diff options
Diffstat (limited to 'lib/libefi/rdwr_efi.c')
-rw-r--r-- | lib/libefi/rdwr_efi.c | 1628 |
1 files changed, 0 insertions, 1628 deletions
diff --git a/lib/libefi/rdwr_efi.c b/lib/libefi/rdwr_efi.c deleted file mode 100644 index 0a93fd1338f6..000000000000 --- a/lib/libefi/rdwr_efi.c +++ /dev/null @@ -1,1628 +0,0 @@ -// SPDX-License-Identifier: CDDL-1.0 -/* - * CDDL HEADER START - * - * The contents of this file are subject to the terms of the - * Common Development and Distribution License (the "License"). - * You may not use this file except in compliance with the License. - * - * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE - * or https://opensource.org/licenses/CDDL-1.0. - * See the License for the specific language governing permissions - * and limitations under the License. - * - * When distributing Covered Code, include this CDDL HEADER in each - * file and include the License file at usr/src/OPENSOLARIS.LICENSE. - * If applicable, add the following below this CDDL HEADER, with the - * fields enclosed by brackets "[]" replaced with your own identifying - * information: Portions Copyright [yyyy] [name of copyright owner] - * - * CDDL HEADER END - */ - -/* - * Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved. - * Copyright 2012 Nexenta Systems, Inc. All rights reserved. - * Copyright (c) 2018 by Delphix. All rights reserved. - */ - -#include <stdio.h> -#include <stdlib.h> -#include <errno.h> -#include <string.h> -#include <unistd.h> -#include <uuid/uuid.h> -#include <zlib.h> -#include <libintl.h> -#include <sys/types.h> -#include <sys/dkio.h> -#include <sys/mhd.h> -#include <sys/param.h> -#include <sys/dktp/fdisk.h> -#include <sys/efi_partition.h> -#include <sys/byteorder.h> -#include <sys/vdev_disk.h> -#include <linux/fs.h> -#include <linux/blkpg.h> - -static struct uuid_to_ptag { - struct uuid uuid; -} conversion_array[] = { - { EFI_UNUSED }, - { EFI_BOOT }, - { EFI_ROOT }, - { EFI_SWAP }, - { EFI_USR }, - { EFI_BACKUP }, - { EFI_UNUSED }, /* STAND is never used */ - { EFI_VAR }, - { EFI_HOME }, - { EFI_ALTSCTR }, - { EFI_UNUSED }, /* CACHE (cachefs) is never used */ - { EFI_RESERVED }, - { EFI_SYSTEM }, - { EFI_LEGACY_MBR }, - { EFI_SYMC_PUB }, - { EFI_SYMC_CDS }, - { EFI_MSFT_RESV }, - { EFI_DELL_BASIC }, - { EFI_DELL_RAID }, - { EFI_DELL_SWAP }, - { EFI_DELL_LVM }, - { EFI_DELL_RESV }, - { EFI_AAPL_HFS }, - { EFI_AAPL_UFS }, - { EFI_FREEBSD_BOOT }, - { EFI_FREEBSD_SWAP }, - { EFI_FREEBSD_UFS }, - { EFI_FREEBSD_VINUM }, - { EFI_FREEBSD_ZFS }, - { EFI_BIOS_BOOT }, - { EFI_INTC_RS }, - { EFI_SNE_BOOT }, - { EFI_LENOVO_BOOT }, - { EFI_MSFT_LDMM }, - { EFI_MSFT_LDMD }, - { EFI_MSFT_RE }, - { EFI_IBM_GPFS }, - { EFI_MSFT_STORAGESPACES }, - { EFI_HPQ_DATA }, - { EFI_HPQ_SVC }, - { EFI_RHT_DATA }, - { EFI_RHT_HOME }, - { EFI_RHT_SRV }, - { EFI_RHT_DMCRYPT }, - { EFI_RHT_LUKS }, - { EFI_FREEBSD_DISKLABEL }, - { EFI_AAPL_RAID }, - { EFI_AAPL_RAIDOFFLINE }, - { EFI_AAPL_BOOT }, - { EFI_AAPL_LABEL }, - { EFI_AAPL_TVRECOVERY }, - { EFI_AAPL_CORESTORAGE }, - { EFI_NETBSD_SWAP }, - { EFI_NETBSD_FFS }, - { EFI_NETBSD_LFS }, - { EFI_NETBSD_RAID }, - { EFI_NETBSD_CAT }, - { EFI_NETBSD_CRYPT }, - { EFI_GOOG_KERN }, - { EFI_GOOG_ROOT }, - { EFI_GOOG_RESV }, - { EFI_HAIKU_BFS }, - { EFI_MIDNIGHTBSD_BOOT }, - { EFI_MIDNIGHTBSD_DATA }, - { EFI_MIDNIGHTBSD_SWAP }, - { EFI_MIDNIGHTBSD_UFS }, - { EFI_MIDNIGHTBSD_VINUM }, - { EFI_MIDNIGHTBSD_ZFS }, - { EFI_CEPH_JOURNAL }, - { EFI_CEPH_DMCRYPTJOURNAL }, - { EFI_CEPH_OSD }, - { EFI_CEPH_DMCRYPTOSD }, - { EFI_CEPH_CREATE }, - { EFI_CEPH_DMCRYPTCREATE }, - { EFI_OPENBSD_DISKLABEL }, - { EFI_BBRY_QNX }, - { EFI_BELL_PLAN9 }, - { EFI_VMW_KCORE }, - { EFI_VMW_VMFS }, - { EFI_VMW_RESV }, - { EFI_RHT_ROOTX86 }, - { EFI_RHT_ROOTAMD64 }, - { EFI_RHT_ROOTARM }, - { EFI_RHT_ROOTARM64 }, - { EFI_ACRONIS_SECUREZONE }, - { EFI_ONIE_BOOT }, - { EFI_ONIE_CONFIG }, - { EFI_IBM_PPRPBOOT }, - { EFI_FREEDESKTOP_BOOT } -}; - -int efi_debug = 0; - -static int efi_read(int, struct dk_gpt *); - -/* - * Return a 32-bit CRC of the contents of the buffer. Pre-and-post - * one's conditioning will be handled by crc32() internally. - */ -static uint32_t -efi_crc32(const unsigned char *buf, unsigned int size) -{ - uint32_t crc = crc32(0, Z_NULL, 0); - - crc = crc32(crc, buf, size); - - return (crc); -} - -static int -read_disk_info(int fd, diskaddr_t *capacity, uint_t *lbsize) -{ - int sector_size; - unsigned long long capacity_size; - - if (ioctl(fd, BLKSSZGET, §or_size) < 0) - return (-1); - - if (ioctl(fd, BLKGETSIZE64, &capacity_size) < 0) - return (-1); - - *lbsize = (uint_t)sector_size; - *capacity = (diskaddr_t)(capacity_size / sector_size); - - return (0); -} - -/* - * Return back the device name associated with the file descriptor. The - * caller is responsible for freeing the memory associated with the - * returned string. - */ -static char * -efi_get_devname(int fd) -{ - char path[32]; - - /* - * The libefi API only provides the open fd and not the file path. - * To handle this realpath(3) is used to resolve the block device - * name from /proc/self/fd/<fd>. - */ - (void) snprintf(path, sizeof (path), "/proc/self/fd/%d", fd); - return (realpath(path, NULL)); -} - -static int -efi_get_info(int fd, struct dk_cinfo *dki_info) -{ - char *dev_path; - int rval = 0; - - memset(dki_info, 0, sizeof (*dki_info)); - - /* - * The simplest way to get the partition number under linux is - * to parse it out of the /dev/<disk><partition> block device