diff options
Diffstat (limited to 'lib/libkvm/kvm_private.c')
-rw-r--r-- | lib/libkvm/kvm_private.c | 824 |
1 files changed, 824 insertions, 0 deletions
diff --git a/lib/libkvm/kvm_private.c b/lib/libkvm/kvm_private.c new file mode 100644 index 000000000000..a3b650787f53 --- /dev/null +++ b/lib/libkvm/kvm_private.c @@ -0,0 +1,824 @@ +/*- + * Copyright (c) 1989, 1992, 1993 + * The Regents of the University of California. All rights reserved. + * + * This code is derived from software developed by the Computer Systems + * Engineering group at Lawrence Berkeley Laboratory under DARPA contract + * BG 91-66 and contributed to Berkeley. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * 3. Neither the name of the University nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS + * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF + * SUCH DAMAGE. + */ + +#include <sys/param.h> +#include <sys/fnv_hash.h> + +#define _WANT_VNET + +#include <sys/user.h> +#include <sys/linker.h> +#include <sys/pcpu.h> +#include <sys/stat.h> +#include <sys/mman.h> + +#include <stdbool.h> +#include <net/vnet.h> + +#include <assert.h> +#include <fcntl.h> +#include <vm/vm.h> +#include <kvm.h> +#include <limits.h> +#include <paths.h> +#include <stdint.h> +#include <stdio.h> +#include <stdlib.h> +#include <string.h> +#include <unistd.h> +#include <stdarg.h> +#include <inttypes.h> + +#include "kvm_private.h" + +/* + * Routines private to libkvm. + */ + +/* from src/lib/libc/gen/nlist.c */ +int __fdnlist(int, struct nlist *); + +/* + * Report an error using printf style arguments. "program" is kd->program + * on hard errors, and 0 on soft errors, so that under sun error emulation, + * only hard errors are printed out (otherwise, programs like gdb will + * generate tons of error messages when trying to access bogus pointers). + */ +void +_kvm_err(kvm_t *kd, const char *program, const char *fmt, ...) +{ + va_list ap; + + va_start(ap, fmt); + if (program != NULL) { + (void)fprintf(stderr, "%s: ", program); + (void)vfprintf(stderr, fmt, ap); + (void)fputc('\n', stderr); + } else + (void)vsnprintf(kd->errbuf, + sizeof(kd->errbuf), fmt, ap); + + va_end(ap); +} + +void +_kvm_syserr(kvm_t *kd, const char *program, const char *fmt, ...) +{ + va_list ap; + int n; + + va_start(ap, fmt); + if (program != NULL) { + (void)fprintf(stderr, "%s: ", program); + (void)vfprintf(stderr, fmt, ap); + (void)fprintf(stderr, ": %s\n", strerror(errno)); + } else { + char *cp = kd->errbuf; + + (void)vsnprintf(cp, sizeof(kd->errbuf), fmt, ap); + n = strlen(cp); + (void)snprintf(&cp[n], sizeof(kd->errbuf) - n, ": %s", + strerror(errno)); + } + va_end(ap); +} + +void * +_kvm_malloc(kvm_t *kd, size_t n) +{ + void *p; + + if ((p = calloc(n, sizeof(char))) == NULL) + _kvm_err(kd, kd->program, "can't allocate %zu bytes: %s", + n, strerror(errno)); + return (p); +} + +int +_kvm_probe_elf_kernel(kvm_t *kd, int class, int machine) +{ + + return (kd->nlehdr.e_ident[EI_CLASS] == class && + ((machine == EM_PPC || machine == EM_PPC64) ? + kd->nlehdr.e_type == ET_DYN : kd->nlehdr.e_type == ET_EXEC) && + kd->nlehdr.e_machine == machine); +} + +int +_kvm_is_minidump(kvm_t *kd) +{ + char minihdr[8]; + + if (kd->rawdump) + return (0); + if (pread(kd->pmfd, &minihdr, 8, 0) == 8 && + memcmp(&minihdr, "minidump", 8) == 0) + return (1); + return (0); +} + +/* + * The powerpc backend has a hack to strip a leading kerneldump + * header from the core before treating it as an ELF header. + * + * We can add that here if we can get a change to libelf to support + * an initial offset