aboutsummaryrefslogtreecommitdiff
path: root/lib/msun/tests/csqrt_test.c
diff options
context:
space:
mode:
Diffstat (limited to 'lib/msun/tests/csqrt_test.c')
-rw-r--r--lib/msun/tests/csqrt_test.c369
1 files changed, 369 insertions, 0 deletions
diff --git a/lib/msun/tests/csqrt_test.c b/lib/msun/tests/csqrt_test.c
new file mode 100644
index 000000000000..b9ae2b3b6ae7
--- /dev/null
+++ b/lib/msun/tests/csqrt_test.c
@@ -0,0 +1,369 @@
+/*-
+ * Copyright (c) 2007 David Schultz <das@FreeBSD.org>
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ */
+
+/*
+ * Tests for csqrt{,f}()
+ */
+
+#include <sys/param.h>
+
+#include <complex.h>
+#include <float.h>
+#include <math.h>
+#include <stdio.h>
+
+#include "test-utils.h"
+
+/*
+ * This is a test hook that can point to csqrtl(), _csqrt(), or to _csqrtf().
+ * The latter two convert to float or double, respectively, and test csqrtf()
+ * and csqrt() with the same arguments.
+ */
+static long double complex (*t_csqrt)(long double complex);
+
+static long double complex
+_csqrtf(long double complex d)
+{
+
+ return (csqrtf((float complex)d));
+}
+
+static long double complex
+_csqrt(long double complex d)
+{
+
+ return (csqrt((double complex)d));
+}
+
+#pragma STDC CX_LIMITED_RANGE OFF
+
+/*
+ * Compare d1 and d2 using special rules: NaN == NaN and +0 != -0.
+ * Fail an assertion if they differ.
+ */
+#define assert_equal(d1, d2) CHECK_CFPEQUAL_CS(d1, d2, CS_BOTH)
+
+/*
+ * Test csqrt for some finite arguments where the answer is exact.
+ * (We do not test if it produces correctly rounded answers when the
+ * result is inexact, nor do we check whether it throws spurious
+ * exceptions.)
+ */
+static void
+test_finite(void)
+{
+ static const double tests[] = {
+ /* csqrt(a + bI) = x + yI */
+ /* a b x y */
+ 0, 8, 2, 2,
+ 0, -8, 2, -2,
+ 4, 0, 2, 0,
+ -4, 0, 0, 2,
+ 3, 4, 2, 1,
+ 3, -4, 2, -1,
+ -3, 4, 1, 2,
+ -3, -4, 1, -2,
+ 5, 12, 3, 2,
+ 7, 24, 4, 3,
+ 9, 40, 5, 4,
+ 11, 60, 6, 5,
+ 13, 84, 7, 6,
+ 33, 56, 7, 4,
+ 39, 80, 8, 5,
+ 65, 72, 9, 4,
+ 987, 9916, 74, 67,
+ 5289, 6640, 83, 40,
+ 460766389075.0, 16762287900.0, 678910, 12345
+ };
+ /*
+ * We also test some multiples of the above arguments. This
+ * array defines which multiples we use. Note that these have
+ * to be small enough to not cause overflow for float precision
+ * with all of the constants in the above table.
+ */
+ static const double mults[] = {
+ 1,
+ 2,
+ 3,
+ 13,
+ 16,
+ 0x1.p30,
+ 0x1.p-30,
+ };
+
+ double a, b;
+ double x, y;
+ unsigned i, j;
+
+ for (i = 0; i < nitems(tests); i += 4) {
+ for (j = 0; j < nitems(mults); j++) {
+ a = tests[i] * mults[j] * mults[j];
+ b = tests[i + 1] * mults[j] * mults[j];
+ x = tests[i + 2] * mults[j];
+ y = tests[i + 3] * mults[j];
+ ATF_CHECK(t_csqrt(CMPLXL(a, b)) == CMPLXL(x, y));
+ }
+ }
+
+}
+
+/*
+ * Test the handling of +/- 0.
+ */
+static void
+test_zeros(void)
+{
+
+ assert_equal(t_csqrt(CMPLXL(0.0, 0.0)), CMPLXL(0.0, 0.0));
+ assert_equal(t_csqrt(CMPLXL(-0.0, 0.0)), CMPLXL(0.0, 0.0));
+ assert_equal(t_csqrt(CMPLXL(0.0, -0.0)), CMPLXL(0.0, -0.0));
+ assert_equal(t_csqrt(CMPLXL(-0.0, -0.0)), CMPLXL(0.0, -0.0));
+}
+
+/*
+ * Test the handling of infinities when the other argument is not NaN.
