aboutsummaryrefslogtreecommitdiff
path: root/lib/Transforms/Vectorize/LoadStoreVectorizer.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Transforms/Vectorize/LoadStoreVectorizer.cpp')
-rw-r--r--lib/Transforms/Vectorize/LoadStoreVectorizer.cpp999
1 files changed, 999 insertions, 0 deletions
diff --git a/lib/Transforms/Vectorize/LoadStoreVectorizer.cpp b/lib/Transforms/Vectorize/LoadStoreVectorizer.cpp
new file mode 100644
index 000000000000..c8906bde15e0
--- /dev/null
+++ b/lib/Transforms/Vectorize/LoadStoreVectorizer.cpp
@@ -0,0 +1,999 @@
+//===----- LoadStoreVectorizer.cpp - GPU Load & Store Vectorizer ----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/MapVector.h"
+#include "llvm/ADT/PostOrderIterator.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/Triple.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/ScalarEvolution.h"
+#include "llvm/Analysis/ScalarEvolutionExpressions.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/Analysis/VectorUtils.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Type.h"
+#include "llvm/IR/Value.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/Vectorize.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "load-store-vectorizer"
+STATISTIC(NumVectorInstructions, "Number of vector accesses generated");
+STATISTIC(NumScalarsVectorized, "Number of scalar accesses vectorized");
+
+namespace {
+
+// TODO: Remove this
+static const unsigned TargetBaseAlign = 4;
+
+class Vectorizer {
+ typedef SmallVector<Value *, 8> ValueList;
+ typedef MapVector<Value *, ValueList> ValueListMap;
+
+ Function &F;
+ AliasAnalysis &AA;
+ DominatorTree &DT;
+ ScalarEvolution &SE;
+ TargetTransformInfo &TTI;
+ const DataLayout &DL;
+ IRBuilder<> Builder;
+ ValueListMap StoreRefs;
+ ValueListMap LoadRefs;
+
+public:
+ Vectorizer(Function &F, AliasAnalysis &AA, DominatorTree &DT,
+ ScalarEvolution &SE, TargetTransformInfo &TTI)
+ : F(F), AA(AA), DT(DT), SE(SE), TTI(TTI),
+ DL(F.getParent()->getDataLayout()), Builder(SE.getContext()) {}
+
+ bool run();
+
+private:
+ Value *getPointerOperand(Value *I);
+
+ unsigned getPointerAddressSpace(Value *I);
+
+ unsigned getAlignment(LoadInst *LI) const {
+ unsigned Align = LI->getAlignment();
+ if (Align != 0)
+ return Align;
+
+ return DL.getABITypeAlignment(LI->getType());
+ }
+
+ unsigned getAlignment(StoreInst *SI) const {
+ unsigned Align = SI->getAlignment();
+ if (Align != 0)
+ return Align;
+
+ return DL.getABITypeAlignment(SI->getValueOperand()->getType());
+ }
+
+ bool isConsecutiveAccess(Value *A, Value *B);
+
+ /// After vectorization, reorder the instructions that I depends on
+ /// (the instructions defining its operands), to ensure they dominate I.
+ void reorder(Instruction *I);
+
+ /// Returns the first and the last instructions in Chain.
+ std::pair<BasicBlock::iterator, BasicBlock::iterator>
+ getBoundaryInstrs(ArrayRef<Value *> Chain);
+
+ /// Erases the original instructions after vectorizing.
+ void eraseInstructions(ArrayRef<Value *> Chain);
+
+ /// "Legalize" the vector type that would be produced by combining \p
+ /// ElementSizeBits elements in \p Chain. Break into two pieces such that the
+ /// total size of each piece is 1, 2 or a multiple of 4 bytes. \p Chain is
+ /// expected to have more than 4 elements.
+ std::pair<ArrayRef<Value *>, ArrayRef<Value *>>
+ splitOddVectorElts(ArrayRef<Value *> Chain, unsigned ElementSizeBits);
+
+ /// Checks for instructions which may affect the memory accessed
+ /// in the chain between \p From and \p To. Returns Index, where
+ /// \p Chain[0, Index) is the largest vectorizable chain prefix.
+ /// The elements of \p Chain should be all loads or all stores.
+ unsigned getVectorizablePrefixEndIdx(ArrayRef<Value *> Chain,
+ BasicBlock::iterator From,
+ BasicBlock::iterator To);
+
+ /// Collects load and store instructions to vectorize.
+ void collectInstructions(BasicBlock *BB);
+
+ /// Processes the collected instructions, the \p Map. The elements of \p Map
+ /// should be all loads or all stores.
+ bool vectorizeChains(ValueListMap &Map);
+
+ /// Finds the load/stores to consecutive memory addresses and vectorizes them.
+ bool vectorizeInstructions(ArrayRef<Value *> Instrs);
+
+ /// Vectorizes the load instructions in Chain.
+ bool vectorizeLoadChain(ArrayRef<Value *> Chain,
+ SmallPtrSet<Value *, 16> *InstructionsProcessed);
+
+ /// Vectorizes the store instructions in Chain.
