aboutsummaryrefslogtreecommitdiff
path: root/lib/libefi/rdwr_efi.c
diff options
context:
space:
mode:
Diffstat (limited to 'lib/libefi/rdwr_efi.c')
-rw-r--r--lib/libefi/rdwr_efi.c1628
1 files changed, 0 insertions, 1628 deletions
diff --git a/lib/libefi/rdwr_efi.c b/lib/libefi/rdwr_efi.c
deleted file mode 100644
index 0a93fd1338f6..000000000000
--- a/lib/libefi/rdwr_efi.c
+++ /dev/null
@@ -1,1628 +0,0 @@
-// SPDX-License-Identifier: CDDL-1.0
-/*
- * CDDL HEADER START
- *
- * The contents of this file are subject to the terms of the
- * Common Development and Distribution License (the "License").
- * You may not use this file except in compliance with the License.
- *
- * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
- * or https://opensource.org/licenses/CDDL-1.0.
- * See the License for the specific language governing permissions
- * and limitations under the License.
- *
- * When distributing Covered Code, include this CDDL HEADER in each
- * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
- * If applicable, add the following below this CDDL HEADER, with the
- * fields enclosed by brackets "[]" replaced with your own identifying
- * information: Portions Copyright [yyyy] [name of copyright owner]
- *
- * CDDL HEADER END
- */
-
-/*
- * Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved.
- * Copyright 2012 Nexenta Systems, Inc. All rights reserved.
- * Copyright (c) 2018 by Delphix. All rights reserved.
- */
-
-#include <stdio.h>
-#include <stdlib.h>
-#include <errno.h>
-#include <string.h>
-#include <unistd.h>
-#include <uuid/uuid.h>
-#include <zlib.h>
-#include <libintl.h>
-#include <sys/types.h>
-#include <sys/dkio.h>
-#include <sys/mhd.h>
-#include <sys/param.h>
-#include <sys/dktp/fdisk.h>
-#include <sys/efi_partition.h>
-#include <sys/byteorder.h>
-#include <sys/vdev_disk.h>
-#include <linux/fs.h>
-#include <linux/blkpg.h>
-
-static struct uuid_to_ptag {
- struct uuid uuid;
-} conversion_array[] = {
- { EFI_UNUSED },
- { EFI_BOOT },
- { EFI_ROOT },
- { EFI_SWAP },
- { EFI_USR },
- { EFI_BACKUP },
- { EFI_UNUSED }, /* STAND is never used */
- { EFI_VAR },
- { EFI_HOME },
- { EFI_ALTSCTR },
- { EFI_UNUSED }, /* CACHE (cachefs) is never used */
- { EFI_RESERVED },
- { EFI_SYSTEM },
- { EFI_LEGACY_MBR },
- { EFI_SYMC_PUB },
- { EFI_SYMC_CDS },
- { EFI_MSFT_RESV },
- { EFI_DELL_BASIC },
- { EFI_DELL_RAID },
- { EFI_DELL_SWAP },
- { EFI_DELL_LVM },
- { EFI_DELL_RESV },
- { EFI_AAPL_HFS },
- { EFI_AAPL_UFS },
- { EFI_FREEBSD_BOOT },
- { EFI_FREEBSD_SWAP },
- { EFI_FREEBSD_UFS },
- { EFI_FREEBSD_VINUM },
- { EFI_FREEBSD_ZFS },
- { EFI_BIOS_BOOT },
- { EFI_INTC_RS },
- { EFI_SNE_BOOT },
- { EFI_LENOVO_BOOT },
- { EFI_MSFT_LDMM },
- { EFI_MSFT_LDMD },
- { EFI_MSFT_RE },
- { EFI_IBM_GPFS },
- { EFI_MSFT_STORAGESPACES },
- { EFI_HPQ_DATA },
- { EFI_HPQ_SVC },
- { EFI_RHT_DATA },
- { EFI_RHT_HOME },
- { EFI_RHT_SRV },
- { EFI_RHT_DMCRYPT },
- { EFI_RHT_LUKS },
- { EFI_FREEBSD_DISKLABEL },
- { EFI_AAPL_RAID },
- { EFI_AAPL_RAIDOFFLINE },
- { EFI_AAPL_BOOT },
- { EFI_AAPL_LABEL },
- { EFI_AAPL_TVRECOVERY },
- { EFI_AAPL_CORESTORAGE },
- { EFI_NETBSD_SWAP },
- { EFI_NETBSD_FFS },
- { EFI_NETBSD_LFS },
- { EFI_NETBSD_RAID },
- { EFI_NETBSD_CAT },
- { EFI_NETBSD_CRYPT },
- { EFI_GOOG_KERN },
- { EFI_GOOG_ROOT },
- { EFI_GOOG_RESV },
- { EFI_HAIKU_BFS },
- { EFI_MIDNIGHTBSD_BOOT },
- { EFI_MIDNIGHTBSD_DATA },
- { EFI_MIDNIGHTBSD_SWAP },
- { EFI_MIDNIGHTBSD_UFS },
- { EFI_MIDNIGHTBSD_VINUM },
- { EFI_MIDNIGHTBSD_ZFS },
- { EFI_CEPH_JOURNAL },
- { EFI_CEPH_DMCRYPTJOURNAL },
- { EFI_CEPH_OSD },
- { EFI_CEPH_DMCRYPTOSD },
- { EFI_CEPH_CREATE },
- { EFI_CEPH_DMCRYPTCREATE },
- { EFI_OPENBSD_DISKLABEL },
- { EFI_BBRY_QNX },
- { EFI_BELL_PLAN9 },
- { EFI_VMW_KCORE },
- { EFI_VMW_VMFS },
- { EFI_VMW_RESV },
- { EFI_RHT_ROOTX86 },
- { EFI_RHT_ROOTAMD64 },
- { EFI_RHT_ROOTARM },
- { EFI_RHT_ROOTARM64 },
- { EFI_ACRONIS_SECUREZONE },
- { EFI_ONIE_BOOT },
- { EFI_ONIE_CONFIG },
- { EFI_IBM_PPRPBOOT },
- { EFI_FREEDESKTOP_BOOT }
-};
-
-int efi_debug = 0;
-
-static int efi_read(int, struct dk_gpt *);
-
-/*
- * Return a 32-bit CRC of the contents of the buffer. Pre-and-post
- * one's conditioning will be handled by crc32() internally.
- */
-static uint32_t
-efi_crc32(const unsigned char *buf, unsigned int size)
-{
- uint32_t crc = crc32(0, Z_NULL, 0);
-
- crc = crc32(crc, buf, size);
-
- return (crc);
-}
-
-static int
-read_disk_info(int fd, diskaddr_t *capacity, uint_t *lbsize)
-{
- int sector_size;
- unsigned long long capacity_size;
-
- if (ioctl(fd, BLKSSZGET, &sector_size) < 0)
- return (-1);
-
- if (ioctl(fd, BLKGETSIZE64, &capacity_size) < 0)
- return (-1);
-
- *lbsize = (uint_t)sector_size;
- *capacity = (diskaddr_t)(capacity_size / sector_size);
-
- return (0);
-}
-
-/*
- * Return back the device name associated with the file descriptor. The
- * caller is responsible for freeing the memory associated with the
- * returned string.
- */
-static char *
-efi_get_devname(int fd)
-{
- char path[32];
-
- /*
- * The libefi API only provides the open fd and not the file path.
