aboutsummaryrefslogtreecommitdiff
path: root/lib/libkvm/kvm_private.c
diff options
context:
space:
mode:
Diffstat (limited to 'lib/libkvm/kvm_private.c')
-rw-r--r--lib/libkvm/kvm_private.c824
1 files changed, 824 insertions, 0 deletions
diff --git a/lib/libkvm/kvm_private.c b/lib/libkvm/kvm_private.c
new file mode 100644
index 000000000000..a3b650787f53
--- /dev/null
+++ b/lib/libkvm/kvm_private.c
@@ -0,0 +1,824 @@
+/*-
+ * Copyright (c) 1989, 1992, 1993
+ * The Regents of the University of California. All rights reserved.
+ *
+ * This code is derived from software developed by the Computer Systems
+ * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
+ * BG 91-66 and contributed to Berkeley.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. Neither the name of the University nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ */
+
+#include <sys/param.h>
+#include <sys/fnv_hash.h>
+
+#define _WANT_VNET
+
+#include <sys/user.h>
+#include <sys/linker.h>
+#include <sys/pcpu.h>
+#include <sys/stat.h>
+#include <sys/mman.h>
+
+#include <stdbool.h>
+#include <net/vnet.h>
+
+#include <assert.h>
+#include <fcntl.h>
+#include <vm/vm.h>
+#include <kvm.h>
+#include <limits.h>
+#include <paths.h>
+#include <stdint.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <unistd.h>
+#include <stdarg.h>
+#include <inttypes.h>
+
+#include "kvm_private.h"
+
+/*
+ * Routines private to libkvm.
+ */
+
+/* from src/lib/libc/gen/nlist.c */
+int __fdnlist(int, struct nlist *);
+
+/*
+ * Report an error using printf style arguments. "program" is kd->program
+ * on hard errors, and 0 on soft errors, so that under sun error emulation,
+ * only hard errors are printed out (otherwise, programs like gdb will
+ * generate tons of error messages when trying to access bogus pointers).
+ */
+void
+_kvm_err(kvm_t *kd, const char *program, const char *fmt, ...)
+{
+ va_list ap;
+
+ va_start(ap, fmt);
+ if (program != NULL) {
+ (void)fprintf(stderr, "%s: ", program);
+ (void)vfprintf(stderr, fmt, ap);
+ (void)fputc('\n', stderr);
+ } else
+ (void)vsnprintf(kd->errbuf,
+ sizeof(kd->errbuf), fmt, ap);
+
+ va_end(ap);
+}
+
+void
+_kvm_syserr(kvm_t *kd, const char *program, const char *fmt, ...)
+{
+ va_list ap;
+ int n;
+
+ va_start(ap, fmt);
+ if (program != NULL) {
+ (void)fprintf(stderr, "%s: ", program);
+ (void)vfprintf(stderr, fmt, ap);
+ (void)fprintf(stderr, ": %s\n", strerror(errno));
+ } else {
+ char *cp = kd->errbuf;
+
+ (void)vsnprintf(cp, sizeof(kd->errbuf), fmt, ap);
+ n = strlen(cp);
+ (void)snprintf(&cp[n], sizeof(kd->errbuf) - n, ": %s",
+ strerror(errno));
+ }
+ va_end(ap);
+}
+
+void *
+_kvm_malloc(kvm_t *kd, size_t n)
+{
+ void *p;
+
+ if ((p = calloc(n, sizeof(char))) == NULL)
+ _kvm_err(kd, kd->program, "can't allocate %zu bytes: %s",
+ n, strerror(errno));
+ return (p);
+}
+
+int
+_kvm_probe_elf_kernel(kvm_t *kd, int class, int machine)
+{
+
+ return (kd->nlehdr.e_ident[EI_CLASS] == class &&
+ ((machine == EM_PPC || machine == EM_PPC64) ?
+ kd->nlehdr.e_type == ET_DYN : kd->nlehdr.e_type == ET_EXEC) &&
+ kd->nlehdr.e_machine == machine);
+}
+
+int
+_kvm_is_minidump(kvm_t *kd)
+{
+ char minihdr[8];
+
+ if (kd->rawdump)
+ return (0);
+ if (pread(kd->pmfd, &minihdr, 8, 0) == 8 &&
+ memcmp(&minihdr, "minidump", 8) == 0)
+ return (1);
+ return (0);
+}
+
+/*
+ * The powerpc backend has a hack to strip a leading kerneldump
+ * header from the core before treating it as an ELF header.
