aboutsummaryrefslogtreecommitdiff
path: root/lib/msun/ld80/s_expl.c
diff options
context:
space:
mode:
Diffstat (limited to 'lib/msun/ld80/s_expl.c')
-rw-r--r--lib/msun/ld80/s_expl.c272
1 files changed, 272 insertions, 0 deletions
diff --git a/lib/msun/ld80/s_expl.c b/lib/msun/ld80/s_expl.c
new file mode 100644
index 000000000000..03d7b366151a
--- /dev/null
+++ b/lib/msun/ld80/s_expl.c
@@ -0,0 +1,272 @@
+/*-
+ * SPDX-License-Identifier: BSD-2-Clause
+ *
+ * Copyright (c) 2009-2013 Steven G. Kargl
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice unmodified, this list of conditions, and the following
+ * disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
+ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
+ * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
+ * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
+ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
+ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
+ * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ * Optimized by Bruce D. Evans.
+ */
+
+/**
+ * Compute the exponential of x for Intel 80-bit format. This is based on:
+ *
+ * PTP Tang, "Table-driven implementation of the exponential function
+ * in IEEE floating-point arithmetic," ACM Trans. Math. Soft., 15,
+ * 144-157 (1989).
+ *
+ * where the 32 table entries have been expanded to INTERVALS (see below).
+ */
+
+#include <float.h>
+
+#ifdef __i386__
+#include <ieeefp.h>
+#endif
+
+#include "fpmath.h"
+#include "math.h"
+#include "math_private.h"
+#include "k_expl.h"
+
+/* XXX Prevent compilers from erroneously constant folding these: */
+static const volatile long double
+huge = 0x1p10000L,
+tiny = 0x1p-10000L;
+
+static const long double
+twom10000 = 0x1p-10000L;
+
+static const union IEEEl2bits
+/* log(2**16384 - 0.5) rounded towards zero: */
+/* log(2**16384 - 0.5 + 1) rounded towards zero for expm1l() is the same: */
+o_thresholdu = LD80C(0xb17217f7d1cf79ab, 13, 11356.5234062941439488L),
+#define o_threshold (o_thresholdu.e)
+/* log(2**(-16381-64-1)) rounded towards zero: */
+u_thresholdu = LD80C(0xb21dfe7f09e2baa9, 13, -11399.4985314888605581L);
+#define u_threshold (u_thresholdu.e)
+
+long double
+expl(long double x)
+{
+ union IEEEl2bits u;
+ long double hi, lo, t, twopk;
+ int k;
+ uint16_t hx, ix;
+
+ /* Filter out exceptional cases. */
+ u.e = x;
+ hx = u.xbits.expsign;
+ ix = hx & 0x7fff;
+ if (ix >= BIAS + 13) { /* |x| >= 8192 or x is NaN */
+ if (ix == BIAS + LDBL_MAX_EXP) {
+ if (hx & 0x8000) /* x is -Inf, -NaN or unsupported */
+ RETURNF(-1 / x);
+ RETURNF(x + x); /* x is +Inf, +NaN or unsupported */
+ }
+ if (x > o_threshold)
+ RETURNF(huge * huge);
+ if (x < u_threshold)
+ RETURNF(tiny * tiny);
+ } else if (ix < BIAS - 75) { /* |x| < 0x1p-75 (includes pseudos) */
+ RETURNF(1 + x); /* 1 with inexact iff x != 0 */
+ }
+
+ ENTERI();
+
+ twopk = 1;
+ __k_expl(x, &hi, &lo, &k);
+ t = SUM2P(hi, lo);
+
+ /* Scale by 2**k. */
+ if (k >= LDBL_MIN_EXP) {
+ if (k == LDBL_MAX_EXP)
+ RETURNI(t * 2 * 0x1p16383L);
+ SET_LDBL_EXPSIGN(twopk, BIAS + k);
+ RETURNI(t * twopk);
+ } else {
+ SET_LDBL_EXPSIGN(twopk, BIAS + k + 10000);
+ RETURNI(t * twopk * twom10000);
+ }
+}
+
+/**
+ * Compute expm1l(x) for Intel 80-bit format. This is based on:
+ *
+ * PTP Tang, "Table-driven implementation of the Expm1 function
+ * in IEEE floating-point arithmetic," ACM Trans. Math. Soft., 18,
+ * 211-222 (1992).
+ */
+
+/*
+ * Our T1 and T2 are chosen to be approximately the points where method
+ * A and method B have the same accuracy. Tang's T1 and T2 are the
+ * points where method A's accuracy changes by a full bit. For Tang,
+ * this drop in accuracy makes method A immediately less accurate than
+ * method B, but our larger INTERVALS makes method A 2 bits more
+ * accurate so it remains the most accurate method significantly
+ * closer to the origin despite losing the full bit in our extended
+ * range for it.
+ */
+static const double
+T1 = -0.1659, /* ~-30.625/128 * log(2) */
+T2 = 0.1659; /* ~30.625/128 * log(2) */
+
+/*
+ * Domain [-0.1659, 0.1659], range ~[-2.6155e-22, 2.5507e-23]:
+ * |(exp(x)-1-x-x**2/2)/x - p(x)| < 2**-71.6
+ *
+ * XXX the coeffs aren't very carefully rounded, and I get 2.8 more bits,
+ * but unlike for ld128 we can't drop any terms.
