aboutsummaryrefslogtreecommitdiff
path: root/lib/msun/ld128/s_expl.c
diff options
context:
space:
mode:
Diffstat (limited to 'lib/msun/ld128/s_expl.c')
-rw-r--r--lib/msun/ld128/s_expl.c319
1 files changed, 319 insertions, 0 deletions
diff --git a/lib/msun/ld128/s_expl.c b/lib/msun/ld128/s_expl.c
new file mode 100644
index 000000000000..e1358e2213a0
--- /dev/null
+++ b/lib/msun/ld128/s_expl.c
@@ -0,0 +1,319 @@
+/*-
+ * SPDX-License-Identifier: BSD-2-Clause
+ *
+ * Copyright (c) 2009-2013 Steven G. Kargl
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice unmodified, this list of conditions, and the following
+ * disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
+ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
+ * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
+ * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
+ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
+ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
+ * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ * Optimized by Bruce D. Evans.
+ */
+
+/*
+ * ld128 version of s_expl.c. See ../ld80/s_expl.c for most comments.
+ */
+
+#include <float.h>
+
+#include "fpmath.h"
+#include "math.h"
+#include "math_private.h"
+#include "k_expl.h"
+
+/* XXX Prevent compilers from erroneously constant folding these: */
+static const volatile long double
+huge = 0x1p10000L,
+tiny = 0x1p-10000L;
+
+static const long double
+twom10000 = 0x1p-10000L;
+
+static const long double
+/* log(2**16384 - 0.5) rounded towards zero: */
+/* log(2**16384 - 0.5 + 1) rounded towards zero for expm1l() is the same: */
+o_threshold = 11356.523406294143949491931077970763428L,
+/* log(2**(-16381-64-1)) rounded towards zero: */
+u_threshold = -11433.462743336297878837243843452621503L;
+
+long double
+expl(long double x)
+{
+ union IEEEl2bits u;
+ long double hi, lo, t, twopk;
+ int k;
+ uint16_t hx, ix;
+
+ /* Filter out exceptional cases. */
+ u.e = x;
+ hx = u.xbits.expsign;
+ ix = hx & 0x7fff;
+ if (ix >= BIAS + 13) { /* |x| >= 8192 or x is NaN */
+ if (ix == BIAS + LDBL_MAX_EXP) {
+ if (hx & 0x8000) /* x is -Inf or -NaN */
+ RETURNF(-1 / x);
+ RETURNF(x + x); /* x is +Inf or +NaN */
+ }
+ if (x > o_threshold)
+ RETURNF(huge * huge);
+ if (x < u_threshold)
+ RETURNF(tiny * tiny);
+ } else if (ix < BIAS - 114) { /* |x| < 0x1p-114 */
+ RETURNF(1 + x); /* 1 with inexact iff x != 0 */
+ }
+
+ ENTERI();
+
+ twopk = 1;
+ __k_expl(x, &hi, &lo, &k);
+ t = SUM2P(hi, lo);
+
+ /* Scale by 2**k. */
+ /*
+ * XXX sparc64 multiplication was so slow that scalbnl() is faster,
+ * but performance on aarch64 and riscv hasn't yet been quantified.
+ */
+ if (k >= LDBL_MIN_EXP) {
+ if (k == LDBL_MAX_EXP)
+ RETURNI(t * 2 * 0x1p16383L);
+ SET_LDBL_EXPSIGN(twopk, BIAS + k);
+ RETURNI(t * twopk);
+ } else {
+ SET_LDBL_EXPSIGN(twopk, BIAS + k + 10000);
+ RETURNI(t * twopk * twom10000);
+ }
+}
+
+/*
+ * Our T1 and T2 are chosen to be approximately the points where method
+ * A and method B have the same accuracy. Tang's T1 and T2 are the
+ * points where method A's accuracy changes by a full bit. For Tang,
+ * this drop in accuracy makes method A immediately less accurate than
+ * method B, but our larger INTERVALS makes method A 2 bits more
+ * accurate so it remains the most accurate method significantly
+ * closer to the origin despite losing the full bit in our extended
+ * range for it.
+ *
+ * Split the interval [T1, T2] into two intervals [T1, T3] and [T3, T2].
+ * Setting T3 to 0 would require the |x| < 0x1p-113 condition to appear
+ * in both subintervals, so set T3 = 2**-5, which places the condition
+ * into the [T1, T3] interval.
+ *
+ * XXX we now do this more to (partially) balance the number of terms
+ * in the C and D polys than to avoid checking the condition in both
+ * intervals.
+ *
+ * XXX these micro-optimizations are excessive.