into the file. Alternatively we could patch + * savecore to extract cores from a regular file instead. + */ +int +_kvm_read_core_phdrs(kvm_t *kd, size_t *phnump, GElf_Phdr **phdrp) +{ + GElf_Ehdr ehdr; + GElf_Phdr *phdr; + Elf *elf; + size_t i, phnum; + + elf = elf_begin(kd->pmfd, ELF_C_READ, NULL); + if (elf == NULL) { + _kvm_err(kd, kd->program, "%s", elf_errmsg(0)); + return (-1); + } + if (elf_kind(elf) != ELF_K_ELF) { + _kvm_err(kd, kd->program, "invalid core"); + goto bad; + } + if (gelf_getclass(elf) != kd->nlehdr.e_ident[EI_CLASS]) { + _kvm_err(kd, kd->program, "invalid core"); + goto bad; + } + if (gelf_getehdr(elf, &ehdr) == NULL) { + _kvm_err(kd, kd->program, "%s", elf_errmsg(0)); + goto bad; + } + if (ehdr.e_type != ET_CORE) { + _kvm_err(kd, kd->program, "invalid core"); + goto bad; + } + if (ehdr.e_machine != kd->nlehdr.e_machine) { + _kvm_err(kd, kd->program, "invalid core"); + goto bad; + } + + if (elf_getphdrnum(elf, &phnum) == -1) { + _kvm_err(kd, kd->program, "%s", elf_errmsg(0)); + goto bad; + } + + phdr = calloc(phnum, sizeof(*phdr)); + if (phdr == NULL) { + _kvm_err(kd, kd->program, "failed to allocate phdrs"); + goto bad; + } + + for (i = 0; i < phnum; i++) { + if (gelf_getphdr(elf, i, &phdr[i]) == NULL) { + free(phdr); + _kvm_err(kd, kd->program, "%s", elf_errmsg(0)); + goto bad; + } + } + elf_end(elf); + *phnump = phnum; + *phdrp = phdr; + return (0); + +bad: + elf_end(elf); + return (-1); +} + +/* + * Transform v such that only bits [bit0, bitN) may be set. Generates a + * bitmask covering the number of bits, then shifts so +bit0+ is the first. + */ +static uint64_t +bitmask_range(uint64_t v, uint64_t bit0, uint64_t bitN) +{ + if (bit0 == 0 && bitN == BITS_IN(v)) + return (v); + + return (v & (((1ULL << (bitN - bit0)) - 1ULL) << bit0)); +} + +/* + * Returns the number of bits in a given byte array range starting at a + * given base, from bit0 to bitN. bit0 may be non-zero in the case of + * counting backwards from bitN. + */ +static uint64_t +popcount_bytes(uint64_t *addr, uint32_t bit0, uint32_t bitN) +{ + uint32_t res = bitN - bit0; + uint64_t count = 0; + uint32_t bound; + + /* Align to 64-bit boundary on the left side if needed. */ + if ((bit0 % BITS_IN(*addr)) != 0) { + bound = MIN(bitN, roundup2(bit0, BITS_IN(*addr))); + count += __bitcount64(bitmask_range(*addr, bit0, bound)); + res -= (bound - bit0); + addr++; + } + + while (res > 0) { + bound = MIN(res, BITS_IN(*addr)); + count += __bitcount64(bitmask_range(*addr, 0, bound)); + res -= bound; + addr++; + } + + return (count); +} + +void * +_kvm_pmap_get(kvm_t *kd, u_long idx, size_t len) +{ + uintptr_t off = idx * len; + + if ((off_t)off >= kd->pt_sparse_off) + return (NULL); + return (void *)((uintptr_t)kd->page_map + off); +} + +void * +_kvm_map_get(kvm_t *kd, u_long pa, unsigned int page_size) +{ + off_t off; + uintptr_t addr; + + off = _kvm_pt_find(kd, pa, page_size); + if (off == -1) + return NULL; + + addr = (uintptr_t)kd->page_map + off; + if (off >= kd->pt_sparse_off) + addr = (uintptr_t)kd->sparse_map + (off - kd->pt_sparse_off); + return (void *)addr; +} + +int +_kvm_pt_init(kvm_t *kd, size_t dump_avail_size, off_t dump_avail_off, + size_t map_len, off_t map_off, off_t sparse_off, int page_size) +{ + uint64_t *addr; + uint32_t *popcount_bin; + int bin_popcounts = 0; + uint64_t pc_bins, res; + ssize_t rd; + + kd->dump_avail_size = dump_avail_size; + if (dump_avail_size > 0) { + kd->dump_avail = mmap(NULL, kd->dump_avail_size, PROT_READ, + MAP_PRIVATE, kd->pmfd, dump_avail_off); + } else { + /* + * Older version