aboutsummaryrefslogtreecommitdiff
path: root/lib/libzfs/libzfs_mount.c
diff options
context:
space:
mode:
Diffstat (limited to 'lib/libzfs/libzfs_mount.c')
-rw-r--r--lib/libzfs/libzfs_mount.c1468
1 files changed, 0 insertions, 1468 deletions
diff --git a/lib/libzfs/libzfs_mount.c b/lib/libzfs/libzfs_mount.c
deleted file mode 100644
index 5c9e2199eed4..000000000000
--- a/lib/libzfs/libzfs_mount.c
+++ /dev/null
@@ -1,1468 +0,0 @@
-// SPDX-License-Identifier: CDDL-1.0
-/*
- * CDDL HEADER START
- *
- * The contents of this file are subject to the terms of the
- * Common Development and Distribution License (the "License").
- * You may not use this file except in compliance with the License.
- *
- * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
- * or https://opensource.org/licenses/CDDL-1.0.
- * See the License for the specific language governing permissions
- * and limitations under the License.
- *
- * When distributing Covered Code, include this CDDL HEADER in each
- * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
- * If applicable, add the following below this CDDL HEADER, with the
- * fields enclosed by brackets "[]" replaced with your own identifying
- * information: Portions Copyright [yyyy] [name of copyright owner]
- *
- * CDDL HEADER END
- */
-
-/*
- * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
- * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
- * Copyright (c) 2014, 2022 by Delphix. All rights reserved.
- * Copyright 2016 Igor Kozhukhov <ikozhukhov@gmail.com>
- * Copyright 2017 RackTop Systems.
- * Copyright (c) 2018 Datto Inc.
- * Copyright 2018 OmniOS Community Edition (OmniOSce) Association.
- */
-
-/*
- * Routines to manage ZFS mounts. We separate all the nasty routines that have
- * to deal with the OS. The following functions are the main entry points --
- * they are used by mount and unmount and when changing a filesystem's
- * mountpoint.
- *
- * zfs_is_mounted()
- * zfs_mount()
- * zfs_mount_at()
- * zfs_unmount()
- * zfs_unmountall()
- *
- * This file also contains the functions used to manage sharing filesystems:
- *
- * zfs_is_shared()
- * zfs_share()
- * zfs_unshare()
- * zfs_unshareall()
- * zfs_commit_shares()
- *
- * The following functions are available for pool consumers, and will
- * mount/unmount and share/unshare all datasets within pool:
- *
- * zpool_enable_datasets()
- * zpool_disable_datasets()
- */
-
-#include <dirent.h>
-#include <dlfcn.h>
-#include <errno.h>
-#include <fcntl.h>
-#include <libgen.h>
-#include <libintl.h>
-#include <stdio.h>
-#include <stdlib.h>
-#include <string.h>
-#include <unistd.h>
-#include <zone.h>
-#include <sys/mntent.h>
-#include <sys/mount.h>
-#include <sys/stat.h>
-#include <sys/vfs.h>
-#include <sys/dsl_crypt.h>
-
-#include <libzfs.h>
-#include <libzutil.h>
-
-#include "libzfs_impl.h"
-#include <thread_pool.h>
-
-#include <libshare.h>
-#include <sys/systeminfo.h>
-#define MAXISALEN 257 /* based on sysinfo(2) man page */
-
-static void zfs_mount_task(void *);
-
-static const proto_table_t proto_table[SA_PROTOCOL_COUNT] = {
- [SA_PROTOCOL_NFS] =
- {ZFS_PROP_SHARENFS, EZFS_SHARENFSFAILED, EZFS_UNSHARENFSFAILED},
- [SA_PROTOCOL_SMB] =
- {ZFS_PROP_SHARESMB, EZFS_SHARESMBFAILED, EZFS_UNSHARESMBFAILED},
-};
-
-static const enum sa_protocol share_all_proto[SA_PROTOCOL_COUNT + 1] = {
- SA_PROTOCOL_NFS,
- SA_PROTOCOL_SMB,
- SA_NO_PROTOCOL
-};
-
-
-
-static boolean_t
-dir_is_empty_stat(const char *dirname)
-{
- struct stat st;
-
- /*
- * We only want to return false if the given path is a non empty
- * directory, all other errors are handled elsewhere.
- */
- if (stat(dirname, &st) < 0 || !S_ISDIR(st.st_mode)) {
- return (B_TRUE);
- }
-
- /*
- * An empty directory will still have two entries in it, one
- * entry for each of "." and "..".
- */
- if (st.st_size > 2) {
- return (B_FALSE);
- }
-
- return (B_TRUE);
-}
-
-static boolean_t
-dir_is_empty_readdir(const char *dirname)
-{
- DIR *dirp;
- struct dirent64 *dp;
- int dirfd;
-
- if ((dirfd = openat(AT_FDCWD, dirname,
- O_RDONLY | O_NDELAY | O_LARGEFILE | O_CLOEXEC, 0)) < 0) {
- return (B_TRUE);
- }
-
- if ((dirp = fdopendir(dirfd)) == NULL) {
- (void) close(dirfd);
- return (B_TRUE);
- }
-
- while ((dp = readdir64(dirp)) != NULL) {
-
- if (strcmp(dp->d_name, ".") == 0 ||
- strcmp(dp->d_name, "..") == 0)
- continue;
-
- (void) closedir(dirp);
- return (B_FALSE);
- }
-
- (void) closedir(dirp);
- return (B_TRUE);
-}
-
-/*
- * Returns true if the specified directory is empty. If we can't open the
- * directory at all, return true so that the mount can fail with a more
- * informative error message.
- */
-static boolean_t
-dir_is_empty(const char *dirname)
-{
- struct statfs64 st;
-
- /*
- * If the statvfs call fails or the filesystem is not a ZFS
- * filesystem, fall back to the slow path which uses readdir.
- */
- if ((statfs64(dirname, &st) != 0) ||
- (st.f_type != ZFS_SUPER_MAGIC)) {
- return (dir_is_empty_readdir(dirname));
- }
-
- /*
- * At this point, we know the provided path is on a ZFS
- * filesystem, so we can use stat instead of readdir to
- * determine if the directory is empty or not. We try to avoid
- * using readdir because that requires opening "dirname"; this
- * open file descriptor can potentially end up in a child
- * process if there's a concurrent fork, thus preventing the
- * zfs_mount() from otherwise succeeding (the open file
- * descriptor inherited by the child process will cause the
- * parent's mount to fail with EBUSY). The performance
- * implications of replacing the open, read, and close with a
- * single stat is nice; but is not the main motivation for the
- * added complexity.