name. - * The kernel creates this using the partition number when it - * populates /dev/ so it may be trusted. The tricky bit here is - * that the naming convention is based on the block device type. - * So we need to take this in to account when parsing out the - * partition information. Aside from the partition number we collect - * some additional device info. - */ - dev_path = efi_get_devname(fd); - if (dev_path == NULL) - goto error; - - if ((strncmp(dev_path, "/dev/sd", 7) == 0)) { - strcpy(dki_info->dki_cname, "sd"); - dki_info->dki_ctype = DKC_SCSI_CCS; - rval = sscanf(dev_path, "/dev/%[a-zA-Z]%hu", - dki_info->dki_dname, - &dki_info->dki_partition); - } else if ((strncmp(dev_path, "/dev/hd", 7) == 0)) { - strcpy(dki_info->dki_cname, "hd"); - dki_info->dki_ctype = DKC_DIRECT; - rval = sscanf(dev_path, "/dev/%[a-zA-Z]%hu", - dki_info->dki_dname, - &dki_info->dki_partition); - } else if ((strncmp(dev_path, "/dev/md", 7) == 0)) { - strcpy(dki_info->dki_cname, "pseudo"); - dki_info->dki_ctype = DKC_MD; - strcpy(dki_info->dki_dname, "md"); - rval = sscanf(dev_path, "/dev/md%[0-9]p%hu", - dki_info->dki_dname + 2, - &dki_info->dki_partition); - } else if ((strncmp(dev_path, "/dev/vd", 7) == 0)) { - strcpy(dki_info->dki_cname, "vd"); - dki_info->dki_ctype = DKC_MD; - rval = sscanf(dev_path, "/dev/%[a-zA-Z]%hu", - dki_info->dki_dname, - &dki_info->dki_partition); - } else if ((strncmp(dev_path, "/dev/xvd", 8) == 0)) { - strcpy(dki_info->dki_cname, "xvd"); - dki_info->dki_ctype = DKC_MD; - rval = sscanf(dev_path, "/dev/%[a-zA-Z]%hu", - dki_info->dki_dname, - &dki_info->dki_partition); - } else if ((strncmp(dev_path, "/dev/zd", 7) == 0)) { - strcpy(dki_info->dki_cname, "zd"); - dki_info->dki_ctype = DKC_MD; - strcpy(dki_info->dki_dname, "zd"); - rval = sscanf(dev_path, "/dev/zd%[0-9]p%hu", - dki_info->dki_dname + 2, - &dki_info->dki_partition); - } else if ((strncmp(dev_path, "/dev/dm-", 8) == 0)) { - strcpy(dki_info->dki_cname, "pseudo"); - dki_info->dki_ctype = DKC_VBD; - strcpy(dki_info->dki_dname, "dm-"); - rval = sscanf(dev_path, "/dev/dm-%[0-9]p%hu", - dki_info->dki_dname + 3, - &dki_info->dki_partition); - } else if ((strncmp(dev_path, "/dev/ram", 8) == 0)) { - strcpy(dki_info->dki_cname, "pseudo"); - dki_info->dki_ctype = DKC_PCMCIA_MEM; - strcpy(dki_info->dki_dname, "ram"); - rval = sscanf(dev_path, "/dev/ram%[0-9]p%hu", - dki_info->dki_dname + 3, - &dki_info->dki_partition); - } else if ((strncmp(dev_path, "/dev/loop", 9) == 0)) { - strcpy(dki_info->dki_cname, "pseudo"); - dki_info->dki_ctype = DKC_VBD; - strcpy(dki_info->dki_dname, "loop"); - rval = sscanf(dev_path, "/dev/loop%[0-9]p%hu", - dki_info->dki_dname + 4, - &dki_info->dki_partition); - } else if ((strncmp(dev_path, "/dev/nvme", 9) == 0)) { - strcpy(dki_info->dki_cname, "nvme"); - dki_info->dki_ctype = DKC_SCSI_CCS; - strcpy(dki_info->dki_dname, "nvme"); - (void) sscanf(dev_path, "/dev/nvme%[0-9]", - dki_info->dki_dname + 4); - size_t controller_length = strlen( - dki_info->dki_dname); - strcpy(dki_info->dki_dname + controller_length, - "n"); - rval = sscanf(dev_path, - "/dev/nvme%*[0-9]n%[0-9]p%hu", - dki_info->dki_dname + controller_length + 1, - &dki_info->dki_partition); - } else { - strcpy(dki_info->dki_dname, "unknown"); - strcpy(dki_info->dki_cname, "unknown"); - dki_info->dki_ctype = DKC_UNKNOWN; - } - - switch (rval) { - case 0: - errno = EINVAL; - goto error; - case 1: - dki_info->dki_partition = 0; - } - - free(dev_path); - - return (0); -error: - if (efi_debug) - (void) fprintf(stderr, "DKIOCINFO errno 0x%x\n", errno); - - switch (errno) { - case EIO: - return (VT_EIO); - case EINVAL: - return (VT_EINVAL); - default: - return (VT_ERROR); - } -} - -/* - * the number of blocks the EFI label takes up (round up to nearest - * block) - */ -#define NBLOCKS(p, l) (1 + ((((p) * (int)sizeof (efi_gpe_t)) + \ - ((l) - 1)) / (l))) -/* number of partitions -- limited by what we can malloc */ -#define MAX_PARTS ((4294967295UL - sizeof (struct dk_gpt)) / \ - sizeof (struct dk_part)) - -int -efi_alloc_and_init(int fd, uint32_t nparts, struct dk_gpt **vtoc) -{ - diskaddr_t capacity = 0; - uint_t lbsize = 0; - uint_t nblocks; - size_t length; - struct dk_gpt *vptr; - struct uuid uuid; - struct dk_cinfo dki_info; - - if (read_disk_info(fd, &capacity, &lbsize) != 0) - return (-1); - - if (efi_get_info(fd, &dki_info) != 0) - return (-1); - - if (dki_info.dki_partition != 0) - return (-1); - - if ((dki_info.dki_ctype == DKC_PCMCIA_MEM) || - (dki_info.dki_ctype == DKC_VBD) || - (dki_info.dki_ctype == DKC_UNKNOWN)) - return (-1); - - nblocks = NBLOCKS(nparts, lbsize); - if ((nblocks * lbsize) < EFI_MIN_ARRAY_SIZE + lbsize) { - /* 16K plus one block for the GPT */ - nblocks = EFI_MIN_ARRAY_SIZE / lbsize + 1; - } - - if (nparts > MAX_PARTS) { - if (efi_debug) { - (void) fprintf(stderr, - "the maximum number of partitions supported is %lu\n", - MAX_PARTS); - } - return (-1); - } - - length = sizeof (struct dk_gpt) + - sizeof (struct dk_part) * (nparts - 1); - - vptr = calloc(1, length); - if (vptr == NULL) - return (-1); - - *vtoc = vptr; - - vptr->efi_version = EFI_VERSION_CURRENT; - vptr->efi_lbasize = lbsize; - vptr->efi_nparts = nparts; - /* - * add one block here for the PMBR; on disks with a 512 byte - * block size and 128 or fewer partitions, efi_first_u_lba - * should work out to "34" - */ - vptr->efi_first_u_lba = nblocks + 1; - vptr->efi_last_lba = capacity - 1; - vptr->efi_altern_lba = capacity -1; - vptr->efi_last_u_lba = vptr->efi_last_lba - nblocks; - - (void) uuid_generate((uchar_t *)&uuid); - UUID_LE_CONVERT(vptr->efi_disk_uguid, uuid); - return (0); -} - -/* - * Read EFI - return partition number upon success. - */ -int -efi_alloc_and_read(int fd, struct dk_gpt **vtoc) -{ - int rval; - uint32_t nparts; - int length; - struct dk_gpt *vptr; - - /* figure out the number of entries that would fit into 16K */ - nparts = EFI_MIN_ARRAY_SIZE / sizeof (efi_gpe_t); - length = (int) sizeof (struct dk_gpt) + - (int) sizeof (struct dk_part) * (nparts - 1); - vptr = calloc(1, length); - - if (vptr == NULL) - return (VT_ERROR); - - vptr->efi_nparts = nparts; - rval = efi_read(fd, vptr); - - if ((rval == VT_EINVAL) && vptr->efi_nparts > nparts) { - void *tmp; - length = (int) sizeof (struct dk_gpt) + - (int) sizeof (struct dk_part) * (vptr->efi_nparts - 1); - if ((tmp = realloc(vptr, length)) == NULL) { - /* cppcheck-suppress doubleFree */ - free(vptr); - *vtoc = NULL; - return (VT_ERROR); - } else { - vptr = tmp; - rval = efi_read(fd, vptr); - } - } - - if (rval < 0) { - if (efi_debug) { - (void) fprintf(stderr, - "read of EFI table failed, rval=%d\n", rval); - } - free(vptr); - *vtoc = NULL; - } else { - *vtoc = vptr; - } - - return (rval); -} - -static int -efi_ioctl(int fd, int cmd, dk_efi_t *dk_ioc) -{ - void *data = dk_ioc->dki_data; - int error; - diskaddr_t capacity; - uint_t lbsize; - - /* - * When the IO is not being performed in kernel as an ioctl we need - * to know the sector size so we can seek to the proper byte offset. - */ - if (read_disk_info(fd, &capacity, &lbsize) == -1) { - if (efi_debug) - fprintf(stderr, "unable to read disk info: %d", errno); - - errno = EIO; - return (-1); - } - - switch (cmd) { - case DKIOCGETEFI: - if (lbsize == 0) { - if (efi_debug) - (void) fprintf(stderr, "DKIOCGETEFI assuming " - "LBA %d bytes\n", DEV_BSIZE); - - lbsize = DEV_BSIZE; - } - - error = lseek(fd, dk_ioc->dki_lba * lbsize, SEEK_SET); - if (error == -1) { - if (efi_debug) - (void) fprintf(stderr, "DKIOCGETEFI lseek " - "error: %d\n", errno); - return (error); - } - - error = read(fd, data, dk_ioc->dki_length); - if (error == -1) { - if (efi_debug) - (void) fprintf(stderr, "DKIOCGETEFI read " - "error: %d\n", errno); - return (error); - } - - if (error != dk_ioc->dki_length) { - if (efi_debug) - (void) fprintf(stderr, "DKIOCGETEFI short " - "read of %d bytes\n", error); - errno = EIO; - return (-1); - } - error = 0; - break; - - case DKIOCSETEFI: - if (lbsize == 0) { - if (efi_debug) - (void) fprintf(stderr, "DKIOCSETEFI unknown " - "LBA size\n"); - errno = EIO; - return (-1); - } - - error = lseek(fd, dk_ioc->dki_lba * lbsize, SEEK_SET); - if (error == -1) { - if (efi_debug) - (void) fprintf(stderr, "DKIOCSETEFI lseek " - "error: %d\n", errno); - return (error); - } - - error = write(fd, data, dk_ioc->dki_length); - if (error == -1) { - if (efi_debug) - (void) fprintf(stderr, "DKIOCSETEFI write " - "error: %d\n", errno); - return (error); - } - - if (error != dk_ioc->dki_length) { - if (efi_debug) - (void) fprintf(stderr, "DKIOCSETEFI short " - "write of %d bytes\n", error); - errno = EIO; - return (-1); - } - - /* Sync the new EFI table to disk */ - error = fsync(fd); - if (error == -1) - return (error); - - /* Ensure any local disk cache is also flushed */ - if (ioctl(fd, BLKFLSBUF, 0) == -1) - return (error); - - error = 0; - break; - - default: - if (efi_debug) - (void) fprintf(stderr, "unsupported ioctl()\n"); - - errno = EIO; - return (-1); - } - - return (error); -} - -int -efi_rescan(int fd) -{ - int retry = 10; - - /* Notify the kernel a devices partition table has been updated */ - while (ioctl(fd, BLKRRPART) != 0) { - if ((--retry == 0) || (errno != EBUSY)) { - (void) fprintf(stderr, "the kernel failed to rescan " - "the partition table: %d\n", errno); - return (-1); - } - usleep(50000); - } - - return (0); -} - -static int -check_label(int fd, dk_efi_t *dk_ioc) -{ - efi_gpt_t *efi; - uint_t crc; - - if (efi_ioctl(fd, DKIOCGETEFI, dk_ioc) == -1) { - switch (errno) { - case EIO: - return (VT_EIO); - default: - return (VT_ERROR); - } - } - efi = dk_ioc->dki_data; - if (efi->efi_gpt_Signature != LE_64(EFI_SIGNATURE)) { - if (efi_debug) - (void) fprintf(stderr, - "Bad EFI signature: 0x%llx != 0x%llx\n", - (long long)efi->efi_gpt_Signature, - (long long)LE_64(EFI_SIGNATURE)); - return (VT_EINVAL); - } - - /* - * check CRC of the header; the size of the header should - * never be larger than one block - */ - crc = efi->efi_gpt_HeaderCRC32; - efi->efi_gpt_HeaderCRC32 = 0; - len_t headerSize = (len_t)LE_32(efi->efi_gpt_HeaderSize); - - if (headerSize < EFI_MIN_LABEL_SIZE || headerSize > EFI_LABEL_SIZE) { - if (efi_debug) - (void) fprintf(stderr, - "Invalid EFI HeaderSize %llu. Assuming %d.