minidumps don't provide dump_avail[], + * so the bitmap is fully populated from 0 to + * last_pa. Create an implied dump_avail that + * expresses this. + */ + kd->dump_avail = calloc(4, sizeof(uint64_t)); + kd->dump_avail[1] = _kvm64toh(kd, map_len * 8 * page_size); + } + + /* + * Map the bitmap specified by the arguments. + */ + kd->pt_map = _kvm_malloc(kd, map_len); + if (kd->pt_map == NULL) { + _kvm_err(kd, kd->program, "cannot allocate %zu bytes for bitmap", + map_len); + return (-1); + } + rd = pread(kd->pmfd, kd->pt_map, map_len, map_off); + if (rd < 0 || rd != (ssize_t)map_len) { + _kvm_err(kd, kd->program, "cannot read %zu bytes for bitmap", + map_len); + return (-1); + } + kd->pt_map_size = map_len; + + /* + * Generate a popcount cache for every POPCOUNT_BITS in the bitmap, + * so lookups only have to calculate the number of bits set between + * a cache point and their bit. This reduces lookups to O(1), + * without significantly increasing memory requirements. + * + * Round up the number of bins so that 'upper half' lookups work for + * the final bin, if needed. The first popcount is 0, since no bits + * precede bit 0, so add 1 for that also. Without this, extra work + * would be needed to handle the first PTEs in _kvm_pt_find(). + */ + addr = kd->pt_map; + res = map_len; + pc_bins = 1 + (res * NBBY + POPCOUNT_BITS / 2) / POPCOUNT_BITS; + kd->pt_popcounts = calloc(pc_bins, sizeof(uint32_t)); + if (kd->pt_popcounts == NULL) { + _kvm_err(kd, kd->program, "cannot allocate popcount bins"); + return (-1); + } + + for (popcount_bin = &kd->pt_popcounts[1]; res > 0; + addr++, res -= sizeof(*addr)) { + *popcount_bin += popcount_bytes(addr, 0, + MIN(res * NBBY, BITS_IN(*addr))); + if (++bin_popcounts == POPCOUNTS_IN(*addr)) { + popcount_bin++; + *popcount_bin = *(popcount_bin - 1); + bin_popcounts = 0; + } + } + + assert(pc_bins * sizeof(*popcount_bin) == + ((uintptr_t)popcount_bin - (uintptr_t)kd->pt_popcounts)); + + kd->pt_sparse_off = sparse_off; + kd->pt_sparse_size = (uint64_t)*popcount_bin * page_size; + kd->pt_page_size = page_size; + + /* + * Map the sparse page array. This is useful for performing point + * lookups of specific pages, e.g. for kvm_walk_pages. Generally, + * this is much larger than is reasonable to read in up front, so + * mmap it in instead. + */ + kd->sparse_map = mmap(NULL, kd->pt_sparse_size, PROT_READ, + MAP_PRIVATE, kd->pmfd, kd->pt_sparse_off); + if (kd->sparse_map == MAP_FAILED) { + _kvm_err(kd, kd->program, "cannot map %" PRIu64 + " bytes from fd %d offset %jd for sparse map: %s", + kd->pt_sparse_size, kd->pmfd, + (intmax_t)kd->pt_sparse_off, strerror(errno)); + return (-1); + } + return (0); +} + +int +_kvm_pmap_init(kvm_t *kd, uint32_t pmap_size, off_t pmap_off) +{ + ssize_t exp_len = pmap_size; + + kd->page_map_size = pmap_size; + kd->page_map_off = pmap_off; + kd->page_map = _kvm_malloc(kd, pmap_size); + if (kd->page_map == NULL) { + _kvm_err(kd, kd->program, "cannot allocate %u bytes " + "for page map", pmap_size); + return (-1); + } + if (pread(kd->pmfd, kd->page_map, pmap_size, pmap_off) != exp_len) { + _kvm_err(kd, kd->program, "cannot read %d bytes from " + "offset %jd for page map", pmap_size, (intmax_t)pmap_off); + return (-1); + } + return (0); +} + +static inline uint64_t +dump_avail_n(kvm_t *kd, long i) +{ + return (_kvm64toh(kd, kd->dump_avail[i])); +} + +uint64_t +_kvm_pa_bit_id(kvm_t *kd, uint64_t pa, unsigned int page_size) +{ + uint64_t adj; + long i; + + adj = 0; + for (i = 0; dump_avail_n(kd, i + 1) != 0; i += 2) { + if (pa >= dump_avail_n(kd, i + 