- */
- return (dir_is_empty_stat(dirname));
-}
-
-/*
- * Checks to see if the mount is active. If the filesystem is mounted, we fill
- * in 'where' with the current mountpoint, and return 1. Otherwise, we return
- * 0.
- */
-boolean_t
-is_mounted(libzfs_handle_t *zfs_hdl, const char *special, char **where)
-{
- struct mnttab entry;
-
- if (libzfs_mnttab_find(zfs_hdl, special, &entry) != 0)
- return (B_FALSE);
-
- if (where != NULL)
- *where = zfs_strdup(zfs_hdl, entry.mnt_mountp);
-
- return (B_TRUE);
-}
-
-boolean_t
-zfs_is_mounted(zfs_handle_t *zhp, char **where)
-{
- return (is_mounted(zhp->zfs_hdl, zfs_get_name(zhp), where));
-}
-
-/*
- * Checks any higher order concerns about whether the given dataset is
- * mountable, false otherwise. zfs_is_mountable_internal specifically assumes
- * that the caller has verified the sanity of mounting the dataset at
- * its mountpoint to the extent the caller wants.
- */
-static boolean_t
-zfs_is_mountable_internal(zfs_handle_t *zhp)
-{
- if (zfs_prop_get_int(zhp, ZFS_PROP_ZONED) &&
- getzoneid() == GLOBAL_ZONEID)
- return (B_FALSE);
-
- return (B_TRUE);
-}
-
-/*
- * Returns true if the given dataset is mountable, false otherwise. Returns the
- * mountpoint in 'buf'.
- */
-static boolean_t
-zfs_is_mountable(zfs_handle_t *zhp, char *buf, size_t buflen,
- zprop_source_t *source, int flags)
-{
- char sourceloc[MAXNAMELEN];
- zprop_source_t sourcetype;
-
- if (!zfs_prop_valid_for_type(ZFS_PROP_MOUNTPOINT, zhp->zfs_type,
- B_FALSE))
- return (B_FALSE);
-
- verify(zfs_prop_get(zhp, ZFS_PROP_MOUNTPOINT, buf, buflen,
- &sourcetype, sourceloc, sizeof (sourceloc), B_FALSE) == 0);
-
- if (strcmp(buf, ZFS_MOUNTPOINT_NONE) == 0 ||
- strcmp(buf, ZFS_MOUNTPOINT_LEGACY) == 0)
- return (B_FALSE);
-
- if (zfs_prop_get_int(zhp, ZFS_PROP_CANMOUNT) == ZFS_CANMOUNT_OFF)
- return (B_FALSE);
-
- if (!zfs_is_mountable_internal(zhp))
- return (B_FALSE);
-
- if (zfs_prop_get_int(zhp, ZFS_PROP_REDACTED) && !(flags & MS_FORCE))
- return (B_FALSE);
-
- if (source)
- *source = sourcetype;
-
- return (B_TRUE);
-}
-
-/*
- * The filesystem is mounted by invoking the system mount utility rather
- * than by the system call mount(2). This ensures that the /etc/mtab
- * file is correctly locked for the update. Performing our own locking
- * and /etc/mtab update requires making an unsafe assumption about how
- * the mount utility performs its locking. Unfortunately, this also means
- * in the case of a mount failure we do not have the exact errno. We must
- * make due with return value from the mount process.
- *
- * In the long term a shared library called libmount is under development
- * which provides a common API to address the locking and errno issues.
- * Once the standard mount utility has been updated to use this library
- * we can add an autoconf check to conditionally use it.
- *
- * http://www.kernel.org/pub/linux/utils/util-linux/libmount-docs/index.html
- */
-
-static int
-zfs_add_option(zfs_handle_t *zhp, char *options, int len,
- zfs_prop_t prop, const char *on, const char *off)
-{
- const char *source;
- uint64_t value;
-
- /* Skip adding duplicate default options */
- if ((strstr(options, on) != NULL) || (strstr(options, off) != NULL))
- return (0);
-
- /*
- * zfs_prop_get_int() is not used to ensure our mount options
- * are not influenced by the current /proc/self/mounts contents.
- */
- value = getprop_uint64(zhp, prop, &source);
-
- (void) strlcat(options, ",", len);
- (void) strlcat(options, value ? on : off, len);
-
- return (0);
-}
-
-static int
-zfs_add_options(zfs_handle_t *zhp, char *options, int len)
-{
- int error = 0;
-
- error = zfs_add_option(zhp, options, len,
- ZFS_PROP_ATIME, MNTOPT_ATIME, MNTOPT_NOATIME);
- /*
- * don't add relatime/strictatime when atime=off, otherwise strictatime
- * will force atime=on
- */
- if (strstr(options, MNTOPT_NOATIME) == NULL) {
- error = zfs_add_option(zhp, options, len,
- ZFS_PROP_RELATIME, MNTOPT_RELATIME, MNTOPT_STRICTATIME);
- }
- error = error ? error : zfs_add_option(zhp, options, len,
- ZFS_PROP_DEVICES, MNTOPT_DEVICES, MNTOPT_NODEVICES);
- error = error ? error : zfs_add_option(zhp, options, len,
- ZFS_PROP_EXEC, MNTOPT_EXEC, MNTOPT_NOEXEC);
- error = error ? error : zfs_add_option(zhp, options, len,
- ZFS_PROP_READONLY, MNTOPT_RO, MNTOPT_RW);
- error = error ? error : zfs_add_option(zhp, options, len,
- ZFS_PROP_SETUID, MNTOPT_SETUID, MNTOPT_NOSETUID);
- error = error ? error : zfs_add_option(zhp, options, len,
- ZFS_PROP_NBMAND, MNTOPT_NBMAND, MNTOPT_NONBMAND);
-
- return (error);
-}
-
-int
-zfs_mount(zfs_handle_t *zhp, const char *options, int flags)
-{
- char mountpoint[ZFS_MAXPROPLEN];
-
- if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint), NULL,
- flags))
- return (0);
-
- return (zfs_mount_at(zhp, options, flags, mountpoint));
-}
-
-/*
- * Mount the given filesystem.