+ *
+ * We can add that here if we can get a change to libelf to support
+ * an initial offset into the file. Alternatively we could patch
+ * savecore to extract cores from a regular file instead.
+ */
+int
+_kvm_read_core_phdrs(kvm_t *kd, size_t *phnump, GElf_Phdr **phdrp)
+{
+ GElf_Ehdr ehdr;
+ GElf_Phdr *phdr;
+ Elf *elf;
+ size_t i, phnum;
+
+ elf = elf_begin(kd->pmfd, ELF_C_READ, NULL);
+ if (elf == NULL) {
+ _kvm_err(kd, kd->program, "%s", elf_errmsg(0));
+ return (-1);
+ }
+ if (elf_kind(elf) != ELF_K_ELF) {
+ _kvm_err(kd, kd->program, "invalid core");
+ goto bad;
+ }
+ if (gelf_getclass(elf) != kd->nlehdr.e_ident[EI_CLASS]) {
+ _kvm_err(kd, kd->program, "invalid core");
+ goto bad;
+ }
+ if (gelf_getehdr(elf, &ehdr) == NULL) {
+ _kvm_err(kd, kd->program, "%s", elf_errmsg(0));
+ goto bad;
+ }
+ if (ehdr.e_type != ET_CORE) {
+ _kvm_err(kd, kd->program, "invalid core");
+ goto bad;
+ }
+ if (ehdr.e_machine != kd->nlehdr.e_machine) {
+ _kvm_err(kd, kd->program, "invalid core");
+ goto bad;
+ }
+
+ if (elf_getphdrnum(elf, &phnum) == -1) {
+ _kvm_err(kd, kd->program, "%s", elf_errmsg(0));
+ goto bad;
+ }
+
+ phdr = calloc(phnum, sizeof(*phdr));
+ if (phdr == NULL) {
+ _kvm_err(kd, kd->program, "failed to allocate phdrs");
+ goto bad;
+ }
+
+ for (i = 0; i < phnum; i++) {
+ if (gelf_getphdr(elf, i, &phdr[i]) == NULL) {
+ free(phdr);
+ _kvm_err(kd, kd->program, "%s", elf_errmsg(0));
+ goto bad;
+ }
+ }
+ elf_end(elf);
+ *phnump = phnum;
+ *phdrp = phdr;
+ return (0);
+
+bad:
+ elf_end(elf);
+ return (-1);
+}
+
+/*
+ * Transform v such that only bits [bit0, bitN) may be set. Generates a
+ * bitmask covering the number of bits, then shifts so +bit0+ is the first.
+ */
+static uint64_t
+bitmask_range(uint64_t v, uint64_t bit0, uint64_t bitN)
+{
+ if (bit0 == 0 && bitN == BITS_IN(v))
+ return (v);
+
+ return (v & (((1ULL << (bitN - bit0)) - 1ULL) << bit0));
+}
+
+/*
+ * Returns the number of bits in a given byte array range starting at a
+ * given base, from bit0 to bitN. bit0 may be non-zero in the case of
+ * counting backwards from bitN.
