aboutsummaryrefslogtreecommitdiff
path: root/lib/libmemstat/memstat_malloc.c
diff options
context:
space:
mode:
Diffstat (limited to 'lib/libmemstat/memstat_malloc.c')
-rw-r--r--lib/libmemstat/memstat_malloc.c543
1 files changed, 543 insertions, 0 deletions
diff --git a/lib/libmemstat/memstat_malloc.c b/lib/libmemstat/memstat_malloc.c
new file mode 100644
index 000000000000..81d51b81c5bd
--- /dev/null
+++ b/lib/libmemstat/memstat_malloc.c
@@ -0,0 +1,543 @@
+/*-
+ * SPDX-License-Identifier: BSD-2-Clause
+ *
+ * Copyright (c) 2005 Robert N. M. Watson
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ */
+
+#include <sys/param.h>
+#include <sys/malloc.h>
+#include <sys/sysctl.h>
+
+#include <err.h>
+#include <errno.h>
+#include <kvm.h>
+#include <nlist.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+
+#include "memstat.h"
+#include "memstat_internal.h"
+
+static int memstat_malloc_zone_count;
+static int memstat_malloc_zone_sizes[32];
+
+static int memstat_malloc_zone_init(void);
+static int memstat_malloc_zone_init_kvm(kvm_t *kvm);
+
+static struct nlist namelist[] = {
+#define X_KMEMSTATISTICS 0
+ { .n_name = "_kmemstatistics" },
+#define X_KMEMZONES 1
+ { .n_name = "_kmemzones" },
+#define X_NUMZONES 2
+ { .n_name = "_numzones" },
+#define X_VM_MALLOC_ZONE_COUNT 3
+ { .n_name = "_vm_malloc_zone_count" },
+#define X_MP_MAXCPUS 4
+ { .n_name = "_mp_maxcpus" },
+ { .n_name = "" },
+};
+
+/*
+ * Extract malloc(9) statistics from the running kernel, and store all memory
+ * type information in the passed list. For each type, check the list for an
+ * existing entry with the right name/allocator -- if present, update that
+ * entry. Otherwise, add a new entry. On error, the entire list will be
+ * cleared, as entries will be in an inconsistent state.
+ *
+ * To reduce the level of work for a list that starts empty, we keep around a
+ * hint as to whether it was empty when we began, so we can avoid searching
+ * the list for entries to update. Updates are O(n^2) due to searching for
+ * each entry before adding it.
+ */
+int
+memstat_sysctl_malloc(struct memory_type_list *list, int flags)
+{
+ struct malloc_type_stream_header *mtshp;
+ struct malloc_type_header *mthp;
+ struct malloc_type_stats *mtsp;
+ struct memory_type *mtp;
+ int count, hint_dontsearch, i, j, maxcpus;
+ char *buffer, *p;
+ size_t size;
+
+ hint_dontsearch = LIST_EMPTY(&list->mtl_list);
+
+ /*
+ * Query the number of CPUs, number of malloc types so that we can
+ * guess an initial buffer size. We loop until we succeed or really
+ * fail. Note that the value of maxcpus we query using sysctl is not
+ * the version we use when processing the real data -- that is read
+ * from the header.
+ */
+retry:
+ size = sizeof(maxcpus);
+ if (sysctlbyname("kern.smp.maxcpus", &maxcpus, &size, NULL, 0) < 0) {
+ if (errno == EACCES || errno == EPERM)
+ list->mtl_error = MEMSTAT_ERROR_PERMISSION;
+ else
+ list->mtl_error = MEMSTAT_ERROR_DATAERROR;
+ return (-1);
+ }
+ if (size != sizeof(maxcpus)) {
+ list->mtl_error = MEMSTAT_ERROR_DATAERROR;
+ return (-1);
+ }
+
+ size = sizeof(count);
+ if (sysctlbyname("kern.malloc_count", &count, &size, NULL, 0) < 0) {
+ if (errno == EACCES || errno == EPERM)
+ list->mtl_error = MEMSTAT_ERROR_PERMISSION;
+ else
+ list->mtl_error = MEMSTAT_ERROR_VERSION;
+ return (-1);
+ }
+ if (size != sizeof(count)) {
+ list->mtl_error = MEMSTAT_ERROR_DATAERROR;
+ return (-1);
+ }
+
+ if (memstat_malloc_zone_init() == -1) {
+ list->mtl_error = MEMSTAT_ERROR_VERSION;
+ return (-1);
+ }
+
+ size = sizeof(*mthp) + count * (sizeof(*mthp) + sizeof(*mtsp) *
+ maxcpus);
+
+ buffer = malloc(size);
+ if (buffer == NULL) {
+ list->mtl_error = MEMSTAT_ERROR_NOMEMORY;
+ return (-1);
+ }
+
+ if (sysctlbyname("kern.malloc_stats", buffer, &size, NULL, 0) < 0) {
+ /*
+ * XXXRW: ENOMEM is an ambiguous return, we should bound the
+ * number of loops, perhaps.