- */
-int
-zfs_mount_at(zfs_handle_t *zhp, const char *options, int flags,
- const char *mountpoint)
-{
- struct stat buf;
- char mntopts[MNT_LINE_MAX];
- char overlay[ZFS_MAXPROPLEN];
- char prop_encroot[MAXNAMELEN];
- boolean_t is_encroot;
- zfs_handle_t *encroot_hp = zhp;
- libzfs_handle_t *hdl = zhp->zfs_hdl;
- uint64_t keystatus;
- int remount = 0, rc;
-
- if (options == NULL) {
- (void) strlcpy(mntopts, MNTOPT_DEFAULTS, sizeof (mntopts));
- } else {
- (void) strlcpy(mntopts, options, sizeof (mntopts));
- }
-
- if (strstr(mntopts, MNTOPT_REMOUNT) != NULL)
- remount = 1;
-
- /* Potentially duplicates some checks if invoked by zfs_mount(). */
- if (!zfs_is_mountable_internal(zhp))
- return (0);
-
- /*
- * If the pool is imported read-only then all mounts must be read-only
- */
- if (zpool_get_prop_int(zhp->zpool_hdl, ZPOOL_PROP_READONLY, NULL))
- (void) strlcat(mntopts, "," MNTOPT_RO, sizeof (mntopts));
-
- /*
- * Append default mount options which apply to the mount point.
- * This is done because under Linux (unlike Solaris) multiple mount
- * points may reference a single super block. This means that just
- * given a super block there is no back reference to update the per
- * mount point options.
- */
- rc = zfs_add_options(zhp, mntopts, sizeof (mntopts));
- if (rc) {
- zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
- "default options unavailable"));
- return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
- dgettext(TEXT_DOMAIN, "cannot mount '%s'"),
- mountpoint));
- }
-
- /*
- * If the filesystem is encrypted the key must be loaded in order to
- * mount. If the key isn't loaded, the MS_CRYPT flag decides whether
- * or not we attempt to load the keys. Note: we must call
- * zfs_refresh_properties() here since some callers of this function
- * (most notably zpool_enable_datasets()) may implicitly load our key
- * by loading the parent's key first.
- */
- if (zfs_prop_get_int(zhp, ZFS_PROP_ENCRYPTION) != ZIO_CRYPT_OFF) {
- zfs_refresh_properties(zhp);
- keystatus = zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS);
-
- /*
- * If the key is unavailable and MS_CRYPT is set give the
- * user a chance to enter the key. Otherwise just fail
- * immediately.
- */
- if (keystatus == ZFS_KEYSTATUS_UNAVAILABLE) {
- if (flags & MS_CRYPT) {
- rc = zfs_crypto_get_encryption_root(zhp,
- &is_encroot, prop_encroot);
- if (rc) {
- zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
- "Failed to get encryption root for "
- "'%s'."), zfs_get_name(zhp));
- return (rc);
- }
-
- if (!is_encroot) {
- encroot_hp = zfs_open(hdl, prop_encroot,
- ZFS_TYPE_DATASET);
- if (encroot_hp == NULL)
- return (hdl->libzfs_error);
- }
-
- rc = zfs_crypto_load_key(encroot_hp,
- B_FALSE, NULL);
-
- if (!is_encroot)
- zfs_close(encroot_hp);
- if (rc)
- return (rc);
- } else {
- zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
- "encryption key not loaded"));
- return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
- dgettext(TEXT_DOMAIN, "cannot mount '%s'"),
- mountpoint));
- }
- }
-
- }
-
- /*
- * Append zfsutil option so the mount helper allow the mount
- */
- strlcat(mntopts, "," MNTOPT_ZFSUTIL, sizeof (mntopts));
-
- /* Create the directory if it doesn't already exist */
- if (lstat(mountpoint, &buf) != 0) {
- if (mkdirp(mountpoint, 0755) != 0) {
- zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
- "failed to create mountpoint: %s"),
- zfs_strerror(errno));
- return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
- dgettext(TEXT_DOMAIN, "cannot mount '%s'"),
- mountpoint));
- }
- }
-
- /*
- * Overlay mounts are enabled by default but may be disabled
- * via the 'overlay' property. The -O flag remains for compatibility.
- */
- if (!(flags & MS_OVERLAY)) {
- if (zfs_prop_get(zhp, ZFS_PROP_OVERLAY, overlay,
- sizeof (overlay), NULL, NULL, 0, B_FALSE) == 0) {
- if (strcmp(overlay, "on") == 0) {
- flags |= MS_OVERLAY;
- }
- }
- }
-
- /*
- * Determine if the mountpoint is empty. If so, refuse to perform the
- * mount. We don't perform this check if 'remount' is
- * specified or if overlay option (-O) is given
- */
- if ((flags & MS_OVERLAY) == 0 && !remount &&
- !dir_is_empty(mountpoint)) {
- zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
- "directory is not empty"));
- return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
- dgettext(TEXT_DOMAIN, "cannot mount '%s'"), mountpoint));
- }
-
- /* perform the mount */
- rc = do_mount(zhp, mountpoint, mntopts, flags);
- if (rc) {
- /*
- * Generic errors are nasty, but there are just way too many
- * from mount(), and they're well-understood. We pick a few
- * common ones to improve upon.
- */
- if (rc == EBUSY) {
- zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
- "mountpoint or dataset is busy"));
- } else if (rc == EPERM) {
- zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
- "Insufficient privileges"));
- } else if (rc == ENOTSUP) {
- int spa_version;
-
- VERIFY0(zfs_spa_version(zhp, &spa_version));
- zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
- "Can't mount a version %llu "
- "file system on a version %d pool. Pool must be"
- " upgraded to mount this file system."),
- (u_longlong_t)zfs_prop_get_int(zhp,
- ZFS_PROP_VERSION), spa_version);
- } else {
- zfs_error_aux(hdl, "%s", zfs_strerror(rc));
- }
- return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
- dgettext(TEXT_DOMAIN, "cannot mount '%s'"),
- zhp->zfs_name));
- }
-
- /* remove the mounted entry before re-adding on remount */
- if (remount)
- libzfs_mnttab_remove(hdl, zhp->zfs_name);
-
- /* add the mounted entry into our cache */
- libzfs_mnttab_add(hdl, zfs_get_name(zhp), mountpoint, mntopts);
- return (0);
-}
-
-/*
- * Unmount a single filesystem.