- * To handle this realpath(3) is used to resolve the block device
- * name from /proc/self/fd/<fd>.
- */
- (void) snprintf(path, sizeof (path), "/proc/self/fd/%d", fd);
- return (realpath(path, NULL));
-}
-
-static int
-efi_get_info(int fd, struct dk_cinfo *dki_info)
-{
- char *dev_path;
- int rval = 0;
-
- memset(dki_info, 0, sizeof (*dki_info));
-
- /*
- * The simplest way to get the partition number under linux is
- * to parse it out of the /dev/<disk><partition> block device name.
- * The kernel creates this using the partition number when it
- * populates /dev/ so it may be trusted. The tricky bit here is
- * that the naming convention is based on the block device type.
- * So we need to take this in to account when parsing out the
- * partition information. Aside from the partition number we collect
- * some additional device info.
- */
- dev_path = efi_get_devname(fd);
- if (dev_path == NULL)
- goto error;
-
- if ((strncmp(dev_path, "/dev/sd", 7) == 0)) {
- strcpy(dki_info->dki_cname, "sd");
- dki_info->dki_ctype = DKC_SCSI_CCS;
- rval = sscanf(dev_path, "/dev/%[a-zA-Z]%hu",
- dki_info->dki_dname,
- &dki_info->dki_partition);
- } else if ((strncmp(dev_path, "/dev/hd", 7) == 0)) {
- strcpy(dki_info->dki_cname, "hd");
- dki_info->dki_ctype = DKC_DIRECT;
- rval = sscanf(dev_path, "/dev/%[a-zA-Z]%hu",
- dki_info->dki_dname,
- &dki_info->dki_partition);
- } else if ((strncmp(dev_path, "/dev/md", 7) == 0)) {
- strcpy(dki_info->dki_cname, "pseudo");
- dki_info->dki_ctype = DKC_MD;
- strcpy(dki_info->dki_dname, "md");
- rval = sscanf(dev_path, "/dev/md%[0-9]p%hu",
- dki_info->dki_dname + 2,
- &dki_info->dki_partition);
- } else if ((strncmp(dev_path, "/dev/vd", 7) == 0)) {
- strcpy(dki_info->dki_cname, "vd");
- dki_info->dki_ctype = DKC_MD;
- rval = sscanf(dev_path, "/dev/%[a-zA-Z]%hu",
- dki_info->dki_dname,
- &dki_info->dki_partition);
- } else if ((strncmp(dev_path, "/dev/xvd", 8) == 0)) {
- strcpy(dki_info->dki_cname, "xvd");
- dki_info->dki_ctype = DKC_MD;
- rval = sscanf(dev_path, "/dev/%[a-zA-Z]%hu",
- dki_info->dki_dname,
- &dki_info->dki_partition);
- } else if ((strncmp(dev_path, "/dev/zd", 7) == 0)) {
- strcpy(dki_info->dki_cname, "zd");
- dki_info->dki_ctype = DKC_MD;
- strcpy(dki_info->dki_dname, "zd");
- rval = sscanf(dev_path, "/dev/zd%[0-9]p%hu",
- dki_info->dki_dname + 2,
- &dki_info->dki_partition);
- } else if ((strncmp(dev_path, "/dev/dm-", 8) == 0)) {
- strcpy(dki_info->dki_cname, "pseudo");
- dki_info->dki_ctype = DKC_VBD;
- strcpy(dki_info->dki_dname, "dm-");
- rval = sscanf(dev_path, "/dev/dm-%[0-9]p%hu",
- dki_info->dki_dname + 3,
- &dki_info->dki_partition);
- } else if ((strncmp(dev_path, "/dev/ram", 8) == 0)) {
- strcpy(dki_info->dki_cname, "pseudo");
- dki_info->dki_ctype = DKC_PCMCIA_MEM;
- strcpy(dki_info->dki_dname, "ram");
- rval = sscanf(dev_path, "/dev/ram%[0-9]p%hu",
- dki_info->dki_dname + 3,
- &dki_info->dki_partition);
- } else if ((strncmp(dev_path, "/dev/loop", 9) == 0)) {
- strcpy(dki_info->dki_cname, "pseudo");
- dki_info->dki_ctype = DKC_VBD;
- strcpy(dki_info->dki_dname, "loop");
- rval = sscanf(dev_path, "/dev/loop%[0-9]p%hu",
- dki_info->dki_dname + 4,
- &dki_info->dki_partition);
- } else if ((strncmp(dev_path, "/dev/nvme", 9) == 0)) {
- strcpy(dki_info->dki_cname, "nvme");
- dki_info->dki_ctype = DKC_SCSI_CCS;
- strcpy(dki_info->dki_dname, "nvme");
- (void) sscanf(dev_path, "/dev/nvme%[0-9]",
- dki_info->dki_dname + 4);
- size_t controller_length = strlen(
- dki_info->dki_dname);
- strcpy(dki_info->dki_dname + controller_length,
- "n");
- rval = sscanf(dev_path,
- "/dev/nvme%*[0-9]n%[0-9]p%hu",
- dki_info->dki_dname + controller_length + 1,
- &dki_info->dki_partition);
- } else {
- strcpy(dki_info->dki_dname, "unknown");
- strcpy(dki_info->dki_cname, "unknown");
- dki_info->dki_ctype = DKC_UNKNOWN;
- }
-
- switch (rval) {
- case 0:
- errno = EINVAL;
- goto error;
- case 1:
- dki_info->dki_partition = 0;
- }
-
- free(dev_path);
-
- return (0);
-error:
- if (efi_debug)
- (void) fprintf(stderr, "DKIOCINFO errno 0x%x\n", errno);
-
- switch (errno) {
- case EIO:
- return (VT_EIO);
- case EINVAL:
- return (VT_EINVAL);
- default:
- return (VT_ERROR);
- }
-}
-
-/*
- * the number of blocks the EFI label takes up (round up to nearest
- * block)
- */
-#define NBLOCKS(p, l) (1 + ((((p) * (int)sizeof (efi_gpe_t)) + \
- ((l) - 1)) / (l)))
-/* number of partitions -- limited by what we can malloc */
-#define MAX_PARTS ((4294967295UL - sizeof (struct dk_gpt)) / \
- sizeof (struct dk_part))
-
-int
-efi_alloc_and_init(int fd, uint32_t nparts, struct dk_gpt **vtoc)
-{
- diskaddr_t capacity = 0;
- uint_t lbsize = 0;
- uint_t nblocks;
- size_t length;
- struct dk_gpt *vptr;
- struct uuid uuid;
- struct dk_cinfo dki_info;
-
- if (read_disk_info(fd, &capacity, &lbsize) != 0)
- return (-1);
-
- if (efi_get_info(fd, &dki_info) != 0)
- return (-1);
-
- if (dki_info.dki_partition != 0)
- return (-1);
-
- if ((dki_info.dki_ctype == DKC_PCMCIA_MEM) ||
- (dki_info.dki_ctype == DKC_VBD) ||
- (dki_info.dki_ctype == DKC_UNKNOWN))
- return (-1);
-
- nblocks = NBLOCKS(nparts, lbsize);
- if ((nblocks * lbsize) < EFI_MIN_ARRAY_SIZE + lbsize) {
- /* 16K plus one block for the GPT */
- nblocks = EFI_MIN_ARRAY_SIZE / lbsize + 1;
- }
-
- if (nparts > MAX_PARTS) {
- if (efi_debug) {
- (void) fprintf(stderr,
- "the maximum number of partitions supported is %lu\n",
- MAX_PARTS);
- }
- return (-1);
- }
-
- length = sizeof (struct dk_gpt) +
- sizeof (struct dk_part) * (nparts - 1);
-
- vptr = calloc(1, length);
- if (vptr == NULL)
- return (-1);
-
- *vtoc = vptr;
-
- vptr->efi_version = EFI_VERSION_CURRENT;
- vptr->efi_lbasize = lbsize;
- vptr->efi_nparts = nparts;
- /*
- * add one block here for the PMBR; on disks with a 512 byte
- * block size and 128 or fewer partitions, efi_first_u_lba
- * should work out to "34"
- */
- vptr->efi_first_u_lba = nblocks + 1;
- vptr->efi_last_lba = capacity - 1;
- vptr->efi_altern_lba = capacity -1;
- vptr->efi_last_u_lba = vptr->efi_last_lba - nblocks;
-
- (void) uuid_generate((uchar_t *)&uuid);
- UUID_LE_CONVERT(vptr->efi_disk_uguid, uuid);
- return (0);
-}
-
-/*
- * Read EFI - return partition number upon success.