+ bool vectorizeStoreChain(ArrayRef<Value *> Chain,
+ SmallPtrSet<Value *, 16> *InstructionsProcessed);
+
+ /// Check if this load/store access is misaligned accesses
+ bool accessIsMisaligned(unsigned SzInBytes, unsigned AddressSpace,
+ unsigned Alignment);
+};
+
+class LoadStoreVectorizer : public FunctionPass {
+public:
+ static char ID;
+
+ LoadStoreVectorizer() : FunctionPass(ID) {
+ initializeLoadStoreVectorizerPass(*PassRegistry::getPassRegistry());
+ }
+
+ bool runOnFunction(Function &F) override;
+
+ const char *getPassName() const override {
+ return "GPU Load and Store Vectorizer";
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<AAResultsWrapperPass>();
+ AU.addRequired<ScalarEvolutionWrapperPass>();
+ AU.addRequired<DominatorTreeWrapperPass>();
+ AU.addRequired<TargetTransformInfoWrapperPass>();
+ AU.setPreservesCFG();
+ }
+};
+}
+
+INITIALIZE_PASS_BEGIN(LoadStoreVectorizer, DEBUG_TYPE,
+ "Vectorize load and Store instructions", false, false)
+INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
+INITIALIZE_PASS_END(LoadStoreVectorizer, DEBUG_TYPE,
+ "Vectorize load and store instructions", false, false)
+
+char LoadStoreVectorizer::ID = 0;
+
+Pass *llvm::createLoadStoreVectorizerPass() {
+ return new LoadStoreVectorizer();
+}
+
+bool LoadStoreVectorizer::runOnFunction(Function &F) {
+ // Don't vectorize when the attribute NoImplicitFloat is used.
+ if (skipFunction(F) || F.hasFnAttribute(Attribute::NoImplicitFloat))
+ return false;
+
+ AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
+ DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
+ ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
+ TargetTransformInfo &TTI =
+ getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
+
+ Vectorizer V(F, AA, DT, SE, TTI);
+ return V.run();
+}
+
+// Vectorizer Implementation
+bool Vectorizer::run() {
+ bool Changed = false;
+
+ // Scan the blocks in the function in post order.
+ for (BasicBlock *BB : post_order(&F)) {
+ collectInstructions(BB);
+ Changed |= vectorizeChains(LoadRefs);
+ Changed |= vectorizeChains(StoreRefs);
+ }
+
+ return Changed;
+}
+
+Value *Vectorizer::getPointerOperand(Value *I) {
+ if (LoadInst *LI = dyn_cast<LoadInst>(I))
+ return LI->getPointerOperand();
+ if (StoreInst *SI = dyn_cast<StoreInst>(I))
+ return SI->getPointerOperand();
+ return nullptr;
+}
+
+unsigned Vectorizer::getPointerAddressSpace(Value *I) {
+ if (LoadInst *L = dyn_cast<LoadInst>(I))
+ return L->getPointerAddressSpace();
+ if (StoreInst *S = dyn_cast<StoreInst>(I))
+ return S->getPointerAddressSpace();
+ return -1;
+}
+
+// FIXME: Merge with llvm::isConsecutiveAccess
+bool Vectorizer::isConsecutiveAccess(Value *A, Value *B) {
+ Value *PtrA = getPointerOperand(A);
+ Value *PtrB = getPointerOperand(B);
+ unsigned ASA = getPointerAddressSpace(A);
+ unsigned ASB = getPointerAddressSpace(B);
+
+ // Check that the address spaces match and that the pointers are valid.
+ if (!PtrA || !PtrB || (ASA != ASB))
+ return false;
+
+ // Make sure that A and B are different pointers of the same size type.
+ unsigned PtrBitWidth = DL.getPointerSizeInBits(ASA);
+ Type *PtrATy = PtrA->getType()->getPointerElementType();
+ Type *PtrBTy = PtrB->getType()->getPointerElementType();
+ if (PtrA == PtrB ||
+ DL.getTypeStoreSize(PtrATy) != DL.getTypeStoreSize(PtrBTy) ||
+ DL.getTypeStoreSize(PtrATy->getScalarType()) !=
+ DL.getTypeStoreSize(PtrBTy->getScalarType()))
+ return false;
+
+ APInt Size(PtrBitWidth, DL.getTypeStoreSize(PtrATy));
+
+ APInt OffsetA(PtrBitWidth, 0), OffsetB(PtrBitWidth, 0);
+ PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA);
+ PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB);
+
+ APInt OffsetDelta = OffsetB - OffsetA;
+
+ // Check if they are based on the same pointer. That makes the offsets
+ // sufficient.
+ if (PtrA == PtrB)
+ return OffsetDelta == Size;
+
+ // Compute the necessary base pointer delta to have the necessary final delta
+ // equal to the size.
+ APInt BaseDelta = Size - OffsetDelta;
+
+ // Compute the distance with SCEV between the base pointers.
+ const SCEV *PtrSCEVA = SE.getSCEV(PtrA);
+ const SCEV *PtrSCEVB = SE.getSCEV(PtrB);
+ const SCEV *C = SE.getConstant(BaseDelta);
+ const SCEV *X = SE.getAddExpr(PtrSCEVA, C);
+ if (X == PtrSCEVB)
+ return true;
+
+ // Sometimes even this doesn't work, because SCEV can't always see through
+ // patterns that look like (gep (ext (add (shl X, C1), C2))). Try checking
+ // things the hard way.
