diff options
Diffstat (limited to 'llvm/lib/CodeGen/MachinePipeliner.cpp')
| -rw-r--r-- | llvm/lib/CodeGen/MachinePipeliner.cpp | 3025 | 
1 files changed, 3025 insertions, 0 deletions
| diff --git a/llvm/lib/CodeGen/MachinePipeliner.cpp b/llvm/lib/CodeGen/MachinePipeliner.cpp new file mode 100644 index 000000000000..89c9f6093a97 --- /dev/null +++ b/llvm/lib/CodeGen/MachinePipeliner.cpp @@ -0,0 +1,3025 @@ +//===- MachinePipeliner.cpp - Machine Software Pipeliner Pass -------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// An implementation of the Swing Modulo Scheduling (SMS) software pipeliner. +// +// This SMS implementation is a target-independent back-end pass. When enabled, +// the pass runs just prior to the register allocation pass, while the machine +// IR is in SSA form. If software pipelining is successful, then the original +// loop is replaced by the optimized loop. The optimized loop contains one or +// more prolog blocks, the pipelined kernel, and one or more epilog blocks. If +// the instructions cannot be scheduled in a given MII, we increase the MII by +// one and try again. +// +// The SMS implementation is an extension of the ScheduleDAGInstrs class. We +// represent loop carried dependences in the DAG as order edges to the Phi +// nodes. We also perform several passes over the DAG to eliminate unnecessary +// edges that inhibit the ability to pipeline. The implementation uses the +// DFAPacketizer class to compute the minimum initiation interval and the check +// where an instruction may be inserted in the pipelined schedule. +// +// In order for the SMS pass to work, several target specific hooks need to be +// implemented to get information about the loop structure and to rewrite +// instructions. +// +//===----------------------------------------------------------------------===// + +#include "llvm/ADT/ArrayRef.h" +#include "llvm/ADT/BitVector.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/MapVector.h" +#include "llvm/ADT/PriorityQueue.h" +#include "llvm/ADT/SetVector.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/ADT/iterator_range.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Analysis/MemoryLocation.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/CodeGen/DFAPacketizer.h" +#include "llvm/CodeGen/LiveIntervals.h" +#include "llvm/CodeGen/MachineBasicBlock.h" +#include "llvm/CodeGen/MachineDominators.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineFunctionPass.h" +#include "llvm/CodeGen/MachineInstr.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineLoopInfo.h" +#include "llvm/CodeGen/MachineMemOperand.h" +#include "llvm/CodeGen/MachineOperand.h" +#include "llvm/CodeGen/MachinePipeliner.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/ModuloSchedule.h" +#include "llvm/CodeGen/RegisterPressure.h" +#include "llvm/CodeGen/ScheduleDAG.h" +#include "llvm/CodeGen/ScheduleDAGMutation.h" +#include "llvm/CodeGen/TargetOpcodes.h" +#include "llvm/CodeGen/TargetRegisterInfo.h" +#include "llvm/CodeGen/TargetSubtargetInfo.h" +#include "llvm/Config/llvm-config.h" +#include "llvm/IR/Attributes.h" +#include "llvm/IR/DebugLoc.h" +#include "llvm/IR/Function.h" +#include "llvm/MC/LaneBitmask.h" +#include "llvm/MC/MCInstrDesc.h" +#include "llvm/MC/MCInstrItineraries.h" +#include "llvm/MC/MCRegisterInfo.h" +#include "llvm/Pass.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/raw_ostream.h" +#include <algorithm> +#include <cassert> +#include <climits> +#include <cstdint> +#include <deque> +#include <functional> +#include <iterator> +#include <map> +#include <memory> +#include <tuple> +#include <utility> +#include <vector> + +using namespace llvm; + +#define DEBUG_TYPE "pipeliner" + +STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline"); +STATISTIC(NumPipelined, "Number of loops software pipelined"); +STATISTIC(NumNodeOrderIssues, "Number of node order issues found"); +STATISTIC(NumFailBranch, "Pipeliner abort due to unknown branch"); +STATISTIC(NumFailLoop, "Pipeliner abort due to unsupported