- */
-int
-efi_alloc_and_read(int fd, struct dk_gpt **vtoc)
-{
- int rval;
- uint32_t nparts;
- int length;
- struct dk_gpt *vptr;
-
- /* figure out the number of entries that would fit into 16K */
- nparts = EFI_MIN_ARRAY_SIZE / sizeof (efi_gpe_t);
- length = (int) sizeof (struct dk_gpt) +
- (int) sizeof (struct dk_part) * (nparts - 1);
- vptr = calloc(1, length);
-
- if (vptr == NULL)
- return (VT_ERROR);
-
- vptr->efi_nparts = nparts;
- rval = efi_read(fd, vptr);
-
- if ((rval == VT_EINVAL) && vptr->efi_nparts > nparts) {
- void *tmp;
- length = (int) sizeof (struct dk_gpt) +
- (int) sizeof (struct dk_part) * (vptr->efi_nparts - 1);
- if ((tmp = realloc(vptr, length)) == NULL) {
- /* cppcheck-suppress doubleFree */
- free(vptr);
- *vtoc = NULL;
- return (VT_ERROR);
- } else {
- vptr = tmp;
- rval = efi_read(fd, vptr);
- }
- }
-
- if (rval < 0) {
- if (efi_debug) {
- (void) fprintf(stderr,
- "read of EFI table failed, rval=%d\n", rval);
- }
- free(vptr);
- *vtoc = NULL;
- } else {
- *vtoc = vptr;
- }
-
- return (rval);
-}
-
-static int
-efi_ioctl(int fd, int cmd, dk_efi_t *dk_ioc)
-{
- void *data = dk_ioc->dki_data;
- int error;
- diskaddr_t capacity;
- uint_t lbsize;
-
- /*
- * When the IO is not being performed in kernel as an ioctl we need
- * to know the sector size so we can seek to the proper byte offset.
- */
- if (read_disk_info(fd, &capacity, &lbsize) == -1) {
- if (efi_debug)
- fprintf(stderr, "unable to read disk info: %d", errno);
-
- errno = EIO;
- return (-1);
- }
-
- switch (cmd) {
- case DKIOCGETEFI:
- if (lbsize == 0) {
- if (efi_debug)
- (void) fprintf(stderr, "DKIOCGETEFI assuming "
- "LBA %d bytes\n", DEV_BSIZE);
-
- lbsize = DEV_BSIZE;
- }
-
- error = lseek(fd, dk_ioc->dki_lba * lbsize, SEEK_SET);
- if (error == -1) {
- if (efi_debug)
- (void) fprintf(stderr, "DKIOCGETEFI lseek "
- "error: %d\n", errno);
- return (error);
- }
-
- error = read(fd, data, dk_ioc->dki_length);
- if (error == -1) {
- if (efi_debug)
- (void) fprintf(stderr, "DKIOCGETEFI read "
- "error: %d\n", errno);
- return (error);
- }
-
- if (error != dk_ioc->dki_length) {
- if (efi_debug)
- (void) fprintf(stderr, "DKIOCGETEFI short "
- "read of %d bytes\n", error);
- errno = EIO;
- return (-1);
- }
- error = 0;
- break;
-
- case DKIOCSETEFI:
- if (lbsize == 0) {
- if (efi_debug)
- (void) fprintf(stderr, "DKIOCSETEFI unknown "
- "LBA size\n");
- errno = EIO;
- return (-1);
- }
-
- error = lseek(fd, dk_ioc->dki_lba * lbsize, SEEK_SET);
- if (error == -1) {
- if (efi_debug)
- (void) fprintf(stderr, "DKIOCSETEFI lseek "
- "error: %d\n", errno);
- return (error);
- }
-
- error = write(fd, data, dk_ioc->dki_length);
- if (error == -1) {
- if (efi_debug)
- (void) fprintf(stderr, "DKIOCSETEFI write "
- "error: %d\n", errno);
- return (error);
- }
-
- if (error != dk_ioc->dki_length) {
- if (efi_debug)
- (void) fprintf(stderr, "DKIOCSETEFI short "
- "write of %d bytes\n", error);
- errno = EIO;
- return (-1);
- }
-
- /* Sync the new EFI table to disk */
- error = fsync(fd);
- if (error == -1)
- return (error);
-
- /* Ensure any local disk cache is also flushed */
- if (ioctl(fd, BLKFLSBUF, 0) == -1)
- return (error);
-
- error = 0;
- break;
-
- default:
- if (efi_debug)
- (void) fprintf(stderr, "unsupported ioctl()\n");
-
- errno = EIO;
- return (-1);
- }
-
- return (error);
-}
-
-int
-efi_rescan(int fd)
-{
- int retry = 10;
-
- /* Notify the kernel a devices partition table has been updated */
- while (ioctl(fd, BLKRRPART) != 0) {
- if ((--retry == 0) || (errno != EBUSY)) {
- (void) fprintf(stderr, "the kernel failed to rescan "
- "the partition table: %d\n", errno);
- return (-1);
- }
- usleep(50000);
- }
-
- return (0);
-}
-
-static int
-check_label(int fd, dk_efi_t *dk_ioc)
-{
- efi_gpt_t *efi;
- uint_t crc;
-
- if (efi_ioctl(fd, DKIOCGETEFI, dk_ioc) == -1) {
- switch (errno) {
- case EIO:
- return (VT_EIO);
- default:
- return (VT_ERROR);
- }
- }
- efi = dk_ioc->dki_data;
- if (efi->efi_gpt_Signature != LE_64(EFI_SIGNATURE)) {
- if (efi_debug)
- (void) fprintf(stderr,
- "Bad EFI signature: 0x%llx != 0x%llx\n",
- (long long)efi->efi_gpt_Signature,
- (long long)LE_64(EFI_SIGNATURE));
- return (VT_EINVAL);
- }
-
- /*
- * check CRC of the header; the size of the header should
- * never be larger than one block
- */
- crc = efi->efi_gpt_HeaderCRC32;
- efi->efi_gpt_HeaderCRC32 = 0;
- len_t headerSize = (len_t)LE_32(efi->efi_gpt_HeaderSize);
-
- if (headerSize < EFI_MIN_LABEL_SIZE || headerSize > EFI_LABEL_SIZE) {
- if (efi_debug)
- (void) fprintf(stderr,
- "Invalid EFI HeaderSize %llu. Assuming %d.\n",
- headerSize, EFI_MIN_LABEL_SIZE);
- }
-
- if ((headerSize > dk_ioc->dki_length) ||
- crc != LE_32(efi_crc32((unsigned char *)efi, headerSize))) {
- if (efi_debug)
- (void) fprintf(stderr,
- "Bad EFI CRC: 0x%x != 0x%x\n",
- crc, LE_32(efi_crc32((unsigned char *)efi,
- headerSize)));
- return (VT_EINVAL);
- }
-
- return (0);
-}
-
-static int
-efi_read(int fd, struct dk_gpt *vtoc)
-{
- int i, j;
- int label_len;
- int rval = 0;
- int md_flag = 0;
- int vdc_flag = 0;
- diskaddr_t capacity = 0;
- uint_t lbsize = 0;
- struct dk_minfo disk_info;
- dk_efi_t dk_ioc;
- efi_gpt_t *efi;
- efi_gpe_t *efi_parts;
- struct dk_cinfo dki_info;
- uint32_t user_length;
- boolean_t legacy_label = B_FALSE;
-
- /*
- * get the partition number for this file descriptor.