+
+ // Look through GEPs after checking they're the same except for the last
+ // index.
+ GetElementPtrInst *GEPA = dyn_cast<GetElementPtrInst>(getPointerOperand(A));
+ GetElementPtrInst *GEPB = dyn_cast<GetElementPtrInst>(getPointerOperand(B));
+ if (!GEPA || !GEPB || GEPA->getNumOperands() != GEPB->getNumOperands())
+ return false;
+ unsigned FinalIndex = GEPA->getNumOperands() - 1;
+ for (unsigned i = 0; i < FinalIndex; i++)
+ if (GEPA->getOperand(i) != GEPB->getOperand(i))
+ return false;
+
+ Instruction *OpA = dyn_cast<Instruction>(GEPA->getOperand(FinalIndex));
+ Instruction *OpB = dyn_cast<Instruction>(GEPB->getOperand(FinalIndex));
+ if (!OpA || !OpB || OpA->getOpcode() != OpB->getOpcode() ||
+ OpA->getType() != OpB->getType())
+ return false;
+
+ // Only look through a ZExt/SExt.
+ if (!isa<SExtInst>(OpA) && !isa<ZExtInst>(OpA))
+ return false;
+
+ bool Signed = isa<SExtInst>(OpA);
+
+ OpA = dyn_cast<Instruction>(OpA->getOperand(0));
+ OpB = dyn_cast<Instruction>(OpB->getOperand(0));
+ if (!OpA || !OpB || OpA->getType() != OpB->getType())
+ return false;
+
+ // Now we need to prove that adding 1 to OpA won't overflow.
+ bool Safe = false;
+ // First attempt: if OpB is an add with NSW/NUW, and OpB is 1 added to OpA,
+ // we're okay.
+ if (OpB->getOpcode() == Instruction::Add &&
+ isa<ConstantInt>(OpB->getOperand(1)) &&
+ cast<ConstantInt>(OpB->getOperand(1))->getSExtValue() > 0) {
+ if (Signed)
+ Safe = cast<BinaryOperator>(OpB)->hasNoSignedWrap();
+ else
+ Safe = cast<BinaryOperator>(OpB)->hasNoUnsignedWrap();
+ }
+
+ unsigned BitWidth = OpA->getType()->getScalarSizeInBits();
+
+ // Second attempt:
+ // If any bits are known to be zero other than the sign bit in OpA, we can
+ // add 1 to it while guaranteeing no overflow of any sort.
+ if (!Safe) {
+ APInt KnownZero(BitWidth, 0);
+ APInt KnownOne(BitWidth, 0);
+ computeKnownBits(OpA, KnownZero, KnownOne, DL, 0, nullptr, OpA, &DT);
+ KnownZero &= ~APInt::getHighBitsSet(BitWidth, 1);
+ if (KnownZero != 0)
+ Safe = true;
+ }
+
+ if (!Safe)
+ return false;
+
+ const SCEV *OffsetSCEVA = SE.getSCEV(OpA);
+ const SCEV *OffsetSCEVB = SE.getSCEV(OpB);
+ const SCEV *One = SE.getConstant(APInt(BitWidth, 1));
+ const SCEV *X2 = SE.getAddExpr(OffsetSCEVA, One);
+ return X2 == OffsetSCEVB;
+}
+
+void Vectorizer::reorder(Instruction *I) {
+ SmallPtrSet<Instruction *, 16> InstructionsToMove;
+ SmallVector<Instruction *, 16> Worklist;
+
+ Worklist.push_back(I);
+ while (!Worklist.empty()) {
+ Instruction *IW = Worklist.pop_back_val();
+ int NumOperands = IW->getNumOperands();
+ for (int i = 0; i < NumOperands; i++) {
+ Instruction *IM = dyn_cast<Instruction>(IW->getOperand(i));
+ if (!IM || IM->getOpcode() == Instruction::PHI)
+ continue;
+
+ if (!DT.dominates(IM, I)) {
+ InstructionsToMove.insert(IM);
+ Worklist.push_back(IM);
+ assert(IM->getParent() == IW->getParent() &&
+ "Instructions to move should be in the same basic block");
+ }
+ }
+ }
+
+ // All instructions to move should follow I. Start from I, not from begin().
+ for (auto BBI = I->getIterator(), E = I->getParent()->end(); BBI != E;
+ ++BBI) {
+ if (!is_contained(InstructionsToMove, &*BBI))
+ continue;
+ Instruction *IM = &*BBI;
+ --BBI;
+ IM->removeFromParent();
+ IM->insertBefore(I);
+ }
+}
+
+std::pair<BasicBlock::iterator, BasicBlock::iterator>
+Vectorizer::getBoundaryInstrs(ArrayRef<Value *> Chain) {
+ Instruction *C0 = cast<Instruction>(Chain[0]);
+ BasicBlock::iterator FirstInstr = C0->getIterator();
+ BasicBlock::iterator LastInstr = C0->getIterator();
+
+ BasicBlock *BB = C0->getParent();
+ unsigned NumFound = 0;
+ for (Instruction &I : *BB) {
+ if (!is_contained(Chain, &I))
+ continue;
+
+ ++NumFound;
+ if (NumFound == 1) {
+ FirstInstr = I.getIterator();
+ }
+ if (NumFound == Chain.size()) {
+ LastInstr = I.getIterator();
+ break;
+ }
+ }
+
+ // Range is [first, last).