+ */
+static uint64_t
+popcount_bytes(uint64_t *addr, uint32_t bit0, uint32_t bitN)
+{
+ uint32_t res = bitN - bit0;
+ uint64_t count = 0;
+ uint32_t bound;
+
+ /* Align to 64-bit boundary on the left side if needed. */
+ if ((bit0 % BITS_IN(*addr)) != 0) {
+ bound = MIN(bitN, roundup2(bit0, BITS_IN(*addr)));
+ count += __bitcount64(bitmask_range(*addr, bit0, bound));
+ res -= (bound - bit0);
+ addr++;
+ }
+
+ while (res > 0) {
+ bound = MIN(res, BITS_IN(*addr));
+ count += __bitcount64(bitmask_range(*addr, 0, bound));
+ res -= bound;
+ addr++;
+ }
+
+ return (count);
+}
+
+void *
+_kvm_pmap_get(kvm_t *kd, u_long idx, size_t len)
+{
+ uintptr_t off = idx * len;
+
+ if ((off_t)off >= kd->pt_sparse_off)
+ return (NULL);
+ return (void *)((uintptr_t)kd->page_map + off);
+}
+
+void *
+_kvm_map_get(kvm_t *kd, u_long pa, unsigned int page_size)
+{
+ off_t off;
+ uintptr_t addr;
+
+ off = _kvm_pt_find(kd, pa, page_size);
+ if (off == -1)
+ return NULL;
+
+ addr = (uintptr_t)kd->page_map + off;
+ if (off >= kd->pt_sparse_off)
+ addr = (uintptr_t)kd->sparse_map + (off - kd->pt_sparse_off);
+ return (void *)addr;
+}
+
+int
+_kvm_pt_init(kvm_t *kd, size_t dump_avail_size, off_t dump_avail_off,
+ size_t map_len, off_t map_off, off_t sparse_off, int page_size)
+{
+ uint64_t *addr;
+ uint32_t *popcount_bin;
+ int bin_popcounts = 0;
+ uint64_t pc_bins, res;
+ ssize_t rd;
+
+ kd->dump_avail_size = dump_avail_size;
+ if (dump_avail_size > 0) {
+ kd->dump_avail = mmap(NULL, kd->dump_avail_size, PROT_READ,
+ MAP_PRIVATE, kd->pmfd, dump_avail_off);
+ } else {
+ /*
+ * Older version minidumps don't provide dump_avail[],
+ * so the bitmap is fully populated from 0 to
+ * last_pa. Create an implied dump_avail that
+ * expresses this.
+ */
+ kd->dump_avail = calloc(4, sizeof(uint64_t));
+ kd->dump_avail[1] = _kvm64toh(kd, map_len * 8 * page_size);
+ }
+
+ /*
+ * Map the bitmap specified by the arguments.
+ */
+ kd->pt_map = _kvm_malloc(kd, map_len);
+ if (kd->pt_map == NULL) {
+ _kvm_err(kd, kd->program, "cannot allocate %zu bytes for bitmap",
+ map_len);
+ return (-1);
+ }
+ rd = pread(kd->pmfd, kd->pt_map, map_len, map_off);
+ if (rd < 0 || rd != (ssize_t)map_len) {
+ _kvm_err(kd, kd->program, "cannot read %zu bytes for bitmap",
+ map_len);
+ return (-1);
+ }
+ kd->pt_map_size = map_len;
+
+ /*
+ * Generate a popcount cache for every POPCOUNT_BITS in the bitmap,
+ * so lookups only have to calculate the number of bits set between
+ * a cache point and their bit. This reduces lookups to O(1),
+ * without significantly increasing memory requirements.
+ *
+ * Round up the number of bins so that 'upper half' lookups work for
+ * the final bin, if needed. The first popcount is 0, since no bits
+ * precede bit 0, so add 1 for that also. Without this, extra work
+ * would be needed to handle the first PTEs in _kvm_pt_find().
+ */
+ addr = kd->pt_map;
+ res = map_len;
+ pc_bins = 1 + (res * NBBY + POPCOUNT_BITS / 2) / POPCOUNT_BITS;
+ kd->pt_popcounts = calloc(pc_bins, sizeof(uint32_t));
+ if (kd->pt_popcounts == NULL) {
+ _kvm_err(kd, kd->program, "cannot allocate popcount bins");
+ return (-1);
+ }
+
+ for (popcount_bin = &kd->pt_popcounts[1]; res > 0;
+ addr++, res -= sizeof(*addr)) {
+ *popcount_bin += popcount_bytes(addr, 0,
+ MIN(res * NBBY, BITS_IN(*addr)));
+ if (++bin_popcounts == POPCOUNTS_IN(*addr)) {
+ popcount_bin++;
+ *popcount_bin = *(popcount_bin - 1);
+ bin_popcounts = 0;
+ }
+ }
+
+ assert(pc_bins * sizeof(*popcount_bin) ==
+ ((uintptr_t)popcount_bin - (uintptr_t)kd->pt_popcounts));
+
+ kd->pt_sparse_off = sparse_off;
+ kd->pt_sparse_size = (uint64_t)*popcount_bin * page_size;
+ kd->pt_page_size = page_size;
+
+ /*
+ * Map the sparse page array. This is useful for performing point
+ * lookups of specific pages, e.g. for kvm_walk_pages. Generally,
+ * this is much larger than is reasonable to read in up front, so
+ * mmap it in instead.