+ */
+ if (errno == ENOMEM) {
+ free(buffer);
+ goto retry;
+ }
+ if (errno == EACCES || errno == EPERM)
+ list->mtl_error = MEMSTAT_ERROR_PERMISSION;
+ else
+ list->mtl_error = MEMSTAT_ERROR_VERSION;
+ free(buffer);
+ return (-1);
+ }
+
+ if (size == 0) {
+ free(buffer);
+ return (0);
+ }
+
+ if (size < sizeof(*mtshp)) {
+ list->mtl_error = MEMSTAT_ERROR_VERSION;
+ free(buffer);
+ return (-1);
+ }
+ p = buffer;
+ mtshp = (struct malloc_type_stream_header *)p;
+ p += sizeof(*mtshp);
+
+ if (mtshp->mtsh_version != MALLOC_TYPE_STREAM_VERSION) {
+ list->mtl_error = MEMSTAT_ERROR_VERSION;
+ free(buffer);
+ return (-1);
+ }
+
+ /*
+ * For the remainder of this function, we are quite trusting about
+ * the layout of structures and sizes, since we've determined we have
+ * a matching version and acceptable CPU count.
+ */
+ maxcpus = mtshp->mtsh_maxcpus;
+ count = mtshp->mtsh_count;
+ for (i = 0; i < count; i++) {
+ mthp = (struct malloc_type_header *)p;
+ p += sizeof(*mthp);
+
+ if (hint_dontsearch == 0) {
+ mtp = memstat_mtl_find(list, ALLOCATOR_MALLOC,
+ mthp->mth_name);
+ } else
+ mtp = NULL;
+ if (mtp == NULL)
+ mtp = _memstat_mt_allocate(list, ALLOCATOR_MALLOC,
+ mthp->mth_name, maxcpus);
+ if (mtp == NULL) {
+ _memstat_mtl_empty(list);
+ free(buffer);
+ list->mtl_error = MEMSTAT_ERROR_NOMEMORY;
+ return (-1);
+ }
+
+ /*
+ * Reset the statistics on a current node.
+ */
+ _memstat_mt_reset_stats(mtp, maxcpus);
+
+ for (j = 0; j < maxcpus; j++) {
+ mtsp = (struct malloc_type_stats *)p;
+ p += sizeof(*mtsp);
+
+ /*
+ * Sumarize raw statistics across CPUs into coalesced
+ * statistics.
+ */
+ mtp->mt_memalloced += mtsp->mts_memalloced;
+ mtp->mt_memfreed += mtsp->mts_memfreed;
+ mtp->mt_numallocs += mtsp->mts_numallocs;
+ mtp->mt_numfrees += mtsp->mts_numfrees;
+ mtp->mt_sizemask |= mtsp->mts_size;
+
+ /*
+ * Copies of per-CPU statistics.
+ */
+ mtp->mt_percpu_alloc[j].mtp_memalloced =
+ mtsp->mts_memalloced;
+ mtp->mt_percpu_alloc[j].mtp_memfreed =
+ mtsp->mts_memfreed;
+ mtp->mt_percpu_alloc[j].mtp_numallocs =
+ mtsp->mts_numallocs;
+ mtp->mt_percpu_alloc[j].mtp_numfrees =
+ mtsp->mts_numfrees;
+ mtp->mt_percpu_alloc[j].mtp_sizemask =
+ mtsp->mts_size;
+ }
+
+ /*
+ * Derived cross-CPU statistics.