+ return std::make_pair(FirstInstr, ++LastInstr);
+}
+
+void Vectorizer::eraseInstructions(ArrayRef<Value *> Chain) {
+ SmallVector<Instruction *, 16> Instrs;
+ for (Value *V : Chain) {
+ Value *PtrOperand = getPointerOperand(V);
+ assert(PtrOperand && "Instruction must have a pointer operand.");
+ Instrs.push_back(cast<Instruction>(V));
+ if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(PtrOperand))
+ Instrs.push_back(GEP);
+ }
+
+ // Erase instructions.
+ for (Value *V : Instrs) {
+ Instruction *Instr = cast<Instruction>(V);
+ if (Instr->use_empty())
+ Instr->eraseFromParent();
+ }
+}
+
+std::pair<ArrayRef<Value *>, ArrayRef<Value *>>
+Vectorizer::splitOddVectorElts(ArrayRef<Value *> Chain,
+ unsigned ElementSizeBits) {
+ unsigned ElemSizeInBytes = ElementSizeBits / 8;
+ unsigned SizeInBytes = ElemSizeInBytes * Chain.size();
+ unsigned NumRight = (SizeInBytes % 4) / ElemSizeInBytes;
+ unsigned NumLeft = Chain.size() - NumRight;
+ return std::make_pair(Chain.slice(0, NumLeft), Chain.slice(NumLeft));
+}
+
+unsigned Vectorizer::getVectorizablePrefixEndIdx(ArrayRef<Value *> Chain,
+ BasicBlock::iterator From,
+ BasicBlock::iterator To) {
+ SmallVector<std::pair<Value *, unsigned>, 16> MemoryInstrs;
+ SmallVector<std::pair<Value *, unsigned>, 16> ChainInstrs;
+
+ unsigned InstrIdx = 0;
+ for (auto I = From; I != To; ++I, ++InstrIdx) {
+ if (isa<LoadInst>(I) || isa<StoreInst>(I)) {
+ if (!is_contained(Chain, &*I))
+ MemoryInstrs.push_back({&*I, InstrIdx});
+ else
+ ChainInstrs.push_back({&*I, InstrIdx});
+ } else if (I->mayHaveSideEffects()) {
+ DEBUG(dbgs() << "LSV: Found side-effecting operation: " << *I << '\n');
+ return 0;
+ }
+ }
+
+ assert(Chain.size() == ChainInstrs.size() &&
+ "All instructions in the Chain must exist in [From, To).");
+
+ unsigned ChainIdx = 0;
+ for (auto EntryChain : ChainInstrs) {
+ Value *ChainInstrValue = EntryChain.first;
+ unsigned ChainInstrIdx = EntryChain.second;
+ for (auto EntryMem : MemoryInstrs) {
+ Value *MemInstrValue = EntryMem.first;
+ unsigned MemInstrIdx = EntryMem.second;
+ if (isa<LoadInst>(MemInstrValue) && isa<LoadInst>(ChainInstrValue))
+ continue;
+
+ // We can ignore the alias as long as the load comes before the store,
+ // because that means we won't be moving the load past the store to
+ // vectorize it (the vectorized load is inserted at the location of the
+ // first load in the chain).
+ if (isa<StoreInst>(MemInstrValue) && isa<LoadInst>(ChainInstrValue) &&
+ ChainInstrIdx < MemInstrIdx)
+ continue;
+
+ // Same case, but in reverse.
+ if (isa<LoadInst>(MemInstrValue) && isa<StoreInst>(ChainInstrValue) &&
+ ChainInstrIdx > MemInstrIdx)
+ continue;
+
+ Instruction *M0 = cast<Instruction>(MemInstrValue);
+ Instruction *M1 = cast<Instruction>(ChainInstrValue);
+
+ if (!AA.isNoAlias(MemoryLocation::get(M0), MemoryLocation::get(M1))) {
+ DEBUG({
+ Value *Ptr0 = getPointerOperand(M0);
+ Value *Ptr1 = getPointerOperand(M1);
+
+ dbgs() << "LSV: Found alias.\n"
+ " Aliasing instruction and pointer:\n"
+ << *MemInstrValue << " aliases " << *Ptr0 << '\n'
+ << " Aliased instruction and pointer:\n"
+ << *ChainInstrValue << " aliases " << *Ptr1 << '\n';
+ });
+
+ return ChainIdx;
+ }
+ }
+ ChainIdx++;
+ }
+ return Chain.size();
+}
+
+void Vectorizer::collectInstructions(BasicBlock *BB) {
+ LoadRefs.clear();
+ StoreRefs.clear();
+
+ for (Instruction &I : *BB) {
+ if (!I.mayReadOrWriteMemory())
+ continue;
+
+ if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
+ if (!LI->isSimple())
+ continue;
+
+ Type *Ty = LI->getType();
+ if (!VectorType::isValidElementType(Ty->getScalarType()))
+ continue;
+
+ // Skip weird non-byte sizes. They probably aren't worth the effort of
+ // handling correctly.