+ */
+ kd->sparse_map = mmap(NULL, kd->pt_sparse_size, PROT_READ,
+ MAP_PRIVATE, kd->pmfd, kd->pt_sparse_off);
+ if (kd->sparse_map == MAP_FAILED) {
+ _kvm_err(kd, kd->program, "cannot map %" PRIu64
+ " bytes from fd %d offset %jd for sparse map: %s",
+ kd->pt_sparse_size, kd->pmfd,
+ (intmax_t)kd->pt_sparse_off, strerror(errno));
+ return (-1);
+ }
+ return (0);
+}
+
+int
+_kvm_pmap_init(kvm_t *kd, uint32_t pmap_size, off_t pmap_off)
+{
+ ssize_t exp_len = pmap_size;
+
+ kd->page_map_size = pmap_size;
+ kd->page_map_off = pmap_off;
+ kd->page_map = _kvm_malloc(kd, pmap_size);
+ if (kd->page_map == NULL) {
+ _kvm_err(kd, kd->program, "cannot allocate %u bytes "
+ "for page map", pmap_size);
+ return (-1);
+ }
+ if (pread(kd->pmfd, kd->page_map, pmap_size, pmap_off) != exp_len) {
+ _kvm_err(kd, kd->program, "cannot read %d bytes from "
+ "offset %jd for page map", pmap_size, (intmax_t)pmap_off);
+ return (-1);
+ }
+ return (0);
+}
+
+static inline uint64_t
+dump_avail_n(kvm_t *kd, long i)
+{
+ return (_kvm64toh(kd, kd->dump_avail[i]));
+}
+
+uint64_t
+_kvm_pa_bit_id(kvm_t *kd, uint64_t pa, unsigned int page_size)
+{
+ uint64_t adj;
+ long i;
+
+ adj = 0;
+ for (i = 0; dump_avail_n(kd, i + 1) != 0; i += 2) {
+ if (pa >= dump_avail_n(kd, i + 1)) {
+ adj += howmany(dump_avail_n(kd, i + 1), page_size) -
+ dump_avail_n(kd, i) / page_size;
+ } else {
+ return (pa / page_size -
+ dump_avail_n(kd, i) / page_size + adj);
+ }
+ }
+ return (_KVM_BIT_ID_INVALID);
+}
+
+uint64_t
+_kvm_bit_id_pa(kvm_t *kd, uint64_t bit_id, unsigned int page_size)
+{
+ uint64_t sz;
+ long i;
+
+ for (i = 0; dump_avail_n(kd, i + 1) != 0; i += 2) {
+ sz = howmany(dump_avail_n(kd, i + 1), page_size) -
+ dump_avail_n(kd, i) / page_size;
+ if (bit_id < sz) {
+ return (rounddown2(dump_avail_n(kd, i), page_size) +
+ bit_id * page_size);
+ }
+ bit_id -= sz;
+ }
+ return (_KVM_PA_INVALID);
+}
+
+/*
+ * Find the offset for the given physical page address; returns -1 otherwise.
+ *
+ * A page's offset is represented by the sparse page base offset plus the
+ * number of bits set before its bit multiplied by page size. This means
+ * that if a page exists in the dump, it's necessary to know how many pages
+ * in the dump precede it. Reduce this O(n) counting to O(1) by caching the
+ * number of bits set at POPCOUNT_BITS intervals.
+ *
+ * Then to find the number of pages before the requested address, simply
+ * index into the cache and count the number of bits set between that cache
+ * bin and the page's bit. Halve the number of bytes that have to be
+ * checked by also counting down from the next higher bin if it's closer.
+ */
+off_t
+_kvm_pt_find(kvm_t *kd, uint64_t pa, unsigned int page_size)
+{
+ uint64_t *bitmap = kd->pt_map;
+ uint64_t pte_bit_id = _kvm_pa_bit_id(kd, pa, page_size);
+ uint64_t pte_u64 = pte_bit_id / BITS_IN(*bitmap);
+ uint64_t popcount_id = pte_bit_id / POPCOUNT_BITS;
+ uint64_t pte_mask = 1ULL << (pte_bit_id % BITS_IN(*bitmap));
+ uint64_t bitN;
+ uint32_t count;
+
+ /* Check whether the page address requested is in the dump. */
+ if (pte_bit_id == _KVM_BIT_ID_INVALID ||
+ pte_bit_id >= (kd->pt_map_size * NBBY) ||
+ (bitmap[pte_u64] & pte_mask) == 0)
+ return (-1);
+
+ /*
+ * Add/sub popcounts from the bitmap until the PTE's bit is reached.