- */
-static int
-unmount_one(zfs_handle_t *zhp, const char *mountpoint, int flags)
-{
- int error;
-
- error = do_unmount(zhp, mountpoint, flags);
- if (error != 0) {
- int libzfs_err;
-
- switch (error) {
- case EBUSY:
- libzfs_err = EZFS_BUSY;
- break;
- case EIO:
- libzfs_err = EZFS_IO;
- break;
- case ENOENT:
- libzfs_err = EZFS_NOENT;
- break;
- case ENOMEM:
- libzfs_err = EZFS_NOMEM;
- break;
- case EPERM:
- libzfs_err = EZFS_PERM;
- break;
- default:
- libzfs_err = EZFS_UMOUNTFAILED;
- }
- if (zhp) {
- return (zfs_error_fmt(zhp->zfs_hdl, libzfs_err,
- dgettext(TEXT_DOMAIN, "cannot unmount '%s'"),
- mountpoint));
- } else {
- return (-1);
- }
- }
-
- return (0);
-}
-
-/*
- * Unmount the given filesystem.
- */
-int
-zfs_unmount(zfs_handle_t *zhp, const char *mountpoint, int flags)
-{
- libzfs_handle_t *hdl = zhp->zfs_hdl;
- struct mnttab entry;
- char *mntpt = NULL;
- boolean_t encroot, unmounted = B_FALSE;
-
- /* check to see if we need to unmount the filesystem */
- if (mountpoint != NULL || ((zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM) &&
- libzfs_mnttab_find(hdl, zhp->zfs_name, &entry) == 0)) {
- /*
- * mountpoint may have come from a call to
- * getmnt/getmntany if it isn't NULL. If it is NULL,
- * we know it comes from libzfs_mnttab_find which can
- * then get freed later. We strdup it to play it safe.
- */
- if (mountpoint == NULL)
- mntpt = zfs_strdup(hdl, entry.mnt_mountp);
- else
- mntpt = zfs_strdup(hdl, mountpoint);
-
- /*
- * Unshare and unmount the filesystem
- */
- if (zfs_unshare(zhp, mntpt, share_all_proto) != 0) {
- free(mntpt);
- return (-1);
- }
- zfs_commit_shares(NULL);
-
- if (unmount_one(zhp, mntpt, flags) != 0) {
- free(mntpt);
- (void) zfs_share(zhp, NULL);
- zfs_commit_shares(NULL);
- return (-1);
- }
-
- libzfs_mnttab_remove(hdl, zhp->zfs_name);
- free(mntpt);
- unmounted = B_TRUE;
- }
-
- /*
- * If the MS_CRYPT flag is provided we must ensure we attempt to
- * unload the dataset's key regardless of whether we did any work
- * to unmount it. We only do this for encryption roots.
- */
- if ((flags & MS_CRYPT) != 0 &&
- zfs_prop_get_int(zhp, ZFS_PROP_ENCRYPTION) != ZIO_CRYPT_OFF) {
- zfs_refresh_properties(zhp);
-
- if (zfs_crypto_get_encryption_root(zhp, &encroot, NULL) != 0 &&
- unmounted) {
- (void) zfs_mount(zhp, NULL, 0);
- return (-1);
- }
-
- if (encroot && zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS) ==
- ZFS_KEYSTATUS_AVAILABLE &&
- zfs_crypto_unload_key(zhp) != 0) {
- (void) zfs_mount(zhp, NULL, 0);
- return (-1);
- }
- }
-
- zpool_disable_volume_os(zhp->zfs_name);
-
- return (0);
-}
-
-/*
- * Unmount this filesystem and any children inheriting the mountpoint property.
- * To do this, just act like we're changing the mountpoint property, but don't
- * remount the filesystems afterwards.
- */
-int
-zfs_unmountall(zfs_handle_t *zhp, int flags)
-{
- prop_changelist_t *clp;
- int ret;
-
- clp = changelist_gather(zhp, ZFS_PROP_MOUNTPOINT,
- CL_GATHER_ITER_MOUNTED, flags);
- if (clp == NULL)
- return (-1);
-
- ret = changelist_prefix(clp);
- changelist_free(clp);
-
- return (ret);
-}
-
-/*
- * Unshare a filesystem by mountpoint.
- */
-static int
-unshare_one(libzfs_handle_t *hdl, const char *name, const char *mountpoint,
- enum sa_protocol proto)
-{
- int err = sa_disable_share(mountpoint, proto);
- if (err != SA_OK)
- return (zfs_error_fmt(hdl, proto_table[proto].p_unshare_err,
- dgettext(TEXT_DOMAIN, "cannot unshare '%s': %s"),
- name, sa_errorstr(err)));
-
- return (0);
-}
-
-/*
- * Share the given filesystem according to the options in the specified
- * protocol specific properties (sharenfs, sharesmb). We rely
- * on "libshare" to do the dirty work for us.
- */
-int
-zfs_share(zfs_handle_t *zhp, const enum sa_protocol *proto)
-{
- char mountpoint[ZFS_MAXPROPLEN];
- char shareopts[ZFS_MAXPROPLEN];
- char sourcestr[ZFS_MAXPROPLEN];
- const enum sa_protocol *curr_proto;
- zprop_source_t sourcetype;
- int err = 0;
-
- if (proto == NULL)
- proto = share_all_proto;
-
- if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint), NULL, 0))
- return (0);
-
- for (curr_proto = proto; *curr_proto != SA_NO_PROTOCOL; curr_proto++) {
- /*
- * Return success if there are no share options.
- */
- if (zfs_prop_get(zhp, proto_table[*curr_proto].p_prop,
- shareopts, sizeof (shareopts), &sourcetype, sourcestr,
- ZFS_MAXPROPLEN, B_FALSE) != 0 ||
- strcmp(shareopts, "off") == 0)
- continue;
-
- /*
- * If the 'zoned' property is set, then zfs_is_mountable()
- * will have already bailed out if we are in the global zone.