- */
- if ((rval = efi_get_info(fd, &dki_info)) != 0)
- return (rval);
-
- if ((strncmp(dki_info.dki_cname, "pseudo", 7) == 0) &&
- (strncmp(dki_info.dki_dname, "md", 3) == 0)) {
- md_flag++;
- } else if ((strncmp(dki_info.dki_cname, "vdc", 4) == 0) &&
- (strncmp(dki_info.dki_dname, "vdc", 4) == 0)) {
- /*
- * The controller and drive name "vdc" (virtual disk client)
- * indicates a LDoms virtual disk.
- */
- vdc_flag++;
- }
-
- /* get the LBA size */
- if (read_disk_info(fd, &capacity, &lbsize) == -1) {
- if (efi_debug) {
- (void) fprintf(stderr,
- "unable to read disk info: %d",
- errno);
- }
- return (VT_EINVAL);
- }
-
- disk_info.dki_lbsize = lbsize;
- disk_info.dki_capacity = capacity;
-
- if (disk_info.dki_lbsize == 0) {
- if (efi_debug) {
- (void) fprintf(stderr,
- "efi_read: assuming LBA 512 bytes\n");
- }
- disk_info.dki_lbsize = DEV_BSIZE;
- }
- /*
- * Read the EFI GPT to figure out how many partitions we need
- * to deal with.
- */
- dk_ioc.dki_lba = 1;
- if (NBLOCKS(vtoc->efi_nparts, disk_info.dki_lbsize) < 34) {
- label_len = EFI_MIN_ARRAY_SIZE + disk_info.dki_lbsize;
- } else {
- label_len = vtoc->efi_nparts * (int) sizeof (efi_gpe_t) +
- disk_info.dki_lbsize;
- if (label_len % disk_info.dki_lbsize) {
- /* pad to physical sector size */
- label_len += disk_info.dki_lbsize;
- label_len &= ~(disk_info.dki_lbsize - 1);
- }
- }
-
- if (posix_memalign((void **)&dk_ioc.dki_data,
- disk_info.dki_lbsize, label_len))
- return (VT_ERROR);
-
- memset(dk_ioc.dki_data, 0, label_len);
- dk_ioc.dki_length = disk_info.dki_lbsize;
- user_length = vtoc->efi_nparts;
- efi = dk_ioc.dki_data;
- if (md_flag) {
- dk_ioc.dki_length = label_len;
- if (efi_ioctl(fd, DKIOCGETEFI, &dk_ioc) == -1) {
- switch (errno) {
- case EIO:
- return (VT_EIO);
- default:
- return (VT_ERROR);
- }
- }
- } else if ((rval = check_label(fd, &dk_ioc)) == VT_EINVAL) {
- /*
- * No valid label here; try the alternate. Note that here
- * we just read GPT header and save it into dk_ioc.data,
- * Later, we will read GUID partition entry array if we
- * can get valid GPT header.
- */
-
- /*
- * This is a workaround for legacy systems. In the past, the
- * last sector of SCSI disk was invisible on x86 platform. At
- * that time, backup label was saved on the next to the last
- * sector. It is possible for users to move a disk from previous
- * solaris system to present system. Here, we attempt to search
- * legacy backup EFI label first.
- */
- dk_ioc.dki_lba = disk_info.dki_capacity - 2;
- dk_ioc.dki_length = disk_info.dki_lbsize;
- rval = check_label(fd, &dk_ioc);
- if (rval == VT_EINVAL) {
- /*
- * we didn't find legacy backup EFI label, try to
- * search backup EFI label in the last block.
- */
- dk_ioc.dki_lba = disk_info.dki_capacity - 1;
- dk_ioc.dki_length = disk_info.dki_lbsize;
- rval = check_label(fd, &dk_ioc);
- if (rval == 0) {
- legacy_label = B_TRUE;
- if (efi_debug)
- (void) fprintf(stderr,
- "efi_read: primary label corrupt; "
- "using EFI backup label located on"
- " the last block\n");
- }
- } else {
- if ((efi_debug) && (rval == 0))
- (void) fprintf(stderr, "efi_read: primary label"
- " corrupt; using legacy EFI backup label "
- " located on the next to last block\n");
- }
-
- if (rval == 0) {
- dk_ioc.dki_lba = LE_64(efi->efi_gpt_PartitionEntryLBA);
- vtoc->efi_flags |= EFI_GPT_PRIMARY_CORRUPT;
- vtoc->efi_nparts =
- LE_32(efi->efi_gpt_NumberOfPartitionEntries);
- /*
- * Partition tables are between backup GPT header
- * table and ParitionEntryLBA (the starting LBA of
- * the GUID partition entries array). Now that we
- * already got valid GPT header and saved it in
- * dk_ioc.dki_data, we try to get GUID partition
- * entry array here.
- */
- /* LINTED */
- dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data
- + disk_info.dki_lbsize);
- if (legacy_label)
- dk_ioc.dki_length = disk_info.dki_capacity - 1 -
- dk_ioc.dki_lba;
- else
- dk_ioc.dki_length = disk_info.dki_capacity - 2 -
- dk_ioc.dki_lba;
- dk_ioc.dki_length *= disk_info.dki_lbsize;
- if (dk_ioc.dki_length >
- ((len_t)label_len - sizeof (*dk_ioc.dki_data))) {
- rval = VT_EINVAL;
- } else {
- /*
- * read GUID partition entry array
- */
- rval = efi_ioctl(fd, DKIOCGETEFI, &dk_ioc);
- }
- }
-
- } else if (rval == 0) {
-
- dk_ioc.dki_lba = LE_64(efi->efi_gpt_PartitionEntryLBA);
- /* LINTED */
- dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data
- + disk_info.dki_lbsize);
- dk_ioc.dki_length = label_len - disk_info.dki_lbsize;
- rval = efi_ioctl(fd, DKIOCGETEFI, &dk_ioc);
-
- } else if (vdc_flag && rval == VT_ERROR && errno == EINVAL) {
- /*
- * When the device is a LDoms virtual disk, the DKIOCGETEFI
- * ioctl can fail with EINVAL if the virtual disk backend
- * is a ZFS volume serviced by a domain running an old version
- * of Solaris. This is because the DKIOCGETEFI ioctl was
- * initially incorrectly implemented for a ZFS volume and it
- * expected the GPT and GPE to be retrieved with a single ioctl.