1)) { + adj += howmany(dump_avail_n(kd, i + 1), page_size) - + dump_avail_n(kd, i) / page_size; + } else { + return (pa / page_size - + dump_avail_n(kd, i) / page_size + adj); + } + } + return (_KVM_BIT_ID_INVALID); +} + +uint64_t +_kvm_bit_id_pa(kvm_t *kd, uint64_t bit_id, unsigned int page_size) +{ + uint64_t sz; + long i; + + for (i = 0; dump_avail_n(kd, i + 1) != 0; i += 2) { + sz = howmany(dump_avail_n(kd, i + 1), page_size) - + dump_avail_n(kd, i) / page_size; + if (bit_id < sz) { + return (rounddown2(dump_avail_n(kd, i), page_size) + + bit_id * page_size); + } + bit_id -= sz; + } + return (_KVM_PA_INVALID); +} + +/* + * Find the offset for the given physical page address; returns -1 otherwise. + * + * A page's offset is represented by the sparse page base offset plus the + * number of bits set before its bit multiplied by page size. This means + * that if a page exists in the dump, it's necessary to know how many pages + * in the dump precede it. Reduce this O(n) counting to O(1) by caching the + * number of bits set at POPCOUNT_BITS intervals. + * + * Then to find the number of pages before the requested address, simply + * index into the cache and count the number of bits set between that cache + * bin and the page's bit. Halve the number of bytes that have to be + * checked by also counting down from the next higher bin if it's closer. + */ +off_t +_kvm_pt_find(kvm_t *kd, uint64_t pa, unsigned int page_size) +{ + uint64_t *bitmap = kd->pt_map; + uint64_t pte_bit_id = _kvm_pa_bit_id(kd, pa, page_size); + uint64_t pte_u64 = pte_bit_id / BITS_IN(*bitmap); + uint64_t popcount_id = pte_bit_id / POPCOUNT_BITS; + uint64_t pte_mask = 1ULL << (pte_bit_id % BITS_IN(*bitmap)); + uint64_t bitN; + uint32_t count; + + /* Check whether the page address requested is in the dump. */ + if (pte_bit_id == _KVM_BIT_ID_INVALID || + pte_bit_id >= (kd->pt_map_size * NBBY) || + (bitmap[pte_u64] & pte_mask) == 0) + return (-1); + + /* + * Add/sub popcounts from the bitmap until the PTE's bit is reached. + * For bits that are in the upper half between the calculated + * popcount id and the next one, use the next one and subtract to + * minimize the number of popcounts required. + */ + if ((pte_bit_id % POPCOUNT_BITS) < (POPCOUNT_BITS / 2)) { + count = kd->pt_popcounts[popcount_id] + popcount_bytes( + bitmap + popcount_id * POPCOUNTS_IN(*bitmap), + 0, pte_bit_id - popcount_id * POPCOUNT_BITS); + } else { + /* + * Counting in reverse is trickier, since we must avoid + * reading from bytes that are not in range, and invert. + */ + uint64_t pte_u64_bit_off = pte_u64 * BITS_IN(*bitmap); + + popcount_id++; + bitN = MIN(popcount_id * POPCOUNT_BITS, + kd->pt_map_size * BITS_IN(uint8_t)); + count = kd->pt_popcounts[popcount_id] - popcount_bytes( + bitmap + pte_u64, + pte_bit_id - pte_u64_bit_off, bitN - pte_u64_bit_off); + } + + /* + * This can only happen if the core is truncated. Treat these + * entries as if they don't exist, since their backing doesn't. + */ + if (count >= (kd->pt_sparse_size / page_size)) + return (-1); + + return (kd->pt_sparse_off + (uint64_t)count * page_size); +} + +static int +kvm_fdnlist(kvm_t *kd, struct kvm_nlist *list) +{ + kvaddr_t addr; + int error, nfail; + + if (kd->resolve_symbol == NULL) { + struct nlist *nl; + int count, i; + + for (count = 0; list[count].n_name != NULL && + list[count].n_name[0] != '\0'; count++) + ; + nl = calloc(count + 1, sizeof(*nl)); + for (i = 0; i < count; i++) + nl[i].n_name = list[i].n_name; + nfail = __fdnlist(kd->nlfd, nl); + for (i = 0; i < count; i++) { + list[i].n_type = nl[i].n_type; + list[i].n_value = nl[i].n_value; + } + free(nl); + return (nfail); + } + + nfail = 0; + while (list->n_name != NULL && list->n_name[0] != '\0') { + error = kd->resolve_symbol(list->n_name, &addr); + if (error != 0) { + nfail++; + list->n_value = 0; + list->n_type = 0; + } else { + list->n_value = addr; + list->n_type = N_DATA | N_EXT; + } + list++; + } + return (nfail); +} + +/* + * Walk the list of unresolved symbols, generate a new list and prefix the + * symbol names, try again, and merge back what we could resolve. + */ +static int +kvm_fdnlist_prefix(kvm_t *kd, struct kvm_nlist *nl, int missing, + const char *prefix, kvaddr_t (*validate_fn)(kvm_t *, kvaddr_t)) +{ + struct kvm_nlist *n, *np, *p; + char *cp, *ce; + const char *ccp; + size_t len; + int slen, unresolved; + + /* + * Calculate the space we need to malloc for nlist and names. + * We are going to store the name twice for later lookups: once + * with the prefix and once the unmodified name delmited by \0. + */ + len = 0; + unresolved = 0; + for (p = nl; p->n_name && p->n_name[0]; ++p) { + if (p->n_type != N_UNDF) + continue; + len += sizeof(struct kvm_nlist) + strlen(prefix) + + 2 * (strlen(p->n_name) + 1); + unresolved++; + } + if (unresolved == 0) + return (unresolved); + /* Add space for the terminating nlist entry. */ + len += sizeof(struct kvm_nlist); + unresolved++; + + /* Alloc one chunk for (nlist, [names]) and setup pointers. */ + n = np = malloc(len); + bzero(n, len); + if (n == NULL) + return (missing); + cp = ce = (char *)np; + cp += unresolved * sizeof(struct kvm_nlist); + ce += len; + + /* Generate shortened nlist with special prefix. */ + unresolved = 0; + for (p = nl; p->n_name && p->n_name[0]; ++p) { + if (p->n_type != N_UNDF) + continue; + *np = *p; + /* Save the new\0orig. name so we can later match it again. */ + slen = snprintf(cp, ce - cp, "%s%s%c%s", prefix, + (prefix[0] != '\0' && p->n_name[0] == '_') ? + (p->n_name + 1) : p->n_name, '\0', p->n_name); + if (slen < 0 || slen >= ce - cp) + continue; + np->n_name = cp; + cp += slen + 1; + np++; + unresolved++; + } + + /* Do lookup on the reduced list. */ + np = n; + unresolved = kvm_fdnlist(kd, np); + + /* Check if we could resolve further symbols and update the list. */ + if (unresolved >= 0 && unresolved < missing) { + /* Find the first freshly resolved entry. */ + for (; np->n_name && np->n_name[0]; np++) + if (np->n_type != N_UNDF) + break; + /* + * The lists are both in the same order, + * so we can walk them in parallel. + */ + for (p = nl; np->n_name && np->n_name[0] && + p->n_name && p->n_name[0]; ++p) { + if (p->n_type != N_UNDF) + continue; + /* Skip expanded name and compare to orig. one. */ + ccp = np->n_name + strlen(np->n_name) + 1; + if (strcmp(ccp, p->n_name) != 0) + continue; + /* Update nlist with new, translated results. */ + p->n_type = np->n_type; + if (validate_fn) + p->n_value = (*validate_fn)(kd, np->n_value); + else + p->n_value = np->n_value; + missing--; + /* Find next freshly resolved entry. */ + for (np++; np->n_name && np->n_name[0]; np++) + if (np->n_type != N_UNDF) + break; + } + } + /* We could assert missing = unresolved here. */ + + free(n); + return (unresolved); +} + +int +_kvm_nlist(kvm_t *kd, struct kvm_nlist *nl, int initialize) +{ + struct kvm_nlist *p; + int nvalid; + struct kld_sym_lookup lookup; + int error; + const char *prefix = ""; + char symname[1024]; /* XXX-BZ symbol name length limit? */ + int tried_vnet, tried_dpcpu; + + /* + * If we can't use the kld symbol lookup, revert to the + * slow library