- * But local zones cannot be NFS servers, so we ignore it for
- * local zones as well.
- */
- if (zfs_prop_get_int(zhp, ZFS_PROP_ZONED))
- continue;
-
- err = sa_enable_share(zfs_get_name(zhp), mountpoint, shareopts,
- *curr_proto);
- if (err != SA_OK) {
- return (zfs_error_fmt(zhp->zfs_hdl,
- proto_table[*curr_proto].p_share_err,
- dgettext(TEXT_DOMAIN, "cannot share '%s: %s'"),
- zfs_get_name(zhp), sa_errorstr(err)));
- }
-
- }
- return (0);
-}
-
-/*
- * Check to see if the filesystem is currently shared.
- */
-boolean_t
-zfs_is_shared(zfs_handle_t *zhp, char **where,
- const enum sa_protocol *proto)
-{
- char *mountpoint;
- if (proto == NULL)
- proto = share_all_proto;
-
- if (ZFS_IS_VOLUME(zhp))
- return (B_FALSE);
-
- if (!zfs_is_mounted(zhp, &mountpoint))
- return (B_FALSE);
-
- for (const enum sa_protocol *p = proto; *p != SA_NO_PROTOCOL; ++p)
- if (sa_is_shared(mountpoint, *p)) {
- if (where != NULL)
- *where = mountpoint;
- else
- free(mountpoint);
- return (B_TRUE);
- }
-
- free(mountpoint);
- return (B_FALSE);
-}
-
-void
-zfs_commit_shares(const enum sa_protocol *proto)
-{
- if (proto == NULL)
- proto = share_all_proto;
-
- for (const enum sa_protocol *p = proto; *p != SA_NO_PROTOCOL; ++p)
- sa_commit_shares(*p);
-}
-
-void
-zfs_truncate_shares(const enum sa_protocol *proto)
-{
- if (proto == NULL)
- proto = share_all_proto;
-
- for (const enum sa_protocol *p = proto; *p != SA_NO_PROTOCOL; ++p)
- sa_truncate_shares(*p);
-}
-
-/*
- * Unshare the given filesystem.
- */
-int
-zfs_unshare(zfs_handle_t *zhp, const char *mountpoint,
- const enum sa_protocol *proto)
-{
- libzfs_handle_t *hdl = zhp->zfs_hdl;
- struct mnttab entry;
-
- if (proto == NULL)
- proto = share_all_proto;
-
- if (mountpoint != NULL || ((zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM) &&
- libzfs_mnttab_find(hdl, zfs_get_name(zhp), &entry) == 0)) {
-
- /* check to see if need to unmount the filesystem */
- const char *mntpt = mountpoint ?: entry.mnt_mountp;
-
- for (const enum sa_protocol *curr_proto = proto;
- *curr_proto != SA_NO_PROTOCOL; curr_proto++)
- if (sa_is_shared(mntpt, *curr_proto) &&
- unshare_one(hdl, zhp->zfs_name,
- mntpt, *curr_proto) != 0)
- return (-1);
- }
-
- return (0);
-}
-
-/*
- * Same as zfs_unmountall(), but for NFS and SMB unshares.
- */
-int
-zfs_unshareall(zfs_handle_t *zhp, const enum sa_protocol *proto)
-{
- prop_changelist_t *clp;
- int ret;
-
- if (proto == NULL)
- proto = share_all_proto;
-
- clp = changelist_gather(zhp, ZFS_PROP_SHARENFS, 0, 0);
- if (clp == NULL)
- return (-1);
-
- ret = changelist_unshare(clp, proto);
- changelist_free(clp);
-
- return (ret);
-}
-
-/*
- * Remove the mountpoint associated with the current dataset, if necessary.
- * We only remove the underlying directory if:
- *
- * - The mountpoint is not 'none' or 'legacy'
- * - The mountpoint is non-empty
- * - The mountpoint is the default or inherited
- * - The 'zoned' property is set, or we're in a local zone
- *
- * Any other directories we leave alone.
- */
-void
-remove_mountpoint(zfs_handle_t *zhp)
-{
- char mountpoint[ZFS_MAXPROPLEN];
- zprop_source_t source;
-
- if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint),
- &source, 0))
- return;
-
- if (source == ZPROP_SRC_DEFAULT ||
- source == ZPROP_SRC_INHERITED) {
- /*
- * Try to remove the directory, silently ignoring any errors.
- * The filesystem may have since been removed or moved around,
- * and this error isn't really useful to the administrator in
- * any way.
- */
- (void) rmdir(mountpoint);
- }
-}
-
-/*
- * Add the given zfs handle to the cb_handles array, dynamically reallocating
- * the array if it is out of space.
- */
-void
-libzfs_add_handle(get_all_cb_t *cbp, zfs_handle_t *zhp)
-{
- if (cbp->cb_alloc == cbp->cb_used) {
- size_t newsz;
- zfs_handle_t **newhandles;
-
- newsz = cbp->cb_alloc != 0 ? cbp->cb_alloc * 2 : 64;
- newhandles = zfs_realloc(zhp->zfs_hdl,
- cbp->cb_handles, cbp->cb_alloc * sizeof (zfs_handle_t *),
- newsz * sizeof (zfs_handle_t *));
- cbp->cb_handles = newhandles;
- cbp->cb_alloc = newsz;
- }
- cbp->cb_handles[cbp->cb_used++] = zhp;
-}
-
-/*
- * Recursive helper function used during file system enumeration
- */
-static int
-zfs_iter_cb(zfs_handle_t *zhp, void *data)
-{
- get_all_cb_t *cbp = data;
-
- if (!(zfs_get_type(zhp) & ZFS_TYPE_FILESYSTEM)) {
- zfs_close(zhp);
- return (0);
- }
-
- if (zfs_prop_get_int(zhp, ZFS_PROP_CANMOUNT) == ZFS_CANMOUNT_NOAUTO) {
- zfs_close(zhp);
- return (0);
- }
-
- if (zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS) ==
- ZFS_KEYSTATUS_UNAVAILABLE) {
- zfs_close(zhp);
- return (0);
- }
-
- /*
- * If this filesystem is inconsistent and has a receive resume
- * token, we can not mount it.
