ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
+ goto err;
+ }
+ p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MAX_DTLS);
+ if (p != NULL && !OSSL_PARAM_get_int(p, &sinf->maxdtls)) {
+ ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
+ goto err;
+ }
+ /* DTLS version numbers grow downward */
+ if ((sinf->maxdtls != 0) && (sinf->maxdtls != -1) &&
+ ((sinf->maxdtls > sinf->mindtls))) {
+ ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
+ goto err;
+ }
+ /* No provider sigalgs are supported in DTLS, reset after checking. */
+ sinf->mindtls = sinf->maxdtls = -1;
+
+ /* The remaining parameters below are mandatory again */
+ p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MIN_TLS);
+ if (p == NULL || !OSSL_PARAM_get_int(p, &sinf->mintls)) {
+ ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
+ goto err;
+ }
+ p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MAX_TLS);
+ if (p == NULL || !OSSL_PARAM_get_int(p, &sinf->maxtls)) {
+ ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
+ goto err;
+ }
+ if ((sinf->maxtls != 0) && (sinf->maxtls != -1) &&
+ ((sinf->maxtls < sinf->mintls))) {
+ ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
+ goto err;
+ }
+ if ((sinf->mintls != 0) && (sinf->mintls != -1) &&
+ ((sinf->mintls > TLS1_3_VERSION)))
+ sinf->mintls = sinf->maxtls = -1;
+ if ((sinf->maxtls != 0) && (sinf->maxtls != -1) &&
+ ((sinf->maxtls < TLS1_3_VERSION)))
+ sinf->mintls = sinf->maxtls = -1;
+
+ /* Ignore unusable sigalgs */
+ if (sinf->mintls == -1 && sinf->mindtls == -1) {
+ ret = 1;
+ goto err;
+ }
+
+ /*
+ * Now check that the algorithm is actually usable for our property query
+ * string. Regardless of the result we still return success because we have
+ * successfully processed this signature, even though we may decide not to
+ * use it.
+ */
+ ret = 1;
+ ERR_set_mark();
+ keytype = (sinf->keytype != NULL
+ ? sinf->keytype
+ : (sinf->sig_name != NULL
+ ? sinf->sig_name
+ : sinf->sigalg_name));
+ keymgmt = EVP_KEYMGMT_fetch(ctx->libctx, keytype, ctx->propq);
+ if (keymgmt != NULL) {
+ /*
+ * We have successfully fetched the algorithm - however if the provider
+ * doesn't match this one then we ignore it.
+ *
+ * Note: We're cheating a little here. Technically if the same algorithm
+ * is available from more than one provider then it is undefined which
+ * implementation you will get back. Theoretically this could be
+ * different every time...we assume here that you'll always get the
+ * same one back if you repeat the exact same fetch. Is this a reasonable
+ * assumption to make (in which case perhaps we should document this
+ * behaviour)?
+ */
+ if (EVP_KEYMGMT_get0_provider(keymgmt) == provider) {
+ /*
+ * We have a match - so we could use this signature;
+ * Check proper object registration first, though.
+ * Don't care about return value as this may have been
+ * done within providers or previous calls to
+ * add_provider_sigalgs.
+ */
+ OBJ_create(sinf->sigalg_oid, sinf->sigalg_name, NULL);
+ /* sanity check: Without successful registration don't use alg */
+ if ((OBJ_txt2nid(sinf->sigalg_name) == NID_undef) ||
+ (OBJ_nid2obj(OBJ_txt2nid(sinf->sigalg_name)) == NULL)) {
+ ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
+ goto err;
+ }
+ if (sinf->sig_name != NULL)
+ OBJ_create(sinf->sig_oid, sinf->sig_name, NULL);
+ if (sinf->keytype != NULL)
+ OBJ_create(sinf->keytype_oid, sinf->keytype, NULL);
+ if (sinf->hash_name != NULL)
+ OBJ_create(sinf->hash_oid, sinf->hash_name, NULL);
+ OBJ_add_sigid(OBJ_txt2nid(sinf->sigalg_name),
+ (sinf->hash_name != NULL
+ ? OBJ_txt2nid(sinf->hash_name)
+ : NID_undef),
+ OBJ_txt2nid(keytype));
+ ctx->sigalg_list_len++;
+ sinf = NULL;
+ }
+ EVP_KEYMGMT_free(keymgmt);
+ }
+ ERR_pop_to_mark();
+ err:
+ if (sinf != NULL) {
+ OPENSSL_free(sinf->name);
+ sinf->name = NULL;
+ OPENSSL_free(sinf->sigalg_name);
+ sinf->sigalg_name = NULL;
+ OPENSSL_free(sinf->sigalg_oid);
+ sinf->sigalg_oid = NULL;
+ OPENSSL_free(sinf->sig_name);
+ sinf->sig_name = NULL;
+ OPENSSL_free(sinf->sig_oid);
+ sinf->sig_oid = NULL;
+ OPENSSL_free(sinf->hash_name);
+ sinf->hash_name = NULL;
+ OPENSSL_free(sinf->hash_oid);
+ sinf->hash_oid = NULL;
+ OPENSSL_free(sinf->keytype);
+ sinf->keytype = NULL;
+ OPENSSL_free(sinf->keytype_oid);
+ sinf->keytype_oid = NULL;
+ }
+ return ret;
+}
+
+static int discover_provider_sigalgs(OSSL_PROVIDER *provider, void *vctx)
+{
+ struct provider_ctx_data_st pgd;
+
+ pgd.ctx = vctx;
+ pgd.provider = provider;
+ OSSL_PROVIDER_get_capabilities(provider, "TLS-SIGALG",
+ add_provider_sigalgs, &pgd);
+ /*
+ * Always OK, even if provider doesn't support the capability:
+ * Reconsider testing retval when legacy sigalgs are also loaded this way.
+ */
+ return 1;
+}
+
+int ssl_load_sigalgs(SSL_CTX *ctx)
+{
+ size_t i;
+ SSL_CERT_LOOKUP lu;
+
+ if (!OSSL_PROVIDER_do_all(ctx->libctx, discover_provider_sigalgs, ctx))
+ return 0;
+
+ /* now populate ctx->ssl_cert_info */
+ if (ctx->sigalg_list_len > 0) {
+ OPENSSL_free(ctx->ssl_cert_info);
+ ctx->ssl_cert_info = OPENSSL_zalloc(sizeof(lu) * ctx->sigalg_list_len);
+ if (ctx->ssl_cert_info == NULL)
+ return 0;
+ for(i = 0; i < ctx->sigalg_list_len; i++) {
+ ctx->ssl_cert_info[i].nid = OBJ_txt2nid(ctx->sigalg_list[i].sigalg_name);
+ ctx->ssl_cert_info[i].amask = SSL_aANY;
+ }
+ }
+
+ /*
+ * For now, leave it at this: legacy sigalgs stay in their own
+ * data structures until "legacy cleanup" occurs.
+ */
+
+ return 1;
+}
+
+static uint16_t tls1_group_name2id(SSL_CTX *ctx, const char *name)
+{
+ size_t i;
+
+ for (i = 0; i < ctx->group_list_len; i++) {
+ if (OPENSSL_strcasecmp(ctx->group_list[i].tlsname, name) == 0
+ || OPENSSL_strcasecmp(ctx->group_list[i].realname, name) == 0)
+ return ctx->group_list[i].group_id;
+ }
+
+ return 0;
+}
+
+const TLS_GROUP_INFO *tls1_group_id_lookup(SSL_CTX *ctx, uint16_t group_id)
+{
+ size_t i;
+
+ for (i = 0; i < ctx->group_list_len; i++) {
+ if (ctx->group_list[i].group_id == group_id)
+ return &ctx->group_list[i];
+ }
+
+ return NULL;
+}
+
+const char *tls1_group_id2name(SSL_CTX *ctx, uint16_t group_id)
+{
+ const TLS_GROUP_INFO *tls_group_info = tls1_group_id_lookup(ctx, group_id);
+
+ if (tls_group_info == NULL)
+ return NULL;
+
+ return tls_group_info->tlsname;
+}
+
+int tls1_group_id2nid(uint16_t group_id, int include_unknown)
+{
+ size_t i;
+
+ if (group_id == 0)
+ return NID_undef;
+
+ /*
+ * Return well known Group NIDs - for backwards compatibility. This won't
+ * work for groups we don't know about.
+ */
+ for (i = 0; i < OSSL_NELEM(nid_to_group); i++)
+ {
+ if (nid_to_group[i].group_id == group_id)
+ return nid_to_group[i].nid;
+ }
+ if (!include_unknown)
+ return NID_undef;
+ return TLSEXT_nid_unknown | (int)group_id;
+}
+
+uint16_t tls1_nid2group_id(int nid)
+{
+ size_t i;
+
+ /*
+ * Return well known Group ids - for backwards compatibility. This won't
+ * work for groups we don't know about.
+ */
+ for (i = 0; i < OSSL_NELEM(nid_to_group); i++)
+ {
+ if (nid_to_group[i].nid == nid)
+ return nid_to_group[i].group_id;
+ }
+
+ return 0;
+}
+
+/*
+ * Set *pgroups to the supported groups list and *pgroupslen to
+ * the number of groups supported.
+ */
+void tls1_get_supported_groups(SSL_CONNECTION *s, const uint16_t **pgroups,
+ size_t *pgroupslen)
+{
+ SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
+
+ /* For Suite B mode only include P-256, P-384 */
+ switch (tls1_suiteb(s)) {
+ case SSL_CERT_FLAG_SUITEB_128_LOS:
+ *pgroups = suiteb_curves;
+ *pgroupslen = OSSL_NELEM(suiteb_curves);
+ break;
+
+ case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
+ *pgroups = suiteb_curves;
+ *pgroupslen = 1;
+ break;
+
+ case SSL_CERT_FLAG_SUITEB_192_LOS:
+ *pgroups = suiteb_curves + 1;
+ *pgroupslen = 1;
+ break;
+
+ default:
+ if (s->ext.supportedgroups == NULL) {
+ *pgroups = sctx->ext.supportedgroups;
+ *pgroupslen = sctx->ext.supportedgroups_len;
+ } else {
+ *pgroups = s->ext.supportedgroups;
+ *pgroupslen = s->ext.supportedgroups_len;
+ }
+ break;
+ }
+}
+
+/*
+ * Some comments for the function below:
+ * s->ext.supportedgroups == NULL means legacy syntax (no [*,/,-]) from built-in group array.
+ * In this case, we need to send exactly one key share, which MUST be the first (leftmost)
+ * eligible group from the legacy list. Therefore, we provide the entire list of supported
+ * groups in this case.
+ *
+ * A 'flag' to indicate legacy syntax is created by setting the number of key shares to 1,
+ * but the groupID to 0.
+ * The 'flag' is checked right at the beginning in tls_construct_ctos_key_share and either
+ * the "list of requested key share groups" is used, or the "list of supported groups" in
+ * combination with setting add_only_one = 1 is applied.
+ */
+void tls1_get_requested_keyshare_groups(SSL_CONNECTION *s, const uint16_t **pgroups,
+ size_t *pgroupslen)
+{
+ SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
+
+ if (s->ext.supportedgroups == NULL) {
+ *pgroups = sctx->ext.supportedgroups;
+ *pgroupslen = sctx->ext.supportedgroups_len;
+ } else {
+ *pgroups = s->ext.keyshares;
+ *pgroupslen = s->ext.keyshares_len;
+ }
+}
+
+void tls1_get_group_tuples(SSL_CONNECTION *s, const size_t **ptuples,
+ size_t *ptupleslen)
+{
+ SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
+
+ if (s->ext.supportedgroups == NULL) {
+ *ptuples = sctx->ext.tuples;
+ *ptupleslen = sctx->ext.tuples_len;
+ } else {
+ *ptuples = s->ext.tuples;
+ *ptupleslen = s->ext.tuples_len;
+ }
+}
+
+int tls_valid_group(SSL_CONNECTION *s, uint16_t group_id,
+ int minversion, int maxversion,
+ int isec, int *okfortls13)
+{
+ const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(SSL_CONNECTION_GET_CTX(s),
+ group_id);
+ int ret;
+ int group_minversion, group_maxversion;
+
+ if (okfortls13 != NULL)
+ *okfortls13 = 0;
+
+ if (ginfo == NULL)
+ return 0;
+
+ group_minversion = SSL_CONNECTION_IS_DTLS(s) ? ginfo->mindtls : ginfo->mintls;
+ group_maxversion = SSL_CONNECTION_IS_DTLS(s) ? ginfo->maxdtls : ginfo->maxtls;
+
+ if (group_minversion < 0 || group_maxversion < 0)
+ return 0;
+ if (group_maxversion == 0)
+ ret = 1;
+ else
+ ret = (ssl_version_cmp(s, minversion, group_maxversion) <= 0);
+ if (group_minversion > 0)
+ ret &= (ssl_version_cmp(s, maxversion, group_minversion) >= 0);
+
+ if (!SSL_CONNECTION_IS_DTLS(s)) {
+ if (ret && okfortls13 != NULL && maxversion == TLS1_3_VERSION)
+ *okfortls13 = (group_maxversion == 0)
+ || (group_maxversion >= TLS1_3_VERSION);
+ }
+ ret &= !isec
+ || strcmp(ginfo->algorithm, "EC") == 0
+ || strcmp(ginfo->algorithm, "X25519") == 0
+ || strcmp(ginfo->algorithm, "X448") == 0;
+
+ return ret;
+}
+
+/* See if group is allowed by security callback */
+int tls_group_allowed(SSL_CONNECTION *s, uint16_t group, int op)
+{
+ const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(SSL_CONNECTION_GET_CTX(s),
+ group);
+ unsigned char gtmp[2];
+
+ if (ginfo == NULL)
+ return 0;
+
+ gtmp[0] = group >> 8;
+ gtmp[1] = group & 0xff;
+ return ssl_security(s, op, ginfo->secbits,
+ tls1_group_id2nid(ginfo->group_id, 0), (void *)gtmp);
+}
+
+/* Return 1 if "id" is in "list" */
+static int tls1_in_list(uint16_t id, const uint16_t *list, size_t listlen)
+{
+ size_t i;
+ for (i = 0; i < listlen; i++)
+ if (list[i] == id)
+ return 1;
+ return 0;
+}
+
+typedef struct {
+ TLS_GROUP_INFO *grp;
+ size_t ix;
+} TLS_GROUP_IX;
+
+DEFINE_STACK_OF(TLS_GROUP_IX)
+
+static void free_wrapper(TLS_GROUP_IX *a)
+{
+ OPENSSL_free(a);
+}
+
+static int tls_group_ix_cmp(const TLS_GROUP_IX *const *a,
+ const TLS_GROUP_IX *const *b)
+{
+ int idcmpab = (*a)->grp->group_id < (*b)->grp->group_id;
+ int idcmpba = (*b)->grp->group_id < (*a)->grp->group_id;
+ int ixcmpab = (*a)->ix < (*b)->ix;
+ int ixcmpba = (*b)->ix < (*a)->ix;
+
+ /* Ascending by group id */
+ if (idcmpab != idcmpba)
+ return (idcmpba - idcmpab);
+ /* Ascending by original appearance index */
+ return ixcmpba - ixcmpab;
+}
+
+int tls1_get0_implemented_groups(int min_proto_version, int max_proto_version,
+ TLS_GROUP_INFO *grps, size_t num, long all,
+ STACK_OF(OPENSSL_CSTRING) *out)
+{
+ STACK_OF(TLS_GROUP_IX) *collect = NULL;
+ TLS_GROUP_IX *gix;
+ uint16_t id = 0;
+ int ret = 0;
+ size_t ix;
+
+ if (grps == NULL || out == NULL)
+ return 0;
+ if ((collect = sk_TLS_GROUP_IX_new(tls_group_ix_cmp)) == NULL)
+ return 0;
+ for (ix = 0; ix < num; ++ix, ++grps) {
+ if (grps->mintls > 0 && max_proto_version > 0
+ && grps->mintls > max_proto_version)
+ continue;
+ if (grps->maxtls > 0 && min_proto_version > 0
+ && grps->maxtls < min_proto_version)
+ continue;
+
+ if ((gix = OPENSSL_malloc(sizeof(*gix))) == NULL)
+ goto end;
+ gix->grp = grps;
+ gix->ix = ix;
+ if (sk_TLS_GROUP_IX_push(collect, gix) <= 0) {
+ OPENSSL_free(gix);
+ goto end;
+ }
+ }
+
+ sk_TLS_GROUP_IX_sort(collect);
+ num = sk_TLS_GROUP_IX_num(collect);
+ for (ix = 0; ix < num; ++ix) {
+ gix = sk_TLS_GROUP_IX_value(collect, ix);
+ if (!all && gix->grp->group_id == id)
+ continue;
+ id = gix->grp->group_id;
+ if (sk_OPENSSL_CSTRING_push(out, gix->grp->tlsname) <= 0)
+ goto end;
+ }
+ ret = 1;
+
+ end:
+ sk_TLS_GROUP_IX_pop_free(collect, free_wrapper);
+ return ret;
+}
+
+/*-
+ * For nmatch >= 0, return the id of the |nmatch|th shared group or 0
+ * if there is no match.
+ * For nmatch == -1, return number of matches
+ * For nmatch == -2, return the id of the group to use for
+ * a tmp key, or 0 if there is no match.
+ */
+uint16_t tls1_shared_group(SSL_CONNECTION *s, int nmatch)
+{
+ const uint16_t *pref, *supp;
+ size_t num_pref, num_supp, i;
+ int k;
+ SSL_CTX *ctx = SSL_CONNECTION_GET_CTX(s);
+
+ /* Can't do anything on client side */
+ if (s->server == 0)
+ return 0;
+ if (nmatch == -2) {
+ if (tls1_suiteb(s)) {
+ /*
+ * For Suite B ciphersuite determines curve: we already know
+ * these are acceptable due to previous checks.
+ */
+ unsigned long cid = s->s3.tmp.new_cipher->id;
+
+ if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
+ return OSSL_TLS_GROUP_ID_secp256r1;
+ if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
+ return OSSL_TLS_GROUP_ID_secp384r1;
+ /* Should never happen */
+ return 0;
+ }
+ /* If not Suite B just return first preference shared curve */
+ nmatch = 0;
+ }
+ /*
+ * If server preference set, our groups are the preference order
+ * otherwise peer decides.
+ */
+ if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) {
+ tls1_get_supported_groups(s, &pref, &num_pref);
+ tls1_get_peer_groups(s, &supp, &num_supp);
+ } else {
+ tls1_get_peer_groups(s, &pref, &num_pref);
+ tls1_get_supported_groups(s, &supp, &num_supp);
+ }
+
+ for (k = 0, i = 0; i < num_pref; i++) {
+ uint16_t id = pref[i];
+ const TLS_GROUP_INFO *inf;
+ int minversion, maxversion;
+
+ if (!tls1_in_list(id, supp, num_supp)
+ || !tls_group_allowed(s, id, SSL_SECOP_CURVE_SHARED))
+ continue;
+ inf = tls1_group_id_lookup(ctx, id);
+ if (!ossl_assert(inf != NULL))
+ return 0;
+
+ minversion = SSL_CONNECTION_IS_DTLS(s)
+ ? inf->mindtls : inf->mintls;
+ maxversion = SSL_CONNECTION_IS_DTLS(s)
+ ? inf->maxdtls : inf->maxtls;
+ if (maxversion == -1)
+ continue;
+ if ((minversion != 0 && ssl_version_cmp(s, s->version, minversion) < 0)
+ || (maxversion != 0
+ && ssl_version_cmp(s, s->version, maxversion) > 0))
+ continue;
+
+ if (nmatch == k)
+ return id;
+ k++;
+ }
+ if (nmatch == -1)
+ return k;
+ /* Out of range (nmatch > k). */
+ return 0;
+}
+
+int tls1_set_groups(uint16_t **grpext, size_t *grpextlen,
+ uint16_t **ksext, size_t *ksextlen,
+ size_t **tplext, size_t *tplextlen,
+ int *groups, size_t ngroups)
+{
+ uint16_t *glist = NULL, *kslist = NULL;
+ size_t *tpllist = NULL;
+ size_t i;
+ /*
+ * Bitmap of groups included to detect duplicates: two variables are added
+ * to detect duplicates as some values are more than 32.