+ */
+static void
+test_infinities(void)
+{
+ static const double vals[] = {
+ 0.0,
+ -0.0,
+ 42.0,
+ -42.0,
+ INFINITY,
+ -INFINITY,
+ };
+
+ unsigned i;
+
+ for (i = 0; i < nitems(vals); i++) {
+ if (isfinite(vals[i])) {
+ assert_equal(t_csqrt(CMPLXL(-INFINITY, vals[i])),
+ CMPLXL(0.0, copysignl(INFINITY, vals[i])));
+ assert_equal(t_csqrt(CMPLXL(INFINITY, vals[i])),
+ CMPLXL(INFINITY, copysignl(0.0, vals[i])));
+ }
+ assert_equal(t_csqrt(CMPLXL(vals[i], INFINITY)),
+ CMPLXL(INFINITY, INFINITY));
+ assert_equal(t_csqrt(CMPLXL(vals[i], -INFINITY)),
+ CMPLXL(INFINITY, -INFINITY));
+ }
+}
+
+/*
+ * Test the handling of NaNs.
+ */
+static void
+test_nans(void)
+{
+
+ ATF_CHECK(creall(t_csqrt(CMPLXL(INFINITY, NAN))) == INFINITY);
+ ATF_CHECK(isnan(cimagl(t_csqrt(CMPLXL(INFINITY, NAN)))));
+
+ ATF_CHECK(isnan(creall(t_csqrt(CMPLXL(-INFINITY, NAN)))));
+ ATF_CHECK(isinf(cimagl(t_csqrt(CMPLXL(-INFINITY, NAN)))));
+
+ assert_equal(t_csqrt(CMPLXL(NAN, INFINITY)),
+ CMPLXL(INFINITY, INFINITY));
+ assert_equal(t_csqrt(CMPLXL(NAN, -INFINITY)),
+ CMPLXL(INFINITY, -INFINITY));
+
+ assert_equal(t_csqrt(CMPLXL(0.0, NAN)), CMPLXL(NAN, NAN));
+ assert_equal(t_csqrt(CMPLXL(-0.0, NAN)), CMPLXL(NAN, NAN));
+ assert_equal(t_csqrt(CMPLXL(42.0, NAN)), CMPLXL(NAN, NAN));
+ assert_equal(t_csqrt(CMPLXL(-42.0, NAN)), CMPLXL(NAN, NAN));
+ assert_equal(t_csqrt(CMPLXL(NAN, 0.0)), CMPLXL(NAN, NAN));
+ assert_equal(t_csqrt(CMPLXL(NAN, -0.0)), CMPLXL(NAN, NAN));
+ assert_equal(t_csqrt(CMPLXL(NAN, 42.0)), CMPLXL(NAN, NAN));
+ assert_equal(t_csqrt(CMPLXL(NAN, -42.0)), CMPLXL(NAN, NAN));
+ assert_equal(t_csqrt(CMPLXL(NAN, NAN)), CMPLXL(NAN, NAN));
+}
+
+/*
+ * Test whether csqrt(a + bi) works for inputs that are large enough to
+ * cause overflow in hypot(a, b) + a. Each of the tests is scaled up to
+ * near MAX_EXP.