+ unsigned TySize = DL.getTypeSizeInBits(Ty);
+ if (TySize < 8)
+ continue;
+
+ Value *Ptr = LI->getPointerOperand();
+ unsigned AS = Ptr->getType()->getPointerAddressSpace();
+ unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS);
+
+ // No point in looking at these if they're too big to vectorize.
+ if (TySize > VecRegSize / 2)
+ continue;
+
+ // Make sure all the users of a vector are constant-index extracts.
+ if (isa<VectorType>(Ty) && !all_of(LI->users(), [LI](const User *U) {
+ const Instruction *UI = cast<Instruction>(U);
+ return isa<ExtractElementInst>(UI) &&
+ isa<ConstantInt>(UI->getOperand(1));
+ }))
+ continue;
+
+ // TODO: Target hook to filter types.
+
+ // Save the load locations.
+ Value *ObjPtr = GetUnderlyingObject(Ptr, DL);
+ LoadRefs[ObjPtr].push_back(LI);
+
+ } else if (StoreInst *SI = dyn_cast<StoreInst>(&I)) {
+ if (!SI->isSimple())
+ continue;
+
+ Type *Ty = SI->getValueOperand()->getType();
+ if (!VectorType::isValidElementType(Ty->getScalarType()))
+ continue;
+
+ // Skip weird non-byte sizes. They probably aren't worth the effort of
+ // handling correctly.
+ unsigned TySize = DL.getTypeSizeInBits(Ty);
+ if (TySize < 8)
+ continue;
+
+ Value *Ptr = SI->getPointerOperand();
+ unsigned AS = Ptr->getType()->getPointerAddressSpace();
+ unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS);
+ if (TySize > VecRegSize / 2)
+ continue;
+
+ if (isa<VectorType>(Ty) && !all_of(SI->users(), [SI](const User *U) {
+ const Instruction *UI = cast<Instruction>(U);
+ return isa<ExtractElementInst>(UI) &&
+ isa<ConstantInt>(UI->getOperand(1));
+ }))
+ continue;
+
+ // Save store location.
+ Value *ObjPtr = GetUnderlyingObject(Ptr, DL);
+ StoreRefs[ObjPtr].push_back(SI);
+ }
+ }
+}
+
+bool Vectorizer::vectorizeChains(ValueListMap &Map) {
+ bool Changed = false;
+
+ for (const std::pair<Value *, ValueList> &Chain : Map) {
+ unsigned Size = Chain.second.size();
+ if (Size < 2)
+ continue;
+
+ DEBUG(dbgs() << "LSV: Analyzing a chain of length " << Size << ".\n");
+
+ // Process the stores in chunks of 64.
+ for (unsigned CI = 0, CE = Size; CI < CE; CI += 64) {
+ unsigned Len = std::min<unsigned>(CE - CI, 64);
+ ArrayRef<Value *> Chunk(&Chain.second[CI], Len);
+ Changed |= vectorizeInstructions(Chunk);
+ }
+ }
+
+ return Changed;
+}
+
+bool Vectorizer::vectorizeInstructions(ArrayRef<Value *> Instrs) {
+ DEBUG(dbgs() << "LSV: Vectorizing " << Instrs.size() << " instructions.\n");
+ SmallSetVector<int, 16> Heads, Tails;
+ int ConsecutiveChain[64];
+
+ // Do a quadratic search on all of the given stores and find all of the pairs
+ // of stores that follow each other.
+ for (int i = 0, e = Instrs.size(); i < e; ++i) {
+ ConsecutiveChain[i] = -1;
+ for (int j = e - 1; j >= 0; --j) {
+ if (i == j)
+ continue;
+
+ if (isConsecutiveAccess(Instrs[i], Instrs[j])) {
+ if (ConsecutiveChain[i] != -1) {
+ int CurDistance = std::abs(ConsecutiveChain[i] - i);
+ int NewDistance = std::abs(ConsecutiveChain[i] - j);
+ if (j < i || NewDistance > CurDistance)
+ continue; // Should not insert.
+ }
+
+ Tails.insert(j);
+ Heads.insert(i);
+ ConsecutiveChain[i] = j;
+ }
+ }
+ }
+
+ bool Changed = false;
+ SmallPtrSet<Value *, 16> InstructionsProcessed;
+
+ for (int Head : Heads) {
+ if (InstructionsProcessed.count(Instrs[Head]))
+ continue;
+ bool longerChainExists = false;
+ for (unsigned TIt = 0; TIt < Tails.size(); TIt++)
+ if (Head == Tails[TIt] &&
+ !InstructionsProcessed.count(Instrs[Heads[TIt]])) {
+ longerChainExists = true;
+ break;
+ }
+ if (longerChainExists)
+ continue;
+
+ // We found an instr that starts a chain. Now follow the chain and try to
+ // vectorize it.