- */
- if (zfs_prop_get_int(zhp, ZFS_PROP_INCONSISTENT) &&
- zfs_prop_get(zhp, ZFS_PROP_RECEIVE_RESUME_TOKEN,
- NULL, 0, NULL, NULL, 0, B_TRUE) == 0) {
- zfs_close(zhp);
- return (0);
- }
-
- libzfs_add_handle(cbp, zhp);
- if (zfs_iter_filesystems_v2(zhp, 0, zfs_iter_cb, cbp) != 0) {
- zfs_close(zhp);
- return (-1);
- }
- return (0);
-}
-
-/*
- * Sort comparator that compares two mountpoint paths. We sort these paths so
- * that subdirectories immediately follow their parents. This means that we
- * effectively treat the '/' character as the lowest value non-nul char.
- * Since filesystems from non-global zones can have the same mountpoint
- * as other filesystems, the comparator sorts global zone filesystems to
- * the top of the list. This means that the global zone will traverse the
- * filesystem list in the correct order and can stop when it sees the
- * first zoned filesystem. In a non-global zone, only the delegated
- * filesystems are seen.
- *
- * An example sorted list using this comparator would look like:
- *
- * /foo
- * /foo/bar
- * /foo/bar/baz
- * /foo/baz
- * /foo.bar
- * /foo (NGZ1)
- * /foo (NGZ2)
- *
- * The mounting code depends on this ordering to deterministically iterate
- * over filesystems in order to spawn parallel mount tasks.
- */
-static int
-mountpoint_cmp(const void *arga, const void *argb)
-{
- zfs_handle_t *const *zap = arga;
- zfs_handle_t *za = *zap;
- zfs_handle_t *const *zbp = argb;
- zfs_handle_t *zb = *zbp;
- char mounta[MAXPATHLEN];
- char mountb[MAXPATHLEN];
- const char *a = mounta;
- const char *b = mountb;
- boolean_t gota, gotb;
- uint64_t zoneda, zonedb;
-
- zoneda = zfs_prop_get_int(za, ZFS_PROP_ZONED);
- zonedb = zfs_prop_get_int(zb, ZFS_PROP_ZONED);
- if (zoneda && !zonedb)
- return (1);
- if (!zoneda && zonedb)
- return (-1);
-
- gota = (zfs_get_type(za) == ZFS_TYPE_FILESYSTEM);
- if (gota) {
- verify(zfs_prop_get(za, ZFS_PROP_MOUNTPOINT, mounta,
- sizeof (mounta), NULL, NULL, 0, B_FALSE) == 0);
- }
- gotb = (zfs_get_type(zb) == ZFS_TYPE_FILESYSTEM);
- if (gotb) {
- verify(zfs_prop_get(zb, ZFS_PROP_MOUNTPOINT, mountb,
- sizeof (mountb), NULL, NULL, 0, B_FALSE) == 0);
- }
-
- if (gota && gotb) {
- while (*a != '\0' && (*a == *b)) {
- a++;
- b++;
- }
- if (*a == *b)
- return (0);
- if (*a == '\0')
- return (-1);
- if (*b == '\0')
- return (1);
- if (*a == '/')
- return (-1);
- if (*b == '/')
- return (1);
- return (*a < *b ? -1 : *a > *b);
- }
-
- if (gota)
- return (-1);
- if (gotb)
- return (1);
-
- /*
- * If neither filesystem has a mountpoint, revert to sorting by
- * dataset name.
- */
- return (strcmp(zfs_get_name(za), zfs_get_name(zb)));
-}
-
-/*
- * Return true if path2 is a child of path1 or path2 equals path1 or
- * path1 is "/" (path2 is always a child of "/").
- */
-static boolean_t
-libzfs_path_contains(const char *path1, const char *path2)
-{
- return (strcmp(path1, path2) == 0 || strcmp(path1, "/") == 0 ||
- (strstr(path2, path1) == path2 && path2[strlen(path1)] == '/'));
-}
-
-/*
- * Given a mountpoint specified by idx in the handles array, find the first
- * non-descendent of that mountpoint and return its index. Descendant paths
- * start with the parent's path. This function relies on the ordering
- * enforced by mountpoint_cmp().
- */
-static int
-non_descendant_idx(zfs_handle_t **handles, size_t num_handles, int idx)
-{
- char parent[ZFS_MAXPROPLEN];
- char child[ZFS_MAXPROPLEN];
- int i;
-
- verify(zfs_prop_get(handles[idx], ZFS_PROP_MOUNTPOINT, parent,
- sizeof (parent), NULL, NULL, 0, B_FALSE) == 0);
-
- for (i = idx + 1; i < num_handles; i++) {
- verify(zfs_prop_get(handles[i], ZFS_PROP_MOUNTPOINT, child,
- sizeof (child), NULL, NULL, 0, B_FALSE) == 0);
- if (!libzfs_path_contains(parent, child))
- break;
- }
- return (i);
-}
-
-typedef struct mnt_param {
- libzfs_handle_t *mnt_hdl;
- tpool_t *mnt_tp;
- zfs_handle_t **mnt_zhps; /* filesystems to mount */
- size_t mnt_num_handles;
- int mnt_idx; /* Index of selected entry to mount */
- zfs_iter_f mnt_func;
- void *mnt_data;
-} mnt_param_t;
-
-/*
- * Allocate and populate the parameter struct for mount function, and
- * schedule mounting of the entry selected by idx.
- */
-static void
-zfs_dispatch_mount(libzfs_handle_t *hdl, zfs_handle_t **handles,
- size_t num_handles, int idx, zfs_iter_f func, void *data, tpool_t *tp)
-{
- mnt_param_t *mnt_param = zfs_alloc(hdl, sizeof (mnt_param_t));
-
- mnt_param->mnt_hdl = hdl;
- mnt_param->mnt_tp = tp;
- mnt_param->mnt_zhps = handles;
- mnt_param->mnt_num_handles = num_handles;
- mnt_param->mnt_idx = idx;
- mnt_param->mnt_func = func;
- mnt_param->mnt_data = data;
-
- if (tpool_dispatch(tp, zfs_mount_task, (void*)mnt_param)) {
- /* Could not dispatch to thread pool; execute directly */
- zfs_mount_task((void*)mnt_param);
- }
-}
-
-/*
- * This is the structure used to keep state of mounting or sharing operations
- * during a call to zpool_enable_datasets().