- * So we try to read the GPT and the GPE using that old style
- * ioctl.
- */
- dk_ioc.dki_lba = 1;
- dk_ioc.dki_length = label_len;
- rval = check_label(fd, &dk_ioc);
- }
-
- if (rval < 0) {
- free(efi);
- return (rval);
- }
-
- /* LINTED -- always longlong aligned */
- efi_parts = (efi_gpe_t *)(((char *)efi) + disk_info.dki_lbsize);
-
- /*
- * Assemble this into a "dk_gpt" struct for easier
- * digestibility by applications.
- */
- vtoc->efi_version = LE_32(efi->efi_gpt_Revision);
- vtoc->efi_nparts = LE_32(efi->efi_gpt_NumberOfPartitionEntries);
- vtoc->efi_part_size = LE_32(efi->efi_gpt_SizeOfPartitionEntry);
- vtoc->efi_lbasize = disk_info.dki_lbsize;
- vtoc->efi_last_lba = disk_info.dki_capacity - 1;
- vtoc->efi_first_u_lba = LE_64(efi->efi_gpt_FirstUsableLBA);
- vtoc->efi_last_u_lba = LE_64(efi->efi_gpt_LastUsableLBA);
- vtoc->efi_altern_lba = LE_64(efi->efi_gpt_AlternateLBA);
- UUID_LE_CONVERT(vtoc->efi_disk_uguid, efi->efi_gpt_DiskGUID);
-
- /*
- * If the array the user passed in is too small, set the length
- * to what it needs to be and return
- */
- if (user_length < vtoc->efi_nparts) {
- return (VT_EINVAL);
- }
-
- for (i = 0; i < vtoc->efi_nparts; i++) {
- UUID_LE_CONVERT(vtoc->efi_parts[i].p_guid,
- efi_parts[i].efi_gpe_PartitionTypeGUID);
-
- for (j = 0;
- j < sizeof (conversion_array)
- / sizeof (struct uuid_to_ptag); j++) {
-
- if (memcmp(&vtoc->efi_parts[i].p_guid,
- &conversion_array[j].uuid,
- sizeof (struct uuid)) == 0) {
- vtoc->efi_parts[i].p_tag = j;
- break;
- }
- }
- if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED)
- continue;
- vtoc->efi_parts[i].p_flag =
- LE_16(efi_parts[i].efi_gpe_Attributes.PartitionAttrs);
- vtoc->efi_parts[i].p_start =
- LE_64(efi_parts[i].efi_gpe_StartingLBA);
- vtoc->efi_parts[i].p_size =
- LE_64(efi_parts[i].efi_gpe_EndingLBA) -
- vtoc->efi_parts[i].p_start + 1;
- for (j = 0; j < EFI_PART_NAME_LEN; j++) {
- vtoc->efi_parts[i].p_name[j] =
- (uchar_t)LE_16(
- efi_parts[i].efi_gpe_PartitionName[j]);
- }
-
- UUID_LE_CONVERT(vtoc->efi_parts[i].p_uguid,
- efi_parts[i].efi_gpe_UniquePartitionGUID);
- }
- free(efi);
-
- return (dki_info.dki_partition);
-}
-
-/* writes a "protective" MBR */
-static int
-write_pmbr(int fd, struct dk_gpt *vtoc)
-{
- dk_efi_t dk_ioc;
- struct mboot mb;
- uchar_t *cp;
- diskaddr_t size_in_lba;
- uchar_t *buf;
- int len;
-
- len = (vtoc->efi_lbasize == 0) ? sizeof (mb) : vtoc->efi_lbasize;
- if (posix_memalign((void **)&buf, len, len))
- return (VT_ERROR);
-
- /*
- * Preserve any boot code and disk signature if the first block is
- * already an MBR.
- */
- memset(buf, 0, len);
- dk_ioc.dki_lba = 0;
- dk_ioc.dki_length = len;
- /* LINTED -- always longlong aligned */
- dk_ioc.dki_data = (efi_gpt_t *)buf;
- if (efi_ioctl(fd, DKIOCGETEFI, &dk_ioc) == -1) {
- memset(&mb, 0, sizeof (mb));
- mb.signature = LE_16(MBB_MAGIC);
- } else {
- (void) memcpy(&mb, buf, sizeof (mb));
- if (mb.signature != LE_16(MBB_MAGIC)) {
- memset(&mb, 0, sizeof (mb));
- mb.signature = LE_16(MBB_MAGIC);
- }
- }
-
- memset(&mb.parts, 0, sizeof (mb.parts));
- cp = (uchar_t *)&mb.parts[0];
- /* bootable or not */
- *cp++ = 0;
- /* beginning CHS; 0xffffff if not representable */
- *cp++ = 0xff;
- *cp++ = 0xff;
- *cp++ = 0xff;
- /* OS type */
- *cp++ = EFI_PMBR;
- /* ending CHS; 0xffffff if not representable */
- *cp++ = 0xff;
- *cp++ = 0xff;
- *cp++ = 0xff;
- /* starting LBA: 1 (little endian format) by EFI definition */
- *cp++ = 0x01;
- *cp++ = 0x00;
- *cp++ = 0x00;
- *cp++ = 0x00;
- /* ending LBA: last block on the disk (little endian format) */
- size_in_lba = vtoc->efi_last_lba;
- if (size_in_lba < 0xffffffff) {
- *cp++ = (size_in_lba & 0x000000ff);
- *cp++ = (size_in_lba & 0x0000ff00) >> 8;
- *cp++ = (size_in_lba & 0x00ff0000) >> 16;
- *cp++ = (size_in_lba & 0xff000000) >> 24;
- } else {
- *cp++ = 0xff;
- *cp++ = 0xff;
- *cp++ = 0xff;
- *cp++ = 0xff;
- }
-
- (void) memcpy(buf, &mb, sizeof (mb));
- /* LINTED -- always longlong aligned */
- dk_ioc.dki_data = (efi_gpt_t *)buf;
- dk_ioc.dki_lba = 0;
- dk_ioc.dki_length = len;
- if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
- free(buf);
- switch (errno) {
- case EIO:
- return (VT_EIO);
- case EINVAL:
- return (VT_EINVAL);
- default:
- return (VT_ERROR);
- }
- }
- free(buf);
- return (0);
-}
-
-/* make sure the user specified something reasonable */
-static int
-check_input(struct dk_gpt *vtoc)
-{
- int resv_part = -1;
- int i, j;
- diskaddr_t istart, jstart, isize, jsize, endsect;
-
- /*
- * Sanity-check the input (make sure no partitions overlap)
- */
- for (i = 0; i < vtoc->efi_nparts; i++) {
- /* It can't be unassigned and have an actual size */
- if ((vtoc->efi_parts[i].p_tag == V_UNASSIGNED) &&
- (vtoc->efi_parts[i].p_size != 0)) {
- if (efi_debug) {
- (void) fprintf(stderr, "partition %d is "
- "\"unassigned\" but has a size of %llu",
- i, vtoc->efi_parts[i].p_size);
- }
- return (VT_EINVAL);
- }
- if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) {
- if (uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_guid))
- continue;
- /* we have encountered an unknown uuid */
- vtoc->efi_parts[i].p_tag = 0xff;
- }
- if (vtoc->efi_parts[i].p_tag == V_RESERVED) {
- if (resv_part != -1) {
- if (efi_debug) {
- (void) fprintf(stderr, "found "
- "duplicate reserved partition "