+ */
+static const double
+T1 = -0.1659, /* ~-30.625/128 * log(2) */
+T2 = 0.1659, /* ~30.625/128 * log(2) */
+T3 = 0.03125;
+
+/*
+ * Domain [-0.1659, 0.03125], range ~[2.9134e-44, 1.8404e-37]:
+ * |(exp(x)-1-x-x**2/2)/x - p(x)| < 2**-122.03
+ *
+ * XXX none of the long double C or D coeffs except C10 is correctly printed.
+ * If you re-print their values in %.35Le format, the result is always
+ * different. For example, the last 2 digits in C3 should be 59, not 67.
+ * 67 is apparently from rounding an extra-precision value to 36 decimal
+ * places.
+ */
+static const long double
+C3 = 1.66666666666666666666666666666666667e-1L,
+C4 = 4.16666666666666666666666666666666645e-2L,
+C5 = 8.33333333333333333333333333333371638e-3L,
+C6 = 1.38888888888888888888888888891188658e-3L,
+C7 = 1.98412698412698412698412697235950394e-4L,
+C8 = 2.48015873015873015873015112487849040e-5L,
+C9 = 2.75573192239858906525606685484412005e-6L,
+C10 = 2.75573192239858906612966093057020362e-7L,
+C11 = 2.50521083854417203619031960151253944e-8L,
+C12 = 2.08767569878679576457272282566520649e-9L,
+C13 = 1.60590438367252471783548748824255707e-10L;
+
+/*
+ * XXX this has 1 more coeff than needed.
+ * XXX can start the double coeffs but not the double mults at C10.
+ * With my coeffs (C10-C17 double; s = best_s):
+ * Domain [-0.1659, 0.03125], range ~[-1.1976e-37, 1.1976e-37]:
+ * |(exp(x)-1-x-x**2/2)/x - p(x)| ~< 2**-122.65
+ */
+static const double
+C14 = 1.1470745580491932e-11, /* 0x1.93974a81dae30p-37 */
+C15 = 7.6471620181090468e-13, /* 0x1.ae7f3820adab1p-41 */
+C16 = 4.7793721460260450e-14, /* 0x1.ae7cd18a18eacp-45 */
+C17 = 2.8074757356658877e-15, /* 0x1.949992a1937d9p-49 */
+C18 = 1.4760610323699476e-16; /* 0x1.545b43aabfbcdp-53 */
+
+/*
+ * Domain [0.03125, 0.1659], range ~[-2.7676e-37, -1.0367e-38]:
+ * |(exp(x)-1-x-x**2/2)/x - p(x)| < 2**-121.44
+ */
+static const long double
+D3 = 1.66666666666666666666666666666682245e-1L,
+D4 = 4.16666666666666666666666666634228324e-2L,
+D5 = 8.33333333333333333333333364022244481e-3L,
+D6 = 1.38888888888888888888887138722762072e-3L,
+D7 = 1.98412698412698412699085805424661471e-4L,
+D8 = 2.48015873015873015687993712101479612e-5L,
+D9 = 2.75573192239858944101036288338208042e-6L,
+D10 = 2.75573192239853161148064676533754048e-7L,
+D11 = 2.50521083855084570046480450935267433e-8L,
+D12 = 2.08767569819738524488686318024854942e-9L,
+D13 = 1.60590442297008495301927448122499313e-10L;
+
+/*
+ * XXX this has 1 more coeff than needed.
+ * XXX can start the double coeffs but not the double mults at D11.
+ * With my coeffs (D11-D16 double):
+ * Domain [0.03125, 0.1659], range ~[-1.1980e-37, 1.1980e-37]:
+ * |(exp(x)-1-x-x**2/2)/x - p(x)| ~< 2**-122.65
+ */
+static const double
+D14 = 1.1470726176204336e-11, /* 0x1.93971dc395d9ep-37 */
+D15 = 7.6478532249581686e-13, /* 0x1.ae892e3D16fcep-41 */
+D16 = 4.7628892832607741e-14, /* 0x1.ad00Dfe41feccp-45 */
+D17 = 3.0524857220358650e-15; /* 0x1.D7e8d886Df921p-49 */
+
+long double
+expm1l(long double x)
+{
+ union IEEEl2bits u, v;
+ long double hx2_hi, hx2_lo, q, r, r1, t, twomk, twopk, x_hi;
+ long double x_lo, x2;
+ double dr, dx, fn, r2;
+ int k, n, n2;
+ uint16_t hx, ix;
+
+ /* Filter out exceptional cases. */
+ u.e = x;
+ hx = u.xbits.expsign;
+ ix = hx & 0x7fff;
+ if (ix >= BIAS + 7) { /* |x| >= 128 or x is NaN */
+ if (ix == BIAS + LDBL_MAX_EXP) {
+ if (hx & 0x8000) /* x is -Inf or -NaN */
+ RETURNF(-1 / x - 1);
+ RETURNF(x + x); /* x is +Inf or +NaN */
+ }
+ if (x > o_threshold)
+ RETURNF(huge * huge);
+ /*
+ * expm1l() never underflows, but it must avoid
+ * unrepresentable large negative exponents. We used a
+ * much smaller threshold for large |x| above than in
+ * expl() so as to handle not so large negative exponents
+ * in the same way as large ones here.