- */
-typedef struct mount_state {
- /*
- * ms_mntstatus is set to -1 if any mount fails. While multiple threads
- * could update this variable concurrently, no synchronization is
- * needed as it's only ever set to -1.
- */
- int ms_mntstatus;
- int ms_mntflags;
- const char *ms_mntopts;
-} mount_state_t;
-
-static int
-zfs_mount_one(zfs_handle_t *zhp, void *arg)
-{
- mount_state_t *ms = arg;
- int ret = 0;
-
- /*
- * don't attempt to mount encrypted datasets with
- * unloaded keys
- */
- if (zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS) ==
- ZFS_KEYSTATUS_UNAVAILABLE)
- return (0);
-
- if (zfs_mount(zhp, ms->ms_mntopts, ms->ms_mntflags) != 0)
- ret = ms->ms_mntstatus = -1;
- return (ret);
-}
-
-static int
-zfs_share_one(zfs_handle_t *zhp, void *arg)
-{
- mount_state_t *ms = arg;
- int ret = 0;
-
- if (zfs_share(zhp, NULL) != 0)
- ret = ms->ms_mntstatus = -1;
- return (ret);
-}
-
-/*
- * Thread pool function to mount one file system. On completion, it finds and
- * schedules its children to be mounted. This depends on the sorting done in
- * zfs_foreach_mountpoint(). Note that the degenerate case (chain of entries
- * each descending from the previous) will have no parallelism since we always
- * have to wait for the parent to finish mounting before we can schedule
- * its children.
- */
-static void
-zfs_mount_task(void *arg)
-{
- mnt_param_t *mp = arg;
- int idx = mp->mnt_idx;
- zfs_handle_t **handles = mp->mnt_zhps;
- size_t num_handles = mp->mnt_num_handles;
- char mountpoint[ZFS_MAXPROPLEN];
-
- verify(zfs_prop_get(handles[idx], ZFS_PROP_MOUNTPOINT, mountpoint,
- sizeof (mountpoint), NULL, NULL, 0, B_FALSE) == 0);
-
- if (mp->mnt_func(handles[idx], mp->mnt_data) != 0)
- goto out;
-
- /*
- * We dispatch tasks to mount filesystems with mountpoints underneath
- * this one. We do this by dispatching the next filesystem with a
- * descendant mountpoint of the one we just mounted, then skip all of
- * its descendants, dispatch the next descendant mountpoint, and so on.
- * The non_descendant_idx() function skips over filesystems that are
- * descendants of the filesystem we just dispatched.
- */
- for (int i = idx + 1; i < num_handles;
- i = non_descendant_idx(handles, num_handles, i)) {
- char child[ZFS_MAXPROPLEN];
- verify(zfs_prop_get(handles[i], ZFS_PROP_MOUNTPOINT,
- child, sizeof (child), NULL, NULL, 0, B_FALSE) == 0);
-
- if (!libzfs_path_contains(mountpoint, child))
- break; /* not a descendant, return */
- zfs_dispatch_mount(mp->mnt_hdl, handles, num_handles, i,
- mp->mnt_func, mp->mnt_data, mp->mnt_tp);
- }
-
-out:
- free(mp);
-}
-
-/*
- * Issue the func callback for each ZFS handle contained in the handles
- * array. This function is used to mount all datasets, and so this function
- * guarantees that filesystems for parent mountpoints are called before their
- * children. As such, before issuing any callbacks, we first sort the array
- * of handles by mountpoint.
- *
- * Callbacks are issued in one of two ways:
- *
- * 1. Sequentially: If the nthr argument is <= 1 or the ZFS_SERIAL_MOUNT
- * environment variable is set, then we issue callbacks sequentially.
- *
- * 2. In parallel: If the nthr argument is > 1 and the ZFS_SERIAL_MOUNT
- * environment variable is not set, then we use a tpool to dispatch threads
- * to mount filesystems in parallel. This function dispatches tasks to mount
- * the filesystems at the top-level mountpoints, and these tasks in turn
- * are responsible for recursively mounting filesystems in their children
- * mountpoints. The value of the nthr argument will be the number of worker
- * threads for the thread pool.
- */
-void
-zfs_foreach_mountpoint(libzfs_handle_t *hdl, zfs_handle_t **handles,
- size_t num_handles, zfs_iter_f func, void *data, uint_t nthr)
-{
- zoneid_t zoneid = getzoneid();
-
- /*
- * The ZFS_SERIAL_MOUNT environment variable is an undocumented
- * variable that can be used as a convenience to do a/b comparison
- * of serial vs. parallel mounting.
- */
- boolean_t serial_mount = nthr <= 1 ||
- (getenv("ZFS_SERIAL_MOUNT") != NULL);
-
- /*
- * Sort the datasets by mountpoint. See mountpoint_cmp for details
- * of how these are sorted.
- */
- qsort(handles, num_handles, sizeof (zfs_handle_t *), mountpoint_cmp);
-
- if (serial_mount) {
- for (int i = 0; i < num_handles; i++) {
- func(handles[i], data);
- }
- return;
- }
-
- /*
- * Issue the callback function for each dataset using a parallel
- * algorithm that uses a thread pool to manage threads.
- */
- tpool_t *tp = tpool_create(1, nthr, 0, NULL);
-
- /*
- * There may be multiple "top level" mountpoints outside of the pool's
- * root mountpoint, e.g.: /foo /bar. Dispatch a mount task for each of
- * these.
- */
- for (int i = 0; i < num_handles;
- i = non_descendant_idx(handles, num_handles, i)) {
- /*
- * Since the mountpoints have been sorted so that the zoned
- * filesystems are at the end, a zoned filesystem seen from
- * the global zone means that we're done.
- */
- if (zoneid == GLOBAL_ZONEID &&
- zfs_prop_get_int(handles[i], ZFS_PROP_ZONED))
- break;
- zfs_dispatch_mount(hdl, handles, num_handles, i, func, data,
- tp);
- }
-
- tpool_wait(tp); /* wait for all scheduled mounts to complete */
- tpool_destroy(tp);
-}
-
-/*
- * Mount and share all datasets within the given pool. This assumes that no
- * datasets within the pool are currently mounted. nthr will be number of
- * worker threads to use while mounting datasets.