\n", - headerSize, EFI_MIN_LABEL_SIZE); - } - - if ((headerSize > dk_ioc->dki_length) || - crc != LE_32(efi_crc32((unsigned char *)efi, headerSize))) { - if (efi_debug) - (void) fprintf(stderr, - "Bad EFI CRC: 0x%x != 0x%x\n", - crc, LE_32(efi_crc32((unsigned char *)efi, - headerSize))); - return (VT_EINVAL); - } - - return (0); -} - -static int -efi_read(int fd, struct dk_gpt *vtoc) -{ - int i, j; - int label_len; - int rval = 0; - int md_flag = 0; - int vdc_flag = 0; - diskaddr_t capacity = 0; - uint_t lbsize = 0; - struct dk_minfo disk_info; - dk_efi_t dk_ioc; - efi_gpt_t *efi; - efi_gpe_t *efi_parts; - struct dk_cinfo dki_info; - uint32_t user_length; - boolean_t legacy_label = B_FALSE; - - /* - * get the partition number for this file descriptor. - */ - if ((rval = efi_get_info(fd, &dki_info)) != 0) - return (rval); - - if ((strncmp(dki_info.dki_cname, "pseudo", 7) == 0) && - (strncmp(dki_info.dki_dname, "md", 3) == 0)) { - md_flag++; - } else if ((strncmp(dki_info.dki_cname, "vdc", 4) == 0) && - (strncmp(dki_info.dki_dname, "vdc", 4) == 0)) { - /* - * The controller and drive name "vdc" (virtual disk client) - * indicates a LDoms virtual disk. - */ - vdc_flag++; - } - - /* get the LBA size */ - if (read_disk_info(fd, &capacity, &lbsize) == -1) { - if (efi_debug) { - (void) fprintf(stderr, - "unable to read disk info: %d", - errno); - } - return (VT_EINVAL); - } - - disk_info.dki_lbsize = lbsize; - disk_info.dki_capacity = capacity; - - if (disk_info.dki_lbsize == 0) { - if (efi_debug) { - (void) fprintf(stderr, - "efi_read: assuming LBA 512 bytes\n"); - } - disk_info.dki_lbsize = DEV_BSIZE; - } - /* - * Read the EFI GPT to figure out how many partitions we need - * to deal with. - */ - dk_ioc.dki_lba = 1; - if (NBLOCKS(vtoc->efi_nparts, disk_info.dki_lbsize) < 34) { - label_len = EFI_MIN_ARRAY_SIZE + disk_info.dki_lbsize; - } else { - label_len = vtoc->efi_nparts * (int) sizeof (efi_gpe_t) + - disk_info.dki_lbsize; - if (label_len % disk_info.dki_lbsize) { - /* pad to physical sector size */ - label_len += disk_info.dki_lbsize; - label_len &= ~(disk_info.dki_lbsize - 1); - } - } - - if (posix_memalign((void **)&dk_ioc.dki_data, - disk_info.dki_lbsize, label_len)) - return (VT_ERROR); - - memset(dk_ioc.dki_data, 0, label_len); - dk_ioc.dki_length = disk_info.dki_lbsize; - user_length = vtoc->efi_nparts; - efi = dk_ioc.dki_data; - if (md_flag) { - dk_ioc.dki_length = label_len; - if (efi_ioctl(fd, DKIOCGETEFI, &dk_ioc) == -1) { - switch (errno) { - case EIO: - return (VT_EIO); - default: - return (VT_ERROR); - } - } - } else if ((rval = check_label(fd, &dk_ioc)) == VT_EINVAL) { - /* - * No valid label here; try the alternate. Note that here - * we just read GPT header and save it into dk_ioc.data, - * Later, we will read GUID partition entry array if we - * can get valid GPT header. - */ - - /* - * This is a workaround for legacy systems. In the past, the - * last sector of SCSI disk was invisible on x86 platform. At - * that time, backup label was saved on the next to the last - * sector. It is possible for users to move a disk from previous - * solaris system to present system. Here, we attempt to search - * legacy backup EFI label first. - */ - dk_ioc.dki_lba = disk_info.dki_capacity - 2; - dk_ioc.dki_length = disk_info.dki_lbsize; - rval = check_label(fd, &dk_ioc); - if (rval == VT_EINVAL) { - /* - * we didn't find legacy backup EFI label, try to - * search backup EFI label in the last block. - */ - dk_ioc.dki_lba = disk_info.dki_capacity - 1; - dk_ioc.dki_length = disk_info.dki_lbsize; - rval = check_label(fd, &dk_ioc); - if (rval == 0) { - legacy_label = B_TRUE; - if (efi_debug) - (void) fprintf(stderr, - "efi_read: primary label corrupt; " - "using EFI backup label located on" - " the last block\n"); - } - } else { - if ((efi_debug) && (rval == 0)) - (void) fprintf(stderr, "efi_read: primary label" - " corrupt; using legacy EFI backup label " - " located on the next to last block\n"); - } - - if (rval == 0) { - dk_ioc.dki_lba = LE_64(efi->efi_gpt_PartitionEntryLBA); - vtoc->efi_flags |= EFI_GPT_PRIMARY_CORRUPT; - vtoc->efi_nparts = - LE_32(efi->efi_gpt_NumberOfPartitionEntries); - /* - * Partition tables are between backup GPT header - * table and ParitionEntryLBA (the starting LBA of - * the GUID partition entries array). Now that we - * already got valid GPT header and saved it in - * dk_ioc.dki_data, we try to get GUID partition - * entry array here. - */ - /* LINTED */ - dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data - + disk_info.dki_lbsize); - if (legacy_label) - dk_ioc.dki_length = disk_info.dki_capacity - 1 - - dk_ioc.dki_lba; - else - dk_ioc.dki_length = disk_info.dki_capacity - 2 - - dk_ioc.dki_lba; - dk_ioc.dki_length *= disk_info.dki_lbsize; - if (dk_ioc.dki_length > - ((len_t)label_len - sizeof (*dk_ioc.dki_data))) { - rval = VT_EINVAL; - } else { - /* - * read GUID partition entry array - */ - rval = efi_ioctl(fd, DKIOCGETEFI, &dk_ioc); - } - } - - } else if (rval == 0) { - - dk_ioc.dki_lba = LE_64(efi->efi_gpt_PartitionEntryLBA); - /* LINTED */ - dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data - + disk_info.dki_lbsize); - dk_ioc.dki_length = label_len - disk_info.dki_lbsize; - rval = efi_ioctl(fd, DKIOCGETEFI, &dk_ioc); - - } else if (vdc_flag && rval == VT_ERROR && errno == EINVAL) { - /* - * When the device is a LDoms virtual disk, the DKIOCGETEFI - * ioctl can fail with EINVAL if the virtual disk backend - * is a ZFS volume serviced by a domain running an old version - * of Solaris. This is because the DKIOCGETEFI ioctl was - * initially incorrectly implemented for a ZFS volume and it - * expected the GPT and GPE to be retrieved with a single ioctl. - * So we try to read the GPT and the GPE using that old style - * ioctl. - */ - dk_ioc.dki_lba = 1; - dk_ioc.dki_length = label_len; - rval = check_label(fd, &dk_ioc); - } - - if (rval < 0) { - free(efi); - return (rval); - } - - /* LINTED -- always longlong aligned */ - efi_parts = (efi_gpe_t *)(((char *)efi) + disk_info.dki_lbsize); - - /* - * Assemble this into a "dk_gpt" struct for easier - * digestibility by applications. - */ - vtoc->efi_version = LE_32(efi->efi_gpt_Revision); - vtoc->efi_nparts = LE_32(efi->efi_gpt_NumberOfPartitionEntries); - vtoc->efi_part_size = LE_32(efi->efi_gpt_SizeOfPartitionEntry); - vtoc->efi_lbasize = disk_info.dki_lbsize; - vtoc->efi_last_lba = disk_info.dki_capacity - 1; - vtoc->efi_first_u_lba = LE_64(efi->efi_gpt_FirstUsableLBA); - vtoc->efi_last_u_lba = LE_64(efi->efi_gpt_LastUsableLBA); - vtoc->efi_altern_lba = LE_64(efi->efi_gpt_AlternateLBA); - UUID_LE_CONVERT(vtoc->efi_disk_uguid, efi->efi_gpt_DiskGUID); - - /* - * If the array the user passed in is too small, set the length - * to what it needs to be and return - */ - if (user_length < vtoc->efi_nparts) { - return (VT_EINVAL); - } - - for (i = 0; i < vtoc->efi_nparts; i++) { - UUID_LE_CONVERT(vtoc->efi_parts[i].p_guid, - efi_parts[i].efi_gpe_PartitionTypeGUID); - - for (j = 0; - j < sizeof (conversion_array) - / sizeof (struct uuid_to_ptag); j++) { - - if (memcmp(&vtoc->efi_parts[i].p_guid, - &conversion_array[j].uuid, - sizeof (struct uuid)) == 0) { - vtoc->efi_parts[i].p_tag = j; - break; - } - } - if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) - continue; - vtoc->efi_parts[i].p_flag = - LE_16(efi_parts[i].efi_gpe_Attributes.PartitionAttrs); - vtoc->efi_parts[i].p_start = - LE_64(efi_parts[i].efi_gpe_StartingLBA); - vtoc->efi_parts[i].p_size = - LE_64(efi_parts[i].efi_gpe_EndingLBA) - - vtoc->efi_parts[i].p_start + 1; - for (j = 0; j < EFI_PART_NAME_LEN; j++) { - vtoc->efi_parts[i].p_name[j] = - (uchar_t)LE_16( - efi_parts[i].efi_gpe_PartitionName[j]); - } - - UUID_LE_CONVERT(vtoc->efi_parts[i].p_uguid, - efi_parts[i].efi_gpe_UniquePartitionGUID); - } - free(efi); - - return (dki_info.dki_partition); -} - -/* writes a "protective" MBR */ -static int -write_pmbr(int fd, struct dk_gpt *vtoc) -{ - dk_efi_t dk_ioc; - struct mboot mb; - uchar_t *cp; - diskaddr_t size_in_lba; - uchar_t *buf; - int len; - - len = (vtoc->efi_lbasize == 0) ? sizeof (mb) : vtoc->efi_lbasize; - if (posix_memalign((void **)&buf, len, len)) - return (VT_ERROR); - - /* - * Preserve any boot code and disk signature if the first block is - * already an MBR. - */ - memset(buf, 0, len); - dk_ioc.dki_lba = 0; - dk_ioc.dki_length = len; - /* LINTED -- always longlong aligned */ - dk_ioc.dki_data = (efi_gpt_t *)buf; - if (efi_ioctl(fd, DKIOCGETEFI, &dk_ioc) == -1) { - memset(&mb, 0, sizeof (mb)); - mb.signature = LE_16(MBB_MAGIC); - } else { - (void) memcpy(&mb, buf, sizeof (mb)); - if (mb.signature != LE_16(MBB_MAGIC)) { - memset(&mb, 0, sizeof (mb)); - mb.signature = LE_16(MBB_MAGIC); - } - } - - memset(&mb.parts, 0, sizeof (mb.parts)); - cp = (uchar_t *)&mb.parts[0]; - /* bootable or not */ - *cp++ = 0; - /* beginning CHS; 0xffffff if not representable */ - *cp++ = 0xff; - *cp++ = 0xff; - *cp++ = 0xff; - /* OS type */ - *cp++ = EFI_PMBR; - /* ending CHS; 0xffffff if not representable */ - *cp++ = 0xff; - *cp++ = 0xff; - *cp++ = 0xff; - /* starting LBA: 1 (little endian format) by EFI definition */ - *cp++ = 0x01; - *cp++ = 0x00; - *cp++ = 0x00; - *cp++ = 0x00; - /* ending LBA: last block on the disk (little endian format) */ - size_in_lba = vtoc->efi_last_lba; - if (size_in_lba < 0xffffffff) { - *cp++ = (size_in_lba & 0x000000ff); - *cp++ = (size_in_lba & 0x0000ff00) >> 8; - *cp++ = (size_in_lba & 0x00ff0000) >> 16; - *cp++ = (size_in_lba & 0xff000000) >> 24; - } else { - *cp++ = 0xff; - *cp++ = 0xff; - *cp++ = 0xff; - *cp++ = 0xff; - } - - (void) memcpy(buf, &mb, sizeof (mb)); - /* LINTED -- always longlong aligned */ - dk_ioc.dki_data = (efi_gpt_t *)buf; - dk_ioc.dki_lba = 0; - dk_ioc.dki_length = len; - if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) { - free(buf); - switch (errno) { - case EIO: - return (VT_EIO); - case EINVAL: - return (VT_EINVAL); - default: - return (VT_ERROR); - } - } - free(buf); - return (0); -} - -/* make sure the user specified something reasonable */ -static int -check_input(struct dk_gpt *vtoc) -{ - int resv_part = -1; - int i, j; - diskaddr_t istart, jstart, isize, jsize, endsect; - - /* - * Sanity-check the input (make sure no partitions overlap) - */ - for (i = 0; i < vtoc->efi_nparts; i++) { - /* It can't be unassigned and have an actual size */ - if ((vtoc->efi_parts[i].p_tag == V_UNASSIGNED) && - (vtoc->efi_parts[i].p_size != 0)) { - if (efi_debug) { - (void) fprintf(stderr, "partition %d is " - "\"unassigned\" but has a size of %llu", - i, vtoc->efi_parts[i].p_size); - } - return (VT_EINVAL); - } - if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) { - if (uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_guid)) - continue; - /* we have encountered an unknown uuid */ - vtoc->efi_parts[i].p_tag = 0xff; - } - if (vtoc->efi_parts[i].p_tag == V_RESERVED) { - if (resv_part != -1) { - if (efi_debug) { - (void) fprintf(stderr, "found " - "duplicate reserved partition " - "at %d\n", i); - } - return (VT_EINVAL); - } - resv_part = i; - } - if ((vtoc->efi_parts[i].p_start < vtoc->efi_first_u_lba) || - (vtoc->efi_parts[i].p_start > vtoc->efi_last_u_lba)) { - if (efi_debug) { - (void) fprintf(stderr, - "Partition %d starts at %llu. ", - i, - vtoc->efi_parts[i].p_start); - (void) fprintf(stderr, - "It must be between %llu and %llu.\n", - vtoc->efi_first_u_lba, - vtoc->efi_last_u_lba); - } - return (VT_EINVAL); - } - if ((vtoc->efi_parts[i].p_start + - vtoc->efi_parts[i].p_size < - vtoc->efi_first_u_lba) || - (vtoc->efi_parts[i].p_start + - vtoc->efi_parts[i].p_size > - vtoc->efi_last_u_lba + 1)) { - if (efi_debug) { - (void) fprintf(stderr, - "Partition %d ends at %llu. ", - i, - vtoc->efi_parts[i].p_start + - vtoc->efi_parts[i].p_size); - (void) fprintf(stderr, - "It must be between %llu and %llu.