+ */
+ unsigned long *dup_list = NULL;
+ unsigned long dup_list_egrp = 0;
+ unsigned long dup_list_dhgrp = 0;
+
+ if (ngroups == 0) {
+ ERR_raise(ERR_LIB_SSL, SSL_R_BAD_LENGTH);
+ return 0;
+ }
+ if ((glist = OPENSSL_malloc(ngroups * sizeof(*glist))) == NULL)
+ goto err;
+ if ((kslist = OPENSSL_malloc(1 * sizeof(*kslist))) == NULL)
+ goto err;
+ if ((tpllist = OPENSSL_malloc(1 * sizeof(*tpllist))) == NULL)
+ goto err;
+ for (i = 0; i < ngroups; i++) {
+ unsigned long idmask;
+ uint16_t id;
+ id = tls1_nid2group_id(groups[i]);
+ if ((id & 0x00FF) >= (sizeof(unsigned long) * 8))
+ goto err;
+ idmask = 1L << (id & 0x00FF);
+ dup_list = (id < 0x100) ? &dup_list_egrp : &dup_list_dhgrp;
+ if (!id || ((*dup_list) & idmask))
+ goto err;
+ *dup_list |= idmask;
+ glist[i] = id;
+ }
+ OPENSSL_free(*grpext);
+ OPENSSL_free(*ksext);
+ OPENSSL_free(*tplext);
+ *grpext = glist;
+ *grpextlen = ngroups;
+ kslist[0] = glist[0];
+ *ksext = kslist;
+ *ksextlen = 1;
+ tpllist[0] = ngroups;
+ *tplext = tpllist;
+ *tplextlen = 1;
+ return 1;
+err:
+ OPENSSL_free(glist);
+ OPENSSL_free(kslist);
+ OPENSSL_free(tpllist);
+ return 0;
+}
+
+/*
+ * Definition of DEFAULT[_XYZ] pseudo group names.
+ * A pseudo group name is actually a full list of groups, including prefixes
+ * and or tuple delimiters. It can be hierarchically defined (for potential future use).
+ * IMPORTANT REMARK: For ease of use, in the built-in lists of groups, unknown groups or
+ * groups not backed by a provider will always silently be ignored, even without '?' prefix
+ */
+typedef struct {
+ const char *list_name; /* The name of this pseudo group */
+ const char *group_string; /* The group string of this pseudo group */
+} default_group_string_st; /* (can include '?', '*'. '-', '/' as needed) */
+
+/* Built-in pseudo group-names must start with a (D or d) */
+static const char *DEFAULT_GROUPNAME_FIRST_CHARACTER = "D";
+
+/* The list of all built-in pseudo-group-name structures */
+static const default_group_string_st default_group_strings[] = {
+ {DEFAULT_GROUP_NAME, TLS_DEFAULT_GROUP_LIST},
+ {SUITE_B_GROUP_NAME, SUITE_B_GROUP_LIST}
+};
+
+/*
+ * Some GOST names are not resolved by tls1_group_name2id,
+ * hence we'll check for those manually
+ */
+typedef struct {
+ const char *group_name;
+ uint16_t groupID;
+} name2id_st;
+static const name2id_st name2id_arr[] = {
+ {"GC256A", OSSL_TLS_GROUP_ID_gc256A },
+ {"GC256B", OSSL_TLS_GROUP_ID_gc256B },
+ {"GC256C", OSSL_TLS_GROUP_ID_gc256C },
+ {"GC256D", OSSL_TLS_GROUP_ID_gc256D },
+ {"GC512A", OSSL_TLS_GROUP_ID_gc512A },
+ {"GC512B", OSSL_TLS_GROUP_ID_gc512B },
+ {"GC512C", OSSL_TLS_GROUP_ID_gc512C },
+};
+
+/*
+ * Group list management:
+ * We establish three lists along with their related size counters:
+ * 1) List of (unique) groups
+ * 2) List of number of groups per group-priority-tuple
+ * 3) List of (unique) key share groups
+ */
+#define GROUPLIST_INCREMENT 32 /* Memory allocation chunk size (64 Bytes chunks ~= cache line) */
+#define GROUP_NAME_BUFFER_LENGTH 64 /* Max length of a group name */
+
+/*
+ * Preparation of the prefix used to indicate the desire to send a key share,
+ * the characters used as separators between groups or tuples of groups, the
+ * character to indicate that an unknown group should be ignored, and the
+ * character to indicate that a group should be deleted from a list
+ */
+#ifndef TUPLE_DELIMITER_CHARACTER
+/* The prefix characters to indicate group tuple boundaries */
+# define TUPLE_DELIMITER_CHARACTER '/'
+#endif
+#ifndef GROUP_DELIMITER_CHARACTER
+/* The prefix characters to indicate group tuple boundaries */
+# define GROUP_DELIMITER_CHARACTER ':'
+#endif
+#ifndef IGNORE_UNKNOWN_GROUP_CHARACTER
+/* The prefix character to ignore unknown groups */
+# define IGNORE_UNKNOWN_GROUP_CHARACTER '?'
+#endif
+#ifndef KEY_SHARE_INDICATOR_CHARACTER
+/* The prefix character to trigger a key share addition */
+# define KEY_SHARE_INDICATOR_CHARACTER '*'
+#endif
+#ifndef REMOVE_GROUP_INDICATOR_CHARACTER
+/* The prefix character to trigger a key share removal */
+# define REMOVE_GROUP_INDICATOR_CHARACTER '-'
+#endif
+static const char prefixes[] = {TUPLE_DELIMITER_CHARACTER,
+ GROUP_DELIMITER_CHARACTER,
+ IGNORE_UNKNOWN_GROUP_CHARACTER,
+ KEY_SHARE_INDICATOR_CHARACTER,
+ REMOVE_GROUP_INDICATOR_CHARACTER,
+ '\0'};
+
+/*
+ * High-level description of how group strings are analyzed:
+ * A first call back function (tuple_cb) is used to process group tuples, and a
+ * second callback function (gid_cb) is used to process the groups inside a tuple.
+ * Those callback functions are (indirectly) called by CONF_parse_list with
+ * different separators (nominally ':' or '/'), a variable based on gid_cb_st
+ * is used to keep track of the parsing results between the various calls
+ */
+
+typedef struct {
+ SSL_CTX *ctx;
+ /* Variables to hold the three lists (groups, requested keyshares, tuple structure) */
+ size_t gidmax; /* The memory allocation chunk size for the group IDs */
+ size_t gidcnt; /* Number of groups */
+ uint16_t *gid_arr; /* The IDs of the supported groups (flat list) */
+ size_t tplmax; /* The memory allocation chunk size for the tuple counters */
+ size_t tplcnt; /* Number of tuples */
+ size_t *tuplcnt_arr; /* The number of groups inside a tuple */
+ size_t ksidmax; /* The memory allocation chunk size */
+ size_t ksidcnt; /* Number of key shares */
+ uint16_t *ksid_arr; /* The IDs of the key share groups (flat list) */
+ /* Variable to keep state between execution of callback or helper functions */
+ size_t tuple_mode; /* Keeps track whether tuple_cb called from 'the top' or from gid_cb */
+ int ignore_unknown_default; /* Flag such that unknown groups for DEFAULT[_XYZ] are ignored */
+} gid_cb_st;
+
+/* Forward declaration of tuple callback function */
+static int tuple_cb(const char *tuple, int len, void *arg);
+
+/*
+ * Extract and process the individual groups (and their prefixes if present)
+ * present in a tuple. Note: The argument 'elem' is a NON-\0-terminated string
+ * and must be appended by a \0 if used as \0-terminated string
+ */
+static int gid_cb(const char *elem, int len, void *arg)
+{
+ gid_cb_st *garg = arg;
+ size_t i, j, k;
+ uint16_t gid = 0;
+ int found_group = 0;
+ char etmp[GROUP_NAME_BUFFER_LENGTH];
+ int retval = 1; /* We assume success */
+ char *current_prefix;
+ int ignore_unknown = 0;
+ int add_keyshare = 0;
+ int remove_group = 0;
+ size_t restored_prefix_index = 0;
+ char *restored_default_group_string;
+ int continue_while_loop = 1;
+
+ /* Sanity checks */
+ if (garg == NULL || elem == NULL || len <= 0) {
+ ERR_raise(ERR_LIB_SSL, SSL_R_UNSUPPORTED_CONFIG_VALUE);
+ return 0;
+ }
+
+ /* Check the possible prefixes (remark: Leading and trailing spaces already cleared) */
+ while (continue_while_loop && len > 0
+ && ((current_prefix = strchr(prefixes, elem[0])) != NULL
+ || OPENSSL_strncasecmp(current_prefix = (char *)DEFAULT_GROUPNAME_FIRST_CHARACTER, elem, 1) == 0)) {
+
+ switch (*current_prefix) {
+ case TUPLE_DELIMITER_CHARACTER:
+ /* tuple delimiter not allowed here -> syntax error */
+ return -1;
+ break;
+ case GROUP_DELIMITER_CHARACTER:
+ return -1; /* Not a valid prefix for a single group name-> syntax error */
+ break;
+ case KEY_SHARE_INDICATOR_CHARACTER:
+ if (add_keyshare)
+ return -1; /* Only single key share prefix allowed -> syntax error */
+ add_keyshare = 1;
+ ++elem;
+ --len;
+ break;
+ case REMOVE_GROUP_INDICATOR_CHARACTER:
+ if (remove_group)
+ return -1; /* Only single remove group prefix allowed -> syntax error */
+ remove_group = 1;
+ ++elem;
+ --len;
+ break;
+ case IGNORE_UNKNOWN_GROUP_CHARACTER:
+ if (ignore_unknown)
+ return -1; /* Only single ? allowed -> syntax error */
+ ignore_unknown = 1;
+ ++elem;
+ --len;
+ break;
+ default:
+ /*
+ * Check whether a DEFAULT[_XYZ] 'pseudo group' (= a built-in
+ * list of groups) should be added
+ */
+ for (i = 0; i < OSSL_NELEM(default_group_strings); i++) {
+ if ((size_t)len == (strlen(default_group_strings[i].list_name))
+ && OPENSSL_strncasecmp(default_group_strings[i].list_name, elem, len) == 0) {
+ /*
+ * We're asked to insert an entire list of groups from a
+ * DEFAULT[_XYZ] 'pseudo group' which we do by
+ * recursively calling this function (indirectly via
+ * CONF_parse_list and tuple_cb); essentially, we treat a DEFAULT
+ * group string like a tuple which is appended to the current tuple
+ * rather then starting a new tuple. Variable tuple_mode is the flag which
+ * controls append tuple vs start new tuple.
+ */
+
+ if (ignore_unknown || remove_group)
+ return -1; /* removal or ignore not allowed here -> syntax error */
+
+ /*
+ * First, we restore any keyshare prefix in a new zero-terminated string
+ * (if not already present)
+ */
+ restored_default_group_string = OPENSSL_malloc((1 /* max prefix length */ +
+ strlen(default_group_strings[i].group_string) +
+ 1 /* \0 */) * sizeof(char));
+ if (restored_default_group_string == NULL)
+ return 0;
+ if (add_keyshare
+ /* Remark: we tolerate a duplicated keyshare indicator here */
+ && default_group_strings[i].group_string[0]
+ != KEY_SHARE_INDICATOR_CHARACTER)
+ restored_default_group_string[restored_prefix_index++] =
+ KEY_SHARE_INDICATOR_CHARACTER;
+
+ memcpy(restored_default_group_string + restored_prefix_index,
+ default_group_strings[i].group_string,
+ strlen(default_group_strings[i].group_string));
+ restored_default_group_string[strlen(default_group_strings[i].group_string) +
+ restored_prefix_index] = '\0';
+ /* We execute the recursive call */
+ garg->ignore_unknown_default = 1; /* We ignore unknown groups for DEFAULT_XYZ */
+ /* we enforce group mode (= append tuple) for DEFAULT_XYZ group lists */
+ garg->tuple_mode = 0;
+ /* We use the tuple_cb callback to process the pseudo group tuple */
+ retval = CONF_parse_list(restored_default_group_string,
+ TUPLE_DELIMITER_CHARACTER, 1, tuple_cb, garg);
+ garg->tuple_mode = 1; /* next call to tuple_cb will again start new tuple */
+ garg->ignore_unknown_default = 0; /* reset to original value */
+ /* We don't need the \0-terminated string anymore */
+ OPENSSL_free(restored_default_group_string);
+
+ return retval;
+ }
+ }
+ /*
+ * If we reached this point, a group name started with a 'd' or 'D', but no request
+ * for a DEFAULT[_XYZ] 'pseudo group' was detected, hence processing of the group
+ * name can continue as usual (= the while loop checking prefixes can end)
+ */
+ continue_while_loop = 0;
+ break;
+ }
+ }
+
+ if (len == 0)
+ return -1; /* Seems we have prefxes without a group name -> syntax error */
+
+ if (garg->ignore_unknown_default == 1) /* Always ignore unknown groups for DEFAULT[_XYZ] */
+ ignore_unknown = 1;
+
+ /* Memory management in case more groups are present compared to initial allocation */
+ if (garg->gidcnt == garg->gidmax) {
+ uint16_t *tmp =
+ OPENSSL_realloc(garg->gid_arr,
+ (garg->gidmax + GROUPLIST_INCREMENT) * sizeof(*garg->gid_arr));
+
+ if (tmp == NULL)
+ return 0;
+
+ garg->gidmax += GROUPLIST_INCREMENT;
+ garg->gid_arr = tmp;
+ }
+ /* Memory management for key share groups */
+ if (garg->ksidcnt == garg->ksidmax) {
+ uint16_t *tmp =
+ OPENSSL_realloc(garg->ksid_arr,
+ (garg->ksidmax + GROUPLIST_INCREMENT) * sizeof(*garg->ksid_arr));
+
+ if (tmp == NULL)
+ return 0;
+ garg->ksidmax += GROUPLIST_INCREMENT;
+ garg->ksid_arr = tmp;
+ }
+
+ if (len > (int)(sizeof(etmp) - 1))
+ return -1; /* group name to long -> syntax error */
+
+ /*
+ * Prepare addition or removal of a single group by converting
+ * a group name into its groupID equivalent
+ */
+
+ /* Create a \0-terminated string and get the gid for this group if possible */
+ memcpy(etmp, elem, len);
+ etmp[len] = 0;
+
+ /* Get the groupID */
+ gid = tls1_group_name2id(garg->ctx, etmp);
+ /*
+ * Handle the case where no valid groupID was returned
+ * e.g. for an unknown group, which we'd ignore (only) if relevant prefix was set
+ */
+ if (gid == 0) {
+ /* Is it one of the GOST groups ? */
+ for (i = 0; i < OSSL_NELEM(name2id_arr); i++) {
+ if (OPENSSL_strcasecmp(etmp, name2id_arr[i].group_name) == 0) {
+ gid = name2id_arr[i].groupID;
+ break;
+ }
+ }
+ if (gid == 0) { /* still not found */
+ /* Unknown group - ignore if ignore_unknown; trigger error otherwise */
+ retval = ignore_unknown;
+ goto done;
+ }
+ }
+
+ /* Make sure that at least one provider is supporting this groupID */
+ found_group = 0;
+ for (j = 0; j < garg->ctx->group_list_len; j++)
+ if (garg->ctx->group_list[j].group_id == gid) {
+ found_group = 1;
+ break;
+ }
+
+ /*
+ * No provider supports this group - ignore if
+ * ignore_unknown; trigger error otherwise
+ */
+ if (found_group == 0) {
+ retval = ignore_unknown;
+ goto done;
+ }
+ /* Remove group (and keyshare) from anywhere in the list if present, ignore if not present */
+ if (remove_group) {
+ /* Is the current group specified anywhere in the entire list so far? */
+ found_group = 0;
+ for (i = 0; i < garg->gidcnt; i++)
+ if (garg->gid_arr[i] == gid) {
+ found_group = 1;
+ break;
+ }
+ /* The group to remove is at position i in the list of (zero indexed) groups */
+ if (found_group) {
+ /* We remove that group from its position (which is at i)... */
+ for (j = i; j < (garg->gidcnt - 1); j++)
+ garg->gid_arr[j] = garg->gid_arr[j + 1]; /* ...shift remaining groups left ... */
+ garg->gidcnt--; /* ..and update the book keeping for the number of groups */
+
+ /*
+ * We also must update the number of groups either in a previous tuple (which we
+ * must identify and check whether it becomes empty due to the deletion) or in
+ * the current tuple, pending where the deleted group resides
+ */
+ k = 0;
+ for (j = 0; j < garg->tplcnt; j++) {
+ k += garg->tuplcnt_arr[j];
+ /* Remark: i is zero-indexed, k is one-indexed */
+ if (k > i) { /* remove from one of the previous tuples */
+ garg->tuplcnt_arr[j]--;
+ break; /* We took care not to have group duplicates, hence we can stop here */
+ }
+ }
+ if (k <= i) /* remove from current tuple */
+ garg->tuplcnt_arr[j]--;
+
+ /* We also remove the group from the list of keyshares (if present) */
+ found_group = 0;
+ for (i = 0; i < garg->ksidcnt; i++)
+ if (garg->ksid_arr[i] == gid) {
+ found_group = 1;
+ break;
+ }
+ if (found_group) {
+ /* Found, hence we remove that keyshare from its position (which is at i)... */
+ for (j = i; j < (garg->ksidcnt - 1); j++)
+ garg->ksid_arr[j] = garg->ksid_arr[j + 1]; /* shift remaining key shares */
+ /* ... and update the book keeping */
+ garg->ksidcnt--;
+ }
+ }
+ } else { /* Processing addition of a single new group */
+
+ /* Check for duplicates */
+ for (i = 0; i < garg->gidcnt; i++)
+ if (garg->gid_arr[i] == gid) {
+ /* Duplicate group anywhere in the list of groups - ignore */
+ goto done;
+ }
+
+ /* Add the current group to the 'flat' list of groups */
+ garg->gid_arr[garg->gidcnt++] = gid;
+ /* and update the book keeping for the number of groups in current tuple */
+ garg->tuplcnt_arr[garg->tplcnt]++;
+
+ /* We memorize if needed that we want to add a key share for the current group */
+ if (add_keyshare)
+ garg->ksid_arr[garg->ksidcnt++] = gid;
+ }
+
+done:
+ return retval;
+}
+
+/* Extract and process a tuple of groups */
+static int tuple_cb(const char *tuple, int len, void *arg)
+{
+ gid_cb_st *garg = arg;
+ int retval = 1; /* We assume success */
+ char *restored_tuple_string;
+
+ /* Sanity checks */
+ if (garg == NULL || tuple == NULL || len <= 0) {
+ ERR_raise(ERR_LIB_SSL, SSL_R_UNSUPPORTED_CONFIG_VALUE);
+ return 0;
+ }
+
+ /* Memory management for tuples */
+ if (garg->tplcnt == garg->tplmax) {
+ size_t *tmp =
+ OPENSSL_realloc(garg->tuplcnt_arr,
+ (garg->tplmax + GROUPLIST_INCREMENT) * sizeof(*garg->tuplcnt_arr));
+
+ if (tmp == NULL)
+ return 0;
+ garg->tplmax += GROUPLIST_INCREMENT;
+ garg->tuplcnt_arr = tmp;
+ }
+
+ /* Convert to \0-terminated string */
+ restored_tuple_string = OPENSSL_malloc((len + 1 /* \0 */) * sizeof(char));
+ if (restored_tuple_string == NULL)
+ return 0;
+ memcpy(restored_tuple_string, tuple, len);
+ restored_tuple_string[len] = '\0';
+
+ /* Analyze group list of this tuple */
+ retval = CONF_parse_list(restored_tuple_string, GROUP_DELIMITER_CHARACTER, 1, gid_cb, arg);
+
+ /* We don't need the \o-terminated string anymore */
+ OPENSSL_free(restored_tuple_string);
+
+ if (garg->tuplcnt_arr[garg->tplcnt] > 0) { /* Some valid groups are present in current tuple... */
+ if (garg->tuple_mode) {
+ /* We 'close' the tuple */
+ garg->tplcnt++;
+ garg->tuplcnt_arr[garg->tplcnt] = 0; /* Next tuple is initialized to be empty */
+ garg->tuple_mode = 1; /* next call will start a tuple (unless overridden in gid_cb) */
+ }
+ }
+
+ return retval;
+}
+
+/*
+ * Set groups and prepare generation of keyshares based on a string of groupnames,
+ * names separated by the group or the tuple delimiter, with per-group prefixes to
+ * (1) add a key share for this group, (2) ignore the group if unkown to the current
+ * context, (3) delete a previous occurrence of the group in the current tuple.