loop"); +STATISTIC(NumFailPreheader, "Pipeliner abort due to missing preheader"); +STATISTIC(NumFailLargeMaxMII, "Pipeliner abort due to MaxMII too large"); +STATISTIC(NumFailZeroMII, "Pipeliner abort due to zero MII"); +STATISTIC(NumFailNoSchedule, "Pipeliner abort due to no schedule found"); +STATISTIC(NumFailZeroStage, "Pipeliner abort due to zero stage"); +STATISTIC(NumFailLargeMaxStage, "Pipeliner abort due to too many stages"); + +/// A command line option to turn software pipelining on or off. +static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true), +                               cl::ZeroOrMore, +                               cl::desc("Enable Software Pipelining")); + +/// A command line option to enable SWP at -Os. +static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size", +                                      cl::desc("Enable SWP at Os."), cl::Hidden, +                                      cl::init(false)); + +/// A command line argument to limit minimum initial interval for pipelining. +static cl::opt<int> SwpMaxMii("pipeliner-max-mii", +                              cl::desc("Size limit for the MII."), +                              cl::Hidden, cl::init(27)); + +/// A command line argument to limit the number of stages in the pipeline. +static cl::opt<int> +    SwpMaxStages("pipeliner-max-stages", +                 cl::desc("Maximum stages allowed in the generated scheduled."), +                 cl::Hidden, cl::init(3)); + +/// A command line option to disable the pruning of chain dependences due to +/// an unrelated Phi. +static cl::opt<bool> +    SwpPruneDeps("pipeliner-prune-deps", +                 cl::desc("Prune dependences between unrelated Phi nodes."), +                 cl::Hidden, cl::init(true)); + +/// A command line option to disable the pruning of loop carried order +/// dependences. +static cl::opt<bool> +    SwpPruneLoopCarried("pipeliner-prune-loop-carried", +                        cl::desc("Prune loop carried order dependences."), +                        cl::Hidden, cl::init(true)); + +#ifndef NDEBUG +static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1)); +#endif + +static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii", +                                     cl::ReallyHidden, cl::init(false), +                                     cl::ZeroOrMore, cl::desc("Ignore RecMII")); + +static cl::opt<bool> SwpShowResMask("pipeliner-show-mask", cl::Hidden, +                                    cl::init(false)); +static cl::opt<bool> SwpDebugResource("pipeliner-dbg-res", cl::Hidden, +                                      cl::init(false)); + +static cl::opt<bool> EmitTestAnnotations( +    "pipeliner-annotate-for-testing", cl::Hidden, cl::init(false), +    cl::desc("Instead of emitting the pipelined code, annotate instructions " +             "with the generated schedule for feeding into the " +             "-modulo-schedule-test pass")); + +static cl::opt<bool> ExperimentalCodeGen( +    "pipeliner-experimental-cg", cl::Hidden, cl::init(false), +    cl::desc( +        "Use the experimental peeling code generator for software pipelining")); + +namespace llvm { + +// A command line option to enable the CopyToPhi DAG mutation. +cl::opt<bool> +    SwpEnableCopyToPhi("pipeliner-enable-copytophi", cl::ReallyHidden, +                       cl::init(true), cl::ZeroOrMore, +                       cl::desc("Enable CopyToPhi DAG Mutation")); + +} // end namespace llvm + +unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5; +char MachinePipeliner::ID = 0; +#ifndef NDEBUG +int MachinePipeliner::NumTries = 0; +#endif +char &llvm::MachinePipelinerID = MachinePipeliner::ID; + +INITIALIZE_PASS_BEGIN(MachinePipeliner, DEBUG_TYPE, +                      "Modulo Software Pipelining", false, false) +INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) +INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) +INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) +INITIALIZE_PASS_DEPENDENCY(LiveIntervals) +INITIALIZE_PASS_END(MachinePipeliner, DEBUG_TYPE, +                    "Modulo Software Pipelining", false, false) + +/// The "main" function for implementing Swing Modulo Scheduling. +bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) { +  if (skipFunction(mf.getFunction())) +    return false; + +  if (!EnableSWP) +    return false; + +  if (mf.getFunction().getAttributes().hasAttribute( +          AttributeList::FunctionIndex, Attribute::OptimizeForSize) && +      !EnableSWPOptSize.getPosition()) +    return false; + +  if (!mf.getSubtarget().enableMachinePipeliner()) +    return false; + +  // Cannot pipeline loops without instruction itineraries if we are using +  // DFA for the pipeliner. +  if (mf.getSubtarget().useDFAforSMS() && +      (!mf.getSubtarget().getInstrItineraryData() || +       mf.getSubtarget().getInstrItineraryData()->isEmpty())) +    return false; + +  MF = &mf; +  MLI = &getAnalysis<MachineLoopInfo>(); +  MDT = &getAnalysis<MachineDominatorTree>(); +  TII = MF->getSubtarget().getInstrInfo(); +  RegClassInfo.runOnMachineFunction(*MF); + +  for (auto &L : *MLI) +    scheduleLoop(*L); + +  return false; +} + +/// Attempt to perform the SMS algorithm on the specified loop. This function is +/// the main entry point for the algorithm.  The function identifies candidate +/// loops, calculates the minimum initiation interval, and attempts to schedule +/// the loop. +bool MachinePipeliner::scheduleLoop(MachineLoop &L) { +  bool Changed = false; +  for (auto &InnerLoop : L) +    Changed |= scheduleLoop(*InnerLoop); + +#ifndef NDEBUG +  // Stop trying after reaching the limit (if any). +  int Limit = SwpLoopLimit; +  if (Limit >= 0) { +    if (NumTries >= SwpLoopLimit) +      return Changed; +    NumTries++; +  } +#endif + +  setPragmaPipelineOptions(L); +  if (!canPipelineLoop(L)) { +    LLVM_DEBUG(dbgs() << "\n!!! Can not pipeline loop.\n"); +    return Changed; +  } + +  ++NumTrytoPipeline; + +  Changed = swingModuloScheduler(L); + +  return Changed; +} + +void MachinePipeliner::setPragmaPipelineOptions(MachineLoop &L) { +  MachineBasicBlock *LBLK = L.getTopBlock(); + +  if (LBLK == nullptr) +    return; + +  const BasicBlock *BBLK = LBLK->getBasicBlock(); +  if (BBLK == nullptr) +    return; + +  const Instruction *TI = BBLK->getTerminator(); +  if (TI == nullptr) +    return; + +  MDNode *LoopID = TI->getMetadata(LLVMContext::MD_loop); +  if (LoopID == nullptr) +    return; + +  assert(LoopID->getNumOperands() > 0 && "requires atleast one operand"); +  assert(LoopID->getOperand(0) == LoopID && "invalid loop"); + +  for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) { +    MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); + +    if (MD == nullptr) +      continue; + +    MDString *S = dyn_cast<MDString>(MD->getOperand(0)); + +    if (S == nullptr) +      continue; + +    if (S->getString() == "llvm.loop.pipeline.initiationinterval") { +      assert(MD->getNumOperands() == 2 && +             "Pipeline initiation interval hint metadata should have two operands."); +      II_setByPragma = +          mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue(); +      assert(II_setByPragma >= 1 && "Pipeline initiation interval must be positive."); +    } else if (S->getString() == "llvm.loop.pipeline.disable") { +      disabledByPragma = true; +    } +  } +} + +/// Return true if the loop can be software pipelined.  The algorithm is +/// restricted to loops with a single basic block.  