- "at %d\n", i);
- }
- return (VT_EINVAL);
- }
- resv_part = i;
- }
- if ((vtoc->efi_parts[i].p_start < vtoc->efi_first_u_lba) ||
- (vtoc->efi_parts[i].p_start > vtoc->efi_last_u_lba)) {
- if (efi_debug) {
- (void) fprintf(stderr,
- "Partition %d starts at %llu. ",
- i,
- vtoc->efi_parts[i].p_start);
- (void) fprintf(stderr,
- "It must be between %llu and %llu.\n",
- vtoc->efi_first_u_lba,
- vtoc->efi_last_u_lba);
- }
- return (VT_EINVAL);
- }
- if ((vtoc->efi_parts[i].p_start +
- vtoc->efi_parts[i].p_size <
- vtoc->efi_first_u_lba) ||
- (vtoc->efi_parts[i].p_start +
- vtoc->efi_parts[i].p_size >
- vtoc->efi_last_u_lba + 1)) {
- if (efi_debug) {
- (void) fprintf(stderr,
- "Partition %d ends at %llu. ",
- i,
- vtoc->efi_parts[i].p_start +
- vtoc->efi_parts[i].p_size);
- (void) fprintf(stderr,
- "It must be between %llu and %llu.\n",
- vtoc->efi_first_u_lba,
- vtoc->efi_last_u_lba);
- }
- return (VT_EINVAL);
- }
-
- for (j = 0; j < vtoc->efi_nparts; j++) {
- isize = vtoc->efi_parts[i].p_size;
- jsize = vtoc->efi_parts[j].p_size;
- istart = vtoc->efi_parts[i].p_start;
- jstart = vtoc->efi_parts[j].p_start;
- if ((i != j) && (isize != 0) && (jsize != 0)) {
- endsect = jstart + jsize -1;
- if ((jstart <= istart) &&
- (istart <= endsect)) {
- if (efi_debug) {
- (void) fprintf(stderr,
- "Partition %d overlaps "
- "partition %d.", i, j);
- }
- return (VT_EINVAL);
- }
- }
- }
- }
- /* just a warning for now */
- if ((resv_part == -1) && efi_debug) {
- (void) fprintf(stderr,
- "no reserved partition found\n");
- }
- return (0);
-}
-
-static int
-call_blkpg_ioctl(int fd, int command, diskaddr_t start,
- diskaddr_t size, uint_t pno)
-{
- struct blkpg_ioctl_arg ioctl_arg;
- struct blkpg_partition linux_part;
- memset(&linux_part, 0, sizeof (linux_part));
-
- char *path = efi_get_devname(fd);
- if (path == NULL) {
- (void) fprintf(stderr, "failed to retrieve device name\n");
- return (VT_EINVAL);
- }
-
- linux_part.start = start;
- linux_part.length = size;
- linux_part.pno = pno;
- snprintf(linux_part.devname, BLKPG_DEVNAMELTH - 1, "%s%u", path, pno);
- linux_part.devname[BLKPG_DEVNAMELTH - 1] = '\0';
- free(path);
-
- ioctl_arg.op = command;
- ioctl_arg.flags = 0;
- ioctl_arg.datalen = sizeof (struct blkpg_partition);
- ioctl_arg.data = &linux_part;
-
- return (ioctl(fd, BLKPG, &ioctl_arg));
-}
-
-/*
- * add all the unallocated space to the current label
- */
-int
-efi_use_whole_disk(int fd)
-{
- struct dk_gpt *efi_label = NULL;
- int rval;
- int i;
- uint_t resv_index = 0, data_index = 0;
- diskaddr_t resv_start = 0, data_start = 0;
- diskaddr_t data_size, limit, difference;
- boolean_t sync_needed = B_FALSE;
- uint_t nblocks;
-
- rval = efi_alloc_and_read(fd, &efi_label);
- if (rval < 0) {
- if (efi_label != NULL)
- efi_free(efi_label);
- return (rval);
- }
-
- /*
- * Find the last physically non-zero partition.
- * This should be the reserved partition.
- */
- for (i = 0; i < efi_label->efi_nparts; i ++) {
- if (resv_start < efi_label->efi_parts[i].p_start) {
- resv_start = efi_label->efi_parts[i].p_start;
- resv_index = i;
- }
- }
-
- /*
- * Find the last physically non-zero partition before that.
- * This is the data partition.
- */
- for (i = 0; i < resv_index; i ++) {
- if (data_start < efi_label->efi_parts[i].p_start) {
- data_start = efi_label->efi_parts[i].p_start;
- data_index = i;
- }
- }
- data_size = efi_label->efi_parts[data_index].p_size;
-
- /*
- * See the "efi_alloc_and_init" function for more information
- * about where this "nblocks" value comes from.
- */
- nblocks = efi_label->efi_first_u_lba - 1;
-
- /*
- * Determine if the EFI label is out of sync. We check that:
- *
- * 1. the data partition ends at the limit we set, and
- * 2. the reserved partition starts at the limit we set.
- *
- * If either of these conditions is not met, then we need to
- * resync the EFI label.
- *
- * The limit is the last usable LBA, determined by the last LBA
- * and the first usable LBA fields on the EFI label of the disk
- * (see the lines directly above). Additionally, we factor in
- * EFI_MIN_RESV_SIZE (per its use in "zpool_label_disk") and
- * P2ALIGN it to ensure the partition boundaries are aligned
- * (for performance reasons). The alignment should match the
- * alignment used by the "zpool_label_disk" function.
- */
- limit = P2ALIGN_TYPED(efi_label->efi_last_lba - nblocks -
- EFI_MIN_RESV_SIZE, PARTITION_END_ALIGNMENT, diskaddr_t);
- if (data_start + data_size != limit || resv_start != limit)
- sync_needed = B_TRUE;
-
- if (efi_debug && sync_needed)
- (void) fprintf(stderr, "efi_use_whole_disk: sync needed\n");
-
- /*
- * If alter_lba is 1, we are using the backup label.
- * Since we can locate the backup label by disk capacity,
- * there must be no unallocated space.
- */
- if ((efi_label->efi_altern_lba == 1) || (efi_label->efi_altern_lba
- >= efi_label->efi_last_lba && !sync_needed)) {
- if (efi_debug) {
- (void) fprintf(stderr,
- "efi_use_whole_disk: requested space not found\n");
- }
- efi_free(efi_label);
- return (VT_ENOSPC);
- }
-
- /*
- * Verify that we've found the reserved partition by checking
- * that it looks the way it did when we created it in zpool_label_disk.
- * If we've found the incorrect partition, then we know that this
- * device was reformatted and no longer is solely used by ZFS.