+ *
+ * The list parsing is done in two hierachical steps: The top-level step extracts the
+ * string of a tuple using tuple_cb, while the next lower step uses gid_cb to
+ * parse and process the groups inside a tuple
+ */
+int tls1_set_groups_list(SSL_CTX *ctx,
+ uint16_t **grpext, size_t *grpextlen,
+ uint16_t **ksext, size_t *ksextlen,
+ size_t **tplext, size_t *tplextlen,
+ const char *str)
+{
+ size_t i = 0, j;
+ int ret = 0, parse_ret = 0;
+ gid_cb_st gcb;
+
+ /* Sanity check */
+ if (ctx == NULL) {
+ ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_NULL_PARAMETER);
+ return 0;
+ }
+
+ memset(&gcb, 0, sizeof(gcb));
+ gcb.tuple_mode = 1; /* We prepare to collect the first tuple */
+ gcb.ignore_unknown_default = 0;
+ gcb.gidmax = GROUPLIST_INCREMENT;
+ gcb.tplmax = GROUPLIST_INCREMENT;
+ gcb.ksidmax = GROUPLIST_INCREMENT;
+ gcb.ctx = ctx;
+
+ /* Prepare initial chunks of memory for groups, tuples and keyshares groupIDs */
+ gcb.gid_arr = OPENSSL_malloc(gcb.gidmax * sizeof(*gcb.gid_arr));
+ if (gcb.gid_arr == NULL)
+ goto end;
+ gcb.tuplcnt_arr = OPENSSL_malloc(gcb.tplmax * sizeof(*gcb.tuplcnt_arr));
+ if (gcb.tuplcnt_arr == NULL)
+ goto end;
+ gcb.tuplcnt_arr[0] = 0;
+ gcb.ksid_arr = OPENSSL_malloc(gcb.ksidmax * sizeof(*gcb.ksid_arr));
+ if (gcb.ksid_arr == NULL)
+ goto end;
+
+ while (str[0] != '\0' && isspace((unsigned char)*str))
+ str++;
+ if (str[0] == '\0')
+ goto empty_list;
+
+ /*
+ * Start the (potentially recursive) tuple processing by calling CONF_parse_list
+ * with the TUPLE_DELIMITER_CHARACTER (which will call tuple_cb after cleaning spaces)
+ */
+ parse_ret = CONF_parse_list(str, TUPLE_DELIMITER_CHARACTER, 1, tuple_cb, &gcb);
+
+ if (parse_ret == 0)
+ goto end;
+ if (parse_ret == -1) {
+ ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT,
+ "Syntax error in '%s'", str);
+ goto end;
+ }
+
+ /*
+ * We check whether a tuple was completly emptied by using "-" prefix
+ * excessively, in which case we remove the tuple
+ */
+ for (i = j = 0; j < gcb.tplcnt; j++) {
+ if (gcb.tuplcnt_arr[j] == 0)
+ continue;
+ /* If there's a gap, move to first unfilled slot */
+ if (j == i)
+ ++i;
+ else
+ gcb.tuplcnt_arr[i++] = gcb.tuplcnt_arr[j];
+ }
+ gcb.tplcnt = i;
+
+ if (gcb.ksidcnt > OPENSSL_CLIENT_MAX_KEY_SHARES) {
+ ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT,
+ "To many keyshares requested in '%s' (max = %d)",
+ str, OPENSSL_CLIENT_MAX_KEY_SHARES);
+ goto end;
+ }
+
+ /*
+ * For backward compatibility we let the rest of the code know that a key share
+ * for the first valid group should be added if no "*" prefix was used anywhere
+ */
+ if (gcb.gidcnt > 0 && gcb.ksidcnt == 0) {
+ /*
+ * No key share group prefix character was used, hence we indicate that a single
+ * key share should be sent and flag that it should come from the supported_groups list
+ */
+ gcb.ksidcnt = 1;
+ gcb.ksid_arr[0] = 0;
+ }
+
+ empty_list:
+ /*
+ * A call to tls1_set_groups_list with any of the args (other than ctx) set
+ * to NULL only does a syntax check, hence we're done here and report success
+ */
+ if (grpext == NULL || ksext == NULL || tplext == NULL ||
+ grpextlen == NULL || ksextlen == NULL || tplextlen == NULL) {
+ ret = 1;
+ goto end;
+ }
+
+ /*
+ * tuple_cb and gid_cb combo ensures there are no duplicates or unknown groups so we
+ * can just go ahead and set the results (after diposing the existing)
+ */
+ OPENSSL_free(*grpext);
+ *grpext = gcb.gid_arr;
+ *grpextlen = gcb.gidcnt;
+ OPENSSL_free(*ksext);
+ *ksext = gcb.ksid_arr;
+ *ksextlen = gcb.ksidcnt;
+ OPENSSL_free(*tplext);
+ *tplext = gcb.tuplcnt_arr;
+ *tplextlen = gcb.tplcnt;
+
+ return 1;
+
+ end:
+ OPENSSL_free(gcb.gid_arr);
+ OPENSSL_free(gcb.tuplcnt_arr);
+ OPENSSL_free(gcb.ksid_arr);
+ return ret;
+}
+
+/* Check a group id matches preferences */
+int tls1_check_group_id(SSL_CONNECTION *s, uint16_t group_id,
+ int check_own_groups)
+ {
+ const uint16_t *groups;
+ size_t groups_len;
+
+ if (group_id == 0)
+ return 0;
+
+ /* Check for Suite B compliance */
+ if (tls1_suiteb(s) && s->s3.tmp.new_cipher != NULL) {
+ unsigned long cid = s->s3.tmp.new_cipher->id;
+
+ if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) {
+ if (group_id != OSSL_TLS_GROUP_ID_secp256r1)
+ return 0;
+ } else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) {
+ if (group_id != OSSL_TLS_GROUP_ID_secp384r1)
+ return 0;
+ } else {
+ /* Should never happen */
+ return 0;
+ }
+ }
+
+ if (check_own_groups) {
+ /* Check group is one of our preferences */
+ tls1_get_supported_groups(s, &groups, &groups_len);
+ if (!tls1_in_list(group_id, groups, groups_len))
+ return 0;
+ }
+
+ if (!tls_group_allowed(s, group_id, SSL_SECOP_CURVE_CHECK))
+ return 0;
+
+ /* For clients, nothing more to check */
+ if (!s->server)
+ return 1;
+
+ /* Check group is one of peers preferences */
+ tls1_get_peer_groups(s, &groups, &groups_len);
+
+ /*
+ * RFC 4492 does not require the supported elliptic curves extension
+ * so if it is not sent we can just choose any curve.
+ * It is invalid to send an empty list in the supported groups
+ * extension, so groups_len == 0 always means no extension.
+ */
+ if (groups_len == 0)
+ return 1;
+ return tls1_in_list(group_id, groups, groups_len);
+}
+
+void tls1_get_formatlist(SSL_CONNECTION *s, const unsigned char **pformats,
+ size_t *num_formats)
+{
+ /*
+ * If we have a custom point format list use it otherwise use default
+ */
+ if (s->ext.ecpointformats) {
+ *pformats = s->ext.ecpointformats;
+ *num_formats = s->ext.ecpointformats_len;
+ } else {
+ *pformats = ecformats_default;
+ /* For Suite B we don't support char2 fields */
+ if (tls1_suiteb(s))
+ *num_formats = sizeof(ecformats_default) - 1;
+ else
+ *num_formats = sizeof(ecformats_default);
+ }
+}
+
+/* Check a key is compatible with compression extension */
+static int tls1_check_pkey_comp(SSL_CONNECTION *s, EVP_PKEY *pkey)
+{
+ unsigned char comp_id;
+ size_t i;
+ int point_conv;
+
+ /* If not an EC key nothing to check */
+ if (!EVP_PKEY_is_a(pkey, "EC"))
+ return 1;
+
+
+ /* Get required compression id */
+ point_conv = EVP_PKEY_get_ec_point_conv_form(pkey);
+ if (point_conv == 0)
+ return 0;
+ if (point_conv == POINT_CONVERSION_UNCOMPRESSED) {
+ comp_id = TLSEXT_ECPOINTFORMAT_uncompressed;
+ } else if (SSL_CONNECTION_IS_TLS13(s)) {
+ /*
+ * ec_point_formats extension is not used in TLSv1.3 so we ignore
+ * this check.
+ */
+ return 1;
+ } else {
+ int field_type = EVP_PKEY_get_field_type(pkey);
+
+ if (field_type == NID_X9_62_prime_field)
+ comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime;
+ else if (field_type == NID_X9_62_characteristic_two_field)
+ comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2;
+ else
+ return 0;
+ }
+ /*
+ * If point formats extension present check it, otherwise everything is
+ * supported (see RFC4492).
+ */
+ if (s->ext.peer_ecpointformats == NULL)
+ return 1;
+
+ for (i = 0; i < s->ext.peer_ecpointformats_len; i++) {
+ if (s->ext.peer_ecpointformats[i] == comp_id)
+ return 1;
+ }
+ return 0;
+}
+
+/* Return group id of a key */
+static uint16_t tls1_get_group_id(EVP_PKEY *pkey)
+{
+ int curve_nid = ssl_get_EC_curve_nid(pkey);
+
+ if (curve_nid == NID_undef)
+ return 0;
+ return tls1_nid2group_id(curve_nid);
+}
+
+/*
+ * Check cert parameters compatible with extensions: currently just checks EC
+ * certificates have compatible curves and compression.
+ */
+static int tls1_check_cert_param(SSL_CONNECTION *s, X509 *x, int check_ee_md)
+{
+ uint16_t group_id;
+ EVP_PKEY *pkey;
+ pkey = X509_get0_pubkey(x);
+ if (pkey == NULL)
+ return 0;
+ /* If not EC nothing to do */
+ if (!EVP_PKEY_is_a(pkey, "EC"))
+ return 1;
+ /* Check compression */
+ if (!tls1_check_pkey_comp(s, pkey))
+ return 0;
+ group_id = tls1_get_group_id(pkey);
+ /*
+ * For a server we allow the certificate to not be in our list of supported
+ * groups.
+ */
+ if (!tls1_check_group_id(s, group_id, !s->server))
+ return 0;
+ /*
+ * Special case for suite B. We *MUST* sign using SHA256+P-256 or
+ * SHA384+P-384.
+ */
+ if (check_ee_md && tls1_suiteb(s)) {
+ int check_md;
+ size_t i;
+
+ /* Check to see we have necessary signing algorithm */
+ if (group_id == OSSL_TLS_GROUP_ID_secp256r1)
+ check_md = NID_ecdsa_with_SHA256;
+ else if (group_id == OSSL_TLS_GROUP_ID_secp384r1)
+ check_md = NID_ecdsa_with_SHA384;
+ else
+ return 0; /* Should never happen */
+ for (i = 0; i < s->shared_sigalgslen; i++) {
+ if (check_md == s->shared_sigalgs[i]->sigandhash)
+ return 1;
+ }
+ return 0;
+ }
+ return 1;
+}
+
+/*
+ * tls1_check_ec_tmp_key - Check EC temporary key compatibility
+ * @s: SSL connection
+ * @cid: Cipher ID we're considering using
+ *
+ * Checks that the kECDHE cipher suite we're considering using
+ * is compatible with the client extensions.
+ *
+ * Returns 0 when the cipher can't be used or 1 when it can.
+ */
+int tls1_check_ec_tmp_key(SSL_CONNECTION *s, unsigned long cid)
+{
+ /* If not Suite B just need a shared group */
+ if (!tls1_suiteb(s))
+ return tls1_shared_group(s, 0) != 0;
+ /*
+ * If Suite B, AES128 MUST use P-256 and AES256 MUST use P-384, no other
+ * curves permitted.
+ */
+ if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
+ return tls1_check_group_id(s, OSSL_TLS_GROUP_ID_secp256r1, 1);
+ if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
+ return tls1_check_group_id(s, OSSL_TLS_GROUP_ID_secp384r1, 1);
+
+ return 0;
+}
+
+/* Default sigalg schemes */
+static const uint16_t tls12_sigalgs[] = {
+ TLSEXT_SIGALG_mldsa65,
+ TLSEXT_SIGALG_mldsa87,
+ TLSEXT_SIGALG_mldsa44,
+ TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
+ TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
+ TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
+ TLSEXT_SIGALG_ed25519,
+ TLSEXT_SIGALG_ed448,
+ TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256,
+ TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384,
+ TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512,
+
+ TLSEXT_SIGALG_rsa_pss_pss_sha256,
+ TLSEXT_SIGALG_rsa_pss_pss_sha384,
+ TLSEXT_SIGALG_rsa_pss_pss_sha512,
+ TLSEXT_SIGALG_rsa_pss_rsae_sha256,
+ TLSEXT_SIGALG_rsa_pss_rsae_sha384,
+ TLSEXT_SIGALG_rsa_pss_rsae_sha512,
+
+ TLSEXT_SIGALG_rsa_pkcs1_sha256,
+ TLSEXT_SIGALG_rsa_pkcs1_sha384,
+ TLSEXT_SIGALG_rsa_pkcs1_sha512,
+
+ TLSEXT_SIGALG_ecdsa_sha224,
+ TLSEXT_SIGALG_ecdsa_sha1,
+
+ TLSEXT_SIGALG_rsa_pkcs1_sha224,
+ TLSEXT_SIGALG_rsa_pkcs1_sha1,
+
+ TLSEXT_SIGALG_dsa_sha224,
+ TLSEXT_SIGALG_dsa_sha1,
+
+ TLSEXT_SIGALG_dsa_sha256,
+ TLSEXT_SIGALG_dsa_sha384,
+ TLSEXT_SIGALG_dsa_sha512,
+
+#ifndef OPENSSL_NO_GOST
+ TLSEXT_SIGALG_gostr34102012_256_intrinsic,
+ TLSEXT_SIGALG_gostr34102012_512_intrinsic,
+ TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
+ TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
+ TLSEXT_SIGALG_gostr34102001_gostr3411,
+#endif
+};
+
+
+static const uint16_t suiteb_sigalgs[] = {
+ TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
+ TLSEXT_SIGALG_ecdsa_secp384r1_sha384
+};
+
+static const SIGALG_LOOKUP sigalg_lookup_tbl[] = {
+ {TLSEXT_SIGALG_ecdsa_secp256r1_sha256_name,
+ "ECDSA+SHA256", TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
+ NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
+ NID_ecdsa_with_SHA256, NID_X9_62_prime256v1, 1, 0,
+ TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
+ {TLSEXT_SIGALG_ecdsa_secp384r1_sha384_name,
+ "ECDSA+SHA384", TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
+ NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
+ NID_ecdsa_with_SHA384, NID_secp384r1, 1, 0,
+ TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
+ {TLSEXT_SIGALG_ecdsa_secp521r1_sha512_name,
+ "ECDSA+SHA512", TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
+ NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
+ NID_ecdsa_with_SHA512, NID_secp521r1, 1, 0,
+ TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
+
+ {TLSEXT_SIGALG_ed25519_name,
+ NULL, TLSEXT_SIGALG_ed25519,
+ NID_undef, -1, EVP_PKEY_ED25519, SSL_PKEY_ED25519,
+ NID_undef, NID_undef, 1, 0,
+ TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
+ {TLSEXT_SIGALG_ed448_name,
+ NULL, TLSEXT_SIGALG_ed448,
+ NID_undef, -1, EVP_PKEY_ED448, SSL_PKEY_ED448,
+ NID_undef, NID_undef, 1, 0,
+ TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
+
+ {TLSEXT_SIGALG_ecdsa_sha224_name,
+ "ECDSA+SHA224", TLSEXT_SIGALG_ecdsa_sha224,
+ NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
+ NID_ecdsa_with_SHA224, NID_undef, 1, 0,
+ TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
+ {TLSEXT_SIGALG_ecdsa_sha1_name,
+ "ECDSA+SHA1", TLSEXT_SIGALG_ecdsa_sha1,
+ NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
+ NID_ecdsa_with_SHA1, NID_undef, 1, 0,
+ TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
+
+ {TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256_name,
+ TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256_alias,
+ TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256,
+ NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
+ NID_ecdsa_with_SHA256, NID_brainpoolP256r1, 1, 0,
+ TLS1_3_VERSION, 0, -1, -1},
+ {TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384_name,
+ TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384_alias,
+ TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384,
+ NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
+ NID_ecdsa_with_SHA384, NID_brainpoolP384r1, 1, 0,
+ TLS1_3_VERSION, 0, -1, -1},
+ {TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512_name,
+ TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512_alias,
+ TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512,
+ NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
+ NID_ecdsa_with_SHA512, NID_brainpoolP512r1, 1, 0,
+ TLS1_3_VERSION, 0, -1, -1},
+
+ {TLSEXT_SIGALG_rsa_pss_rsae_sha256_name,
+ "PSS+SHA256", TLSEXT_SIGALG_rsa_pss_rsae_sha256,
+ NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
+ NID_undef, NID_undef, 1, 0,
+ TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
+ {TLSEXT_SIGALG_rsa_pss_rsae_sha384_name,
+ "PSS+SHA384", TLSEXT_SIGALG_rsa_pss_rsae_sha384,
+ NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
+ NID_undef, NID_undef, 1, 0,
+ TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
+ {TLSEXT_SIGALG_rsa_pss_rsae_sha512_name,
+ "PSS+SHA512", TLSEXT_SIGALG_rsa_pss_rsae_sha512,
+ NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
+ NID_undef, NID_undef, 1, 0,
+ TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
+
+ {TLSEXT_SIGALG_rsa_pss_pss_sha256_name,
+ NULL, TLSEXT_SIGALG_rsa_pss_pss_sha256,
+ NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
+ NID_undef, NID_undef, 1, 0,
+ TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
+ {TLSEXT_SIGALG_rsa_pss_pss_sha384_name,
+ NULL, TLSEXT_SIGALG_rsa_pss_pss_sha384,
+ NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
+ NID_undef, NID_undef, 1, 0,
+ TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
+ {TLSEXT_SIGALG_rsa_pss_pss_sha512_name,
+ NULL, TLSEXT_SIGALG_rsa_pss_pss_sha512,
+ NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
+ NID_undef, NID_undef, 1, 0,
+ TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
+
+ {TLSEXT_SIGALG_rsa_pkcs1_sha256_name,
+ "RSA+SHA256", TLSEXT_SIGALG_rsa_pkcs1_sha256,
+ NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
+ NID_sha256WithRSAEncryption, NID_undef, 1, 0,
+ TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
+ {TLSEXT_SIGALG_rsa_pkcs1_sha384_name,
+ "RSA+SHA384", TLSEXT_SIGALG_rsa_pkcs1_sha384,
+ NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
+ NID_sha384WithRSAEncryption, NID_undef, 1, 0,
+ TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
+ {TLSEXT_SIGALG_rsa_pkcs1_sha512_name,
+ "RSA+SHA512", TLSEXT_SIGALG_rsa_pkcs1_sha512,
+ NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
+ NID_sha512WithRSAEncryption, NID_undef, 1, 0,
+ TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
+
+ {TLSEXT_SIGALG_rsa_pkcs1_sha224_name,
+ "RSA+SHA224", TLSEXT_SIGALG_rsa_pkcs1_sha224,
+ NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
+ NID_sha224WithRSAEncryption, NID_undef, 1, 0,
+ TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
+ {TLSEXT_SIGALG_rsa_pkcs1_sha1_name,
+ "RSA+SHA1", TLSEXT_SIGALG_rsa_pkcs1_sha1,
+ NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
+ NID_sha1WithRSAEncryption, NID_undef, 1, 0,
+ TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
+
+ {TLSEXT_SIGALG_dsa_sha256_name,
+ "DSA+SHA256", TLSEXT_SIGALG_dsa_sha256,
+ NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
+ NID_dsa_with_SHA256, NID_undef, 1, 0,
+ TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
+ {TLSEXT_SIGALG_dsa_sha384_name,
+ "DSA+SHA384", TLSEXT_SIGALG_dsa_sha384,
+ NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
+ NID_undef, NID_undef, 1, 0,
+ TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
+ {TLSEXT_SIGALG_dsa_sha512_name,
+ "DSA+SHA512", TLSEXT_SIGALG_dsa_sha512,
+ NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
+ NID_undef, NID_undef, 1, 0,
+ TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
+ {TLSEXT_SIGALG_dsa_sha224_name,
+ "DSA+SHA224", TLSEXT_SIGALG_dsa_sha224,
+ NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
+ NID_undef, NID_undef, 1, 0,
+ TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
+ {TLSEXT_SIGALG_dsa_sha1_name,
+ "DSA+SHA1", TLSEXT_SIGALG_dsa_sha1,
+ NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
+ NID_dsaWithSHA1, NID_undef, 1, 0,
+ TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
+
+#ifndef OPENSSL_NO_GOST
+ {TLSEXT_SIGALG_gostr34102012_256_intrinsic_alias, /* RFC9189 */
+ TLSEXT_SIGALG_gostr34102012_256_intrinsic_name,
+ TLSEXT_SIGALG_gostr34102012_256_intrinsic,
+ NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
+ NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
+ NID_undef, NID_undef, 1, 0,
+ TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
+ {TLSEXT_SIGALG_gostr34102012_256_intrinsic_alias, /* RFC9189 */
+ TLSEXT_SIGALG_gostr34102012_256_intrinsic_name,
+ TLSEXT_SIGALG_gostr34102012_512_intrinsic,
+ NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
+ NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
+ NID_undef, NID_undef, 1, 0,
+ TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
+
+ {TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256_name,
+ NULL, TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
+ NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
+ NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
+ NID_undef, NID_undef, 1, 0,
+ TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
+ {TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512_name,
+ NULL, TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
+ NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
+ NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
+ NID_undef, NID_undef, 1, 0,
+ TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
+ {TLSEXT_SIGALG_gostr34102001_gostr3411_name,
+ NULL, TLSEXT_SIGALG_gostr34102001_gostr3411,
+ NID_id_GostR3411_94, SSL_MD_GOST94_IDX,
+ NID_id_GostR3410_2001, SSL_PKEY_GOST01,
+ NID_undef, NID_undef, 1, 0,
+ TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
+#endif
+};
+/* Legacy sigalgs for TLS < 1.2 RSA TLS signatures */
+static const SIGALG_LOOKUP legacy_rsa_sigalg = {
+ "rsa_pkcs1_md5_sha1", NULL, 0,
+ NID_md5_sha1, SSL_MD_MD5_SHA1_IDX,
+ EVP_PKEY_RSA, SSL_PKEY_RSA,
+ NID_undef, NID_undef, 1, 0,
+ TLS1_VERSION, TLS1_2_VERSION, DTLS1_VERSION, DTLS1_2_VERSION
+};
+
+/*
+ * Default signature algorithm values used if signature algorithms not present.