Make sure that the +/// branch in the loop can be analyzed. +bool MachinePipeliner::canPipelineLoop(MachineLoop &L) { +  if (L.getNumBlocks() != 1) +    return false; + +  if (disabledByPragma) +    return false; + +  // Check if the branch can't be understood because we can't do pipelining +  // if that's the case. +  LI.TBB = nullptr; +  LI.FBB = nullptr; +  LI.BrCond.clear(); +  if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond)) { +    LLVM_DEBUG( +        dbgs() << "Unable to analyzeBranch, can NOT pipeline current Loop\n"); +    NumFailBranch++; +    return false; +  } + +  LI.LoopInductionVar = nullptr; +  LI.LoopCompare = nullptr; +  if (!TII->analyzeLoopForPipelining(L.getTopBlock())) { +    LLVM_DEBUG( +        dbgs() << "Unable to analyzeLoop, can NOT pipeline current Loop\n"); +    NumFailLoop++; +    return false; +  } + +  if (!L.getLoopPreheader()) { +    LLVM_DEBUG( +        dbgs() << "Preheader not found, can NOT pipeline current Loop\n"); +    NumFailPreheader++; +    return false; +  } + +  // Remove any subregisters from inputs to phi nodes. +  preprocessPhiNodes(*L.getHeader()); +  return true; +} + +void MachinePipeliner::preprocessPhiNodes(MachineBasicBlock &B) { +  MachineRegisterInfo &MRI = MF->getRegInfo(); +  SlotIndexes &Slots = *getAnalysis<LiveIntervals>().getSlotIndexes(); + +  for (MachineInstr &PI : make_range(B.begin(), B.getFirstNonPHI())) { +    MachineOperand &DefOp = PI.getOperand(0); +    assert(DefOp.getSubReg() == 0); +    auto *RC = MRI.getRegClass(DefOp.getReg()); + +    for (unsigned i = 1, n = PI.getNumOperands(); i != n; i += 2) { +      MachineOperand &RegOp = PI.getOperand(i); +      if (RegOp.getSubReg() == 0) +        continue; + +      // If the operand uses a subregister, replace it with a new register +      // without subregisters, and generate a copy to the new register. +      Register NewReg = MRI.createVirtualRegister(RC); +      MachineBasicBlock &PredB = *PI.getOperand(i+1).getMBB(); +      MachineBasicBlock::iterator At = PredB.getFirstTerminator(); +      const DebugLoc &DL = PredB.findDebugLoc(At); +      auto Copy = BuildMI(PredB, At, DL, TII->get(TargetOpcode::COPY), NewReg) +                    .addReg(RegOp.getReg(), getRegState(RegOp), +                            RegOp.getSubReg()); +      Slots.insertMachineInstrInMaps(*Copy); +      RegOp.setReg(NewReg); +      RegOp.setSubReg(0); +    } +  } +} + +/// The SMS algorithm consists of the following main steps: +/// 1. Computation and analysis of the dependence graph. +/// 2. Ordering of the nodes (instructions). +/// 3. Attempt to Schedule the loop. +bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) { +  assert(L.getBlocks().size() == 1 && "SMS works on single blocks only."); + +  SwingSchedulerDAG SMS(*this, L, getAnalysis<LiveIntervals>(), RegClassInfo, +                        II_setByPragma); + +  MachineBasicBlock *MBB = L.getHeader(); +  // The kernel should not include any terminator instructions.  These +  // will be added back later. +  SMS.startBlock(MBB); + +  // Compute the number of 'real' instructions in the basic block by +  // ignoring terminators. +  unsigned size = MBB->size(); +  for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(), +                                   E = MBB->instr_end(); +       I != E; ++I, --size) +    ; + +  SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size); +  SMS.schedule(); +  SMS.exitRegion(); + +  SMS.finishBlock(); +  return SMS.hasNewSchedule(); +} + +void SwingSchedulerDAG::setMII(unsigned ResMII, unsigned RecMII) { +  if (II_setByPragma > 0) +    MII = II_setByPragma; +  else +    MII = std::max(ResMII, RecMII); +} + +void SwingSchedulerDAG::setMAX_II() { +  if (II_setByPragma > 0) +    MAX_II = II_setByPragma; +  else +    MAX_II = MII + 10; +} + +/// We override the schedule function in ScheduleDAGInstrs to implement the +/// scheduling part of the Swing Modulo Scheduling algorithm. +void SwingSchedulerDAG::schedule() { +  AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults(); +  buildSchedGraph(AA); +  addLoopCarriedDependences(AA); +  updatePhiDependences(); +  Topo.InitDAGTopologicalSorting(); +  changeDependences(); +  postprocessDAG(); +  LLVM_DEBUG(dump()); + +  NodeSetType NodeSets; +  findCircuits(NodeSets); +  NodeSetType Circuits = NodeSets; + +  // Calculate the MII. +  unsigned ResMII = calculateResMII(); +  unsigned RecMII = calculateRecMII(NodeSets); + +  fuseRecs(NodeSets); + +  // This flag is used for testing and can cause correctness problems. +  if (SwpIgnoreRecMII) +    