\n", - vtoc->efi_first_u_lba, - vtoc->efi_last_u_lba); - } - return (VT_EINVAL); - } - - for (j = 0; j < vtoc->efi_nparts; j++) { - isize = vtoc->efi_parts[i].p_size; - jsize = vtoc->efi_parts[j].p_size; - istart = vtoc->efi_parts[i].p_start; - jstart = vtoc->efi_parts[j].p_start; - if ((i != j) && (isize != 0) && (jsize != 0)) { - endsect = jstart + jsize -1; - if ((jstart <= istart) && - (istart <= endsect)) { - if (efi_debug) { - (void) fprintf(stderr, - "Partition %d overlaps " - "partition %d.", i, j); - } - return (VT_EINVAL); - } - } - } - } - /* just a warning for now */ - if ((resv_part == -1) && efi_debug) { - (void) fprintf(stderr, - "no reserved partition found\n"); - } - return (0); -} - -static int -call_blkpg_ioctl(int fd, int command, diskaddr_t start, - diskaddr_t size, uint_t pno) -{ - struct blkpg_ioctl_arg ioctl_arg; - struct blkpg_partition linux_part; - memset(&linux_part, 0, sizeof (linux_part)); - - char *path = efi_get_devname(fd); - if (path == NULL) { - (void) fprintf(stderr, "failed to retrieve device name\n"); - return (VT_EINVAL); - } - - linux_part.start = start; - linux_part.length = size; - linux_part.pno = pno; - snprintf(linux_part.devname, BLKPG_DEVNAMELTH - 1, "%s%u", path, pno); - linux_part.devname[BLKPG_DEVNAMELTH - 1] = '\0'; - free(path); - - ioctl_arg.op = command; - ioctl_arg.flags = 0; - ioctl_arg.datalen = sizeof (struct blkpg_partition); - ioctl_arg.data = &linux_part; - - return (ioctl(fd, BLKPG, &ioctl_arg)); -} - -/* - * add all the unallocated space to the current label - */ -int -efi_use_whole_disk(int fd) -{ - struct dk_gpt *efi_label = NULL; - int rval; - int i; - uint_t resv_index = 0, data_index = 0; - diskaddr_t resv_start = 0, data_start = 0; - diskaddr_t data_size, limit, difference; - boolean_t sync_needed = B_FALSE; - uint_t nblocks; - - rval = efi_alloc_and_read(fd, &efi_label); - if (rval < 0) { - if (efi_label != NULL) - efi_free(efi_label); - return (rval); - } - - /* - * Find the last physically non-zero partition. - * This should be the reserved partition. - */ - for (i = 0; i < efi_label->efi_nparts; i ++) { - if (resv_start < efi_label->efi_parts[i].p_start) { - resv_start = efi_label->efi_parts[i].p_start; - resv_index = i; - } - } - - /* - * Find the last physically non-zero partition before that. - * This is the data partition. - */ - for (i = 0; i < resv_index; i ++) { - if (data_start < efi_label->efi_parts[i].p_start) { - data_start = efi_label->efi_parts[i].p_start; - data_index = i; - } - } - data_size = efi_label->efi_parts[data_index].p_size; - - /* - * See the "efi_alloc_and_init" function for more information - * about where this "nblocks" value comes from. - */ - nblocks = efi_label->efi_first_u_lba - 1; - - /* - * Determine if the EFI label is out of sync. We check that: - * - * 1. the data partition ends at the limit we set, and - * 2. the reserved partition starts at the limit we set. - * - * If either of these conditions is not met, then we need to - * resync the EFI label. - * - * The limit is the last usable LBA, determined by the last LBA - * and the first usable LBA fields on the EFI label of the disk - * (see the lines directly above). Additionally, we factor in - * EFI_MIN_RESV_SIZE (per its use in "zpool_label_disk") and - * P2ALIGN it to ensure the partition boundaries are aligned - * (for performance reasons). The alignment should match the - * alignment used by the "zpool_label_disk" function. - */ - limit = P2ALIGN_TYPED(efi_label->efi_last_lba - nblocks - - EFI_MIN_RESV_SIZE, PARTITION_END_ALIGNMENT, diskaddr_t); - if (data_start + data_size != limit || resv_start != limit) - sync_needed = B_TRUE; - - if (efi_debug && sync_needed) - (void) fprintf(stderr, "efi_use_whole_disk: sync needed\n"); - - /* - * If alter_lba is 1, we are using the backup label. - * Since we can locate the backup label by disk capacity, - * there must be no unallocated space. - */ - if ((efi_label->efi_altern_lba == 1) || (efi_label->efi_altern_lba - >= efi_label->efi_last_lba && !sync_needed)) { - if (efi_debug) { - (void) fprintf(stderr, - "efi_use_whole_disk: requested space not found\n"); - } - efi_free(efi_label); - return (VT_ENOSPC); - } - - /* - * Verify that we've found the reserved partition by checking - * that it looks the way it did when we created it in zpool_label_disk. - * If we've found the incorrect partition, then we know that this - * device was reformatted and no longer is solely used by ZFS. - */ - if ((efi_label->efi_parts[resv_index].p_size != EFI_MIN_RESV_SIZE) || - (efi_label->efi_parts[resv_index].p_tag != V_RESERVED) || - (resv_index != 8)) { - if (efi_debug) { - (void) fprintf(stderr, - "efi_use_whole_disk: wholedisk not available\n"); - } - efi_free(efi_label); - return (VT_ENOSPC); - } - - if (data_start + data_size != resv_start) { - if (efi_debug) { - (void) fprintf(stderr, - "efi_use_whole_disk: " - "data_start (%lli) + " - "data_size (%lli) != " - "resv_start (%lli)\n", - data_start, data_size, resv_start); - } - - return (VT_EINVAL); - } - - if (limit < resv_start) { - if (efi_debug) { - (void) fprintf(stderr, - "efi_use_whole_disk: " - "limit (%lli) < resv_start (%lli)\n", - limit, resv_start); - } - - return (VT_EINVAL); - } - - difference = limit - resv_start; - - if (efi_debug) - (void) fprintf(stderr, - "efi_use_whole_disk: difference is %lli\n", difference); - - /* - * Move the reserved partition. There is currently no data in - * here except fabricated devids (which get generated via - * efi_write()). So there is no need to copy data. - */ - efi_label->efi_parts[data_index].p_size += difference; - efi_label->efi_parts[resv_index].p_start += difference; - efi_label->efi_last_u_lba = efi_label->efi_last_lba - nblocks; - - /* - * Rescanning the partition table in the kernel can result - * in the device links to be removed (see comment in vdev_disk_open). - * If BLKPG_RESIZE_PARTITION is available, then we can resize - * the partition table online and avoid having to remove the device - * links used by the pool. This provides a very deterministic - * approach to resizing devices and does not require any - * loops waiting for devices to reappear. - */ -#ifdef BLKPG_RESIZE_PARTITION - /* - * Delete the reserved partition since we're about to expand - * the data partition and it would overlap with the reserved - * partition. - * NOTE: The starting index for the ioctl is 1 while for the - * EFI partitions it's 0. For that reason we have to add one - * whenever we make an ioctl call. - */ - rval = call_blkpg_ioctl(fd, BLKPG_DEL_PARTITION, 0, 0, resv_index + 1); - if (rval != 0) - goto out; - - /* - * Expand the data partition - */ - rval = call_blkpg_ioctl(fd, BLKPG_RESIZE_PARTITION, - efi_label->efi_parts[data_index].p_start * efi_label->efi_lbasize, - efi_label->efi_parts[data_index].p_size * efi_label->efi_lbasize, - data_index + 1); - if (rval != 0) { - (void) fprintf(stderr, "Unable to resize data " - "partition: %d\n", rval); - /* - * Since we failed to resize, we need to reset the start - * of the reserve partition and re-create it. - */ - efi_label->efi_parts[resv_index].p_start -= difference; - } - - /* - * Re-add the reserved partition. If we've expanded the data partition - * then we'll move the reserve partition to the end of the data - * partition. Otherwise, we'll recreate the partition in its original - * location. Note that we do this as best-effort and ignore any - * errors that may arise here. This will ensure that we finish writing - * the EFI label. - */ - (void) call_blkpg_ioctl(fd, BLKPG_ADD_PARTITION, - efi_label->efi_parts[resv_index].p_start * efi_label->efi_lbasize, - efi_label->efi_parts[resv_index].p_size * efi_label->efi_lbasize, - resv_index + 1); -#endif - - /* - * We're now ready to write the EFI label. - */ - if (rval == 0) { - rval = efi_write(fd, efi_label); - if (rval < 0 && efi_debug) { - (void) fprintf(stderr, "efi_use_whole_disk:fail " - "to write label, rval=%d\n", rval); - } - } - -out: - efi_free(efi_label); - return (rval); -} - -/* - * write EFI label and backup label - */ -int -efi_write(int fd, struct dk_gpt *vtoc) -{ - dk_efi_t dk_ioc; - efi_gpt_t *efi; - efi_gpe_t *efi_parts; - int i, j; - struct dk_cinfo dki_info; - int rval; - int md_flag = 0; - int nblocks; - diskaddr_t lba_backup_gpt_hdr; - - if ((rval = efi_get_info(fd, &dki_info)) != 0) - return (rval); - - /* check if we are dealing with a metadevice */ - if ((strncmp(dki_info.dki_cname, "pseudo", 7) == 0) && - (strncmp(dki_info.dki_dname, "md", 3) == 0)) { - md_flag = 1; - } - - if (check_input(vtoc)) { - /* - * not valid; if it's a metadevice just pass it down - * because SVM will do its own checking - */ - if (md_flag == 0) { - return (VT_EINVAL); - } - } - - dk_ioc.dki_lba = 1; - if (NBLOCKS(vtoc->efi_nparts, vtoc->efi_lbasize) < 34) { - dk_ioc.dki_length = EFI_MIN_ARRAY_SIZE + vtoc->efi_lbasize; - } else { - dk_ioc.dki_length = (len_t)NBLOCKS(vtoc->efi_nparts, - vtoc->efi_lbasize) * - vtoc->efi_lbasize; - } - - /* - * the number of blocks occupied by GUID partition entry array - */ - nblocks = dk_ioc.dki_length / vtoc->efi_lbasize - 1; - - /* - * Backup GPT header is located on the block after GUID - * partition entry array. Here, we calculate the address - * for backup GPT header. - */ - lba_backup_gpt_hdr = vtoc->efi_last_u_lba + 1 + nblocks; - if (posix_memalign((void **)&dk_ioc.dki_data, - vtoc->efi_lbasize, dk_ioc.dki_length)) - return (VT_ERROR); - - memset(dk_ioc.dki_data, 0, dk_ioc.dki_length); - efi = dk_ioc.dki_data; - - /* stuff user's input into EFI struct */ - efi->efi_gpt_Signature = LE_64(EFI_SIGNATURE); - efi->efi_gpt_Revision = LE_32(vtoc->efi_version); /* 0x02000100 */ - efi->efi_gpt_HeaderSize = LE_32(sizeof (struct efi_gpt) - LEN_EFI_PAD); - efi->efi_gpt_Reserved1 = 0; - efi->efi_gpt_MyLBA = LE_64(1ULL); - efi->efi_gpt_AlternateLBA = LE_64(lba_backup_gpt_hdr); - efi->efi_gpt_FirstUsableLBA = LE_64(vtoc->efi_first_u_lba); - efi->efi_gpt_LastUsableLBA = LE_64(vtoc->efi_last_u_lba); - efi->efi_gpt_PartitionEntryLBA = LE_64(2ULL); - efi->efi_gpt_NumberOfPartitionEntries = LE_32(vtoc->efi_nparts); - efi->efi_gpt_SizeOfPartitionEntry = LE_32(sizeof (struct efi_gpe)); - UUID_LE_CONVERT(efi->efi_gpt_DiskGUID, vtoc->efi_disk_uguid); - - /* LINTED -- always longlong aligned */ - efi_parts = (efi_gpe_t *)((char *)dk_ioc.dki_data + vtoc->efi_lbasize); - - for (i = 0; i < vtoc->efi_nparts; i++) { - for (j = 0; - j < sizeof (conversion_array) / - sizeof (struct uuid_to_ptag); j++) { - - if (vtoc->efi_parts[i].p_tag == j) { - UUID_LE_CONVERT( - efi_parts[i].efi_gpe_PartitionTypeGUID, - conversion_array[j].uuid); - break; - } - } - - if (j == sizeof (conversion_array) / - sizeof (struct uuid_to_ptag)) { - /* - * If we didn't have a matching