- */
- if ((efi_label->efi_parts[resv_index].p_size != EFI_MIN_RESV_SIZE) ||
- (efi_label->efi_parts[resv_index].p_tag != V_RESERVED) ||
- (resv_index != 8)) {
- if (efi_debug) {
- (void) fprintf(stderr,
- "efi_use_whole_disk: wholedisk not available\n");
- }
- efi_free(efi_label);
- return (VT_ENOSPC);
- }
-
- if (data_start + data_size != resv_start) {
- if (efi_debug) {
- (void) fprintf(stderr,
- "efi_use_whole_disk: "
- "data_start (%lli) + "
- "data_size (%lli) != "
- "resv_start (%lli)\n",
- data_start, data_size, resv_start);
- }
-
- return (VT_EINVAL);
- }
-
- if (limit < resv_start) {
- if (efi_debug) {
- (void) fprintf(stderr,
- "efi_use_whole_disk: "
- "limit (%lli) < resv_start (%lli)\n",
- limit, resv_start);
- }
-
- return (VT_EINVAL);
- }
-
- difference = limit - resv_start;
-
- if (efi_debug)
- (void) fprintf(stderr,
- "efi_use_whole_disk: difference is %lli\n", difference);
-
- /*
- * Move the reserved partition. There is currently no data in
- * here except fabricated devids (which get generated via
- * efi_write()). So there is no need to copy data.
- */
- efi_label->efi_parts[data_index].p_size += difference;
- efi_label->efi_parts[resv_index].p_start += difference;
- efi_label->efi_last_u_lba = efi_label->efi_last_lba - nblocks;
-
- /*
- * Rescanning the partition table in the kernel can result
- * in the device links to be removed (see comment in vdev_disk_open).
- * If BLKPG_RESIZE_PARTITION is available, then we can resize
- * the partition table online and avoid having to remove the device
- * links used by the pool. This provides a very deterministic
- * approach to resizing devices and does not require any
- * loops waiting for devices to reappear.
- */
-#ifdef BLKPG_RESIZE_PARTITION
- /*
- * Delete the reserved partition since we're about to expand
- * the data partition and it would overlap with the reserved
- * partition.
- * NOTE: The starting index for the ioctl is 1 while for the
- * EFI partitions it's 0. For that reason we have to add one
- * whenever we make an ioctl call.
- */
- rval = call_blkpg_ioctl(fd, BLKPG_DEL_PARTITION, 0, 0, resv_index + 1);
- if (rval != 0)
- goto out;
-
- /*
- * Expand the data partition
- */
- rval = call_blkpg_ioctl(fd, BLKPG_RESIZE_PARTITION,
- efi_label->efi_parts[data_index].p_start * efi_label->efi_lbasize,
- efi_label->efi_parts[data_index].p_size * efi_label->efi_lbasize,
- data_index + 1);
- if (rval != 0) {
- (void) fprintf(stderr, "Unable to resize data "
- "partition: %d\n", rval);
- /*
- * Since we failed to resize, we need to reset the start
- * of the reserve partition and re-create it.
- */
- efi_label->efi_parts[resv_index].p_start -= difference;
- }
-
- /*
- * Re-add the reserved partition. If we've expanded the data partition
- * then we'll move the reserve partition to the end of the data
- * partition. Otherwise, we'll recreate the partition in its original
- * location. Note that we do this as best-effort and ignore any
- * errors that may arise here. This will ensure that we finish writing
- * the EFI label.
- */
- (void) call_blkpg_ioctl(fd, BLKPG_ADD_PARTITION,
- efi_label->efi_parts[resv_index].p_start * efi_label->efi_lbasize,
- efi_label->efi_parts[resv_index].p_size * efi_label->efi_lbasize,
- resv_index + 1);
-#endif
-
- /*
- * We're now ready to write the EFI label.
- */
- if (rval == 0) {
- rval = efi_write(fd, efi_label);
- if (rval < 0 && efi_debug) {
- (void) fprintf(stderr, "efi_use_whole_disk:fail "
- "to write label, rval=%d\n", rval);
- }
- }
-
-out:
- efi_free(efi_label);
- return (rval);
-}
-
-/*
- * write EFI label and backup label
- */
-int
-efi_write(int fd, struct dk_gpt *vtoc)
-{
- dk_efi_t dk_ioc;
- efi_gpt_t *efi;
- efi_gpe_t *efi_parts;
- int i, j;
- struct dk_cinfo dki_info;
- int rval;
- int md_flag = 0;
- int nblocks;
- diskaddr_t lba_backup_gpt_hdr;
-
- if ((rval = efi_get_info(fd, &dki_info)) != 0)
- return (rval);
-
- /* check if we are dealing with a metadevice */
- if ((strncmp(dki_info.dki_cname, "pseudo", 7) == 0) &&
- (strncmp(dki_info.dki_dname, "md", 3) == 0)) {
- md_flag = 1;
- }
-
- if (check_input(vtoc)) {
- /*
- * not valid; if it's a metadevice just pass it down
- * because SVM will do its own checking
- */
- if (md_flag == 0) {
- return (VT_EINVAL);
- }
- }
-
- dk_ioc.dki_lba = 1;
- if (NBLOCKS(vtoc->efi_nparts, vtoc->efi_lbasize) < 34) {
- dk_ioc.dki_length = EFI_MIN_ARRAY_SIZE + vtoc->efi_lbasize;
- } else {
- dk_ioc.dki_length = (len_t)NBLOCKS(vtoc->efi_nparts,
- vtoc->efi_lbasize) *
- vtoc->efi_lbasize;
- }
-
- /*
- * the number of blocks occupied by GUID partition entry array
- */
- nblocks = dk_ioc.dki_length / vtoc->efi_lbasize - 1;
-
- /*
- * Backup GPT header is located on the block after GUID
- * partition entry array. Here, we calculate the address
- * for backup GPT header.
- */
- lba_backup_gpt_hdr = vtoc->efi_last_u_lba + 1 + nblocks;
- if (posix_memalign((void **)&dk_ioc.dki_data,
- vtoc->efi_lbasize, dk_ioc.dki_length))
- return (VT_ERROR);
-
- memset(dk_ioc.dki_data, 0, dk_ioc.dki_length);
- efi = dk_ioc.dki_data;
-
- /* stuff user's input into EFI struct */
- efi->efi_gpt_Signature = LE_64(EFI_SIGNATURE);
- efi->efi_gpt_Revision = LE_32(vtoc->efi_version); /* 0x02000100 */
- efi->efi_gpt_HeaderSize = LE_32(sizeof (struct efi_gpt) - LEN_EFI_PAD);
- efi->efi_gpt_Reserved1 = 0;
- efi->efi_gpt_MyLBA = LE_64(1ULL);
- efi->efi_gpt_AlternateLBA = LE_64(lba_backup_gpt_hdr);
- efi->efi_gpt_FirstUsableLBA = LE_64(vtoc->efi_first_u_lba);
- efi->efi_gpt_LastUsableLBA = LE_64(vtoc->efi_last_u_lba);
- efi->efi_gpt_PartitionEntryLBA = LE_64(2ULL);
- efi->efi_gpt_NumberOfPartitionEntries = LE_32(vtoc->efi_nparts);
- efi->efi_gpt_SizeOfPartitionEntry = LE_32(sizeof (struct efi_gpe));
- UUID_LE_CONVERT(efi->efi_gpt_DiskGUID, vtoc->efi_disk_uguid);
-
- /* LINTED -- always longlong aligned */
- efi_parts = (efi_gpe_t *)((char *)dk_ioc.dki_data + vtoc->efi_lbasize);
-
- for (i = 0; i < vtoc->efi_nparts; i++) {
- for (j = 0;
- j < sizeof (conversion_array) /
- sizeof (struct uuid_to_ptag); j++) {
-
- if (vtoc->efi_parts[i].p_tag == j) {
- UUID_LE_CONVERT(
- efi_parts[i].efi_gpe_PartitionTypeGUID,
- conversion_array[j].uuid);
- break;
- }
- }
-
- if (j == sizeof (conversion_array) /
- sizeof (struct uuid_to_ptag)) {
- /*
- * If we didn't have a matching uuid match, bail here.