RecMII = 0; + +  setMII(ResMII, RecMII); +  setMAX_II(); + +  LLVM_DEBUG(dbgs() << "MII = " << MII << " MAX_II = " << MAX_II +                    << " (rec=" << RecMII << ", res=" << ResMII << ")\n"); + +  // Can't schedule a loop without a valid MII. +  if (MII == 0) { +    LLVM_DEBUG( +        dbgs() +        << "0 is not a valid Minimal Initiation Interval, can NOT schedule\n"); +    NumFailZeroMII++; +    return; +  } + +  // Don't pipeline large loops. +  if (SwpMaxMii != -1 && (int)MII > SwpMaxMii) { +    LLVM_DEBUG(dbgs() << "MII > " << SwpMaxMii +                      << ", we don't pipleline large loops\n"); +    NumFailLargeMaxMII++; +    return; +  } + +  computeNodeFunctions(NodeSets); + +  registerPressureFilter(NodeSets); + +  colocateNodeSets(NodeSets); + +  checkNodeSets(NodeSets); + +  LLVM_DEBUG({ +    for (auto &I : NodeSets) { +      dbgs() << "  Rec NodeSet "; +      I.dump(); +    } +  }); + +  llvm::stable_sort(NodeSets, std::greater<NodeSet>()); + +  groupRemainingNodes(NodeSets); + +  removeDuplicateNodes(NodeSets); + +  LLVM_DEBUG({ +    for (auto &I : NodeSets) { +      dbgs() << "  NodeSet "; +      I.dump(); +    } +  }); + +  computeNodeOrder(NodeSets); + +  // check for node order issues +  checkValidNodeOrder(Circuits); + +  SMSchedule Schedule(Pass.MF); +  Scheduled = schedulePipeline(Schedule); + +  if (!Scheduled){ +    LLVM_DEBUG(dbgs() << "No schedule found, return\n"); +    NumFailNoSchedule++; +    return; +  } + +  unsigned numStages = Schedule.getMaxStageCount(); +  // No need to generate pipeline if there are no overlapped iterations. +  if (numStages == 0) { +    LLVM_DEBUG( +        dbgs() << "No overlapped iterations, no need to generate pipeline\n"); +    NumFailZeroStage++; +    return; +  } +  // Check that the maximum stage count is less than user-defined limit. +  if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages) { +    LLVM_DEBUG(dbgs() << "numStages:" << numStages << ">" << SwpMaxStages +                      << " : too many stages, abort\n"); +    NumFailLargeMaxStage++; +    return; +  } + +  // Generate the schedule as a ModuloSchedule. +  DenseMap<MachineInstr *, int> Cycles, Stages; +  std::vector<MachineInstr *> OrderedInsts; +  for (int Cycle = Schedule.getFirstCycle(); Cycle <= Schedule.getFinalCycle(); +       ++Cycle) { +    for (SUnit *SU : Schedule.getInstructions(Cycle)) { +      OrderedInsts.push_back(SU->getInstr()); +      Cycles[SU->getInstr()] = Cycle; +      Stages[SU->getInstr()] = Schedule.stageScheduled(SU); +    } +  } +  DenseMap<MachineInstr *, std::pair<unsigned, int64_t>> NewInstrChanges; +  for (auto &KV : NewMIs) { +    Cycles[KV.first] = Cycles[KV.second]; +    Stages[KV.first] = Stages[KV.second]; +    NewInstrChanges[KV.first] = InstrChanges[getSUnit(KV.first)]; +  } + +  ModuloSchedule MS(MF, &Loop, std::move(OrderedInsts), std::move(Cycles), +                    std::move(Stages)); +  if (EmitTestAnnotations) { +    assert(NewInstrChanges.empty() && +           "Cannot serialize a schedule with InstrChanges!"); +    ModuloScheduleTestAnnotater MSTI(MF, MS); +    MSTI.annotate(); +    return; +  } +  // The experimental code generator can't work if there are InstChanges. +  if (ExperimentalCodeGen && NewInstrChanges.empty()) { +    PeelingModuloScheduleExpander MSE(MF, MS, &LIS); +    MSE.expand(); +  } else { +    ModuloScheduleExpander MSE(MF, MS, LIS, std::move(NewInstrChanges)); +    MSE.expand(); +    MSE.cleanup(); +  } +  ++NumPipelined; +} + +/// Clean up after the software pipeliner runs. +void SwingSchedulerDAG::finishBlock() { +  for (auto &KV : NewMIs) +    MF.DeleteMachineInstr(KV.second); +  NewMIs.clear(); + +  // Call the superclass. +  ScheduleDAGInstrs::finishBlock(); +} + +/// Return the register values for  the operands of a Phi instruction. +/// This function assume the instruction is a Phi. +static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop, +                       unsigned &InitVal, unsigned &LoopVal) { +  assert(Phi.isPHI() && "Expecting