+ SmallVector<Value *, 16> Operands;
+ int I = Head;
+ while (I != -1 && (Tails.count(I) || Heads.count(I))) {
+ if (InstructionsProcessed.count(Instrs[I]))
+ break;
+
+ Operands.push_back(Instrs[I]);
+ I = ConsecutiveChain[I];
+ }
+
+ bool Vectorized = false;
+ if (isa<LoadInst>(*Operands.begin()))
+ Vectorized = vectorizeLoadChain(Operands, &InstructionsProcessed);
+ else
+ Vectorized = vectorizeStoreChain(Operands, &InstructionsProcessed);
+
+ Changed |= Vectorized;
+ }
+
+ return Changed;
+}
+
+bool Vectorizer::vectorizeStoreChain(
+ ArrayRef<Value *> Chain, SmallPtrSet<Value *, 16> *InstructionsProcessed) {
+ StoreInst *S0 = cast<StoreInst>(Chain[0]);
+
+ // If the vector has an int element, default to int for the whole load.
+ Type *StoreTy;
+ for (const auto &V : Chain) {
+ StoreTy = cast<StoreInst>(V)->getValueOperand()->getType();
+ if (StoreTy->isIntOrIntVectorTy())
+ break;
+
+ if (StoreTy->isPtrOrPtrVectorTy()) {
+ StoreTy = Type::getIntNTy(F.getParent()->getContext(),
+ DL.getTypeSizeInBits(StoreTy));
+ break;
+ }
+ }
+
+ unsigned Sz = DL.getTypeSizeInBits(StoreTy);
+ unsigned AS = S0->getPointerAddressSpace();
+ unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS);
+ unsigned VF = VecRegSize / Sz;
+ unsigned ChainSize = Chain.size();
+
+ if (!isPowerOf2_32(Sz) || VF < 2 || ChainSize < 2) {
+ InstructionsProcessed->insert(Chain.begin(), Chain.end());
+ return false;
+ }
+
+ BasicBlock::iterator First, Last;
+ std::tie(First, Last) = getBoundaryInstrs(Chain);
+ unsigned StopChain = getVectorizablePrefixEndIdx(Chain, First, Last);
+ if (StopChain == 0) {
+ // There exists a side effect instruction, no vectorization possible.
+ InstructionsProcessed->insert(Chain.begin(), Chain.end());
+ return false;
+ }
+ if (StopChain == 1) {
+ // Failed after the first instruction. Discard it and try the smaller chain.
+ InstructionsProcessed->insert(Chain.front());
+ return false;
+ }
+
+ // Update Chain to the valid vectorizable subchain.
+ Chain = Chain.slice(0, StopChain);
+ ChainSize = Chain.size();
+
+ // Store size should be 1B, 2B or multiple of 4B.
+ // TODO: Target hook for size constraint?
+ unsigned SzInBytes = (Sz / 8) * ChainSize;
+ if (SzInBytes > 2 && SzInBytes % 4 != 0) {
+ DEBUG(dbgs() << "LSV: Size should be 1B, 2B "
+ "or multiple of 4B. Splitting.\n");
+ if (SzInBytes == 3)
+ return vectorizeStoreChain(Chain.slice(0, ChainSize - 1),
+ InstructionsProcessed);
+
+ auto Chains = splitOddVectorElts(Chain, Sz);
+ return vectorizeStoreChain(Chains.first, InstructionsProcessed) |
+ vectorizeStoreChain(Chains.second, InstructionsProcessed);
+ }
+
+ VectorType *VecTy;
+ VectorType *VecStoreTy = dyn_cast<VectorType>(StoreTy);
+ if (VecStoreTy)
+ VecTy = VectorType::get(StoreTy->getScalarType(),
+ Chain.size() * VecStoreTy->getNumElements());
+ else
+ VecTy = VectorType::get(StoreTy, Chain.size());
+
+ // If it's more than the max vector size, break it into two pieces.
+ // TODO: Target hook to control types to split to.
+ if (ChainSize > VF) {
+ DEBUG(dbgs() << "LSV: Vector factor is too big."
+ " Creating two separate arrays.\n");
+ return vectorizeStoreChain(Chain.slice(0, VF), InstructionsProcessed) |
+ vectorizeStoreChain(Chain.slice(VF), InstructionsProcessed);
+ }
+
+ DEBUG({
+ dbgs() << "LSV: Stores to vectorize:\n";
+ for (Value *V : Chain)
+ V->dump();
+ });
+
+ // We won't try again to vectorize the elements of the chain, regardless of
+ // whether we succeed below.
+ InstructionsProcessed->insert(Chain.begin(), Chain.end());
+
+ // Check alignment restrictions.
+ unsigned Alignment = getAlignment(S0);
+
+ // If the store is going to be misaligned, don't vectorize it.
+ if (accessIsMisaligned(SzInBytes, AS, Alignment)) {
+ if (S0->getPointerAddressSpace() != 0)
+ return false;
+
+ // If we're storing to an object on the stack, we control its alignment,
+ // so we can cheat and change it!