- * Don't write a label with unknown uuid.
- */
- if (efi_debug) {
- (void) fprintf(stderr,
- "Unknown uuid for p_tag %d\n",
- vtoc->efi_parts[i].p_tag);
- }
- return (VT_EINVAL);
- }
-
- /* Zero's should be written for empty partitions */
- if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED)
- continue;
-
- efi_parts[i].efi_gpe_StartingLBA =
- LE_64(vtoc->efi_parts[i].p_start);
- efi_parts[i].efi_gpe_EndingLBA =
- LE_64(vtoc->efi_parts[i].p_start +
- vtoc->efi_parts[i].p_size - 1);
- efi_parts[i].efi_gpe_Attributes.PartitionAttrs =
- LE_16(vtoc->efi_parts[i].p_flag);
- for (j = 0; j < EFI_PART_NAME_LEN; j++) {
- efi_parts[i].efi_gpe_PartitionName[j] =
- LE_16((ushort_t)vtoc->efi_parts[i].p_name[j]);
- }
- if ((vtoc->efi_parts[i].p_tag != V_UNASSIGNED) &&
- uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_uguid)) {
- (void) uuid_generate((uchar_t *)
- &vtoc->efi_parts[i].p_uguid);
- }
- memcpy(&efi_parts[i].efi_gpe_UniquePartitionGUID,
- &vtoc->efi_parts[i].p_uguid,
- sizeof (uuid_t));
- }
- efi->efi_gpt_PartitionEntryArrayCRC32 =
- LE_32(efi_crc32((unsigned char *)efi_parts,
- vtoc->efi_nparts * (int)sizeof (struct efi_gpe)));
- efi->efi_gpt_HeaderCRC32 =
- LE_32(efi_crc32((unsigned char *)efi,
- LE_32(efi->efi_gpt_HeaderSize)));
-
- if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
- free(dk_ioc.dki_data);
- switch (errno) {
- case EIO:
- return (VT_EIO);
- case EINVAL:
- return (VT_EINVAL);
- default:
- return (VT_ERROR);
- }
- }
- /* if it's a metadevice we're done */
- if (md_flag) {
- free(dk_ioc.dki_data);
- return (0);
- }
-
- /* write backup partition array */
- dk_ioc.dki_lba = vtoc->efi_last_u_lba + 1;
- dk_ioc.dki_length -= vtoc->efi_lbasize;
- /* LINTED */
- dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data +
- vtoc->efi_lbasize);
-
- if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
- /*
- * we wrote the primary label okay, so don't fail
- */
- if (efi_debug) {
- (void) fprintf(stderr,
- "write of backup partitions to block %llu "
- "failed, errno %d\n",
- vtoc->efi_last_u_lba + 1,
- errno);
- }
- }
- /*
- * now swap MyLBA and AlternateLBA fields and write backup
- * partition table header
- */
- dk_ioc.dki_lba = lba_backup_gpt_hdr;
- dk_ioc.dki_length = vtoc->efi_lbasize;
- /* LINTED */
- dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data -
- vtoc->efi_lbasize);
- efi->efi_gpt_AlternateLBA = LE_64(1ULL);
- efi->efi_gpt_MyLBA = LE_64(lba_backup_gpt_hdr);
- efi->efi_gpt_PartitionEntryLBA = LE_64(vtoc->efi_last_u_lba + 1);
- efi->efi_gpt_HeaderCRC32 = 0;
- efi->efi_gpt_HeaderCRC32 =
- LE_32(efi_crc32((unsigned char *)dk_ioc.dki_data,
- LE_32(efi->efi_gpt_HeaderSize)));
-
- if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
- if (efi_debug) {
- (void) fprintf(stderr,
- "write of backup header to block %llu failed, "
- "errno %d\n",
- lba_backup_gpt_hdr,
- errno);
- }
- }
- /* write the PMBR */
- (void) write_pmbr(fd, vtoc);
- free(dk_ioc.dki_data);
-
- return (0);
-}
-
-void
-efi_free(struct dk_gpt *ptr)
-{
- free(ptr);
-}
-
-void
-efi_err_check(struct dk_gpt *vtoc)
-{
- int resv_part = -1;
- int i, j;
- diskaddr_t istart, jstart, isize, jsize, endsect;
- int overlap = 0;
-
- /*
- * make sure no partitions overlap
- */
- for (i = 0; i < vtoc->efi_nparts; i++) {
- /* It can't be unassigned and have an actual size */
- if ((vtoc->efi_parts[i].p_tag == V_UNASSIGNED) &&
- (vtoc->efi_parts[i].p_size != 0)) {
- (void) fprintf(stderr,
- "partition %d is \"unassigned\" but has a size "
- "of %llu\n", i, vtoc->efi_parts[i].p_size);
- }
- if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) {
- continue;
- }
- if (vtoc->efi_parts[i].p_tag == V_RESERVED) {
- if (resv_part != -1) {
- (void) fprintf(stderr,
- "found duplicate reserved partition at "
- "%d\n", i);
- }
- resv_part = i;
- if (vtoc->efi_parts[i].p_size != EFI_MIN_RESV_SIZE)
- (void) fprintf(stderr,
- "Warning: reserved partition size must "
- "be %d sectors\n", EFI_MIN_RESV_SIZE);
- }
- if ((vtoc->efi_parts[i].p_start < vtoc->efi_first_u_lba) ||
- (vtoc->efi_parts[i].p_start > vtoc->efi_last_u_lba)) {
- (void) fprintf(stderr,
- "Partition %d starts at %llu\n",
- i,
- vtoc->efi_parts[i].p_start);
- (void) fprintf(stderr,
- "It must be between %llu and %llu.\n",
- vtoc->efi_first_u_lba,
- vtoc->efi_last_u_lba);
- }
- if ((vtoc->efi_parts[i].p_start +
- vtoc->efi_parts[i].p_size <
- vtoc->efi_first_u_lba) ||
- (vtoc->efi_parts[i].p_start +
- vtoc->efi_parts[i].p_size >
- vtoc->efi_last_u_lba + 1)) {
- (void) fprintf(stderr,
- "Partition %d ends at %llu\n",
- i,
- vtoc->efi_parts[i].p_start +
- vtoc->efi_parts[i].p_size);
- (void) fprintf(stderr,
- "It must be between %llu and %llu.\n",
- vtoc->efi_first_u_lba,
- vtoc->efi_last_u_lba);
- }
-
- for (j = 0; j < vtoc->efi_nparts; j++) {
- isize = vtoc->efi_parts[i].p_size;
- jsize = vtoc->efi_parts[j].p_size;
- istart = vtoc->efi_parts[i].p_start;
- jstart = vtoc->efi_parts[j].p_start;
- if ((i != j) && (isize != 0) && (jsize != 0)) {
- endsect = jstart + jsize -1;
- if ((jstart <= istart) &&
- (istart <= endsect)) {
- if (!overlap) {
- (void) fprintf(stderr,
- "label error: EFI Labels do not "
- "support overlapping partitions\n");
- }
- (void) fprintf(stderr,
- "Partition %d overlaps partition "
- "%d.\n", i, j);
- overlap = 1;
- }
- }
- }
- }
- /* make sure there is a reserved partition */
- if (resv_part == -1) {
- (void) fprintf(stderr,
- "no reserved partition found\n");
- }
-}