+ */
+ mtp->mt_bytes = mtp->mt_memalloced - mtp->mt_memfreed;
+ mtp->mt_count = mtp->mt_numallocs - mtp->mt_numfrees;
+ }
+
+ free(buffer);
+
+ return (0);
+}
+
+static int
+kread(kvm_t *kvm, void *kvm_pointer, void *address, size_t size,
+ size_t offset)
+{
+ ssize_t ret;
+
+ ret = kvm_read(kvm, (unsigned long)kvm_pointer + offset, address,
+ size);
+ if (ret < 0)
+ return (MEMSTAT_ERROR_KVM);
+ if ((size_t)ret != size)
+ return (MEMSTAT_ERROR_KVM_SHORTREAD);
+ return (0);
+}
+
+static int
+kread_string(kvm_t *kvm, const void *kvm_pointer, char *buffer, int buflen)
+{
+ ssize_t ret;
+ int i;
+
+ for (i = 0; i < buflen; i++) {
+ ret = kvm_read(kvm, __DECONST(unsigned long, kvm_pointer) +
+ i, &(buffer[i]), sizeof(char));
+ if (ret < 0)
+ return (MEMSTAT_ERROR_KVM);
+ if ((size_t)ret != sizeof(char))
+ return (MEMSTAT_ERROR_KVM_SHORTREAD);
+ if (buffer[i] == '\0')
+ return (0);
+ }
+ /* Truncate. */
+ buffer[i-1] = '\0';
+ return (0);
+}
+
+static int
+kread_symbol(kvm_t *kvm, int index, void *address, size_t size,
+ size_t offset)
+{
+ ssize_t ret;
+
+ ret = kvm_read(kvm, namelist[index].n_value + offset, address, size);
+ if (ret < 0)
+ return (MEMSTAT_ERROR_KVM);
+ if ((size_t)ret != size)
+ return (MEMSTAT_ERROR_KVM_SHORTREAD);
+ return (0);
+}
+
+static int
+kread_zpcpu(kvm_t *kvm, u_long base, void *buf, size_t size, int cpu)
+{
+ ssize_t ret;
+
+ ret = kvm_read_zpcpu(kvm, base, buf, size, cpu);
+ if (ret < 0)
+ return (MEMSTAT_ERROR_KVM);
+ if ((size_t)ret != size)
+ return (MEMSTAT_ERROR_KVM_SHORTREAD);
+ return (0);
+}
+
+int
+memstat_kvm_malloc(struct memory_type_list *list, void *kvm_handle)
+{
+ struct memory_type *mtp;
+ void *kmemstatistics;
+ int hint_dontsearch, j, mp_maxcpus, mp_ncpus, ret;
+ char name[MEMTYPE_MAXNAME];
+ struct malloc_type_stats mts;
+ struct malloc_type_internal *mtip;
+ struct malloc_type type, *typep;
+ kvm_t *kvm;
+
+ kvm = (kvm_t *)kvm_handle;
+
+ hint_dontsearch = LIST_EMPTY(&list->mtl_list);
+
+ if (kvm_nlist(kvm, namelist) != 0) {
+ list->mtl_error = MEMSTAT_ERROR_KVM;
+ return (-1);
+ }
+
+ if (namelist[X_KMEMSTATISTICS].n_type == 0 ||
+ namelist[X_KMEMSTATISTICS].n_value == 0) {
+ list->mtl_error = MEMSTAT_ERROR_KVM_NOSYMBOL;
+ return (-1);
+ }
+
+ ret = kread_symbol(kvm, X_MP_MAXCPUS, &mp_maxcpus,
+ sizeof(mp_maxcpus), 0);
+ if (ret != 0) {
+ list->mtl_error = ret;
+ return (-1);
+ }
+
+ ret = kread_symbol(kvm, X_KMEMSTATISTICS, &kmemstatistics,
+ sizeof(kmemstatistics), 0);
+ if (ret != 0) {
+ list->mtl_error = ret;
+ return (-1);
+ }
+
+ ret = memstat_malloc_zone_init_kvm(kvm);
+ if (ret != 0) {
+ list->mtl_error = ret;
+ return (-1);
+ }
+
+ mp_ncpus = kvm_getncpus(kvm);
+
+ for (typep = kmemstatistics; typep != NULL; typep = type.ks_next) {
+ ret = kread(kvm, typep, &type, sizeof(type), 0);
+ if (ret != 0) {
+ _memstat_mtl_empty(list);
+ list->mtl_error = ret;
+ return (-1);
+ }
+ ret = kread_string(kvm, (void *)type.ks_shortdesc, name,
+ MEMTYPE_MAXNAME);
+ if (ret != 0) {
+ _memstat_mtl_empty(list);
+ list->mtl_error = ret;
+ return (-1);
+ }
+ if (type.ks_version != M_VERSION) {
+ warnx("type %s with unsupported version %lu; skipped",
+ name, type.ks_version);
+ continue;
+ }
+
+ /*
+ * Since our compile-time value for MAXCPU may differ from the
+ * kernel's, we populate our own array.
+ */
+ mtip = &type.ks_mti;
+
+ if (hint_dontsearch == 0) {
+ mtp = memstat_mtl_find(list, ALLOCATOR_MALLOC, name);
+ } else
+ mtp = NULL;
+ if (mtp == NULL)
+ mtp = _memstat_mt_allocate(list, ALLOCATOR_MALLOC,
+ name, mp_maxcpus);
+ if (mtp == NULL) {
+ _memstat_mtl_empty(list);
+ list->mtl_error = MEMSTAT_ERROR_NOMEMORY;
+ return (-1);
+ }
+
+ /*
+ * This logic is replicated from kern_malloc.c, and should
+ * be kept in sync.