+ Value *V = GetUnderlyingObject(S0->getPointerOperand(), DL);
+ if (AllocaInst *AI = dyn_cast_or_null<AllocaInst>(V)) {
+ AI->setAlignment(TargetBaseAlign);
+ Alignment = TargetBaseAlign;
+ } else {
+ return false;
+ }
+ }
+
+ // Set insert point.
+ Builder.SetInsertPoint(&*Last);
+
+ Value *Vec = UndefValue::get(VecTy);
+
+ if (VecStoreTy) {
+ unsigned VecWidth = VecStoreTy->getNumElements();
+ for (unsigned I = 0, E = Chain.size(); I != E; ++I) {
+ StoreInst *Store = cast<StoreInst>(Chain[I]);
+ for (unsigned J = 0, NE = VecStoreTy->getNumElements(); J != NE; ++J) {
+ unsigned NewIdx = J + I * VecWidth;
+ Value *Extract = Builder.CreateExtractElement(Store->getValueOperand(),
+ Builder.getInt32(J));
+ if (Extract->getType() != StoreTy->getScalarType())
+ Extract = Builder.CreateBitCast(Extract, StoreTy->getScalarType());
+
+ Value *Insert =
+ Builder.CreateInsertElement(Vec, Extract, Builder.getInt32(NewIdx));
+ Vec = Insert;
+ }
+ }
+ } else {
+ for (unsigned I = 0, E = Chain.size(); I != E; ++I) {
+ StoreInst *Store = cast<StoreInst>(Chain[I]);
+ Value *Extract = Store->getValueOperand();
+ if (Extract->getType() != StoreTy->getScalarType())
+ Extract =
+ Builder.CreateBitOrPointerCast(Extract, StoreTy->getScalarType());
+
+ Value *Insert =
+ Builder.CreateInsertElement(Vec, Extract, Builder.getInt32(I));
+ Vec = Insert;
+ }
+ }
+
+ Value *Bitcast =
+ Builder.CreateBitCast(S0->getPointerOperand(), VecTy->getPointerTo(AS));
+ StoreInst *SI = cast<StoreInst>(Builder.CreateStore(Vec, Bitcast));
+ propagateMetadata(SI, Chain);
+ SI->setAlignment(Alignment);
+
+ eraseInstructions(Chain);
+ ++NumVectorInstructions;
+ NumScalarsVectorized += Chain.size();
+ return true;
+}
+
+bool Vectorizer::vectorizeLoadChain(
+ ArrayRef<Value *> Chain, SmallPtrSet<Value *, 16> *InstructionsProcessed) {
+ LoadInst *L0 = cast<LoadInst>(Chain[0]);
+
+ // If the vector has an int element, default to int for the whole load.
+ Type *LoadTy;
+ for (const auto &V : Chain) {
+ LoadTy = cast<LoadInst>(V)->getType();
+ if (LoadTy->isIntOrIntVectorTy())
+ break;
+
+ if (LoadTy->isPtrOrPtrVectorTy()) {
+ LoadTy = Type::getIntNTy(F.getParent()->getContext(),
+ DL.getTypeSizeInBits(LoadTy));
+ break;
+ }
+ }
+
+ unsigned Sz = DL.getTypeSizeInBits(LoadTy);
+ unsigned AS = L0->getPointerAddressSpace();
+ unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS);
+ unsigned VF = VecRegSize / Sz;
+ unsigned ChainSize = Chain.size();
+
+ if (!isPowerOf2_32(Sz) || VF < 2 || ChainSize < 2) {
+ InstructionsProcessed->insert(Chain.begin(), Chain.end());
+ return false;
+ }
+
+ BasicBlock::iterator First, Last;
+ std::tie(First, Last) = getBoundaryInstrs(Chain);
+ unsigned StopChain = getVectorizablePrefixEndIdx(Chain, First, Last);
+ if (StopChain == 0) {
+ // There exists a side effect instruction, no vectorization possible.
+ InstructionsProcessed->insert(Chain.begin(), Chain.end());
+ return false;
+ }
+ if (StopChain == 1) {
+ // Failed after the first instruction. Discard it and try the smaller chain.
+ InstructionsProcessed->insert(Chain.front());
+ return false;
+ }
+
+ // Update Chain to the valid vectorizable subchain.
+ Chain = Chain.slice(0, StopChain);
+ ChainSize = Chain.size();
+
+ // Load size should be 1B, 2B or multiple of 4B.
+ // TODO: Should size constraint be a target hook?
+ unsigned SzInBytes = (Sz / 8) * ChainSize;
+ if (SzInBytes > 2 && SzInBytes % 4 != 0) {
+ DEBUG(dbgs() << "LSV: Size should be 1B, 2B "
+ "or multiple of 4B. Splitting.\n");
+ if (SzInBytes == 3)
+ return vectorizeLoadChain(Chain.slice(0, ChainSize - 1),
+ InstructionsProcessed);
+ auto Chains = splitOddVectorElts(Chain, Sz);
+ return vectorizeLoadChain(Chains.first, InstructionsProcessed) |
+ vectorizeLoadChain(Chains.second, InstructionsProcessed);
+ }
+
+ VectorType *VecTy;
+ VectorType *VecLoadTy = dyn_cast<VectorType>(LoadTy);
+ if (VecLoadTy)
+ VecTy = VectorType::get(LoadTy->getScalarType(),
+ Chain.size() * VecLoadTy->getNumElements());
+ else
+ VecTy = VectorType::get(LoadTy, Chain.size());
+
+ // If it's more than the max vector size, break it into two pieces.