+ * For bits that are in the upper half between the calculated
+ * popcount id and the next one, use the next one and subtract to
+ * minimize the number of popcounts required.
+ */
+ if ((pte_bit_id % POPCOUNT_BITS) < (POPCOUNT_BITS / 2)) {
+ count = kd->pt_popcounts[popcount_id] + popcount_bytes(
+ bitmap + popcount_id * POPCOUNTS_IN(*bitmap),
+ 0, pte_bit_id - popcount_id * POPCOUNT_BITS);
+ } else {
+ /*
+ * Counting in reverse is trickier, since we must avoid
+ * reading from bytes that are not in range, and invert.
+ */
+ uint64_t pte_u64_bit_off = pte_u64 * BITS_IN(*bitmap);
+
+ popcount_id++;
+ bitN = MIN(popcount_id * POPCOUNT_BITS,
+ kd->pt_map_size * BITS_IN(uint8_t));
+ count = kd->pt_popcounts[popcount_id] - popcount_bytes(
+ bitmap + pte_u64,
+ pte_bit_id - pte_u64_bit_off, bitN - pte_u64_bit_off);
+ }
+
+ /*
+ * This can only happen if the core is truncated. Treat these
+ * entries as if they don't exist, since their backing doesn't.
+ */
+ if (count >= (kd->pt_sparse_size / page_size))
+ return (-1);
+
+ return (kd->pt_sparse_off + (uint64_t)count * page_size);
+}
+
+static int
+kvm_fdnlist(kvm_t *kd, struct kvm_nlist *list)
+{
+ kvaddr_t addr;
+ int error, nfail;
+
+ if (kd->resolve_symbol == NULL) {
+ struct nlist *nl;
+ int count, i;
+
+ for (count = 0; list[count].n_name != NULL &&
+ list[count].n_name[0] != '\0'; count++)
+ ;
+ nl = calloc(count + 1, sizeof(*nl));
+ for (i = 0; i < count; i++)
+ nl[i].n_name = list[i].n_name;
+ nfail = __fdnlist(kd->nlfd, nl);
+ for (i = 0; i < count; i++) {
+ list[i].n_type = nl[i].n_type;
+ list[i].n_value = nl[i].n_value;
+ }
+ free(nl);
+ return (nfail);
+ }
+
+ nfail = 0;
+ while (list->n_name != NULL && list->n_name[0] != '\0') {
+ error = kd->resolve_symbol(list->n_name, &addr);
+ if (error != 0) {
+ nfail++;
+ list->n_value = 0;
+ list->n_type = 0;
+ } else {
+ list->n_value = addr;
+ list->n_type = N_DATA | N_EXT;
+ }
+ list++;
+ }
+ return (nfail);
+}
+
+/*
+ * Walk the list of unresolved symbols, generate a new list and prefix the
+ * symbol names, try again, and merge back what we could resolve.
+ */
+static int
+kvm_fdnlist_prefix(kvm_t *kd, struct kvm_nlist *nl, int missing,
+ const char *prefix, kvaddr_t (*validate_fn)(kvm_t *, kvaddr_t))
+{
+ struct kvm_nlist *n, *np, *p;
+ char *cp, *ce;
+ const char *ccp;
+ size_t len;
+ int slen, unresolved;
+
+ /*
+ * Calculate the space we need to malloc for nlist and names.
+ * We are going to store the name twice for later lookups: once
+ * with the prefix and once the unmodified name delmited by \0.