call. + */ + if (!ISALIVE(kd)) { + error = kvm_fdnlist(kd, nl); + if (error <= 0) /* Hard error or success. */ + return (error); + + if (_kvm_vnet_initialized(kd, initialize)) + error = kvm_fdnlist_prefix(kd, nl, error, + VNET_SYMPREFIX, _kvm_vnet_validaddr); + + if (error > 0 && _kvm_dpcpu_initialized(kd, initialize)) + error = kvm_fdnlist_prefix(kd, nl, error, + DPCPU_SYMPREFIX, _kvm_dpcpu_validaddr); + + return (error); + } + + /* + * We can use the kld lookup syscall. Go through each nlist entry + * and look it up with a kldsym(2) syscall. + */ + nvalid = 0; + tried_vnet = 0; + tried_dpcpu = 0; +again: + for (p = nl; p->n_name && p->n_name[0]; ++p) { + if (p->n_type != N_UNDF) + continue; + + lookup.version = sizeof(lookup); + lookup.symvalue = 0; + lookup.symsize = 0; + + error = snprintf(symname, sizeof(symname), "%s%s", prefix, + (prefix[0] != '\0' && p->n_name[0] == '_') ? + (p->n_name + 1) : p->n_name); + if (error < 0 || error >= (int)sizeof(symname)) + continue; + lookup.symname = symname; + if (lookup.symname[0] == '_') + lookup.symname++; + + if (kldsym(0, KLDSYM_LOOKUP, &lookup) != -1) { + p->n_type = N_TEXT; + if (_kvm_vnet_initialized(kd, initialize) && + strcmp(prefix, VNET_SYMPREFIX) == 0) + p->n_value = + _kvm_vnet_validaddr(kd, lookup.symvalue); + else if (_kvm_dpcpu_initialized(kd, initialize) && + strcmp(prefix, DPCPU_SYMPREFIX) == 0) + p->n_value = + _kvm_dpcpu_validaddr(kd, lookup.symvalue); + else + p->n_value = lookup.symvalue; + ++nvalid; + /* lookup.symsize */ + } + } + + /* + * Check the number of entries that weren't found. If they exist, + * try again with a prefix for virtualized or DPCPU symbol names. + */ + error = ((p - nl) - nvalid); + if (error && _kvm_vnet_initialized(kd, initialize) && !tried_vnet) { + tried_vnet = 1; + prefix = VNET_SYMPREFIX; + goto again; + } + if (error && _kvm_dpcpu_initialized(kd, initialize) && !tried_dpcpu) { + tried_dpcpu = 1; + prefix = DPCPU_SYMPREFIX; + goto again; + } + + /* + * Return the number of entries that weren't found. If they exist, + * also fill internal error buffer. + */ + error = ((p - nl) - nvalid); + if (error) + _kvm_syserr(kd, kd->program, "kvm_nlist"); + return (error); +} + +int +_kvm_bitmap_init(struct kvm_bitmap *bm, u_long bitmapsize, u_long *idx) +{ + + *idx = ULONG_MAX; + bm->map = calloc(bitmapsize, sizeof *bm->map); + if (bm->map == NULL) + return (0); + bm->size = bitmapsize; + return (1); +} + +void +_kvm_bitmap_set(struct kvm_bitmap *bm, u_long bm_index) +{ + uint8_t *byte = &bm->map[bm_index / 8]; + + if (bm_index / 8 < bm->size) + *byte |= (1UL << (bm_index % 8)); +} + +int +_kvm_bitmap_next(struct kvm_bitmap *bm, u_long *idx) +{ + u_long first_invalid = bm->size * CHAR_BIT; + + if (*idx == ULONG_MAX) + *idx = 0; + else + (*idx)++; + + /* Find the next valid idx. */ + for (; *idx < first_invalid; (*idx)++) { + unsigned int mask = 1U << (*idx % CHAR_BIT); + if ((bm->map[*idx / CHAR_BIT] & mask) != 0) + break; + } + + return (*idx < first_invalid); +} + +void +_kvm_bitmap_deinit(struct kvm_bitmap *bm) +{ + + free(bm->map); +} + +int +_kvm_visit_cb(kvm_t *kd, kvm_walk_pages_cb_t *cb, void *arg, u_long pa, + u_long kmap_vaddr, u_long dmap_vaddr, vm_prot_t prot, size_t len, + unsigned int page_size) +{ + unsigned int pgsz = page_size ? page_size : len; + struct kvm_page p = { + .kp_version = LIBKVM_WALK_PAGES_VERSION, + .kp_paddr = pa, + .kp_kmap_vaddr = kmap_vaddr, + .kp_dmap_vaddr = dmap_vaddr, + .kp_prot = prot, + .kp_offset = _kvm_pt_find(kd, pa, pgsz), + .kp_len = len, + }; + + return cb(&p, arg); +} |