- */
-int
-zpool_enable_datasets(zpool_handle_t *zhp, const char *mntopts, int flags,
- uint_t nthr)
-{
- get_all_cb_t cb = { 0 };
- mount_state_t ms = { 0 };
- zfs_handle_t *zfsp;
- int ret = 0;
-
- if ((zfsp = zfs_open(zhp->zpool_hdl, zhp->zpool_name,
- ZFS_TYPE_DATASET)) == NULL)
- goto out;
-
- /*
- * Gather all non-snapshot datasets within the pool. Start by adding
- * the root filesystem for this pool to the list, and then iterate
- * over all child filesystems.
- */
- libzfs_add_handle(&cb, zfsp);
- if (zfs_iter_filesystems_v2(zfsp, 0, zfs_iter_cb, &cb) != 0)
- goto out;
-
- /*
- * Mount all filesystems
- */
- ms.ms_mntopts = mntopts;
- ms.ms_mntflags = flags;
- zfs_foreach_mountpoint(zhp->zpool_hdl, cb.cb_handles, cb.cb_used,
- zfs_mount_one, &ms, nthr);
- if (ms.ms_mntstatus != 0)
- ret = EZFS_MOUNTFAILED;
-
- /*
- * Share all filesystems that need to be shared. This needs to be
- * a separate pass because libshare is not mt-safe, and so we need
- * to share serially.
- */
- ms.ms_mntstatus = 0;
- zfs_foreach_mountpoint(zhp->zpool_hdl, cb.cb_handles, cb.cb_used,
- zfs_share_one, &ms, 1);
- if (ms.ms_mntstatus != 0)
- ret = EZFS_SHAREFAILED;
- else
- zfs_commit_shares(NULL);
-
-out:
- for (int i = 0; i < cb.cb_used; i++)
- zfs_close(cb.cb_handles[i]);
- free(cb.cb_handles);
-
- return (ret);
-}
-
-struct sets_s {
- char *mountpoint;
- zfs_handle_t *dataset;
-};
-
-static int
-mountpoint_compare(const void *a, const void *b)
-{
- const struct sets_s *mounta = (struct sets_s *)a;
- const struct sets_s *mountb = (struct sets_s *)b;
-
- return (strcmp(mountb->mountpoint, mounta->mountpoint));
-}
-
-/*
- * Unshare and unmount all datasets within the given pool. We don't want to
- * rely on traversing the DSL to discover the filesystems within the pool,
- * because this may be expensive (if not all of them are mounted), and can fail
- * arbitrarily (on I/O error, for example). Instead, we walk /proc/self/mounts
- * and gather all the filesystems that are currently mounted.
- */
-int
-zpool_disable_datasets(zpool_handle_t *zhp, boolean_t force)
-{
- int used, alloc;
- FILE *mnttab;
- struct mnttab entry;
- size_t namelen;
- struct sets_s *sets = NULL;
- libzfs_handle_t *hdl = zhp->zpool_hdl;
- int i;
- int ret = -1;
- int flags = (force ? MS_FORCE : 0);
-
- namelen = strlen(zhp->zpool_name);
-
- if ((mnttab = fopen(MNTTAB, "re")) == NULL)
- return (ENOENT);
-
- used = alloc = 0;
- while (getmntent(mnttab, &entry) == 0) {
- /*
- * Ignore non-ZFS entries.
- */
- if (entry.mnt_fstype == NULL ||
- strcmp(entry.mnt_fstype, MNTTYPE_ZFS) != 0)
- continue;
-
- /*
- * Ignore filesystems not within this pool.
- */
- if (entry.mnt_mountp == NULL ||
- strncmp(entry.mnt_special, zhp->zpool_name, namelen) != 0 ||
- (entry.mnt_special[namelen] != '/' &&
- entry.mnt_special[namelen] != '\0'))
- continue;
-
- /*
- * At this point we've found a filesystem within our pool. Add
- * it to our growing list.
- */
- if (used == alloc) {
- if (alloc == 0) {
- sets = zfs_alloc(hdl,
- 8 * sizeof (struct sets_s));
- alloc = 8;
- } else {
- sets = zfs_realloc(hdl, sets,
- alloc * sizeof (struct sets_s),
- alloc * 2 * sizeof (struct sets_s));
-
- alloc *= 2;
- }
- }
-
- sets[used].mountpoint = zfs_strdup(hdl, entry.mnt_mountp);
-
- /*
- * This is allowed to fail, in case there is some I/O error. It
- * is only used to determine if we need to remove the underlying
- * mountpoint, so failure is not fatal.
- */
- sets[used].dataset = make_dataset_handle(hdl,
- entry.mnt_special);
-
- used++;
- }
-
- /*
- * At this point, we have the entire list of filesystems, so sort it by
- * mountpoint.
- */
- if (used != 0)
- qsort(sets, used, sizeof (struct sets_s), mountpoint_compare);
-
- /*
- * Walk through and first unshare everything.
- */
- for (i = 0; i < used; i++) {
- for (enum sa_protocol p = 0; p < SA_PROTOCOL_COUNT; ++p) {
- if (sa_is_shared(sets[i].mountpoint, p) &&
- unshare_one(hdl, sets[i].mountpoint,
- sets[i].mountpoint, p) != 0)
- goto out;
- }
- }
- zfs_commit_shares(NULL);
-
- /*
- * Now unmount everything, removing the underlying directories as
- * appropriate.
- */
- for (i = 0; i < used; i++) {
- if (unmount_one(sets[i].dataset, sets[i].mountpoint,
- flags) != 0)
- goto out;
- }
-
- for (i = 0; i < used; i++) {
- if (sets[i].dataset)
- remove_mountpoint(sets[i].dataset);
- }
-
- zpool_disable_datasets_os(zhp, force);
-
- ret = 0;
-out:
- (void) fclose(mnttab);
- for (i = 0; i < used; i++) {
- if (sets[i].dataset)
- zfs_close(sets[i].dataset);
- free(sets[i].mountpoint);
- }
- free(sets);
-
- return (ret);
-}