+ */
+ _memstat_mt_reset_stats(mtp, mp_maxcpus);
+ for (j = 0; j < mp_ncpus; j++) {
+ ret = kread_zpcpu(kvm, (u_long)mtip->mti_stats, &mts,
+ sizeof(mts), j);
+ if (ret != 0) {
+ _memstat_mtl_empty(list);
+ list->mtl_error = ret;
+ return (-1);
+ }
+ mtp->mt_memalloced += mts.mts_memalloced;
+ mtp->mt_memfreed += mts.mts_memfreed;
+ mtp->mt_numallocs += mts.mts_numallocs;
+ mtp->mt_numfrees += mts.mts_numfrees;
+ mtp->mt_sizemask |= mts.mts_size;
+
+ mtp->mt_percpu_alloc[j].mtp_memalloced =
+ mts.mts_memalloced;
+ mtp->mt_percpu_alloc[j].mtp_memfreed =
+ mts.mts_memfreed;
+ mtp->mt_percpu_alloc[j].mtp_numallocs =
+ mts.mts_numallocs;
+ mtp->mt_percpu_alloc[j].mtp_numfrees =
+ mts.mts_numfrees;
+ mtp->mt_percpu_alloc[j].mtp_sizemask =
+ mts.mts_size;
+ }
+ for (; j < mp_maxcpus; j++) {
+ bzero(&mtp->mt_percpu_alloc[j],
+ sizeof(mtp->mt_percpu_alloc[0]));
+ }
+
+ mtp->mt_bytes = mtp->mt_memalloced - mtp->mt_memfreed;
+ mtp->mt_count = mtp->mt_numallocs - mtp->mt_numfrees;
+ }
+
+ return (0);
+}
+
+static int
+memstat_malloc_zone_init(void)
+{
+ size_t size;
+
+ size = sizeof(memstat_malloc_zone_count);
+ if (sysctlbyname("vm.malloc.zone_count", &memstat_malloc_zone_count,
+ &size, NULL, 0) < 0) {
+ return (-1);
+ }
+
+ if (memstat_malloc_zone_count > (int)nitems(memstat_malloc_zone_sizes)) {
+ return (-1);
+ }
+
+ size = sizeof(memstat_malloc_zone_sizes);
+ if (sysctlbyname("vm.malloc.zone_sizes", &memstat_malloc_zone_sizes,
+ &size, NULL, 0) < 0) {
+ return (-1);
+ }
+
+ return (0);
+}
+
+/*
+ * Copied from kern_malloc.c
+ *
+ * kz_zone is an array sized at compilation time, the size is exported in
+ * "numzones". Below we need to iterate kz_size.
+ */
+struct memstat_kmemzone {
+ int kz_size;
+ const char *kz_name;
+ void *kz_zone[1];
+};
+
+static int
+memstat_malloc_zone_init_kvm(kvm_t *kvm)
+{
+ struct memstat_kmemzone *kmemzones, *kz;
+ int numzones, objsize, allocsize, ret;
+ int i;
+
+ ret = kread_symbol(kvm, X_VM_MALLOC_ZONE_COUNT,
+ &memstat_malloc_zone_count, sizeof(memstat_malloc_zone_count), 0);
+ if (ret != 0) {
+ return (ret);
+ }
+
+ ret = kread_symbol(kvm, X_NUMZONES, &numzones, sizeof(numzones), 0);
+ if (ret != 0) {
+ return (ret);
+ }
+
+ objsize = __offsetof(struct memstat_kmemzone, kz_zone) +
+ sizeof(void *) * numzones;
+
+ allocsize = objsize * memstat_malloc_zone_count;
+ kmemzones = malloc(allocsize);
+ if (kmemzones == NULL) {
+ return (MEMSTAT_ERROR_NOMEMORY);
+ }
+ ret = kread_symbol(kvm, X_KMEMZONES, kmemzones, allocsize, 0);
+ if (ret != 0) {
+ free(kmemzones);
+ return (ret);
+ }
+
+ kz = kmemzones;
+ for (i = 0; i < (int)nitems(memstat_malloc_zone_sizes); i++) {
+ memstat_malloc_zone_sizes[i] = kz->kz_size;
+ kz = (struct memstat_kmemzone *)((char *)kz + objsize);
+ }
+
+ free(kmemzones);
+ return (0);
+}
+
+size_t
+memstat_malloc_zone_get_count(void)
+{
+
+ return (memstat_malloc_zone_count);
+}
+
+size_t
+memstat_malloc_zone_get_size(size_t n)
+{
+
+ if (n >= nitems(memstat_malloc_zone_sizes)) {
+ return (-1);
+ }
+
+ return (memstat_malloc_zone_sizes[n]);
+}
+
+int
+memstat_malloc_zone_used(const struct memory_type *mtp, size_t n)
+{
+
+ if (memstat_get_sizemask(mtp) & (1 << n))
+ return (1);
+
+ return (0);
+}