+ */
+ len = 0;
+ unresolved = 0;
+ for (p = nl; p->n_name && p->n_name[0]; ++p) {
+ if (p->n_type != N_UNDF)
+ continue;
+ len += sizeof(struct kvm_nlist) + strlen(prefix) +
+ 2 * (strlen(p->n_name) + 1);
+ unresolved++;
+ }
+ if (unresolved == 0)
+ return (unresolved);
+ /* Add space for the terminating nlist entry. */
+ len += sizeof(struct kvm_nlist);
+ unresolved++;
+
+ /* Alloc one chunk for (nlist, [names]) and setup pointers. */
+ n = np = malloc(len);
+ bzero(n, len);
+ if (n == NULL)
+ return (missing);
+ cp = ce = (char *)np;
+ cp += unresolved * sizeof(struct kvm_nlist);
+ ce += len;
+
+ /* Generate shortened nlist with special prefix. */
+ unresolved = 0;
+ for (p = nl; p->n_name && p->n_name[0]; ++p) {
+ if (p->n_type != N_UNDF)
+ continue;
+ *np = *p;
+ /* Save the new\0orig. name so we can later match it again. */
+ slen = snprintf(cp, ce - cp, "%s%s%c%s", prefix,
+ (prefix[0] != '\0' && p->n_name[0] == '_') ?
+ (p->n_name + 1) : p->n_name, '\0', p->n_name);
+ if (slen < 0 || slen >= ce - cp)
+ continue;
+ np->n_name = cp;
+ cp += slen + 1;
+ np++;
+ unresolved++;
+ }
+
+ /* Do lookup on the reduced list. */
+ np = n;
+ unresolved = kvm_fdnlist(kd, np);
+
+ /* Check if we could resolve further symbols and update the list. */
+ if (unresolved >= 0 && unresolved < missing) {
+ /* Find the first freshly resolved entry. */
+ for (; np->n_name && np->n_name[0]; np++)
+ if (np->n_type != N_UNDF)
+ break;
+ /*
+ * The lists are both in the same order,
+ * so we can walk them in parallel.
+ */
+ for (p = nl; np->n_name && np->n_name[0] &&
+ p->n_name && p->n_name[0]; ++p) {
+ if (p->n_type != N_UNDF)
+ continue;
+ /* Skip expanded name and compare to orig. one. */
+ ccp = np->n_name + strlen(np->n_name) + 1;
+ if (strcmp(ccp, p->n_name) != 0)
+ continue;
+ /* Update nlist with new, translated results. */
+ p->n_type = np->n_type;
+ if (validate_fn)
+ p->n_value = (*validate_fn)(kd, np->n_value);
+ else
+ p->n_value = np->n_value;
+ missing--;
+ /* Find next freshly resolved entry. */
+ for (np++; np->n_name && np->n_name[0]; np++)
+ if (np->n_type != N_UNDF)
+ break;
+ }
+ }
+ /* We could assert missing = unresolved here. */
+
+ free(n);
+ return (unresolved);
+}
+
+int
+_kvm_nlist(kvm_t *kd, struct kvm_nlist *nl, int initialize)
+{
+ struct kvm_nlist *p;
+ int nvalid;
+ struct kld_sym_lookup lookup;
+ int error;
+ const char *prefix = "";
+ char symname[1024]; /* XXX-BZ symbol name length limit? */
+ int tried_vnet, tried_dpcpu;
+
+ /*
+ * If we can't use the kld symbol lookup, revert to the
+ * slow library call.
+ */
+ if (!ISALIVE(kd)) {
+ error = kvm_fdnlist(kd, nl);
+ if (error <= 0) /* Hard error or success. */
+ return (error);
+
+ if (_kvm_vnet_initialized(kd, initialize))
+ error = kvm_fdnlist_prefix(kd, nl, error,
+ VNET_SYMPREFIX, _kvm_vnet_validaddr);
+
+ if (error > 0 && _kvm_dpcpu_initialized(kd, initialize))
+ error = kvm_fdnlist_prefix(kd, nl, error,
+ DPCPU_SYMPREFIX, _kvm_dpcpu_validaddr);
+
+ return (error);
+ }
+
+ /*
+ * We can use the kld lookup syscall. Go through each nlist entry
+ * and look it up with a kldsym(2) syscall.
+ */
+ nvalid = 0;
+ tried_vnet = 0;
+ tried_dpcpu = 0;
+again:
+ for (p = nl; p->n_name && p->n_name[0]; ++p) {
+ if (p->n_type != N_UNDF)
+ continue;
+
+ lookup.version = sizeof(lookup);
+ lookup.symvalue = 0;
+ lookup.symsize = 0;
+
+ error = snprintf(symname, sizeof(symname), "%s%s", prefix,
+ (prefix[0] != '\0' && p->n_name[0] == '_') ?