+ */
+ if (hx & 0x8000) /* x <= -128 */
+ RETURNF(tiny - 1); /* good for x < -114ln2 - eps */
+ }
+
+ ENTERI();
+
+ if (T1 < x && x < T2) {
+ x2 = x * x;
+ dx = x;
+
+ if (x < T3) {
+ if (ix < BIAS - 113) { /* |x| < 0x1p-113 */
+ /* x (rounded) with inexact if x != 0: */
+ RETURNI(x == 0 ? x :
+ (0x1p200 * x + fabsl(x)) * 0x1p-200);
+ }
+ q = x * x2 * C3 + x2 * x2 * (C4 + x * (C5 + x * (C6 +
+ x * (C7 + x * (C8 + x * (C9 + x * (C10 +
+ x * (C11 + x * (C12 + x * (C13 +
+ dx * (C14 + dx * (C15 + dx * (C16 +
+ dx * (C17 + dx * C18))))))))))))));
+ } else {
+ q = x * x2 * D3 + x2 * x2 * (D4 + x * (D5 + x * (D6 +
+ x * (D7 + x * (D8 + x * (D9 + x * (D10 +
+ x * (D11 + x * (D12 + x * (D13 +
+ dx * (D14 + dx * (D15 + dx * (D16 +
+ dx * D17)))))))))))));
+ }
+
+ x_hi = (float)x;
+ x_lo = x - x_hi;
+ hx2_hi = x_hi * x_hi / 2;
+ hx2_lo = x_lo * (x + x_hi) / 2;
+ if (ix >= BIAS - 7)
+ RETURNI((hx2_hi + x_hi) + (hx2_lo + x_lo + q));
+ else
+ RETURNI(x + (hx2_lo + q + hx2_hi));
+ }
+
+ /* Reduce x to (k*ln2 + endpoint[n2] + r1 + r2). */
+ fn = rnint((double)x * INV_L);
+ n = irint(fn);
+ n2 = (unsigned)n % INTERVALS;
+ k = n >> LOG2_INTERVALS;
+ r1 = x - fn * L1;
+ r2 = fn * -L2;
+ r = r1 + r2;
+
+ /* Prepare scale factor. */
+ v.e = 1;
+ v.xbits.expsign = BIAS + k;
+ twopk = v.e;
+
+ /*
+ * Evaluate lower terms of
+ * expl(endpoint[n2] + r1 + r2) = tbl[n2] * expl(r1 + r2).
+ */
+ dr = r;
+ q = r2 + r * r * (A2 + r * (A3 + r * (A4 + r * (A5 + r * (A6 +
+ dr * (A7 + dr * (A8 + dr * (A9 + dr * A10))))))));
+
+ t = tbl[n2].lo + tbl[n2].hi;
+
+ if (k == 0) {
+ t = SUM2P(tbl[n2].hi - 1, tbl[n2].lo * (r1 + 1) + t * q +
+ tbl[n2].hi * r1);
+ RETURNI(t);
+ }
+ if (k == -1) {
+ t = SUM2P(tbl[n2].hi - 2, tbl[n2].lo * (r1 + 1) + t * q +
+ tbl[n2].hi * r1);
+ RETURNI(t / 2);
+ }
+ if (k < -7) {
+ t = SUM2P(tbl[n2].hi, tbl[n2].lo + t * (q + r1));
+ RETURNI(t * twopk - 1);
+ }
+ if (k > 2 * LDBL_MANT_DIG - 1) {
+ t = SUM2P(tbl[n2].hi, tbl[n2].lo + t * (q + r1));
+ if (k == LDBL_MAX_EXP)
+ RETURNI(t * 2 * 0x1p16383L - 1);
+ RETURNI(t * twopk - 1);
+ }
+
+ v.xbits.expsign = BIAS - k;
+ twomk = v.e;
+
+ if (k > LDBL_MANT_DIG - 1)
+ t = SUM2P(tbl[n2].hi, tbl[n2].lo - twomk + t * (q + r1));
+ else
+ t = SUM2P(tbl[n2].hi - twomk, tbl[n2].lo + t * (q + r1));
+ RETURNI(t * twopk);
+}