aboutsummaryrefslogtreecommitdiff
path: root/lib/libm/common_source/j1.c
diff options
context:
space:
mode:
Diffstat (limited to 'lib/libm/common_source/j1.c')
-rw-r--r--lib/libm/common_source/j1.c32
1 files changed, 16 insertions, 16 deletions
diff --git a/lib/libm/common_source/j1.c b/lib/libm/common_source/j1.c
index 71602aac1381..e8ca43ad83b8 100644
--- a/lib/libm/common_source/j1.c
+++ b/lib/libm/common_source/j1.c
@@ -46,18 +46,18 @@ static char sccsid[] = "@(#)j1.c 8.2 (Berkeley) 11/30/93";
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
+ * software is freely granted, provided that this notice
* is preserved.
* ====================================================
*
* ******************* WARNING ********************
* This is an alpha version of SunPro's FDLIBM (Freely
- * Distributable Math Library) for IEEE double precision
+ * Distributable Math Library) for IEEE double precision
* arithmetic. FDLIBM is a basic math library written
- * in C that runs on machines that conform to IEEE
- * Standard 754/854. This alpha version is distributed
- * for testing purpose. Those who use this software
- * should report any bugs to
+ * in C that runs on machines that conform to IEEE
+ * Standard 754/854. This alpha version is distributed
+ * for testing purpose. Those who use this software
+ * should report any bugs to
*
* fdlibm-comments@sunpro.eng.sun.com
*
@@ -85,16 +85,16 @@ static char sccsid[] = "@(#)j1.c 8.2 (Berkeley) 11/30/93";
* (To avoid cancellation, use
* sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
* to compute the worse one.)
- *
+ *
* 3 Special cases
* j1(nan)= nan
* j1(0) = 0
* j1(inf) = 0
- *
+ *
* Method -- y1(x):
- * 1. screen out x<=0 cases: y1(0)=-inf, y1(x<0)=NaN
+ * 1. screen out x<=0 cases: y1(0)=-inf, y1(x<0)=NaN
* 2. For x<2.
- * Since
+ * Since
* y1(x) = 2/pi*(j1(x)*(ln(x/2)+Euler)-1/x-x/2+5/64*x^3-...)
* therefore y1(x)-2/pi*j1(x)*ln(x)-1/x is an odd function.
* We use the following function to approximate y1,
@@ -122,7 +122,7 @@ static char sccsid[] = "@(#)j1.c 8.2 (Berkeley) 11/30/93";
static double pone(), qone();
-static double
+static double
huge = 1e300,
zero = 0.0,
one = 1.0,
@@ -142,7 +142,7 @@ s05 = 1.235422744261379203512624973117299248281e-0011;
#define two_129 6.80564733841876926e+038 /* 2^129 */
#define two_m54 5.55111512312578270e-017 /* 2^-54 */
-double j1(x)
+double j1(x)
double x;
{
double z, s,c,ss,cc,r,u,v,y;
@@ -205,7 +205,7 @@ static double v0[5] = {
1.665592462079920695971450872592458916421e-0011,
};
-double y1(x)
+double y1(x)
double x;
{
double z, s, c, ss, cc, u, v;
@@ -254,10 +254,10 @@ double y1(x)
z = invsqrtpi*(u*ss+v*cc)/sqrt(x);
}
return z;
- }
+ }
if (x <= two_m54) { /* x < 2**-54 */
return (-tpi/x);
- }
+ }
z = x*x;
u = u0[0]+z*(u0[1]+z*(u0[2]+z*(u0[3]+z*u0[4])));
v = one+z*(v0[0]+z*(v0[1]+z*(v0[2]+z*(v0[3]+z*v0[4]))));
@@ -351,7 +351,7 @@ static double pone(x)
s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
return (one + r/s);
}
-
+
/* For x >= 8, the asymptotic expansions of qone is
* 3/8 s - 105/1024 s^3 - ..., where s = 1/x.