+ (p->n_name + 1) : p->n_name);
+ if (error < 0 || error >= (int)sizeof(symname))
+ continue;
+ lookup.symname = symname;
+ if (lookup.symname[0] == '_')
+ lookup.symname++;
+
+ if (kldsym(0, KLDSYM_LOOKUP, &lookup) != -1) {
+ p->n_type = N_TEXT;
+ if (_kvm_vnet_initialized(kd, initialize) &&
+ strcmp(prefix, VNET_SYMPREFIX) == 0)
+ p->n_value =
+ _kvm_vnet_validaddr(kd, lookup.symvalue);
+ else if (_kvm_dpcpu_initialized(kd, initialize) &&
+ strcmp(prefix, DPCPU_SYMPREFIX) == 0)
+ p->n_value =
+ _kvm_dpcpu_validaddr(kd, lookup.symvalue);
+ else
+ p->n_value = lookup.symvalue;
+ ++nvalid;
+ /* lookup.symsize */
+ }
+ }
+
+ /*
+ * Check the number of entries that weren't found. If they exist,
+ * try again with a prefix for virtualized or DPCPU symbol names.
+ */
+ error = ((p - nl) - nvalid);
+ if (error && _kvm_vnet_initialized(kd, initialize) && !tried_vnet) {
+ tried_vnet = 1;
+ prefix = VNET_SYMPREFIX;
+ goto again;
+ }
+ if (error && _kvm_dpcpu_initialized(kd, initialize) && !tried_dpcpu) {
+ tried_dpcpu = 1;
+ prefix = DPCPU_SYMPREFIX;
+ goto again;
+ }
+
+ /*
+ * Return the number of entries that weren't found. If they exist,
+ * also fill internal error buffer.
+ */
+ error = ((p - nl) - nvalid);
+ if (error)
+ _kvm_syserr(kd, kd->program, "kvm_nlist");
+ return (error);
+}
+
+int
+_kvm_bitmap_init(struct kvm_bitmap *bm, u_long bitmapsize, u_long *idx)
+{
+
+ *idx = ULONG_MAX;
+ bm->map = calloc(bitmapsize, sizeof *bm->map);
+ if (bm->map == NULL)
+ return (0);
+ bm->size = bitmapsize;
+ return (1);
+}
+
+void
+_kvm_bitmap_set(struct kvm_bitmap *bm, u_long bm_index)
+{
+ uint8_t *byte = &bm->map[bm_index / 8];
+
+ if (bm_index / 8 < bm->size)
+ *byte |= (1UL << (bm_index % 8));
+}
+
+int
+_kvm_bitmap_next(struct kvm_bitmap *bm, u_long *idx)
+{
+ u_long first_invalid = bm->size * CHAR_BIT;
+
+ if (*idx == ULONG_MAX)
+ *idx = 0;
+ else
+ (*idx)++;
+
+ /* Find the next valid idx. */
+ for (; *idx < first_invalid; (*idx)++) {
+ unsigned int mask = 1U << (*idx % CHAR_BIT);
+ if ((bm->map[*idx / CHAR_BIT] & mask) != 0)
+ break;
+ }
+
+ return (*idx < first_invalid);
+}
+
+void
+_kvm_bitmap_deinit(struct kvm_bitmap *bm)
+{
+
+ free(bm->map);
+}
+
+int
+_kvm_visit_cb(kvm_t *kd, kvm_walk_pages_cb_t *cb, void *arg, u_long pa,
+ u_long kmap_vaddr, u_long dmap_vaddr, vm_prot_t prot, size_t len,
+ unsigned int page_size)
+{
+ unsigned int pgsz = page_size ? page_size : len;
+ struct kvm_page p = {
+ .kp_version = LIBKVM_WALK_PAGES_VERSION,
+ .kp_paddr = pa,
+ .kp_kmap_vaddr = kmap_vaddr,
+ .kp_dmap_vaddr = dmap_vaddr,
+ .kp_prot = prot,
+ .kp_offset = _kvm_pt_find(kd, pa, pgsz),
+ .kp_len = len,
+ };
+
+ return cb(&p, arg);
+}