+ * From RFC5246. Note: order must match certificate index order.
+ */
+static const uint16_t tls_default_sigalg[] = {
+ TLSEXT_SIGALG_rsa_pkcs1_sha1, /* SSL_PKEY_RSA */
+ 0, /* SSL_PKEY_RSA_PSS_SIGN */
+ TLSEXT_SIGALG_dsa_sha1, /* SSL_PKEY_DSA_SIGN */
+ TLSEXT_SIGALG_ecdsa_sha1, /* SSL_PKEY_ECC */
+ TLSEXT_SIGALG_gostr34102001_gostr3411, /* SSL_PKEY_GOST01 */
+ TLSEXT_SIGALG_gostr34102012_256_intrinsic, /* SSL_PKEY_GOST12_256 */
+ TLSEXT_SIGALG_gostr34102012_512_intrinsic, /* SSL_PKEY_GOST12_512 */
+ 0, /* SSL_PKEY_ED25519 */
+ 0, /* SSL_PKEY_ED448 */
+};
+
+int ssl_setup_sigalgs(SSL_CTX *ctx)
+{
+ size_t i, cache_idx, sigalgs_len, enabled;
+ const SIGALG_LOOKUP *lu;
+ SIGALG_LOOKUP *cache = NULL;
+ uint16_t *tls12_sigalgs_list = NULL;
+ EVP_PKEY *tmpkey = EVP_PKEY_new();
+ int istls;
+ int ret = 0;
+
+ if (ctx == NULL)
+ goto err;
+
+ istls = !SSL_CTX_IS_DTLS(ctx);
+
+ sigalgs_len = OSSL_NELEM(sigalg_lookup_tbl) + ctx->sigalg_list_len;
+
+ cache = OPENSSL_zalloc(sizeof(const SIGALG_LOOKUP) * sigalgs_len);
+ if (cache == NULL || tmpkey == NULL)
+ goto err;
+
+ tls12_sigalgs_list = OPENSSL_zalloc(sizeof(uint16_t) * sigalgs_len);
+ if (tls12_sigalgs_list == NULL)
+ goto err;
+
+ ERR_set_mark();
+ /* First fill cache and tls12_sigalgs list from legacy algorithm list */
+ for (i = 0, lu = sigalg_lookup_tbl;
+ i < OSSL_NELEM(sigalg_lookup_tbl); lu++, i++) {
+ EVP_PKEY_CTX *pctx;
+
+ cache[i] = *lu;
+
+ /*
+ * Check hash is available.
+ * This test is not perfect. A provider could have support
+ * for a signature scheme, but not a particular hash. However the hash
+ * could be available from some other loaded provider. In that case it
+ * could be that the signature is available, and the hash is available
+ * independently - but not as a combination. We ignore this for now.
+ */
+ if (lu->hash != NID_undef
+ && ctx->ssl_digest_methods[lu->hash_idx] == NULL) {
+ cache[i].available = 0;
+ continue;
+ }
+
+ if (!EVP_PKEY_set_type(tmpkey, lu->sig)) {
+ cache[i].available = 0;
+ continue;
+ }
+ pctx = EVP_PKEY_CTX_new_from_pkey(ctx->libctx, tmpkey, ctx->propq);
+ /* If unable to create pctx we assume the sig algorithm is unavailable */
+ if (pctx == NULL)
+ cache[i].available = 0;
+ EVP_PKEY_CTX_free(pctx);
+ }
+
+ /* Now complete cache and tls12_sigalgs list with provider sig information */
+ cache_idx = OSSL_NELEM(sigalg_lookup_tbl);
+ for (i = 0; i < ctx->sigalg_list_len; i++) {
+ TLS_SIGALG_INFO si = ctx->sigalg_list[i];
+ cache[cache_idx].name = si.name;
+ cache[cache_idx].name12 = si.sigalg_name;
+ cache[cache_idx].sigalg = si.code_point;
+ tls12_sigalgs_list[cache_idx] = si.code_point;
+ cache[cache_idx].hash = si.hash_name?OBJ_txt2nid(si.hash_name):NID_undef;
+ cache[cache_idx].hash_idx = ssl_get_md_idx(cache[cache_idx].hash);
+ cache[cache_idx].sig = OBJ_txt2nid(si.sigalg_name);
+ cache[cache_idx].sig_idx = i + SSL_PKEY_NUM;
+ cache[cache_idx].sigandhash = OBJ_txt2nid(si.sigalg_name);
+ cache[cache_idx].curve = NID_undef;
+ cache[cache_idx].mintls = TLS1_3_VERSION;
+ cache[cache_idx].maxtls = TLS1_3_VERSION;
+ cache[cache_idx].mindtls = -1;
+ cache[cache_idx].maxdtls = -1;
+ /* Compatibility with TLS 1.3 is checked on load */
+ cache[cache_idx].available = istls;
+ cache[cache_idx].advertise = 0;
+ cache_idx++;
+ }
+ ERR_pop_to_mark();
+
+ enabled = 0;
+ for (i = 0; i < OSSL_NELEM(tls12_sigalgs); ++i) {
+ SIGALG_LOOKUP *ent = cache;
+ size_t j;
+
+ for (j = 0; j < sigalgs_len; ent++, j++) {
+ if (ent->sigalg != tls12_sigalgs[i])
+ continue;
+ /* Dedup by marking cache entry as default enabled. */
+ if (ent->available && !ent->advertise) {
+ ent->advertise = 1;
+ tls12_sigalgs_list[enabled++] = tls12_sigalgs[i];
+ }
+ break;
+ }
+ }
+
+ /* Append any provider sigalgs not yet handled */
+ for (i = OSSL_NELEM(sigalg_lookup_tbl); i < sigalgs_len; ++i) {
+ SIGALG_LOOKUP *ent = &cache[i];
+
+ if (ent->available && !ent->advertise)
+ tls12_sigalgs_list[enabled++] = ent->sigalg;
+ }
+
+ ctx->sigalg_lookup_cache = cache;
+ ctx->sigalg_lookup_cache_len = sigalgs_len;
+ ctx->tls12_sigalgs = tls12_sigalgs_list;
+ ctx->tls12_sigalgs_len = enabled;
+ cache = NULL;
+ tls12_sigalgs_list = NULL;
+
+ ret = 1;
+ err:
+ OPENSSL_free(cache);
+ OPENSSL_free(tls12_sigalgs_list);
+ EVP_PKEY_free(tmpkey);
+ return ret;
+}
+
+#define SIGLEN_BUF_INCREMENT 100
+
+char *SSL_get1_builtin_sigalgs(OSSL_LIB_CTX *libctx)
+{
+ size_t i, maxretlen = SIGLEN_BUF_INCREMENT;
+ const SIGALG_LOOKUP *lu;
+ EVP_PKEY *tmpkey = EVP_PKEY_new();
+ char *retval = OPENSSL_malloc(maxretlen);
+
+ if (retval == NULL)
+ return NULL;
+
+ /* ensure retval string is NUL terminated */
+ retval[0] = (char)0;
+
+ for (i = 0, lu = sigalg_lookup_tbl;
+ i < OSSL_NELEM(sigalg_lookup_tbl); lu++, i++) {
+ EVP_PKEY_CTX *pctx;
+ int enabled = 1;
+
+ ERR_set_mark();
+ /* Check hash is available in some provider. */
+ if (lu->hash != NID_undef) {
+ EVP_MD *hash = EVP_MD_fetch(libctx, OBJ_nid2ln(lu->hash), NULL);
+
+ /* If unable to create we assume the hash algorithm is unavailable */
+ if (hash == NULL) {
+ enabled = 0;
+ ERR_pop_to_mark();
+ continue;
+ }
+ EVP_MD_free(hash);
+ }
+
+ if (!EVP_PKEY_set_type(tmpkey, lu->sig)) {
+ enabled = 0;
+ ERR_pop_to_mark();
+ continue;
+ }
+ pctx = EVP_PKEY_CTX_new_from_pkey(libctx, tmpkey, NULL);
+ /* If unable to create pctx we assume the sig algorithm is unavailable */
+ if (pctx == NULL)
+ enabled = 0;
+ ERR_pop_to_mark();
+ EVP_PKEY_CTX_free(pctx);
+
+ if (enabled) {
+ const char *sa = lu->name;
+
+ if (sa != NULL) {
+ if (strlen(sa) + strlen(retval) + 1 >= maxretlen) {
+ char *tmp;
+
+ maxretlen += SIGLEN_BUF_INCREMENT;
+ tmp = OPENSSL_realloc(retval, maxretlen);
+ if (tmp == NULL) {
+ OPENSSL_free(retval);
+ return NULL;
+ }
+ retval = tmp;
+ }
+ if (strlen(retval) > 0)
+ OPENSSL_strlcat(retval, ":", maxretlen);
+ OPENSSL_strlcat(retval, sa, maxretlen);
+ } else {
+ /* lu->name must not be NULL */
+ ERR_raise(ERR_LIB_SSL, ERR_R_INTERNAL_ERROR);
+ }
+ }
+ }
+
+ EVP_PKEY_free(tmpkey);
+ return retval;
+}
+
+/* Lookup TLS signature algorithm */
+static const SIGALG_LOOKUP *tls1_lookup_sigalg(const SSL_CTX *ctx,
+ uint16_t sigalg)
+{
+ size_t i;
+ const SIGALG_LOOKUP *lu = ctx->sigalg_lookup_cache;
+
+ for (i = 0; i < ctx->sigalg_lookup_cache_len; lu++, i++) {
+ if (lu->sigalg == sigalg) {
+ if (!lu->available)
+ return NULL;
+ return lu;
+ }
+ }
+ return NULL;
+}
+
+/* Lookup hash: return 0 if invalid or not enabled */
+int tls1_lookup_md(SSL_CTX *ctx, const SIGALG_LOOKUP *lu, const EVP_MD **pmd)
+{
+ const EVP_MD *md;
+
+ if (lu == NULL)
+ return 0;
+ /* lu->hash == NID_undef means no associated digest */
+ if (lu->hash == NID_undef) {
+ md = NULL;
+ } else {
+ md = ssl_md(ctx, lu->hash_idx);
+ if (md == NULL)
+ return 0;
+ }
+ if (pmd)
+ *pmd = md;
+ return 1;
+}
+
+/*
+ * Check if key is large enough to generate RSA-PSS signature.
+ *
+ * The key must greater than or equal to 2 * hash length + 2.
+ * SHA512 has a hash length of 64 bytes, which is incompatible
+ * with a 128 byte (1024 bit) key.
+ */
+#define RSA_PSS_MINIMUM_KEY_SIZE(md) (2 * EVP_MD_get_size(md) + 2)
+static int rsa_pss_check_min_key_size(SSL_CTX *ctx, const EVP_PKEY *pkey,
+ const SIGALG_LOOKUP *lu)
+{
+ const EVP_MD *md;
+
+ if (pkey == NULL)
+ return 0;
+ if (!tls1_lookup_md(ctx, lu, &md) || md == NULL)
+ return 0;
+ if (EVP_MD_get_size(md) <= 0)
+ return 0;
+ if (EVP_PKEY_get_size(pkey) < RSA_PSS_MINIMUM_KEY_SIZE(md))
+ return 0;
+ return 1;
+}
+
+/*
+ * Returns a signature algorithm when the peer did not send a list of supported
+ * signature algorithms. The signature algorithm is fixed for the certificate
+ * type. |idx| is a certificate type index (SSL_PKEY_*). When |idx| is -1 the
+ * certificate type from |s| will be used.
+ * Returns the signature algorithm to use, or NULL on error.
+ */
+static const SIGALG_LOOKUP *tls1_get_legacy_sigalg(const SSL_CONNECTION *s,
+ int idx)
+{
+ if (idx == -1) {
+ if (s->server) {
+ size_t i;
+
+ /* Work out index corresponding to ciphersuite */
+ for (i = 0; i < s->ssl_pkey_num; i++) {
+ const SSL_CERT_LOOKUP *clu
+ = ssl_cert_lookup_by_idx(i, SSL_CONNECTION_GET_CTX(s));
+
+ if (clu == NULL)
+ continue;
+ if (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) {
+ idx = i;
+ break;
+ }
+ }
+
+ /*
+ * Some GOST ciphersuites allow more than one signature algorithms
+ * */
+ if (idx == SSL_PKEY_GOST01 && s->s3.tmp.new_cipher->algorithm_auth != SSL_aGOST01) {
+ int real_idx;
+
+ for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST01;
+ real_idx--) {
+ if (s->cert->pkeys[real_idx].privatekey != NULL) {
+ idx = real_idx;
+ break;
+ }
+ }
+ }
+ /*
+ * As both SSL_PKEY_GOST12_512 and SSL_PKEY_GOST12_256 indices can be used
+ * with new (aGOST12-only) ciphersuites, we should find out which one is available really.
+ */
+ else if (idx == SSL_PKEY_GOST12_256) {
+ int real_idx;
+
+ for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST12_256;
+ real_idx--) {
+ if (s->cert->pkeys[real_idx].privatekey != NULL) {
+ idx = real_idx;
+ break;
+ }
+ }
+ }
+ } else {
+ idx = s->cert->key - s->cert->pkeys;
+ }
+ }
+ if (idx < 0 || idx >= (int)OSSL_NELEM(tls_default_sigalg))
+ return NULL;
+
+ if (SSL_USE_SIGALGS(s) || idx != SSL_PKEY_RSA) {
+ const SIGALG_LOOKUP *lu =
+ tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s),
+ tls_default_sigalg[idx]);
+
+ if (lu == NULL)
+ return NULL;
+ if (!tls1_lookup_md(SSL_CONNECTION_GET_CTX(s), lu, NULL))
+ return NULL;
+ if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
+ return NULL;
+ return lu;
+ }
+ if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, &legacy_rsa_sigalg))
+ return NULL;
+ return &legacy_rsa_sigalg;
+}
+/* Set peer sigalg based key type */
+int tls1_set_peer_legacy_sigalg(SSL_CONNECTION *s, const EVP_PKEY *pkey)
+{
+ size_t idx;
+ const SIGALG_LOOKUP *lu;
+
+ if (ssl_cert_lookup_by_pkey(pkey, &idx, SSL_CONNECTION_GET_CTX(s)) == NULL)
+ return 0;
+ lu = tls1_get_legacy_sigalg(s, idx);
+ if (lu == NULL)
+ return 0;
+ s->s3.tmp.peer_sigalg = lu;
+ return 1;
+}
+
+size_t tls12_get_psigalgs(SSL_CONNECTION *s, int sent, const uint16_t **psigs)
+{
+ /*
+ * If Suite B mode use Suite B sigalgs only, ignore any other
+ * preferences.
+ */
+ switch (tls1_suiteb(s)) {
+ case SSL_CERT_FLAG_SUITEB_128_LOS:
+ *psigs = suiteb_sigalgs;
+ return OSSL_NELEM(suiteb_sigalgs);
+
+ case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
+ *psigs = suiteb_sigalgs;
+ return 1;
+
+ case SSL_CERT_FLAG_SUITEB_192_LOS:
+ *psigs = suiteb_sigalgs + 1;
+ return 1;
+ }
+ /*
+ * We use client_sigalgs (if not NULL) if we're a server
+ * and sending a certificate request or if we're a client and
+ * determining which shared algorithm to use.
+ */
+ if ((s->server == sent) && s->cert->client_sigalgs != NULL) {
+ *psigs = s->cert->client_sigalgs;
+ return s->cert->client_sigalgslen;
+ } else if (s->cert->conf_sigalgs) {
+ *psigs = s->cert->conf_sigalgs;
+ return s->cert->conf_sigalgslen;
+ } else {
+ *psigs = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs;
+ return SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs_len;
+ }
+}
+
+/*
+ * Called by servers only. Checks that we have a sig alg that supports the
+ * specified EC curve.
+ */
+int tls_check_sigalg_curve(const SSL_CONNECTION *s, int curve)
+{
+ const uint16_t *sigs;
+ size_t siglen, i;
+
+ if (s->cert->conf_sigalgs) {
+ sigs = s->cert->conf_sigalgs;
+ siglen = s->cert->conf_sigalgslen;
+ } else {
+ sigs = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs;
+ siglen = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs_len;
+ }
+
+ for (i = 0; i < siglen; i++) {
+ const SIGALG_LOOKUP *lu =
+ tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), sigs[i]);
+
+ if (lu == NULL)
+ continue;
+ if (lu->sig == EVP_PKEY_EC
+ && lu->curve != NID_undef
+ && curve == lu->curve)
+ return 1;
+ }
+
+ return 0;
+}
+
+/*
+ * Return the number of security bits for the signature algorithm, or 0 on
+ * error.
+ */
+static int sigalg_security_bits(SSL_CTX *ctx, const SIGALG_LOOKUP *lu)
+{
+ const EVP_MD *md = NULL;
+ int secbits = 0;
+
+ if (!tls1_lookup_md(ctx, lu, &md))
+ return 0;
+ if (md != NULL)
+ {
+ int md_type = EVP_MD_get_type(md);
+
+ /* Security bits: half digest bits */
+ secbits = EVP_MD_get_size(md) * 4;
+ if (secbits <= 0)
+ return 0;
+ /*
+ * SHA1 and MD5 are known to be broken. Reduce security bits so that
+ * they're no longer accepted at security level 1. The real values don't
+ * really matter as long as they're lower than 80, which is our
+ * security level 1.
+ * https://eprint.iacr.org/2020/014 puts a chosen-prefix attack for
+ * SHA1 at 2^63.4 and MD5+SHA1 at 2^67.2
+ * https://documents.epfl.ch/users/l/le/lenstra/public/papers/lat.pdf
+ * puts a chosen-prefix attack for MD5 at 2^39.
+ */
+ if (md_type == NID_sha1)
+ secbits = 64;
+ else if (md_type == NID_md5_sha1)
+ secbits = 67;
+ else if (md_type == NID_md5)
+ secbits = 39;
+ } else {
+ /* Values from https://tools.ietf.org/html/rfc8032#section-8.5 */
+ if (lu->sigalg == TLSEXT_SIGALG_ed25519)
+ secbits = 128;
+ else if (lu->sigalg == TLSEXT_SIGALG_ed448)
+ secbits = 224;
+ }
+ /*
+ * For provider-based sigalgs we have secbits information available
+ * in the (provider-loaded) sigalg_list structure
+ */
+ if ((secbits == 0) && (lu->sig_idx >= SSL_PKEY_NUM)
+ && ((lu->sig_idx - SSL_PKEY_NUM) < (int)ctx->sigalg_list_len)) {
+ secbits = ctx->sigalg_list[lu->sig_idx - SSL_PKEY_NUM].secbits;
+ }
+ return secbits;
+}
+
+static int tls_sigalg_compat(SSL_CONNECTION *sc, const SIGALG_LOOKUP *lu)
+{
+ int minversion, maxversion;
+ int minproto, maxproto;
+
+ if (!lu->available)
+ return 0;
+
+ if (SSL_CONNECTION_IS_DTLS(sc)) {
+ if (sc->ssl.method->version == DTLS_ANY_VERSION) {
+ minproto = sc->min_proto_version;
+ maxproto = sc->max_proto_version;
+ } else {
+ maxproto = minproto = sc->version;
+ }
+ minversion = lu->mindtls;
+ maxversion = lu->maxdtls;
+ } else {
+ if (sc->ssl.method->version == TLS_ANY_VERSION) {
+ minproto = sc->min_proto_version;
+ maxproto = sc->max_proto_version;
+ } else {
+ maxproto = minproto = sc->version;
+ }
+ minversion = lu->mintls;
+ maxversion = lu->maxtls;
+ }
+ if (minversion == -1 || maxversion == -1
+ || (minversion != 0 && maxproto != 0
+ && ssl_version_cmp(sc, minversion, maxproto) > 0)
+ || (maxversion != 0 && minproto != 0
+ && ssl_version_cmp(sc, maxversion, minproto) < 0)
+ || !tls12_sigalg_allowed(sc, SSL_SECOP_SIGALG_SUPPORTED, lu))
+ return 0;
+ return 1;
+}
+
+/*
+ * Check signature algorithm is consistent with sent supported signature
+ * algorithms and if so set relevant digest and signature scheme in
+ * s.