uuid match, bail here. - * Don't write a label with unknown uuid. - */ - if (efi_debug) { - (void) fprintf(stderr, - "Unknown uuid for p_tag %d\n", - vtoc->efi_parts[i].p_tag); - } - return (VT_EINVAL); - } - - /* Zero's should be written for empty partitions */ - if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) - continue; - - efi_parts[i].efi_gpe_StartingLBA = - LE_64(vtoc->efi_parts[i].p_start); - efi_parts[i].efi_gpe_EndingLBA = - LE_64(vtoc->efi_parts[i].p_start + - vtoc->efi_parts[i].p_size - 1); - efi_parts[i].efi_gpe_Attributes.PartitionAttrs = - LE_16(vtoc->efi_parts[i].p_flag); - for (j = 0; j < EFI_PART_NAME_LEN; j++) { - efi_parts[i].efi_gpe_PartitionName[j] = - LE_16((ushort_t)vtoc->efi_parts[i].p_name[j]); - } - if ((vtoc->efi_parts[i].p_tag != V_UNASSIGNED) && - uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_uguid)) { - (void) uuid_generate((uchar_t *) - &vtoc->efi_parts[i].p_uguid); - } - memcpy(&efi_parts[i].efi_gpe_UniquePartitionGUID, - &vtoc->efi_parts[i].p_uguid, - sizeof (uuid_t)); - } - efi->efi_gpt_PartitionEntryArrayCRC32 = - LE_32(efi_crc32((unsigned char *)efi_parts, - vtoc->efi_nparts * (int)sizeof (struct efi_gpe))); - efi->efi_gpt_HeaderCRC32 = - LE_32(efi_crc32((unsigned char *)efi, - LE_32(efi->efi_gpt_HeaderSize))); - - if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) { - free(dk_ioc.dki_data); - switch (errno) { - case EIO: - return (VT_EIO); - case EINVAL: - return (VT_EINVAL); - default: - return (VT_ERROR); - } - } - /* if it's a metadevice we're done */ - if (md_flag) { - free(dk_ioc.dki_data); - return (0); - } - - /* write backup partition array */ - dk_ioc.dki_lba = vtoc->efi_last_u_lba + 1; - dk_ioc.dki_length -= vtoc->efi_lbasize; - /* LINTED */ - dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data + - vtoc->efi_lbasize); - - if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) { - /* - * we wrote the primary label okay, so don't fail - */ - if (efi_debug) { - (void) fprintf(stderr, - "write of backup partitions to block %llu " - "failed, errno %d\n", - vtoc->efi_last_u_lba + 1, - errno); - } - } - /* - * now swap MyLBA and AlternateLBA fields and write backup - * partition table header - */ - dk_ioc.dki_lba = lba_backup_gpt_hdr; - dk_ioc.dki_length = vtoc->efi_lbasize; - /* LINTED */ - dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data - - vtoc->efi_lbasize); - efi->efi_gpt_AlternateLBA = LE_64(1ULL); - efi->efi_gpt_MyLBA = LE_64(lba_backup_gpt_hdr); - efi->efi_gpt_PartitionEntryLBA = LE_64(vtoc->efi_last_u_lba + 1); - efi->efi_gpt_HeaderCRC32 = 0; - efi->efi_gpt_HeaderCRC32 = - LE_32(efi_crc32((unsigned char *)dk_ioc.dki_data, - LE_32(efi->efi_gpt_HeaderSize))); - - if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) { - if (efi_debug) { - (void) fprintf(stderr, - "write of backup header to block %llu failed, " - "errno %d\n", - lba_backup_gpt_hdr, - errno); - } - } - /* write the PMBR */ - (void) write_pmbr(fd, vtoc); - free(dk_ioc.dki_data); - - return (0); -} - -void -efi_free(struct dk_gpt *ptr) -{ - free(ptr); -} - -void -efi_err_check(struct dk_gpt *vtoc) -{ - int resv_part = -1; - int i, j; - diskaddr_t istart, jstart, isize, jsize, endsect; - int overlap = 0; - - /* - * make sure no partitions overlap - */ - for (i = 0; i < vtoc->efi_nparts; i++) { - /* It can't be unassigned and have an actual size */ - if ((vtoc->efi_parts[i].p_tag == V_UNASSIGNED) && - (vtoc->efi_parts[i].p_size != 0)) { - (void) fprintf(stderr, - "partition %d is \"unassigned\" but has a size " - "of %llu\n", i, vtoc->efi_parts[i].p_size); - } - if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) { - continue; - } - if (vtoc->efi_parts[i].p_tag == V_RESERVED) { - if (resv_part != -1) { - (void) fprintf(stderr, - "found duplicate reserved partition at " - "%d\n", i); - } - resv_part = i; - if (vtoc->efi_parts[i].p_size != EFI_MIN_RESV_SIZE) - (void) fprintf(stderr, - "Warning: reserved partition size must " - "be %d sectors\n", EFI_MIN_RESV_SIZE); - } - if ((vtoc->efi_parts[i].p_start < vtoc->efi_first_u_lba) || - (vtoc->efi_parts[i].p_start > vtoc->efi_last_u_lba)) { - (void) fprintf(stderr, - "Partition %d starts at %llu\n", - i, - vtoc->efi_parts[i].p_start); - (void) fprintf(stderr, - "It must be between %llu and %llu.\n", - vtoc->efi_first_u_lba, - vtoc->efi_last_u_lba); - } - if ((vtoc->efi_parts[i].p_start + - vtoc->efi_parts[i].p_size < - vtoc->efi_first_u_lba) || - (vtoc->efi_parts[i].p_start + - vtoc->efi_parts[i].p_size > - vtoc->efi_last_u_lba + 1)) { - (void) fprintf(stderr, - "Partition %d ends at %llu\n", - i, - vtoc->efi_parts[i].p_start + - vtoc->efi_parts[i].p_size); - (void) fprintf(stderr, - "It must be between %llu and %llu.\n", - vtoc->efi_first_u_lba, - vtoc->efi_last_u_lba); - } - - for (j = 0; j < vtoc->efi_nparts; j++) { - isize = vtoc->efi_parts[i].p_size; - jsize = vtoc->efi_parts[j].p_size; - istart = vtoc->efi_parts[i].p_start; - jstart = vtoc->efi_parts[j].p_start; - if ((i != j) && (isize != 0) && (jsize != 0)) { - endsect = jstart + jsize -1; - if ((jstart <= istart) && - (istart <= endsect)) { - if (!overlap) { - (void) fprintf(stderr, - "label error: EFI Labels do not " - "support overlapping partitions\n"); - } - (void) fprintf(stderr, - "Partition %d overlaps partition " - "%d.\n", i, j); - overlap = 1; - } - } - } - } - /* make sure there is a reserved partition */ - if (resv_part == -1) { - (void) fprintf(stderr, - "no reserved partition found\n"); - } -} |