+ */
+static const union IEEEl2bits
+B3 = LD80C(0xaaaaaaaaaaaaaaab, -3, 1.66666666666666666671e-1L),
+B4 = LD80C(0xaaaaaaaaaaaaaaac, -5, 4.16666666666666666712e-2L);
+
+static const double
+B5 = 8.3333333333333245e-3, /* 0x1.111111111110cp-7 */
+B6 = 1.3888888888888861e-3, /* 0x1.6c16c16c16c0ap-10 */
+B7 = 1.9841269841532042e-4, /* 0x1.a01a01a0319f9p-13 */
+B8 = 2.4801587302069236e-5, /* 0x1.a01a01a03cbbcp-16 */
+B9 = 2.7557316558468562e-6, /* 0x1.71de37fd33d67p-19 */
+B10 = 2.7557315829785151e-7, /* 0x1.27e4f91418144p-22 */
+B11 = 2.5063168199779829e-8, /* 0x1.ae94fabdc6b27p-26 */
+B12 = 2.0887164654459567e-9; /* 0x1.1f122d6413fe1p-29 */
+
+long double
+expm1l(long double x)
+{
+ union IEEEl2bits u, v;
+ long double fn, hx2_hi, hx2_lo, q, r, r1, r2, t, twomk, twopk, x_hi;
+ long double x_lo, x2, z;
+ long double x4;
+ int k, n, n2;
+ uint16_t hx, ix;
+
+ /* Filter out exceptional cases. */
+ u.e = x;
+ hx = u.xbits.expsign;
+ ix = hx & 0x7fff;
+ if (ix >= BIAS + 6) { /* |x| >= 64 or x is NaN */
+ if (ix == BIAS + LDBL_MAX_EXP) {
+ if (hx & 0x8000) /* x is -Inf, -NaN or unsupported */
+ RETURNF(-1 / x - 1);
+ RETURNF(x + x); /* x is +Inf, +NaN or unsupported */
+ }
+ if (x > o_threshold)
+ RETURNF(huge * huge);
+ /*
+ * expm1l() never underflows, but it must avoid
+ * unrepresentable large negative exponents. We used a
+ * much smaller threshold for large |x| above than in
+ * expl() so as to handle not so large negative exponents
+ * in the same way as large ones here.
+ */
+ if (hx & 0x8000) /* x <= -64 */
+ RETURNF(tiny - 1); /* good for x < -65ln2 - eps */
+ }
+
+ ENTERI();
+
+ if (T1 < x && x < T2) {
+ if (ix < BIAS - 74) { /* |x| < 0x1p-74 (includes pseudos) */
+ /* x (rounded) with inexact if x != 0: */
+ RETURNI(x == 0 ? x :
+ (0x1p100 * x + fabsl(x)) * 0x1p-100);
+ }
+
+ x2 = x * x;
+ x4 = x2 * x2;
+ q = x4 * (x2 * (x4 *
+ /*
+ * XXX the number of terms is no longer good for
+ * pairwise grouping of all except B3, and the
+ * grouping is no longer from highest down.
+ */
+ (x2 * B12 + (x * B11 + B10)) +
+ (x2 * (x * B9 + B8) + (x * B7 + B6))) +
+ (x * B5 + B4.e)) + x2 * x * B3.e;
+
+ x_hi = (float)x;
+ x_lo = x - x_hi;
+ hx2_hi = x_hi * x_hi / 2;
+ hx2_lo = x_lo * (x + x_hi) / 2;
+ if (ix >= BIAS - 7)
+ RETURNI((hx2_hi + x_hi) + (hx2_lo + x_lo + q));
+ else
+ RETURNI(x + (hx2_lo + q + hx2_hi));
+ }
+
+ /* Reduce x to (k*ln2 + endpoint[n2] + r1 + r2). */
+ fn = rnintl(x * INV_L);
+ n = irint(fn);
+ n2 = (unsigned)n % INTERVALS;
+ k = n >> LOG2_INTERVALS;
+ r1 = x - fn * L1;
+ r2 = fn * -L2;
+ r = r1 + r2;
+
+ /* Prepare scale factor. */
+ v.e = 1;
+ v.xbits.expsign = BIAS + k;
+ twopk = v.e;
+
+ /*
+ * Evaluate lower terms of
+ * expl(endpoint[n2] + r1 + r2) = tbl[n2] * expl(r1 + r2).
+ */
+ z = r * r;
+ q = r2 + z * (A2 + r * A3) + z * z * (A4 + r * A5) + z * z * z * A6;
+
+ t = (long double)tbl[n2].lo + tbl[n2].hi;
+
+ if (k == 0) {
+ t = SUM2P(tbl[n2].hi - 1, tbl[n2].lo * (r1 + 1) + t * q +
+ tbl[n2].hi * r1);
+ RETURNI(t);
+ }
+ if (k == -1) {
+ t = SUM2P(tbl[n2].hi - 2, tbl[n2].lo * (r1 + 1) + t * q +
+ tbl[n2].hi * r1);
+ RETURNI(t / 2);
+ }
+ if (k < -7) {
+ t = SUM2P(tbl[n2].hi, tbl[n2].lo + t * (q + r1));
+ RETURNI(t * twopk - 1);
+ }
+ if (k > 2 * LDBL_MANT_DIG - 1) {
+ t = SUM2P(tbl[n2].hi, tbl[n2].lo + t * (q + r1));
+ if (k == LDBL_MAX_EXP)
+ RETURNI(t * 2 * 0x1p16383L - 1);
+ RETURNI(t * twopk - 1);
+ }
+
+ v.xbits.expsign = BIAS - k;
+ twomk = v.e;
+
+ if (k > LDBL_MANT_DIG - 1)
+ t = SUM2P(tbl[n2].hi, tbl[n2].lo - twomk + t * (q + r1));
+ else
+ t = SUM2P(tbl[n2].hi - twomk, tbl[n2].lo + t * (q + r1));
+ RETURNI(t * twopk);
+}