+ */
+int tls12_check_peer_sigalg(SSL_CONNECTION *s, uint16_t sig, EVP_PKEY *pkey)
+{
+ const uint16_t *sent_sigs;
+ const EVP_MD *md = NULL;
+ char sigalgstr[2];
+ size_t sent_sigslen, i, cidx;
+ int pkeyid = -1;
+ const SIGALG_LOOKUP *lu;
+ int secbits = 0;
+
+ pkeyid = EVP_PKEY_get_id(pkey);
+
+ if (SSL_CONNECTION_IS_TLS13(s)) {
+ /* Disallow DSA for TLS 1.3 */
+ if (pkeyid == EVP_PKEY_DSA) {
+ SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
+ return 0;
+ }
+ /* Only allow PSS for TLS 1.3 */
+ if (pkeyid == EVP_PKEY_RSA)
+ pkeyid = EVP_PKEY_RSA_PSS;
+ }
+
+ /* Is this code point available and compatible with the protocol */
+ lu = tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), sig);
+ if (lu == NULL || !tls_sigalg_compat(s, lu)) {
+ SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
+ return 0;
+ }
+
+ /* if this sigalg is loaded, set so far unknown pkeyid to its sig NID */
+ if (pkeyid == EVP_PKEY_KEYMGMT)
+ pkeyid = lu->sig;
+
+ /* Should never happen */
+ if (pkeyid == -1) {
+ SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
+ return -1;
+ }
+
+ /*
+ * Check sigalgs is known. Disallow SHA1/SHA224 with TLS 1.3. Check key type
+ * is consistent with signature: RSA keys can be used for RSA-PSS
+ */
+ if ((SSL_CONNECTION_IS_TLS13(s)
+ && (lu->hash == NID_sha1 || lu->hash == NID_sha224))
+ || (pkeyid != lu->sig
+ && (lu->sig != EVP_PKEY_RSA_PSS || pkeyid != EVP_PKEY_RSA))) {
+ SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
+ return 0;
+ }
+ /* Check the sigalg is consistent with the key OID */
+ if (!ssl_cert_lookup_by_nid(
+ (pkeyid == EVP_PKEY_RSA_PSS) ? EVP_PKEY_get_id(pkey) : pkeyid,
+ &cidx, SSL_CONNECTION_GET_CTX(s))
+ || lu->sig_idx != (int)cidx) {
+ SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
+ return 0;
+ }
+
+ if (pkeyid == EVP_PKEY_EC) {
+
+ /* Check point compression is permitted */
+ if (!tls1_check_pkey_comp(s, pkey)) {
+ SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
+ SSL_R_ILLEGAL_POINT_COMPRESSION);
+ return 0;
+ }
+
+ /* For TLS 1.3 or Suite B check curve matches signature algorithm */
+ if (SSL_CONNECTION_IS_TLS13(s) || tls1_suiteb(s)) {
+ int curve = ssl_get_EC_curve_nid(pkey);
+
+ if (lu->curve != NID_undef && curve != lu->curve) {
+ SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);
+ return 0;
+ }
+ }
+ if (!SSL_CONNECTION_IS_TLS13(s)) {
+ /* Check curve matches extensions */
+ if (!tls1_check_group_id(s, tls1_get_group_id(pkey), 1)) {
+ SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);
+ return 0;
+ }
+ if (tls1_suiteb(s)) {
+ /* Check sigalg matches a permissible Suite B value */
+ if (sig != TLSEXT_SIGALG_ecdsa_secp256r1_sha256
+ && sig != TLSEXT_SIGALG_ecdsa_secp384r1_sha384) {
+ SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
+ SSL_R_WRONG_SIGNATURE_TYPE);
+ return 0;
+ }
+ }
+ }
+ } else if (tls1_suiteb(s)) {
+ SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
+ return 0;
+ }
+
+ /* Check signature matches a type we sent */
+ sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
+ for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
+ if (sig == *sent_sigs)
+ break;
+ }
+ /* Allow fallback to SHA1 if not strict mode */
+ if (i == sent_sigslen && (lu->hash != NID_sha1
+ || s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)) {
+ SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
+ return 0;
+ }
+ if (!tls1_lookup_md(SSL_CONNECTION_GET_CTX(s), lu, &md)) {
+ SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_UNKNOWN_DIGEST);
+ return 0;
+ }
+ /*
+ * Make sure security callback allows algorithm. For historical
+ * reasons we have to pass the sigalg as a two byte char array.
+ */
+ sigalgstr[0] = (sig >> 8) & 0xff;
+ sigalgstr[1] = sig & 0xff;
+ secbits = sigalg_security_bits(SSL_CONNECTION_GET_CTX(s), lu);
+ if (secbits == 0 ||
+ !ssl_security(s, SSL_SECOP_SIGALG_CHECK, secbits,
+ md != NULL ? EVP_MD_get_type(md) : NID_undef,
+ (void *)sigalgstr)) {
+ SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
+ return 0;
+ }
+ /* Store the sigalg the peer uses */
+ s->s3.tmp.peer_sigalg = lu;
+ return 1;
+}
+
+int SSL_get_peer_signature_type_nid(const SSL *s, int *pnid)
+{
+ const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s);
+
+ if (sc == NULL)
+ return 0;
+
+ if (sc->s3.tmp.peer_sigalg == NULL)
+ return 0;
+ *pnid = sc->s3.tmp.peer_sigalg->sig;
+ return 1;
+}
+
+int SSL_get_signature_type_nid(const SSL *s, int *pnid)
+{
+ const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s);
+
+ if (sc == NULL)
+ return 0;
+
+ if (sc->s3.tmp.sigalg == NULL)
+ return 0;
+ *pnid = sc->s3.tmp.sigalg->sig;
+ return 1;
+}
+
+/*
+ * Set a mask of disabled algorithms: an algorithm is disabled if it isn't
+ * supported, doesn't appear in supported signature algorithms, isn't supported
+ * by the enabled protocol versions or by the security level.
+ *
+ * This function should only be used for checking which ciphers are supported
+ * by the client.
+ *
+ * Call ssl_cipher_disabled() to check that it's enabled or not.
+ */
+int ssl_set_client_disabled(SSL_CONNECTION *s)
+{
+ s->s3.tmp.mask_a = 0;
+ s->s3.tmp.mask_k = 0;
+ ssl_set_sig_mask(&s->s3.tmp.mask_a, s, SSL_SECOP_SIGALG_MASK);
+ if (ssl_get_min_max_version(s, &s->s3.tmp.min_ver,
+ &s->s3.tmp.max_ver, NULL) != 0)
+ return 0;
+#ifndef OPENSSL_NO_PSK
+ /* with PSK there must be client callback set */
+ if (!s->psk_client_callback) {
+ s->s3.tmp.mask_a |= SSL_aPSK;
+ s->s3.tmp.mask_k |= SSL_PSK;
+ }
+#endif /* OPENSSL_NO_PSK */
+#ifndef OPENSSL_NO_SRP
+ if (!(s->srp_ctx.srp_Mask & SSL_kSRP)) {
+ s->s3.tmp.mask_a |= SSL_aSRP;
+ s->s3.tmp.mask_k |= SSL_kSRP;
+ }
+#endif
+ return 1;
+}
+
+/*
+ * ssl_cipher_disabled - check that a cipher is disabled or not
+ * @s: SSL connection that you want to use the cipher on
+ * @c: cipher to check
+ * @op: Security check that you want to do
+ * @ecdhe: If set to 1 then TLSv1 ECDHE ciphers are also allowed in SSLv3
+ *
+ * Returns 1 when it's disabled, 0 when enabled.
+ */
+int ssl_cipher_disabled(const SSL_CONNECTION *s, const SSL_CIPHER *c,
+ int op, int ecdhe)
+{
+ int minversion = SSL_CONNECTION_IS_DTLS(s) ? c->min_dtls : c->min_tls;
+ int maxversion = SSL_CONNECTION_IS_DTLS(s) ? c->max_dtls : c->max_tls;
+
+ if (c->algorithm_mkey & s->s3.tmp.mask_k
+ || c->algorithm_auth & s->s3.tmp.mask_a)
+ return 1;
+ if (s->s3.tmp.max_ver == 0)
+ return 1;
+
+ if (SSL_IS_QUIC_INT_HANDSHAKE(s))
+ /* For QUIC, only allow these ciphersuites. */
+ switch (SSL_CIPHER_get_id(c)) {
+ case TLS1_3_CK_AES_128_GCM_SHA256:
+ case TLS1_3_CK_AES_256_GCM_SHA384:
+ case TLS1_3_CK_CHACHA20_POLY1305_SHA256:
+ break;
+ default:
+ return 1;
+ }
+
+ /*
+ * For historical reasons we will allow ECHDE to be selected by a server
+ * in SSLv3 if we are a client
+ */
+ if (minversion == TLS1_VERSION
+ && ecdhe
+ && (c->algorithm_mkey & (SSL_kECDHE | SSL_kECDHEPSK)) != 0)
+ minversion = SSL3_VERSION;
+
+ if (ssl_version_cmp(s, minversion, s->s3.tmp.max_ver) > 0
+ || ssl_version_cmp(s, maxversion, s->s3.tmp.min_ver) < 0)
+ return 1;
+
+ return !ssl_security(s, op, c->strength_bits, 0, (void *)c);
+}
+
+int tls_use_ticket(SSL_CONNECTION *s)
+{
+ if ((s->options & SSL_OP_NO_TICKET))
+ return 0;
+ return ssl_security(s, SSL_SECOP_TICKET, 0, 0, NULL);
+}
+
+int tls1_set_server_sigalgs(SSL_CONNECTION *s)
+{
+ size_t i;
+
+ /* Clear any shared signature algorithms */
+ OPENSSL_free(s->shared_sigalgs);
+ s->shared_sigalgs = NULL;
+ s->shared_sigalgslen = 0;
+
+ /* Clear certificate validity flags */
+ if (s->s3.tmp.valid_flags)
+ memset(s->s3.tmp.valid_flags, 0, s->ssl_pkey_num * sizeof(uint32_t));
+ else
+ s->s3.tmp.valid_flags = OPENSSL_zalloc(s->ssl_pkey_num * sizeof(uint32_t));
+ if (s->s3.tmp.valid_flags == NULL)
+ return 0;
+ /*
+ * If peer sent no signature algorithms check to see if we support
+ * the default algorithm for each certificate type
+ */
+ if (s->s3.tmp.peer_cert_sigalgs == NULL
+ && s->s3.tmp.peer_sigalgs == NULL) {
+ const uint16_t *sent_sigs;
+ size_t sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
+
+ for (i = 0; i < s->ssl_pkey_num; i++) {
+ const SIGALG_LOOKUP *lu = tls1_get_legacy_sigalg(s, i);
+ size_t j;
+
+ if (lu == NULL)
+ continue;
+ /* Check default matches a type we sent */
+ for (j = 0; j < sent_sigslen; j++) {
+ if (lu->sigalg == sent_sigs[j]) {
+ s->s3.tmp.valid_flags[i] = CERT_PKEY_SIGN;
+ break;
+ }
+ }
+ }
+ return 1;
+ }
+
+ if (!tls1_process_sigalgs(s)) {
+ SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
+ return 0;
+ }
+ if (s->shared_sigalgs != NULL)
+ return 1;
+
+ /* Fatal error if no shared signature algorithms */
+ SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
+ SSL_R_NO_SHARED_SIGNATURE_ALGORITHMS);
+ return 0;
+}
+
+/*-
+ * Gets the ticket information supplied by the client if any.
+ *
+ * hello: The parsed ClientHello data
+ * ret: (output) on return, if a ticket was decrypted, then this is set to
+ * point to the resulting session.
+ */
+SSL_TICKET_STATUS tls_get_ticket_from_client(SSL_CONNECTION *s,
+ CLIENTHELLO_MSG *hello,
+ SSL_SESSION **ret)
+{
+ size_t size;
+ RAW_EXTENSION *ticketext;
+
+ *ret = NULL;
+ s->ext.ticket_expected = 0;
+
+ /*
+ * If tickets disabled or not supported by the protocol version
+ * (e.g. TLSv1.3) behave as if no ticket present to permit stateful
+ * resumption.
+ */
+ if (s->version <= SSL3_VERSION || !tls_use_ticket(s))
+ return SSL_TICKET_NONE;
+
+ ticketext = &hello->pre_proc_exts[TLSEXT_IDX_session_ticket];
+ if (!ticketext->present)
+ return SSL_TICKET_NONE;
+
+ size = PACKET_remaining(&ticketext->data);
+
+ return tls_decrypt_ticket(s, PACKET_data(&ticketext->data), size,
+ hello->session_id, hello->session_id_len, ret);
+}
+
+/*-
+ * tls_decrypt_ticket attempts to decrypt a session ticket.
+ *
+ * If s->tls_session_secret_cb is set and we're not doing TLSv1.3 then we are
+ * expecting a pre-shared key ciphersuite, in which case we have no use for
+ * session tickets and one will never be decrypted, nor will
+ * s->ext.ticket_expected be set to 1.
+ *
+ * Side effects:
+ * Sets s->ext.ticket_expected to 1 if the server will have to issue
+ * a new session ticket to the client because the client indicated support
+ * (and s->tls_session_secret_cb is NULL) but the client either doesn't have
+ * a session ticket or we couldn't use the one it gave us, or if
+ * s->ctx->ext.ticket_key_cb asked to renew the client's ticket.
+ * Otherwise, s->ext.ticket_expected is set to 0.
+ *
+ * etick: points to the body of the session ticket extension.
+ * eticklen: the length of the session tickets extension.
+ * sess_id: points at the session ID.
+ * sesslen: the length of the session ID.
+ * psess: (output) on return, if a ticket was decrypted, then this is set to
+ * point to the resulting session.
+ */
+SSL_TICKET_STATUS tls_decrypt_ticket(SSL_CONNECTION *s,
+ const unsigned char *etick,
+ size_t eticklen,
+ const unsigned char *sess_id,
+ size_t sesslen, SSL_SESSION **psess)
+{
+ SSL_SESSION *sess = NULL;
+ unsigned char *sdec;
+ const unsigned char *p;
+ int slen, ivlen, renew_ticket = 0, declen;
+ SSL_TICKET_STATUS ret = SSL_TICKET_FATAL_ERR_OTHER;
+ size_t mlen;
+ unsigned char tick_hmac[EVP_MAX_MD_SIZE];
+ SSL_HMAC *hctx = NULL;
+ EVP_CIPHER_CTX *ctx = NULL;
+ SSL_CTX *tctx = s->session_ctx;
+ SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
+
+ if (eticklen == 0) {
+ /*
+ * The client will accept a ticket but doesn't currently have
+ * one (TLSv1.2 and below), or treated as a fatal error in TLSv1.3
+ */
+ ret = SSL_TICKET_EMPTY;
+ goto end;
+ }
+ if (!SSL_CONNECTION_IS_TLS13(s) && s->ext.session_secret_cb) {
+ /*
+ * Indicate that the ticket couldn't be decrypted rather than
+ * generating the session from ticket now, trigger
+ * abbreviated handshake based on external mechanism to
+ * calculate the master secret later.
+ */
+ ret = SSL_TICKET_NO_DECRYPT;
+ goto end;
+ }
+
+ /* Need at least keyname + iv */
+ if (eticklen < TLSEXT_KEYNAME_LENGTH + EVP_MAX_IV_LENGTH) {
+ ret = SSL_TICKET_NO_DECRYPT;
+ goto end;
+ }
+
+ /* Initialize session ticket encryption and HMAC contexts */
+ hctx = ssl_hmac_new(tctx);
+ if (hctx == NULL) {
+ ret = SSL_TICKET_FATAL_ERR_MALLOC;
+ goto end;
+ }
+ ctx = EVP_CIPHER_CTX_new();
+ if (ctx == NULL) {
+ ret = SSL_TICKET_FATAL_ERR_MALLOC;
+ goto end;
+ }
+#ifndef OPENSSL_NO_DEPRECATED_3_0
+ if (tctx->ext.ticket_key_evp_cb != NULL || tctx->ext.ticket_key_cb != NULL)
+#else
+ if (tctx->ext.ticket_key_evp_cb != NULL)
+#endif
+ {
+ unsigned char *nctick = (unsigned char *)etick;
+ int rv = 0;
+
+ if (tctx->ext.ticket_key_evp_cb != NULL)
+ rv = tctx->ext.ticket_key_evp_cb(SSL_CONNECTION_GET_USER_SSL(s),
+ nctick,
+ nctick + TLSEXT_KEYNAME_LENGTH,
+ ctx,
+ ssl_hmac_get0_EVP_MAC_CTX(hctx),
+ 0);
+#ifndef OPENSSL_NO_DEPRECATED_3_0
+ else if (tctx->ext.ticket_key_cb != NULL)
+ /* if 0 is returned, write an empty ticket */
+ rv = tctx->ext.ticket_key_cb(SSL_CONNECTION_GET_USER_SSL(s), nctick,
+ nctick + TLSEXT_KEYNAME_LENGTH,
+ ctx, ssl_hmac_get0_HMAC_CTX(hctx), 0);
+#endif
+ if (rv < 0) {
+ ret = SSL_TICKET_FATAL_ERR_OTHER;
+ goto end;
+ }
+ if (rv == 0) {
+ ret = SSL_TICKET_NO_DECRYPT;
+ goto end;
+ }
+ if (rv == 2)
+ renew_ticket = 1;
+ } else {
+ EVP_CIPHER *aes256cbc = NULL;
+
+ /* Check key name matches */
+ if (memcmp(etick, tctx->ext.tick_key_name,
+ TLSEXT_KEYNAME_LENGTH) != 0) {
+ ret = SSL_TICKET_NO_DECRYPT;
+ goto end;
+ }
+
+ aes256cbc = EVP_CIPHER_fetch(sctx->libctx, "AES-256-CBC",
+ sctx->propq);
+ if (aes256cbc == NULL
+ || ssl_hmac_init(hctx, tctx->ext.secure->tick_hmac_key,
+ sizeof(tctx->ext.secure->tick_hmac_key),
+ "SHA256") <= 0
+ || EVP_DecryptInit_ex(ctx, aes256cbc, NULL,
+ tctx->ext.secure->tick_aes_key,
+ etick + TLSEXT_KEYNAME_LENGTH) <= 0) {
+ EVP_CIPHER_free(aes256cbc);
+ ret = SSL_TICKET_FATAL_ERR_OTHER;
+ goto end;
+ }
+ EVP_CIPHER_free(aes256cbc);
+ if (SSL_CONNECTION_IS_TLS13(s))
+ renew_ticket = 1;
+ }
+ /*
+ * Attempt to process session ticket, first conduct sanity and integrity
+ * checks on ticket.
+ */
+ mlen = ssl_hmac_size(hctx);
+ if (mlen == 0) {
+ ret = SSL_TICKET_FATAL_ERR_OTHER;
+ goto end;
+ }
+
+ ivlen = EVP_CIPHER_CTX_get_iv_length(ctx);
+ if (ivlen < 0) {
+ ret = SSL_TICKET_FATAL_ERR_OTHER;
+ goto end;
+ }
+
+ /* Sanity check ticket length: must exceed keyname + IV + HMAC */
+ if (eticklen <= TLSEXT_KEYNAME_LENGTH + ivlen + mlen) {
+ ret = SSL_TICKET_NO_DECRYPT;
+ goto end;
+ }
+ eticklen -= mlen;
+ /* Check HMAC of encrypted ticket */
+ if (ssl_hmac_update(hctx, etick, eticklen) <= 0
+ || ssl_hmac_final(hctx, tick_hmac, NULL, sizeof(tick_hmac)) <= 0) {
+ ret = SSL_TICKET_FATAL_ERR_OTHER;
+ goto end;
+ }
+
+ if (CRYPTO_memcmp(tick_hmac, etick + eticklen, mlen)) {
+ ret = SSL_TICKET_NO_DECRYPT;
+ goto end;
+ }
+ /* Attempt to decrypt session data */
+ /* Move p after IV to start of encrypted ticket, update length */
+ p = etick + TLSEXT_KEYNAME_LENGTH + ivlen;
+ eticklen -= TLSEXT_KEYNAME_LENGTH + ivlen;
+ sdec = OPENSSL_malloc(eticklen);
+ if (sdec == NULL || EVP_DecryptUpdate(ctx, sdec, &slen, p,
+ (int)eticklen) <= 0) {
+ OPENSSL_free(sdec);
+ ret = SSL_TICKET_FATAL_ERR_OTHER;
+ goto end;
+ }
+ if (EVP_DecryptFinal(ctx, sdec + slen, &declen) <= 0) {
+ OPENSSL_free(sdec);
+ ret = SSL_TICKET_NO_DECRYPT;
+ goto end;
+ }
+ slen += declen;
+ p = sdec;
+
+ sess = d2i_SSL_SESSION_ex(NULL, &p, slen, sctx->libctx, sctx->propq);
+ slen -= p - sdec;
+ OPENSSL_free(sdec);
+ if (sess) {
+ /* Some additional consistency checks */
+ if (slen != 0) {
+ SSL_SESSION_free(sess);
+ sess = NULL;
+ ret = SSL_TICKET_NO_DECRYPT;
+ goto end;
+ }
+ /*
+ * The session ID, if non-empty, is used by some clients to detect
+ * that the ticket has been accepted. So we copy it to the session
+ * structure. If it is empty set length to zero as required by
+ * standard.