+ // TODO: Target hook to control types to split to.
+ if (ChainSize > VF) {
+ DEBUG(dbgs() << "LSV: Vector factor is too big. "
+ "Creating two separate arrays.\n");
+ return vectorizeLoadChain(Chain.slice(0, VF), InstructionsProcessed) |
+ vectorizeLoadChain(Chain.slice(VF), InstructionsProcessed);
+ }
+
+ // We won't try again to vectorize the elements of the chain, regardless of
+ // whether we succeed below.
+ InstructionsProcessed->insert(Chain.begin(), Chain.end());
+
+ // Check alignment restrictions.
+ unsigned Alignment = getAlignment(L0);
+
+ // If the load is going to be misaligned, don't vectorize it.
+ if (accessIsMisaligned(SzInBytes, AS, Alignment)) {
+ if (L0->getPointerAddressSpace() != 0)
+ return false;
+
+ // If we're loading from an object on the stack, we control its alignment,
+ // so we can cheat and change it!
+ Value *V = GetUnderlyingObject(L0->getPointerOperand(), DL);
+ if (AllocaInst *AI = dyn_cast_or_null<AllocaInst>(V)) {
+ AI->setAlignment(TargetBaseAlign);
+ Alignment = TargetBaseAlign;
+ } else {
+ return false;
+ }
+ }
+
+ DEBUG({
+ dbgs() << "LSV: Loads to vectorize:\n";
+ for (Value *V : Chain)
+ V->dump();
+ });
+
+ // Set insert point.
+ Builder.SetInsertPoint(&*First);
+
+ Value *Bitcast =
+ Builder.CreateBitCast(L0->getPointerOperand(), VecTy->getPointerTo(AS));
+
+ LoadInst *LI = cast<LoadInst>(Builder.CreateLoad(Bitcast));
+ propagateMetadata(LI, Chain);
+ LI->setAlignment(Alignment);
+
+ if (VecLoadTy) {
+ SmallVector<Instruction *, 16> InstrsToErase;
+ SmallVector<Instruction *, 16> InstrsToReorder;
+ InstrsToReorder.push_back(cast<Instruction>(Bitcast));
+
+ unsigned VecWidth = VecLoadTy->getNumElements();
+ for (unsigned I = 0, E = Chain.size(); I != E; ++I) {
+ for (auto Use : Chain[I]->users()) {
+ Instruction *UI = cast<Instruction>(Use);
+ unsigned Idx = cast<ConstantInt>(UI->getOperand(1))->getZExtValue();
+ unsigned NewIdx = Idx + I * VecWidth;
+ Value *V = Builder.CreateExtractElement(LI, Builder.getInt32(NewIdx));
+ Instruction *Extracted = cast<Instruction>(V);
+ if (Extracted->getType() != UI->getType())
+ Extracted = cast<Instruction>(
+ Builder.CreateBitCast(Extracted, UI->getType()));
+
+ // Replace the old instruction.
+ UI->replaceAllUsesWith(Extracted);
+ InstrsToErase.push_back(UI);
+ }
+ }
+
+ for (Instruction *ModUser : InstrsToReorder)
+ reorder(ModUser);
+
+ for (auto I : InstrsToErase)
+ I->eraseFromParent();
+ } else {
+ SmallVector<Instruction *, 16> InstrsToReorder;
+ InstrsToReorder.push_back(cast<Instruction>(Bitcast));
+
+ for (unsigned I = 0, E = Chain.size(); I != E; ++I) {
+ Value *V = Builder.CreateExtractElement(LI, Builder.getInt32(I));
+ Instruction *Extracted = cast<Instruction>(V);
+ Instruction *UI = cast<Instruction>(Chain[I]);
+ if (Extracted->getType() != UI->getType()) {
+ Extracted = cast<Instruction>(
+ Builder.CreateBitOrPointerCast(Extracted, UI->getType()));
+ }
+
+ // Replace the old instruction.
+ UI->replaceAllUsesWith(Extracted);
+ }
+
+ for (Instruction *ModUser : InstrsToReorder)
+ reorder(ModUser);
+ }
+
+ eraseInstructions(Chain);
+
+ ++NumVectorInstructions;
+ NumScalarsVectorized += Chain.size();
+ return true;
+}
+
+bool Vectorizer::accessIsMisaligned(unsigned SzInBytes, unsigned AddressSpace,
+ unsigned Alignment) {
+ bool Fast = false;
+ bool Allows = TTI.allowsMisalignedMemoryAccesses(SzInBytes * 8, AddressSpace,
+ Alignment, &Fast);
+ // TODO: Remove TargetBaseAlign
+ return !(Allows && Fast) && (Alignment % SzInBytes) != 0 &&
+ (Alignment % TargetBaseAlign) != 0;
+}