+ */
+static void
+test_overflow(int maxexp)
+{
+ long double a, b;
+ long double complex result;
+ int exp, i;
+
+ ATF_CHECK(maxexp > 0 && maxexp % 2 == 0);
+
+ for (i = 0; i < 4; i++) {
+ exp = maxexp - 2 * i;
+
+ /* csqrt(115 + 252*I) == 14 + 9*I */
+ a = ldexpl(115 * 0x1p-8, exp);
+ b = ldexpl(252 * 0x1p-8, exp);
+ result = t_csqrt(CMPLXL(a, b));
+ ATF_CHECK_EQ(creall(result), ldexpl(14 * 0x1p-4, exp / 2));
+ ATF_CHECK_EQ(cimagl(result), ldexpl(9 * 0x1p-4, exp / 2));
+
+ /* csqrt(-11 + 60*I) = 5 + 6*I */
+ a = ldexpl(-11 * 0x1p-6, exp);
+ b = ldexpl(60 * 0x1p-6, exp);
+ result = t_csqrt(CMPLXL(a, b));
+ ATF_CHECK_EQ(creall(result), ldexpl(5 * 0x1p-3, exp / 2));
+ ATF_CHECK_EQ(cimagl(result), ldexpl(6 * 0x1p-3, exp / 2));
+
+ /* csqrt(225 + 0*I) == 15 + 0*I */
+ a = ldexpl(225 * 0x1p-8, exp);
+ b = 0;
+ result = t_csqrt(CMPLXL(a, b));
+ ATF_CHECK_EQ(creall(result), ldexpl(15 * 0x1p-4, exp / 2));
+ ATF_CHECK_EQ(cimagl(result), 0);
+ }
+}
+
+/*
+ * Test that precision is maintained for some large squares. Set all or
+ * some bits in the lower mantdig/2 bits, square the number, and try to
+ * recover the sqrt. Note:
+ * (x + xI)**2 = 2xxI
+ */
+static void
+test_precision(int maxexp, int mantdig)
+{
+ long double b, x;
+ long double complex result;
+#if LDBL_MANT_DIG <= 64
+ typedef uint64_t ldbl_mant_type;
+#elif LDBL_MANT_DIG <= 128
+ typedef __uint128_t ldbl_mant_type;
+#else
+#error "Unsupported long double format"
+#endif
+ ldbl_mant_type mantbits, sq_mantbits;
+ int exp, i;
+
+ ATF_REQUIRE(maxexp > 0 && maxexp % 2 == 0);
+ ATF_REQUIRE(mantdig <= LDBL_MANT_DIG);
+ mantdig = rounddown(mantdig, 2);
+
+ for (exp = 0; exp <= maxexp; exp += 2) {
+ mantbits = ((ldbl_mant_type)1 << (mantdig / 2)) - 1;
+ for (i = 0; i < 100 &&
+ mantbits > ((ldbl_mant_type)1 << (mantdig / 2 - 1));
+ i++, mantbits--) {
+ sq_mantbits = mantbits * mantbits;
+ /*
+ * sq_mantibts is a mantdig-bit number. Divide by
+ * 2**mantdig to normalize it to [0.5, 1), where,
+ * note, the binary power will be -1. Raise it by
+ * 2**exp for the test. exp is even. Lower it by
+ * one to reach a final binary power which is also
+ * even. The result should be exactly
+ * representable, given that mantdig is less than or
+ * equal to the available precision.
+ */
+ b = ldexpl((long double)sq_mantbits,
+ exp - 1 - mantdig);
+ x = ldexpl(mantbits, (exp - 2 - mantdig) / 2);
+ CHECK_FPEQUAL(b, x * x * 2);
+ result = t_csqrt(CMPLXL(0, b));
+ CHECK_FPEQUAL(x, creall(result));
+ CHECK_FPEQUAL(x, cimagl(result));
+ }
+ }
+}
+
+ATF_TC_WITHOUT_HEAD(csqrt);
+ATF_TC_BODY(csqrt, tc)
+{
+ /* Test csqrt() */
+ t_csqrt = _csqrt;
+
+ test_finite();
+
+ test_zeros();
+
+ test_infinities();
+
+ test_nans();
+
+ test_overflow(DBL_MAX_EXP);
+
+ test_precision(DBL_MAX_EXP, DBL_MANT_DIG);
+}
+
+ATF_TC_WITHOUT_HEAD(csqrtf);
+ATF_TC_BODY(csqrtf, tc)
+{
+ /* Now test csqrtf() */
+ t_csqrt = _csqrtf;
+
+ test_finite();
+
+ test_zeros();
+
+ test_infinities();
+
+ test_nans();
+
+ test_overflow(FLT_MAX_EXP);
+
+ test_precision(FLT_MAX_EXP, FLT_MANT_DIG);
+}
+
+ATF_TC_WITHOUT_HEAD(csqrtl);
+ATF_TC_BODY(csqrtl, tc)
+{
+ /* Now test csqrtl() */
+ t_csqrt = csqrtl;
+
+ test_finite();
+
+ test_zeros();
+
+ test_infinities();
+
+ test_nans();
+
+ test_overflow(LDBL_MAX_EXP);
+
+ /* i386 is configured to use 53-bit rounding precision for long double. */
+ test_precision(LDBL_MAX_EXP,
+#ifndef __i386__
+ LDBL_MANT_DIG
+#else
+ DBL_MANT_DIG
+#endif
+ );
+}
+
+ATF_TP_ADD_TCS(tp)
+{
+ ATF_TP_ADD_TC(tp, csqrt);
+ ATF_TP_ADD_TC(tp, csqrtf);
+ ATF_TP_ADD_TC(tp, csqrtl);
+
+ return (atf_no_error());
+}