+ */
+ if (sesslen) {
+ memcpy(sess->session_id, sess_id, sesslen);
+ sess->session_id_length = sesslen;
+ }
+ if (renew_ticket)
+ ret = SSL_TICKET_SUCCESS_RENEW;
+ else
+ ret = SSL_TICKET_SUCCESS;
+ goto end;
+ }
+ ERR_clear_error();
+ /*
+ * For session parse failure, indicate that we need to send a new ticket.
+ */
+ ret = SSL_TICKET_NO_DECRYPT;
+
+ end:
+ EVP_CIPHER_CTX_free(ctx);
+ ssl_hmac_free(hctx);
+
+ /*
+ * If set, the decrypt_ticket_cb() is called unless a fatal error was
+ * detected above. The callback is responsible for checking |ret| before it
+ * performs any action
+ */
+ if (s->session_ctx->decrypt_ticket_cb != NULL
+ && (ret == SSL_TICKET_EMPTY
+ || ret == SSL_TICKET_NO_DECRYPT
+ || ret == SSL_TICKET_SUCCESS
+ || ret == SSL_TICKET_SUCCESS_RENEW)) {
+ size_t keyname_len = eticklen;
+ int retcb;
+
+ if (keyname_len > TLSEXT_KEYNAME_LENGTH)
+ keyname_len = TLSEXT_KEYNAME_LENGTH;
+ retcb = s->session_ctx->decrypt_ticket_cb(SSL_CONNECTION_GET_SSL(s),
+ sess, etick, keyname_len,
+ ret,
+ s->session_ctx->ticket_cb_data);
+ switch (retcb) {
+ case SSL_TICKET_RETURN_ABORT:
+ ret = SSL_TICKET_FATAL_ERR_OTHER;
+ break;
+
+ case SSL_TICKET_RETURN_IGNORE:
+ ret = SSL_TICKET_NONE;
+ SSL_SESSION_free(sess);
+ sess = NULL;
+ break;
+
+ case SSL_TICKET_RETURN_IGNORE_RENEW:
+ if (ret != SSL_TICKET_EMPTY && ret != SSL_TICKET_NO_DECRYPT)
+ ret = SSL_TICKET_NO_DECRYPT;
+ /* else the value of |ret| will already do the right thing */
+ SSL_SESSION_free(sess);
+ sess = NULL;
+ break;
+
+ case SSL_TICKET_RETURN_USE:
+ case SSL_TICKET_RETURN_USE_RENEW:
+ if (ret != SSL_TICKET_SUCCESS
+ && ret != SSL_TICKET_SUCCESS_RENEW)
+ ret = SSL_TICKET_FATAL_ERR_OTHER;
+ else if (retcb == SSL_TICKET_RETURN_USE)
+ ret = SSL_TICKET_SUCCESS;
+ else
+ ret = SSL_TICKET_SUCCESS_RENEW;
+ break;
+
+ default:
+ ret = SSL_TICKET_FATAL_ERR_OTHER;
+ }
+ }
+
+ if (s->ext.session_secret_cb == NULL || SSL_CONNECTION_IS_TLS13(s)) {
+ switch (ret) {
+ case SSL_TICKET_NO_DECRYPT:
+ case SSL_TICKET_SUCCESS_RENEW:
+ case SSL_TICKET_EMPTY:
+ s->ext.ticket_expected = 1;
+ }
+ }
+
+ *psess = sess;
+
+ return ret;
+}
+
+/* Check to see if a signature algorithm is allowed */
+static int tls12_sigalg_allowed(const SSL_CONNECTION *s, int op,
+ const SIGALG_LOOKUP *lu)
+{
+ unsigned char sigalgstr[2];
+ int secbits;
+
+ if (lu == NULL || !lu->available)
+ return 0;
+ /* DSA is not allowed in TLS 1.3 */
+ if (SSL_CONNECTION_IS_TLS13(s) && lu->sig == EVP_PKEY_DSA)
+ return 0;
+ /*
+ * At some point we should fully axe DSA/etc. in ClientHello as per TLS 1.3
+ * spec
+ */
+ if (!s->server && !SSL_CONNECTION_IS_DTLS(s)
+ && s->s3.tmp.min_ver >= TLS1_3_VERSION
+ && (lu->sig == EVP_PKEY_DSA || lu->hash_idx == SSL_MD_SHA1_IDX
+ || lu->hash_idx == SSL_MD_MD5_IDX
+ || lu->hash_idx == SSL_MD_SHA224_IDX))
+ return 0;
+
+ /* See if public key algorithm allowed */
+ if (ssl_cert_is_disabled(SSL_CONNECTION_GET_CTX(s), lu->sig_idx))
+ return 0;
+
+ if (lu->sig == NID_id_GostR3410_2012_256
+ || lu->sig == NID_id_GostR3410_2012_512
+ || lu->sig == NID_id_GostR3410_2001) {
+ /* We never allow GOST sig algs on the server with TLSv1.3 */
+ if (s->server && SSL_CONNECTION_IS_TLS13(s))
+ return 0;
+ if (!s->server
+ && SSL_CONNECTION_GET_SSL(s)->method->version == TLS_ANY_VERSION
+ && s->s3.tmp.max_ver >= TLS1_3_VERSION) {
+ int i, num;
+ STACK_OF(SSL_CIPHER) *sk;
+
+ /*
+ * We're a client that could negotiate TLSv1.3. We only allow GOST
+ * sig algs if we could negotiate TLSv1.2 or below and we have GOST
+ * ciphersuites enabled.
+ */
+
+ if (s->s3.tmp.min_ver >= TLS1_3_VERSION)
+ return 0;
+
+ sk = SSL_get_ciphers(SSL_CONNECTION_GET_SSL(s));
+ num = sk != NULL ? sk_SSL_CIPHER_num(sk) : 0;
+ for (i = 0; i < num; i++) {
+ const SSL_CIPHER *c;
+
+ c = sk_SSL_CIPHER_value(sk, i);
+ /* Skip disabled ciphers */
+ if (ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0))
+ continue;
+
+ if ((c->algorithm_mkey & (SSL_kGOST | SSL_kGOST18)) != 0)
+ break;
+ }
+ if (i == num)
+ return 0;
+ }
+ }
+
+ /* Finally see if security callback allows it */
+ secbits = sigalg_security_bits(SSL_CONNECTION_GET_CTX(s), lu);
+ sigalgstr[0] = (lu->sigalg >> 8) & 0xff;
+ sigalgstr[1] = lu->sigalg & 0xff;
+ return ssl_security(s, op, secbits, lu->hash, (void *)sigalgstr);
+}
+
+/*
+ * Get a mask of disabled public key algorithms based on supported signature
+ * algorithms. For example if no signature algorithm supports RSA then RSA is
+ * disabled.
+ */
+
+void ssl_set_sig_mask(uint32_t *pmask_a, SSL_CONNECTION *s, int op)
+{
+ const uint16_t *sigalgs;
+ size_t i, sigalgslen;
+ uint32_t disabled_mask = SSL_aRSA | SSL_aDSS | SSL_aECDSA;
+ /*
+ * Go through all signature algorithms seeing if we support any
+ * in disabled_mask.
+ */
+ sigalgslen = tls12_get_psigalgs(s, 1, &sigalgs);
+ for (i = 0; i < sigalgslen; i++, sigalgs++) {
+ const SIGALG_LOOKUP *lu =
+ tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), *sigalgs);
+ const SSL_CERT_LOOKUP *clu;
+
+ if (lu == NULL)
+ continue;
+
+ clu = ssl_cert_lookup_by_idx(lu->sig_idx,
+ SSL_CONNECTION_GET_CTX(s));
+ if (clu == NULL)
+ continue;
+
+ /* If algorithm is disabled see if we can enable it */
+ if ((clu->amask & disabled_mask) != 0
+ && tls12_sigalg_allowed(s, op, lu))
+ disabled_mask &= ~clu->amask;
+ }
+ *pmask_a |= disabled_mask;
+}
+
+int tls12_copy_sigalgs(SSL_CONNECTION *s, WPACKET *pkt,
+ const uint16_t *psig, size_t psiglen)
+{
+ size_t i;
+ int rv = 0;
+
+ for (i = 0; i < psiglen; i++, psig++) {
+ const SIGALG_LOOKUP *lu =
+ tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), *psig);
+
+ if (lu == NULL || !tls_sigalg_compat(s, lu))
+ continue;
+ if (!WPACKET_put_bytes_u16(pkt, *psig))
+ return 0;
+ /*
+ * If TLS 1.3 must have at least one valid TLS 1.3 message
+ * signing algorithm: i.e. neither RSA nor SHA1/SHA224
+ */
+ if (rv == 0 && (!SSL_CONNECTION_IS_TLS13(s)
+ || (lu->sig != EVP_PKEY_RSA
+ && lu->hash != NID_sha1
+ && lu->hash != NID_sha224)))
+ rv = 1;
+ }
+ if (rv == 0)
+ ERR_raise(ERR_LIB_SSL, SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
+ return rv;
+}
+
+/* Given preference and allowed sigalgs set shared sigalgs */
+static size_t tls12_shared_sigalgs(SSL_CONNECTION *s,
+ const SIGALG_LOOKUP **shsig,
+ const uint16_t *pref, size_t preflen,
+ const uint16_t *allow, size_t allowlen)
+{
+ const uint16_t *ptmp, *atmp;
+ size_t i, j, nmatch = 0;
+ for (i = 0, ptmp = pref; i < preflen; i++, ptmp++) {
+ const SIGALG_LOOKUP *lu =
+ tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), *ptmp);
+
+ /* Skip disabled hashes or signature algorithms */
+ if (lu == NULL
+ || !tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SHARED, lu))
+ continue;
+ for (j = 0, atmp = allow; j < allowlen; j++, atmp++) {
+ if (*ptmp == *atmp) {
+ nmatch++;
+ if (shsig)
+ *shsig++ = lu;
+ break;
+ }
+ }
+ }
+ return nmatch;
+}
+
+/* Set shared signature algorithms for SSL structures */
+static int tls1_set_shared_sigalgs(SSL_CONNECTION *s)
+{
+ const uint16_t *pref, *allow, *conf;
+ size_t preflen, allowlen, conflen;
+ size_t nmatch;
+ const SIGALG_LOOKUP **salgs = NULL;
+ CERT *c = s->cert;
+ unsigned int is_suiteb = tls1_suiteb(s);
+
+ OPENSSL_free(s->shared_sigalgs);
+ s->shared_sigalgs = NULL;
+ s->shared_sigalgslen = 0;
+ /* If client use client signature algorithms if not NULL */
+ if (!s->server && c->client_sigalgs && !is_suiteb) {
+ conf = c->client_sigalgs;
+ conflen = c->client_sigalgslen;
+ } else if (c->conf_sigalgs && !is_suiteb) {
+ conf = c->conf_sigalgs;
+ conflen = c->conf_sigalgslen;
+ } else
+ conflen = tls12_get_psigalgs(s, 0, &conf);
+ if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE || is_suiteb) {
+ pref = conf;
+ preflen = conflen;
+ allow = s->s3.tmp.peer_sigalgs;
+ allowlen = s->s3.tmp.peer_sigalgslen;
+ } else {
+ allow = conf;
+ allowlen = conflen;
+ pref = s->s3.tmp.peer_sigalgs;
+ preflen = s->s3.tmp.peer_sigalgslen;
+ }
+ nmatch = tls12_shared_sigalgs(s, NULL, pref, preflen, allow, allowlen);
+ if (nmatch) {
+ if ((salgs = OPENSSL_malloc(nmatch * sizeof(*salgs))) == NULL)
+ return 0;
+ nmatch = tls12_shared_sigalgs(s, salgs, pref, preflen, allow, allowlen);
+ } else {
+ salgs = NULL;
+ }
+ s->shared_sigalgs = salgs;
+ s->shared_sigalgslen = nmatch;
+ return 1;
+}
+
+int tls1_save_u16(PACKET *pkt, uint16_t **pdest, size_t *pdestlen)
+{
+ unsigned int stmp;
+ size_t size, i;
+ uint16_t *buf;
+
+ size = PACKET_remaining(pkt);
+
+ /* Invalid data length */
+ if (size == 0 || (size & 1) != 0)
+ return 0;
+
+ size >>= 1;
+
+ if ((buf = OPENSSL_malloc(size * sizeof(*buf))) == NULL)
+ return 0;
+ for (i = 0; i < size && PACKET_get_net_2(pkt, &stmp); i++)
+ buf[i] = stmp;
+
+ if (i != size) {
+ OPENSSL_free(buf);
+ return 0;
+ }
+
+ OPENSSL_free(*pdest);
+ *pdest = buf;
+ *pdestlen = size;
+
+ return 1;
+}
+
+int tls1_save_sigalgs(SSL_CONNECTION *s, PACKET *pkt, int cert)
+{
+ /* Extension ignored for inappropriate versions */
+ if (!SSL_USE_SIGALGS(s))
+ return 1;
+ /* Should never happen */
+ if (s->cert == NULL)
+ return 0;
+
+ if (cert)
+ return tls1_save_u16(pkt, &s->s3.tmp.peer_cert_sigalgs,
+ &s->s3.tmp.peer_cert_sigalgslen);
+ else
+ return tls1_save_u16(pkt, &s->s3.tmp.peer_sigalgs,
+ &s->s3.tmp.peer_sigalgslen);
+
+}
+
+/* Set preferred digest for each key type */
+
+int tls1_process_sigalgs(SSL_CONNECTION *s)
+{
+ size_t i;
+ uint32_t *pvalid = s->s3.tmp.valid_flags;
+
+ if (!tls1_set_shared_sigalgs(s))
+ return 0;
+
+ for (i = 0; i < s->ssl_pkey_num; i++)
+ pvalid[i] = 0;
+
+ for (i = 0; i < s->shared_sigalgslen; i++) {
+ const SIGALG_LOOKUP *sigptr = s->shared_sigalgs[i];
+ int idx = sigptr->sig_idx;
+
+ /* Ignore PKCS1 based sig algs in TLSv1.3 */
+ if (SSL_CONNECTION_IS_TLS13(s) && sigptr->sig == EVP_PKEY_RSA)
+ continue;
+ /* If not disabled indicate we can explicitly sign */
+ if (pvalid[idx] == 0
+ && !ssl_cert_is_disabled(SSL_CONNECTION_GET_CTX(s), idx))
+ pvalid[idx] = CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
+ }
+ return 1;
+}
+
+int SSL_get_sigalgs(SSL *s, int idx,
+ int *psign, int *phash, int *psignhash,
+ unsigned char *rsig, unsigned char *rhash)
+{
+ uint16_t *psig;
+ size_t numsigalgs;
+ SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
+
+ if (sc == NULL)
+ return 0;
+
+ psig = sc->s3.tmp.peer_sigalgs;
+ numsigalgs = sc->s3.tmp.peer_sigalgslen;
+
+ if (psig == NULL || numsigalgs > INT_MAX)
+ return 0;
+ if (idx >= 0) {
+ const SIGALG_LOOKUP *lu;
+
+ if (idx >= (int)numsigalgs)
+ return 0;
+ psig += idx;
+ if (rhash != NULL)
+ *rhash = (unsigned char)((*psig >> 8) & 0xff);
+ if (rsig != NULL)
+ *rsig = (unsigned char)(*psig & 0xff);
+ lu = tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(sc), *psig);
+ if (psign != NULL)
+ *psign = lu != NULL ? lu->sig : NID_undef;
+ if (phash != NULL)
+ *phash = lu != NULL ? lu->hash : NID_undef;
+ if (psignhash != NULL)
+ *psignhash = lu != NULL ? lu->sigandhash : NID_undef;
+ }
+ return (int)numsigalgs;
+}
+
+int SSL_get_shared_sigalgs(SSL *s, int idx,
+ int *psign, int *phash, int *psignhash,
+ unsigned char *rsig, unsigned char *rhash)
+{
+ const SIGALG_LOOKUP *shsigalgs;
+ SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
+
+ if (sc == NULL)
+ return 0;
+
+ if (sc->shared_sigalgs == NULL
+ || idx < 0
+ || idx >= (int)sc->shared_sigalgslen
+ || sc->shared_sigalgslen > INT_MAX)
+ return 0;
+ shsigalgs = sc->shared_sigalgs[idx];
+ if (phash != NULL)
+ *phash = shsigalgs->hash;
+ if (psign != NULL)
+ *psign = shsigalgs->sig;
+ if (psignhash != NULL)
+ *psignhash = shsigalgs->sigandhash;
+ if (rsig != NULL)
+ *rsig = (unsigned char)(shsigalgs->sigalg & 0xff);
+ if (rhash != NULL)
+ *rhash = (unsigned char)((shsigalgs->sigalg >> 8) & 0xff);
+ return (int)sc->shared_sigalgslen;
+}
+
+/* Maximum possible number of unique entries in sigalgs array */
+#define TLS_MAX_SIGALGCNT (OSSL_NELEM(sigalg_lookup_tbl) * 2)
+
+typedef struct {
+ size_t sigalgcnt;
+ /* TLSEXT_SIGALG_XXX values */
+ uint16_t sigalgs[TLS_MAX_SIGALGCNT];
+ SSL_CTX *ctx;
+} sig_cb_st;
+
+static void get_sigorhash(int *psig, int *phash, const char *str)
+{
+ if (OPENSSL_strcasecmp(str, "RSA") == 0) {
+ *psig = EVP_PKEY_RSA;
+ } else if (OPENSSL_strcasecmp(str, "RSA-PSS") == 0
+ || OPENSSL_strcasecmp(str, "PSS") == 0) {
+ *psig = EVP_PKEY_RSA_PSS;
+ } else if (OPENSSL_strcasecmp(str, "DSA") == 0) {
+ *psig = EVP_PKEY_DSA;
+ } else if (OPENSSL_strcasecmp(str, "ECDSA") == 0) {
+ *psig = EVP_PKEY_EC;
+ } else {
+ *phash = OBJ_sn2nid(str);
+ if (*phash == NID_undef)
+ *phash = OBJ_ln2nid(str);
+ }
+}
+/* Maximum length of a signature algorithm string component */
+#define TLS_MAX_SIGSTRING_LEN 40
+
+static int sig_cb(const char *elem, int len, void *arg)
+{
+ sig_cb_st *sarg = arg;
+ size_t i = 0;
+ const SIGALG_LOOKUP *s;
+ char etmp[TLS_MAX_SIGSTRING_LEN], *p;
+ const char *iana, *alias;
+ int sig_alg = NID_undef, hash_alg = NID_undef;
+ int ignore_unknown = 0;
+
+ if (elem == NULL)
+ return 0;
+ if (elem[0] == '?') {
+ ignore_unknown = 1;
+ ++elem;
+ --len;
+ }
+ if (sarg->sigalgcnt == TLS_MAX_SIGALGCNT)
+ return 0;
+ if (len > (int)(sizeof(etmp) - 1))
+ return 0;
+ memcpy(etmp, elem, len);
+ etmp[len] = 0;
+ p = strchr(etmp, '+');
+ /*
+ * We only allow SignatureSchemes listed in the sigalg_lookup_tbl;
+ * if there's no '+' in the provided name, look for the new-style combined
+ * name. If not, match both sig+hash to find the needed SIGALG_LOOKUP.
+ * Just sig+hash is not unique since TLS 1.3 adds rsa_pss_pss_* and
+ * rsa_pss_rsae_* that differ only by public key OID; in such cases
+ * we will pick the _rsae_ variant, by virtue of them appearing earlier
+ * in the table.
+ */
+ if (p == NULL) {
+ if (sarg->ctx != NULL) {
+ for (i = 0; i < sarg->ctx->sigalg_lookup_cache_len; i++) {
+ iana = sarg->ctx->sigalg_lookup_cache[i].name;
+ alias = sarg->ctx->sigalg_lookup_cache[i].name12;
+ if ((alias != NULL && OPENSSL_strcasecmp(etmp, alias) == 0)
+ || OPENSSL_strcasecmp(etmp, iana) == 0) {
+ /* Ignore known, but unavailable sigalgs. */
+ if (!sarg->ctx->sigalg_lookup_cache[i].available)
+ return 1;
+ sarg->sigalgs[sarg->sigalgcnt++] =
+ sarg->ctx->sigalg_lookup_cache[i].sigalg;
+ goto found;
+ }
+ }
+ } else {
+ /* Syntax checks use the built-in sigalgs */
+ for (i = 0, s = sigalg_lookup_tbl;
+ i < OSSL_NELEM(sigalg_lookup_tbl); i++, s++) {
+ iana = s->name;
+ alias = s->name12;
+ if ((alias != NULL && OPENSSL_strcasecmp(etmp, alias) == 0)
+ || OPENSSL_strcasecmp(etmp, iana) == 0) {
+ sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
+ goto found;
+ }
+ }
+ }
+ } else {
+ *p = 0;
+ p++;
+ if (*p == 0)
+ return 0;
+ get_sigorhash(&sig_alg, &hash_alg, etmp);
+ get_sigorhash(&sig_alg, &hash_alg, p);
+ if (sig_alg != NID_undef && hash_alg != NID_undef) {
+ if (sarg->ctx != NULL) {
+ for (i = 0; i < sarg->ctx->sigalg_lookup_cache_len; i++) {
+ s = &sarg->ctx->sigalg_lookup_cache[i];
+ if (s->hash == hash_alg && s->sig == sig_alg) {
+ /* Ignore known, but unavailable sigalgs. */
+ if (!sarg->ctx->sigalg_lookup_cache[i].available)
+ return 1;
+ sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
+ goto found;
+ }
+ }
+ } else {
+ for (i = 0; i < OSSL_NELEM(sigalg_lookup_tbl); i++) {
+ s = &sigalg_lookup_tbl[i];
+ if (s->hash == hash_alg && s->sig == sig_alg) {
+ sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
+ goto found;
+ }
+ }
+ }
+ }
+ }
+ /* Ignore unknown algorithms if ignore_unknown */
+ return ignore_unknown;
+
+ found:
+ /* Ignore duplicates */
+ for (i = 0; i < sarg->sigalgcnt - 1; i++) {
+ if (sarg->sigalgs[i] == sarg->sigalgs[sarg->sigalgcnt - 1]) {
+ sarg->sigalgcnt--;
+ return 1;
+ }
+ }
+ return 1;
+}
+
+/*
+ * Set supported signature algorithms based on a colon separated list of the
+ * form sig+hash e.g. RSA+SHA512:DSA+SHA512
+ */
+int tls1_set_sigalgs_list(SSL_CTX *ctx, CERT *c, const char *str, int client)
+{
+ sig_cb_st sig;
+ sig.sigalgcnt = 0;
+
+ if (ctx != NULL)
+ sig.ctx = ctx;
+ if (!CONF_parse_list(str, ':', 1, sig_cb, &sig))
+ return 0;
+ if (sig.sigalgcnt == 0) {
+ ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT,
+ "No valid signature algorithms in '%s'", str);
+ return 0;
+ }
+ if (c == NULL)
+ return 1;
+ return tls1_set_raw_sigalgs(c, sig.sigalgs, sig.sigalgcnt, client);
+}
+
+int tls1_set_raw_sigalgs(CERT *c, const uint16_t *psigs, size_t salglen,
+ int client)
+{
+ uint16_t *sigalgs;
+
+ if ((sigalgs = OPENSSL_malloc(salglen * sizeof(*sigalgs))) == NULL)
+ return 0;
+ memcpy(sigalgs, psigs, salglen * sizeof(*sigalgs));
+
+ if (client) {
+ OPENSSL_free(c->client_sigalgs);
+ c->client_sigalgs = sigalgs;
+ c->client_sigalgslen = salglen;
+ } else {
+ OPENSSL_free(c->conf_sigalgs);
+ c->conf_sigalgs = sigalgs;
+ c->conf_sigalgslen = salglen;
+ }
+
+ return 1;
+}
+
+int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen, int client)
+{
+ uint16_t *sigalgs, *sptr;
+ size_t i;
+
+ if (salglen & 1)
+ return 0;
+ if ((sigalgs = OPENSSL_malloc((salglen / 2) * sizeof(*sigalgs))) == NULL)
+ return 0;
+ for (i = 0, sptr = sigalgs; i < salglen; i += 2) {
+ size_t j;
+ const SIGALG_LOOKUP *curr;
+ int md_id = *psig_nids++;
+ int sig_id = *psig_nids++;
+
+ for (j = 0, curr = sigalg_lookup_tbl; j < OSSL_NELEM(sigalg_lookup_tbl);
+ j++, curr++) {
+ if (curr->hash == md_id && curr->sig == sig_id) {
+ *sptr++ = curr->sigalg;
+ break;
+ }
+ }
+
+ if (j == OSSL_NELEM(sigalg_lookup_tbl))
+ goto err;
+ }
+
+ if (client) {
+ OPENSSL_free(c->client_sigalgs);
+ c->client_sigalgs = sigalgs;
+ c->client_sigalgslen = salglen / 2;
+ } else {
+ OPENSSL_free(c->conf_sigalgs);
+ c->conf_sigalgs = sigalgs;
+ c->conf_sigalgslen = salglen / 2;
+ }
+
+ return 1;
+
+ err:
+ OPENSSL_free(sigalgs);
+ return 0;
+}
+
+static int tls1_check_sig_alg(SSL_CONNECTION *s, X509 *x, int default_nid)
+{
+ int sig_nid, use_pc_sigalgs = 0;
+ size_t i;
+ const SIGALG_LOOKUP *sigalg;
+ size_t sigalgslen;
+
+ /*-
+ * RFC 8446, section 4.2.3:
+ *
+ * The signatures on certificates that are self-signed or certificates
+ * that are trust anchors are not validated, since they begin a
+ * certification path (see [RFC5280], Section 3.2). A certificate that
+ * begins a certification path MAY use a signature algorithm that is not
+ * advertised as being supported in the "signature_algorithms"
+ * extension.
+ */
+ if (default_nid == -1 || X509_self_signed(x, 0))
+ return 1;
+ sig_nid = X509_get_signature_nid(x);
+ if (default_nid)
+ return sig_nid == default_nid ? 1 : 0;
+
+ if (SSL_CONNECTION_IS_TLS13(s) && s->s3.tmp.peer_cert_sigalgs != NULL) {
+ /*
+ * If we're in TLSv1.3 then we only get here if we're checking the
+ * chain. If the peer has specified peer_cert_sigalgs then we use them
+ * otherwise we default to normal sigalgs.
+ */
+ sigalgslen = s->s3.tmp.peer_cert_sigalgslen;
+ use_pc_sigalgs = 1;
+ } else {
+ sigalgslen = s->shared_sigalgslen;
+ }
+ for (i = 0; i < sigalgslen; i++) {
+ int mdnid, pknid;
+
+ sigalg = use_pc_sigalgs
+ ? tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s),
+ s->s3.tmp.peer_cert_sigalgs[i])
+ : s->shared_sigalgs[i];
+ if (sigalg == NULL)
+ continue;
+ if (sig_nid == sigalg->sigandhash)
+ return 1;
+ if (sigalg->sig != EVP_PKEY_RSA_PSS)
+ continue;
+ /*
+ * Accept RSA PKCS#1 signatures in certificates when the signature
+ * algorithms include RSA-PSS with a matching digest algorithm.
+ *
+ * When a TLS 1.3 peer inadvertently omits the legacy RSA PKCS#1 code
+ * points, and we're doing strict checking of the certificate chain (in
+ * a cert_cb via SSL_check_chain()) we may then reject RSA signed
+ * certificates in the chain, but the TLS requirement on PSS should not
+ * extend to certificates. Though the peer can in fact list the legacy
+ * sigalgs for just this purpose, it is not likely that a better chain
+ * signed with RSA-PSS is available.
+ */
+ if (!OBJ_find_sigid_algs(sig_nid, &mdnid, &pknid))
+ continue;
+ if (pknid == EVP_PKEY_RSA && mdnid == sigalg->hash)
+ return 1;
+ }
+ return 0;
+}
+
+/* Check to see if a certificate issuer name matches list of CA names */
+static int ssl_check_ca_name(STACK_OF(X509_NAME) *names, X509 *x)
+{
+ const X509_NAME *nm;
+ int i;
+ nm = X509_get_issuer_name(x);
+ for (i = 0; i < sk_X509_NAME_num(names); i++) {
+ if (!X509_NAME_cmp(nm, sk_X509_NAME_value(names, i)))
+ return 1;
+ }
+ return 0;
+}
+
+/*
+ * Check certificate chain is consistent with TLS extensions and is usable by
+ * server. This servers two purposes: it allows users to check chains before
+ * passing them to the server and it allows the server to check chains before
+ * attempting to use them.
+ */
+
+/* Flags which need to be set for a certificate when strict mode not set */
+
+#define CERT_PKEY_VALID_FLAGS \
+ (CERT_PKEY_EE_SIGNATURE|CERT_PKEY_EE_PARAM)
+/* Strict mode flags */
+#define CERT_PKEY_STRICT_FLAGS \
+ (CERT_PKEY_VALID_FLAGS|CERT_PKEY_CA_SIGNATURE|CERT_PKEY_CA_PARAM \
+ | CERT_PKEY_ISSUER_NAME|CERT_PKEY_CERT_TYPE)
+
+int tls1_check_chain(SSL_CONNECTION *s, X509 *x, EVP_PKEY *pk,
+ STACK_OF(X509) *chain, int idx)
+{
+ int i;
+ int rv = 0;
+ int check_flags = 0, strict_mode;
+ CERT_PKEY *cpk = NULL;
+ CERT *c = s->cert;
+ uint32_t *pvalid;
+ unsigned int suiteb_flags = tls1_suiteb(s);
+
+ /*
+ * Meaning of idx:
+ * idx == -1 means SSL_check_chain() invocation
+ * idx == -2 means checking client certificate chains
+ * idx >= 0 means checking SSL_PKEY index
+ *
+ * For RPK, where there may be no cert, we ignore -1
+ */
+ if (idx != -1) {
+ if (idx == -2) {
+ cpk = c->key;
+ idx = (int)(cpk - c->pkeys);
+ } else
+ cpk = c->pkeys + idx;
+ pvalid = s->s3.tmp.valid_flags + idx;
+ x = cpk->x509;
+ pk = cpk->privatekey;
+ chain = cpk->chain;
+ strict_mode = c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT;
+ if (tls12_rpk_and_privkey(s, idx)) {
+ if (EVP_PKEY_is_a(pk, "EC") && !tls1_check_pkey_comp(s, pk))
+ return 0;
+ *pvalid = rv = CERT_PKEY_RPK;
+ return rv;
+ }
+ /* If no cert or key, forget it */
+ if (x == NULL || pk == NULL)
+ goto end;
+ } else {
+ size_t certidx;
+
+ if (x == NULL || pk == NULL)
+ return 0;
+
+ if (ssl_cert_lookup_by_pkey(pk, &certidx,
+ SSL_CONNECTION_GET_CTX(s)) == NULL)
+ return 0;
+ idx = certidx;
+ pvalid = s->s3.tmp.valid_flags + idx;
+
+ if (c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)
+ check_flags = CERT_PKEY_STRICT_FLAGS;
+ else
+ check_flags = CERT_PKEY_VALID_FLAGS;
+ strict_mode = 1;
+ }
+
+ if (suiteb_flags) {
+ int ok;
+ if (check_flags)
+ check_flags |= CERT_PKEY_SUITEB;
+ ok = X509_chain_check_suiteb(NULL, x, chain, suiteb_flags);
+ if (ok == X509_V_OK)
+ rv |= CERT_PKEY_SUITEB;
+ else if (!check_flags)
+ goto end;
+ }
+
+ /*
+ * Check all signature algorithms are consistent with signature
+ * algorithms extension if TLS 1.2 or later and strict mode.
+ */
+ if (TLS1_get_version(SSL_CONNECTION_GET_SSL(s)) >= TLS1_2_VERSION
+ && strict_mode) {
+ int default_nid;
+ int rsign = 0;
+
+ if (s->s3.tmp.peer_cert_sigalgs != NULL
+ || s->s3.tmp.peer_sigalgs != NULL) {
+ default_nid = 0;
+ /* If no sigalgs extension use defaults from RFC5246 */
+ } else {
+ switch (idx) {
+ case SSL_PKEY_RSA:
+ rsign = EVP_PKEY_RSA;
+ default_nid = NID_sha1WithRSAEncryption;
+ break;
+
+ case SSL_PKEY_DSA_SIGN:
+ rsign = EVP_PKEY_DSA;
+ default_nid = NID_dsaWithSHA1;
+ break;
+
+ case SSL_PKEY_ECC:
+ rsign = EVP_PKEY_EC;
+ default_nid = NID_ecdsa_with_SHA1;
+ break;
+
+ case SSL_PKEY_GOST01:
+ rsign = NID_id_GostR3410_2001;
+ default_nid = NID_id_GostR3411_94_with_GostR3410_2001;
+ break;
+
+ case SSL_PKEY_GOST12_256:
+ rsign = NID_id_GostR3410_2012_256;
+ default_nid = NID_id_tc26_signwithdigest_gost3410_2012_256;
+ break;
+
+ case SSL_PKEY_GOST12_512:
+ rsign = NID_id_GostR3410_2012_512;
+ default_nid = NID_id_tc26_signwithdigest_gost3410_2012_512;
+ break;
+
+ default:
+ default_nid = -1;
+ break;
+ }
+ }
+ /*
+ * If peer sent no signature algorithms extension and we have set
+ * preferred signature algorithms check we support sha1.
+ */
+ if (default_nid > 0 && c->conf_sigalgs) {
+ size_t j;
+ const uint16_t *p = c->conf_sigalgs;
+ for (j = 0; j < c->conf_sigalgslen; j++, p++) {
+ const SIGALG_LOOKUP *lu =
+ tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), *p);
+
+ if (lu != NULL && lu->hash == NID_sha1 && lu->sig == rsign)
+ break;
+ }
+ if (j == c->conf_sigalgslen) {
+ if (check_flags)
+ goto skip_sigs;
+ else
+ goto end;
+ }
+ }
+ /* Check signature algorithm of each cert in chain */
+ if (SSL_CONNECTION_IS_TLS13(s)) {
+ /*
+ * We only get here if the application has called SSL_check_chain(),
+ * so check_flags is always set.
+ */
+ if (find_sig_alg(s, x, pk) != NULL)
+ rv |= CERT_PKEY_EE_SIGNATURE;
+ } else if (!tls1_check_sig_alg(s, x, default_nid)) {
+ if (!check_flags)
+ goto end;
+ } else
+ rv |= CERT_PKEY_EE_SIGNATURE;
+ rv |= CERT_PKEY_CA_SIGNATURE;
+ for (i = 0; i < sk_X509_num(chain); i++) {
+ if (!tls1_check_sig_alg(s, sk_X509_value(chain, i), default_nid)) {
+ if (check_flags) {
+ rv &= ~CERT_PKEY_CA_SIGNATURE;
+ break;
+ } else
+ goto end;
+ }
+ }
+ }
+ /* Else not TLS 1.2, so mark EE and CA signing algorithms OK */
+ else if (check_flags)
+ rv |= CERT_PKEY_EE_SIGNATURE | CERT_PKEY_CA_SIGNATURE;
+ skip_sigs:
+ /* Check cert parameters are consistent */
+ if (tls1_check_cert_param(s, x, 1))
+ rv |= CERT_PKEY_EE_PARAM;
+ else if (!check_flags)
+ goto end;
+ if (!s->server)
+ rv |= CERT_PKEY_CA_PARAM;
+ /* In strict mode check rest of chain too */
+ else if (strict_mode) {
+ rv |= CERT_PKEY_CA_PARAM;
+ for (i = 0; i < sk_X509_num(chain); i++) {
+ X509 *ca = sk_X509_value(chain, i);
+ if (!tls1_check_cert_param(s, ca, 0)) {
+ if (check_flags) {
+ rv &= ~CERT_PKEY_CA_PARAM;
+ break;
+ } else
+ goto end;
+ }
+ }
+ }
+ if (!s->server && strict_mode) {
+ STACK_OF(X509_NAME) *ca_dn;
+ int check_type = 0;
+
+ if (EVP_PKEY_is_a(pk, "RSA"))
+ check_type = TLS_CT_RSA_SIGN;
+ else if (EVP_PKEY_is_a(pk, "DSA"))
+ check_type = TLS_CT_DSS_SIGN;
+ else if (EVP_PKEY_is_a(pk, "EC"))
+ check_type = TLS_CT_ECDSA_SIGN;
+
+ if (check_type) {
+ const uint8_t *ctypes = s->s3.tmp.ctype;
+ size_t j;
+
+ for (j = 0; j < s->s3.tmp.ctype_len; j++, ctypes++) {
+ if (*ctypes == check_type) {
+ rv |= CERT_PKEY_CERT_TYPE;
+ break;
+ }
+ }
+ if (!(rv & CERT_PKEY_CERT_TYPE) && !check_flags)
+ goto end;
+ } else {
+ rv |= CERT_PKEY_CERT_TYPE;
+ }
+
+ ca_dn = s->s3.tmp.peer_ca_names;
+
+ if (ca_dn == NULL
+ || sk_X509_NAME_num(ca_dn) == 0
+ || ssl_check_ca_name(ca_dn, x))
+ rv |= CERT_PKEY_ISSUER_NAME;
+ else
+ for (i = 0; i < sk_X509_num(chain); i++) {
+ X509 *xtmp = sk_X509_value(chain, i);
+
+ if (ssl_check_ca_name(ca_dn, xtmp)) {
+ rv |= CERT_PKEY_ISSUER_NAME;
+ break;
+ }
+ }
+
+ if (!check_flags && !(rv & CERT_PKEY_ISSUER_NAME))
+ goto end;
+ } else
+ rv |= CERT_PKEY_ISSUER_NAME | CERT_PKEY_CERT_TYPE;
+
+ if (!check_flags || (rv & check_flags) == check_flags)
+ rv |= CERT_PKEY_VALID;
+
+ end:
+
+ if (TLS1_get_version(SSL_CONNECTION_GET_SSL(s)) >= TLS1_2_VERSION)
+ rv |= *pvalid & (CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN);
+ else
+ rv |= CERT_PKEY_SIGN | CERT_PKEY_EXPLICIT_SIGN;
+
+ /*
+ * When checking a CERT_PKEY structure all flags are irrelevant if the
+ * chain is invalid.
+ */
+ if (!check_flags) {
+ if (rv & CERT_PKEY_VALID) {
+ *pvalid = rv;
+ } else {
+ /* Preserve sign and explicit sign flag, clear rest */
+ *pvalid &= CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
+ return 0;
+ }
+ }
+ return rv;
+}
+
+/* Set validity of certificates in an SSL structure */
+void tls1_set_cert_validity(SSL_CONNECTION *s)
+{
+ tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA);
+ tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_PSS_SIGN);
+ tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DSA_SIGN);
+ tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ECC);
+ tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST01);
+ tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_256);
+ tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_512);
+ tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED25519);
+ tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED448);
+}
+
+/* User level utility function to check a chain is suitable */
+int SSL_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain)
+{
+ SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
+
+ if (sc == NULL)
+ return 0;
+
+ return tls1_check_chain(sc, x, pk, chain, -1);
+}
+
+EVP_PKEY *ssl_get_auto_dh(SSL_CONNECTION *s)
+{
+ EVP_PKEY *dhp = NULL;
+ BIGNUM *p;
+ int dh_secbits = 80, sec_level_bits;
+ EVP_PKEY_CTX *pctx = NULL;
+ OSSL_PARAM_BLD *tmpl = NULL;
+ OSSL_PARAM *params = NULL;
+ SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
+
+ if (s->cert->dh_tmp_auto != 2) {
+ if (s->s3.tmp.new_cipher->algorithm_auth & (SSL_aNULL | SSL_aPSK)) {
+ if (s->s3.tmp.new_cipher->strength_bits == 256)
+ dh_secbits = 128;
+ else
+ dh_secbits = 80;
+ } else {
+ if (s->s3.tmp.cert == NULL)
+ return NULL;
+ dh_secbits = EVP_PKEY_get_security_bits(s->s3.tmp.cert->privatekey);
+ }
+ }
+
+ /* Do not pick a prime that is too weak for the current security level */
+ sec_level_bits = ssl_get_security_level_bits(SSL_CONNECTION_GET_SSL(s),
+ NULL, NULL);
+ if (dh_secbits < sec_level_bits)
+ dh_secbits = sec_level_bits;
+
+ if (dh_secbits >= 192)
+ p = BN_get_rfc3526_prime_8192(NULL);
+ else if (dh_secbits >= 152)
+ p = BN_get_rfc3526_prime_4096(NULL);
+ else if (dh_secbits >= 128)
+ p = BN_get_rfc3526_prime_3072(NULL);
+ else if (dh_secbits >= 112)
+ p = BN_get_rfc3526_prime_2048(NULL);
+ else
+ p = BN_get_rfc2409_prime_1024(NULL);
+ if (p == NULL)
+ goto err;
+
+ pctx = EVP_PKEY_CTX_new_from_name(sctx->libctx, "DH", sctx->propq);
+ if (pctx == NULL
+ || EVP_PKEY_fromdata_init(pctx) != 1)
+ goto err;
+
+ tmpl = OSSL_PARAM_BLD_new();
+ if (tmpl == NULL
+ || !OSSL_PARAM_BLD_push_BN(tmpl, OSSL_PKEY_PARAM_FFC_P, p)
+ || !OSSL_PARAM_BLD_push_uint(tmpl, OSSL_PKEY_PARAM_FFC_G, 2))
+ goto err;
+
+ params = OSSL_PARAM_BLD_to_param(tmpl);
+ if (params == NULL
+ || EVP_PKEY_fromdata(pctx, &dhp, EVP_PKEY_KEY_PARAMETERS, params) != 1)
+ goto err;
+
+err:
+ OSSL_PARAM_free(params);
+ OSSL_PARAM_BLD_free(tmpl);
+ EVP_PKEY_CTX_free(pctx);
+ BN_free(p);
+ return dhp;
+}
+
+static int ssl_security_cert_key(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x,
+ int op)
+{
+ int secbits = -1;
+ EVP_PKEY *pkey = X509_get0_pubkey(x);
+
+ if (pkey) {
+ /*
+ * If no parameters this will return -1 and fail using the default
+ * security callback for any non-zero security level. This will
+ * reject keys which omit parameters but this only affects DSA and
+ * omission of parameters is never (?) done in practice.
+ */
+ secbits = EVP_PKEY_get_security_bits(pkey);
+ }
+ if (s != NULL)
+ return ssl_security(s, op, secbits, 0, x);
+ else
+ return ssl_ctx_security(ctx, op, secbits, 0, x);
+}
+
+static int ssl_security_cert_sig(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x,
+ int op)
+{
+ /* Lookup signature algorithm digest */
+ int secbits, nid, pknid;
+
+ /* Don't check signature if self signed */
+ if ((X509_get_extension_flags(x) & EXFLAG_SS) != 0)
+ return 1;
+ if (!X509_get_signature_info(x, &nid, &pknid, &secbits, NULL))
+ secbits = -1;
+ /* If digest NID not defined use signature NID */
+ if (nid == NID_undef)
+ nid = pknid;
+ if (s != NULL)
+ return ssl_security(s, op, secbits, nid, x);
+ else
+ return ssl_ctx_security(ctx, op, secbits, nid, x);
+}
+
+int ssl_security_cert(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x, int vfy,
+ int is_ee)
+{
+ if (vfy)
+ vfy = SSL_SECOP_PEER;
+ if (is_ee) {
+ if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_EE_KEY | vfy))
+ return SSL_R_EE_KEY_TOO_SMALL;
+ } else {
+ if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_CA_KEY | vfy))
+ return SSL_R_CA_KEY_TOO_SMALL;
+ }
+ if (!ssl_security_cert_sig(s, ctx, x, SSL_SECOP_CA_MD | vfy))
+ return SSL_R_CA_MD_TOO_WEAK;
+ return 1;
+}
+
+/*
+ * Check security of a chain, if |sk| includes the end entity certificate then
+ * |x| is NULL. If |vfy| is 1 then we are verifying a peer chain and not sending
+ * one to the peer. Return values: 1 if ok otherwise error code to use
+ */
+
+int ssl_security_cert_chain(SSL_CONNECTION *s, STACK_OF(X509) *sk,
+ X509 *x, int vfy)
+{
+ int rv, start_idx, i;
+
+ if (x == NULL) {
+ x = sk_X509_value(sk, 0);
+ if (x == NULL)
+ return ERR_R_INTERNAL_ERROR;
+ start_idx = 1;
+ } else
+ start_idx = 0;
+
+ rv = ssl_security_cert(s, NULL, x, vfy, 1);
+ if (rv != 1)
+ return rv;
+
+ for (i = start_idx; i < sk_X509_num(sk); i++) {
+ x = sk_X509_value(sk, i);
+ rv = ssl_security_cert(s, NULL, x, vfy, 0);
+ if (rv != 1)
+ return rv;
+ }
+ return 1;
+}
+
+/*
+ * For TLS 1.2 servers check if we have a certificate which can be used
+ * with the signature algorithm "lu" and return index of certificate.
+ */
+
+static int tls12_get_cert_sigalg_idx(const SSL_CONNECTION *s,
+ const SIGALG_LOOKUP *lu)
+{
+ int sig_idx = lu->sig_idx;
+ const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(sig_idx,
+ SSL_CONNECTION_GET_CTX(s));
+
+ /* If not recognised or not supported by cipher mask it is not suitable */
+ if (clu == NULL
+ || (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) == 0
+ || (clu->nid == EVP_PKEY_RSA_PSS
+ && (s->s3.tmp.new_cipher->algorithm_mkey & SSL_kRSA) != 0))
+ return -1;
+
+ /* If doing RPK, the CERT_PKEY won't be "valid" */
+ if (tls12_rpk_and_privkey(s, sig_idx))
+ return s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_RPK ? sig_idx : -1;
+
+ return s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_VALID ? sig_idx : -1;
+}
+
+/*
+ * Checks the given cert against signature_algorithm_cert restrictions sent by
+ * the peer (if any) as well as whether the hash from the sigalg is usable with
+ * the key.
+ * Returns true if the cert is usable and false otherwise.
+ */
+static int check_cert_usable(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig,
+ X509 *x, EVP_PKEY *pkey)
+{
+ const SIGALG_LOOKUP *lu;
+ int mdnid, pknid, supported;
+ size_t i;
+ const char *mdname = NULL;
+ SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
+
+ /*
+ * If the given EVP_PKEY cannot support signing with this digest,
+ * the answer is simply 'no'.
+ */
+ if (sig->hash != NID_undef)
+ mdname = OBJ_nid2sn(sig->hash);
+ supported = EVP_PKEY_digestsign_supports_digest(pkey, sctx->libctx,
+ mdname,
+ sctx->propq);
+ if (supported <= 0)
+ return 0;
+
+ /*
+ * The TLS 1.3 signature_algorithms_cert extension places restrictions
+ * on the sigalg with which the certificate was signed (by its issuer).
+ */
+ if (s->s3.tmp.peer_cert_sigalgs != NULL) {
+ if (!X509_get_signature_info(x, &mdnid, &pknid, NULL, NULL))
+ return 0;
+ for (i = 0; i < s->s3.tmp.peer_cert_sigalgslen; i++) {
+ lu = tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s),
+ s->s3.tmp.peer_cert_sigalgs[i]);
+ if (lu == NULL)
+ continue;
+
+ /*
+ * This does not differentiate between the
+ * rsa_pss_pss_* and rsa_pss_rsae_* schemes since we do not
+ * have a chain here that lets us look at the key OID in the
+ * signing certificate.
+ */
+ if (mdnid == lu->hash && pknid == lu->sig)
+ return 1;
+ }
+ return 0;
+ }
+
+ /*
+ * Without signat_algorithms_cert, any certificate for which we have
+ * a viable public key is permitted.
+ */
+ return 1;
+}
+
+/*
+ * Returns true if |s| has a usable certificate configured for use
+ * with signature scheme |sig|.
+ * "Usable" includes a check for presence as well as applying
+ * the signature_algorithm_cert restrictions sent by the peer (if any).
+ * Returns false if no usable certificate is found.
+ */
+static int has_usable_cert(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig, int idx)
+{
+ /* TLS 1.2 callers can override sig->sig_idx, but not TLS 1.3 callers. */
+ if (idx == -1)
+ idx = sig->sig_idx;
+ if (!ssl_has_cert(s, idx))
+ return 0;
+
+ return check_cert_usable(s, sig, s->cert->pkeys[idx].x509,
+ s->cert->pkeys[idx].privatekey);
+}
+
+/*
+ * Returns true if the supplied cert |x| and key |pkey| is usable with the
+ * specified signature scheme |sig|, or false otherwise.
+ */
+static int is_cert_usable(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig, X509 *x,
+ EVP_PKEY *pkey)
+{
+ size_t idx;
+
+ if (ssl_cert_lookup_by_pkey(pkey, &idx, SSL_CONNECTION_GET_CTX(s)) == NULL)
+ return 0;
+
+ /* Check the key is consistent with the sig alg */
+ if ((int)idx != sig->sig_idx)
+ return 0;
+
+ return check_cert_usable(s, sig, x, pkey);
+}
+
+/*
+ * Find a signature scheme that works with the supplied certificate |x| and key
+ * |pkey|. |x| and |pkey| may be NULL in which case we additionally look at our
+ * available certs/keys to find one that works.
+ */
+static const SIGALG_LOOKUP *find_sig_alg(SSL_CONNECTION *s, X509 *x,
+ EVP_PKEY *pkey)
+{
+ const SIGALG_LOOKUP *lu = NULL;
+ size_t i;
+ int curve = -1;
+ EVP_PKEY *tmppkey;
+ SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
+
+ /* Look for a shared sigalgs matching possible certificates */
+ for (i = 0; i < s->shared_sigalgslen; i++) {
+ /* Skip SHA1, SHA224, DSA and RSA if not PSS */
+ lu = s->shared_sigalgs[i];
+ if (lu->hash == NID_sha1
+ || lu->hash == NID_sha224
+ || lu->sig == EVP_PKEY_DSA
+ || lu->sig == EVP_PKEY_RSA
+ || !tls_sigalg_compat(s, lu))
+ continue;
+
+ /* Check that we have a cert, and signature_algorithms_cert */
+ if (!tls1_lookup_md(sctx, lu, NULL))
+ continue;
+ if ((pkey == NULL && !has_usable_cert(s, lu, -1))
+ || (pkey != NULL && !is_cert_usable(s, lu, x, pkey)))
+ continue;
+
+ tmppkey = (pkey != NULL) ? pkey
+ : s->cert->pkeys[lu->sig_idx].privatekey;
+
+ if (lu->sig == EVP_PKEY_EC) {
+ if (curve == -1)
+ curve = ssl_get_EC_curve_nid(tmppkey);
+ if (lu->curve != NID_undef && curve != lu->curve)
+ continue;
+ } else if (lu->sig == EVP_PKEY_RSA_PSS) {
+ /* validate that key is large enough for the signature algorithm */
+ if (!rsa_pss_check_min_key_size(sctx, tmppkey, lu))
+ continue;
+ }
+ break;
+ }
+
+ if (i == s->shared_sigalgslen)
+ return NULL;
+
+ return lu;
+}
+
+/*
+ * Choose an appropriate signature algorithm based on available certificates
+ * Sets chosen certificate and signature algorithm.
+ *
+ * For servers if we fail to find a required certificate it is a fatal error,
+ * an appropriate error code is set and a TLS alert is sent.
+ *
+ * For clients fatalerrs is set to 0. If a certificate is not suitable it is not
+ * a fatal error: we will either try another certificate or not present one
+ * to the server. In this case no error is set.
+ */
+int tls_choose_sigalg(SSL_CONNECTION *s, int fatalerrs)
+{
+ const SIGALG_LOOKUP *lu = NULL;
+ int sig_idx = -1;
+
+ s->s3.tmp.cert = NULL;
+ s->s3.tmp.sigalg = NULL;
+
+ if (SSL_CONNECTION_IS_TLS13(s)) {
+ lu = find_sig_alg(s, NULL, NULL);
+ if (lu == NULL) {
+ if (!fatalerrs)
+ return 1;
+ SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
+ SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
+ return 0;
+ }
+ } else {
+ /* If ciphersuite doesn't require a cert nothing to do */
+ if (!(s->s3.tmp.new_cipher->algorithm_auth & SSL_aCERT))
+ return 1;
+ if (!s->server && !ssl_has_cert(s, s->cert->key - s->cert->pkeys))
+ return 1;
+
+ if (SSL_USE_SIGALGS(s)) {
+ size_t i;
+ if (s->s3.tmp.peer_sigalgs != NULL) {
+ int curve = -1;
+ SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
+
+ /* For Suite B need to match signature algorithm to curve */
+ if (tls1_suiteb(s))
+ curve = ssl_get_EC_curve_nid(s->cert->pkeys[SSL_PKEY_ECC]
+ .privatekey);
+
+ /*
+ * Find highest preference signature algorithm matching
+ * cert type
+ */
+ for (i = 0; i < s->shared_sigalgslen; i++) {
+ /* Check the sigalg version bounds */
+ lu = s->shared_sigalgs[i];
+ if (!tls_sigalg_compat(s, lu))
+ continue;
+ if (s->server) {
+ if ((sig_idx = tls12_get_cert_sigalg_idx(s, lu)) == -1)
+ continue;
+ } else {
+ int cc_idx = s->cert->key - s->cert->pkeys;
+
+ sig_idx = lu->sig_idx;
+ if (cc_idx != sig_idx)
+ continue;
+ }
+ /* Check that we have a cert, and sig_algs_cert */
+ if (!has_usable_cert(s, lu, sig_idx))
+ continue;
+ if (lu->sig == EVP_PKEY_RSA_PSS) {
+ /* validate that key is large enough for the signature algorithm */
+ EVP_PKEY *pkey = s->cert->pkeys[sig_idx].privatekey;
+
+ if (!rsa_pss_check_min_key_size(sctx, pkey, lu))
+ continue;
+ }
+ if (curve == -1 || lu->curve == curve)
+ break;
+ }
+#ifndef OPENSSL_NO_GOST
+ /*
+ * Some Windows-based implementations do not send GOST algorithms indication
+ * in supported_algorithms extension, so when we have GOST-based ciphersuite,
+ * we have to assume GOST support.
+ */
+ if (i == s->shared_sigalgslen
+ && (s->s3.tmp.new_cipher->algorithm_auth
+ & (SSL_aGOST01 | SSL_aGOST12)) != 0) {
+ if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
+ if (!fatalerrs)
+ return 1;
+ SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
+ SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
+ return 0;
+ } else {
+ i = 0;
+ sig_idx = lu->sig_idx;
+ }
+ }
+#endif
+ if (i == s->shared_sigalgslen) {
+ if (!fatalerrs)
+ return 1;
+ SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
+ SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
+ return 0;
+ }
+ } else {
+ /*
+ * If we have no sigalg use defaults
+ */
+ const uint16_t *sent_sigs;
+ size_t sent_sigslen;
+
+ if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
+ if (!fatalerrs)
+ return 1;
+ SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
+ SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
+ return 0;
+ }
+
+ /* Check signature matches a type we sent */
+ sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
+ for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
+ if (lu->sigalg == *sent_sigs
+ && has_usable_cert(s, lu, lu->sig_idx))
+ break;
+ }
+ if (i == sent_sigslen) {
+ if (!fatalerrs)
+ return 1;
+ SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
+ SSL_R_WRONG_SIGNATURE_TYPE);
+ return 0;
+ }
+ }
+ } else {
+ if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
+ if (!fatalerrs)
+ return 1;
+ SSLfatal(s, SSL_AD_INTERNAL_ERROR,
+ SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
+ return 0;
+ }
+ }
+ }
+ if (sig_idx == -1)
+ sig_idx = lu->sig_idx;
+ s->s3.tmp.cert = &s->cert->pkeys[sig_idx];
+ s->cert->key = s->s3.tmp.cert;
+ s->s3.tmp.sigalg = lu;
+ return 1;
+}
+
+int SSL_CTX_set_tlsext_max_fragment_length(SSL_CTX *ctx, uint8_t mode)
+{
+ if (mode != TLSEXT_max_fragment_length_DISABLED
+ && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
+ ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
+ return 0;
+ }
+
+ ctx->ext.max_fragment_len_mode = mode;
+ return 1;
+}
+
+int SSL_set_tlsext_max_fragment_length(SSL *ssl, uint8_t mode)
+{
+ SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(ssl);
+
+ if (sc == NULL
+ || (IS_QUIC(ssl) && mode != TLSEXT_max_fragment_length_DISABLED))
+ return 0;
+
+ if (mode != TLSEXT_max_fragment_length_DISABLED
+ && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
+ ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
+ return 0;
+ }
+
+ sc->ext.max_fragment_len_mode = mode;
+ return 1;
+}
+
+uint8_t SSL_SESSION_get_max_fragment_length(const SSL_SESSION *session)
+{
+ if (session->ext.max_fragment_len_mode == TLSEXT_max_fragment_length_UNSPECIFIED)
+ return TLSEXT_max_fragment_length_DISABLED;
+ return session->ext.max_fragment_len_mode;
+}
+
+/*
+ * Helper functions for HMAC access with legacy support included.
+ */
+SSL_HMAC *ssl_hmac_new(const SSL_CTX *ctx)
+{
+ SSL_HMAC *ret = OPENSSL_zalloc(sizeof(*ret));
+ EVP_MAC *mac = NULL;
+
+ if (ret == NULL)
+ return NULL;
+#ifndef OPENSSL_NO_DEPRECATED_3_0
+ if (ctx->ext.ticket_key_evp_cb == NULL
+ && ctx->ext.ticket_key_cb != NULL) {
+ if (!ssl_hmac_old_new(ret))
+ goto err;
+ return ret;
+ }
+#endif
+ mac = EVP_MAC_fetch(ctx->libctx, "HMAC", ctx->propq);
+ if (mac == NULL || (ret->ctx = EVP_MAC_CTX_new(mac)) == NULL)
+ goto err;
+ EVP_MAC_free(mac);
+ return ret;
+ err:
+ EVP_MAC_CTX_free(ret->ctx);
+ EVP_MAC_free(mac);
+ OPENSSL_free(ret);
+ return NULL;
+}
+
+void ssl_hmac_free(SSL_HMAC *ctx)
+{
+ if (ctx != NULL) {
+ EVP_MAC_CTX_free(ctx->ctx);
+#ifndef OPENSSL_NO_DEPRECATED_3_0
+ ssl_hmac_old_free(ctx);
+#endif
+ OPENSSL_free(ctx);
+ }
+}
+
+EVP_MAC_CTX *ssl_hmac_get0_EVP_MAC_CTX(SSL_HMAC *ctx)
+{
+ return ctx->ctx;
+}
+
+int ssl_hmac_init(SSL_HMAC *ctx, void *key, size_t len, char *md)
+{
+ OSSL_PARAM params[2], *p = params;
+
+ if (ctx->ctx != NULL) {
+ *p++ = OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST, md, 0);
+ *p = OSSL_PARAM_construct_end();
+ if (EVP_MAC_init(ctx->ctx, key, len, params))
+ return 1;
+ }
+#ifndef OPENSSL_NO_DEPRECATED_3_0
+ if (ctx->old_ctx != NULL)
+ return ssl_hmac_old_init(ctx, key, len, md);
+#endif
+ return 0;
+}
+
+int ssl_hmac_update(SSL_HMAC *ctx, const unsigned char *data, size_t len)
+{
+ if (ctx->ctx != NULL)
+ return EVP_MAC_update(ctx->ctx, data, len);
+#ifndef OPENSSL_NO_DEPRECATED_3_0
+ if (ctx->old_ctx != NULL)
+ return ssl_hmac_old_update(ctx, data, len);
+#endif
+ return 0;
+}
+
+int ssl_hmac_final(SSL_HMAC *ctx, unsigned char *md, size_t *len,
+ size_t max_size)
+{
+ if (ctx->ctx != NULL)
+ return EVP_MAC_final(ctx->ctx, md, len, max_size);
+#ifndef OPENSSL_NO_DEPRECATED_3_0
+ if (ctx->old_ctx != NULL)
+ return ssl_hmac_old_final(ctx, md, len);
+#endif
+ return 0;
+}
+
+size_t ssl_hmac_size(const SSL_HMAC *ctx)
+{
+ if (ctx->ctx != NULL)
+ return EVP_MAC_CTX_get_mac_size(ctx->ctx);
+#ifndef OPENSSL_NO_DEPRECATED_3_0
+ if (ctx->old_ctx != NULL)
+ return ssl_hmac_old_size(ctx);
+#endif
+ return 0;
+}
+
+int ssl_get_EC_curve_nid(const EVP_PKEY *pkey)
+{
+ char gname[OSSL_MAX_NAME_SIZE];
+
+ if (EVP_PKEY_get_group_name(pkey, gname, sizeof(gname), NULL) > 0)
+ return OBJ_txt2nid(gname);
+
+ return NID_undef;
+}
+
+__owur int tls13_set_encoded_pub_key(EVP_PKEY *pkey,
+ const unsigned char *enckey,
+ size_t enckeylen)
+{
+ if (EVP_PKEY_is_a(pkey, "DH")) {
+ int bits = EVP_PKEY_get_bits(pkey);
+
+ if (bits <= 0 || enckeylen != (size_t)bits / 8)
+ /* the encoded key must be padded to the length of the p */
+ return 0;
+ } else if (EVP_PKEY_is_a(pkey, "EC")) {
+ if (enckeylen < 3 /* point format and at least 1 byte for x and y */
+ || enckey[0] != 0x04)
+ return 0;
+ }
+
+ return EVP_PKEY_set1_encoded_public_key(pkey, enckey, enckeylen);
+}