a Phi."); + +  InitVal = 0; +  LoopVal = 0; +  for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) +    if (Phi.getOperand(i + 1).getMBB() != Loop) +      InitVal = Phi.getOperand(i).getReg(); +    else +      LoopVal = Phi.getOperand(i).getReg(); + +  assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure."); +} + +/// Return the Phi register value that comes the loop block. +static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { +  for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) +    if (Phi.getOperand(i + 1).getMBB() == LoopBB) +      return Phi.getOperand(i).getReg(); +  return 0; +} + +/// Return true if SUb can be reached from SUa following the chain edges. +static bool isSuccOrder(SUnit *SUa, SUnit *SUb) { +  SmallPtrSet<SUnit *, 8> Visited; +  SmallVector<SUnit *, 8> Worklist; +  Worklist.push_back(SUa); +  while (!Worklist.empty()) { +    const SUnit *SU = Worklist.pop_back_val(); +    for (auto &SI : SU->Succs) { +      SUnit *SuccSU = SI.getSUnit(); +      if (SI.getKind() == SDep::Order) { +        if (Visited.count(SuccSU)) +          continue; +        if (SuccSU == SUb) +          return true; +        Worklist.push_back(SuccSU); +        Visited.insert(SuccSU); +      } +    } +  } +  return false; +} + +/// Return true if the instruction causes a chain between memory +/// references before and after it. +static bool isDependenceBarrier(MachineInstr &MI, AliasAnalysis *AA) { +  return MI.isCall() || MI.mayRaiseFPException() || +         MI.hasUnmodeledSideEffects() || +         (MI.hasOrderedMemoryRef() && +          (!MI.mayLoad() || !MI.isDereferenceableInvariantLoad(AA))); +} + +/// Return the underlying objects for the memory references of an instruction. +/// This function calls the code in ValueTracking, but first checks that the +/// instruction has a memory operand. +static void getUnderlyingObjects(const MachineInstr *MI, +                                 SmallVectorImpl<const Value *> &Objs, +                                 const DataLayout &DL) { +  if (!MI->hasOneMemOperand()) +    return; +  MachineMemOperand *MM = *MI->memoperands_begin(); +  if (!MM->getValue()) +    return; +  GetUnderlyingObjects(MM->getValue(), Objs, DL); +  for (const Value *V : Objs) { +    if (!isIdentifiedObject(V)) { +      Objs.clear(); +      return; +    } +    Objs.push_back(V); +  } +} + +/// Add a chain edge between a load and store if the store can be an +/// alias of the load on a subsequent iteration, i.e., a loop carried +/// dependence. This code is very similar to the code in ScheduleDAGInstrs +/// but that code doesn't create loop carried dependences. +void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) { +  MapVector<const Value *, SmallVector<SUnit *, 4>> PendingLoads; +  Value *UnknownValue = +    UndefValue::get(Type::getVoidTy(MF.getFunction().getContext())); +  for (auto &SU : SUnits) { +    MachineInstr &MI = *SU.getInstr(); +    if (isDependenceBarrier(MI, AA)) +      PendingLoads.clear(); +    else if (MI.mayLoad()) { +      SmallVector<const Value *, 4> Objs; +      getUnderlyingObjects(&MI, Objs, MF.getDataLayout()); +      if (Objs.empty()) +        Objs.push_back(UnknownValue); +      for (auto V : Objs) { +        SmallVector<SUnit *, 4> &SUs = PendingLoads[V]; +        SUs.push_back(&SU); +      } +    } else if (MI.mayStore()) { +      SmallVector<const Value *, 4> Objs; +      getUnderlyingObjects(&MI, Objs, MF.getDataLayout()); +      if (Objs.empty()) +        Objs.push_back(UnknownValue); +      for (auto V : Objs) { +        MapVector<const Value *, SmallVector<SUnit *, 4>>::iterator I = +            PendingLoads.find(V); +        if (I == PendingLoads.end()) +          continue; +        for (auto Load : I->second) { +          if (isSuccOrder(Load, &SU)) +            continue; +          MachineInstr &LdMI = *Load->getInstr(); +          // First, perform the cheaper check that compares the base register. +          // If they are the same and the load offset is less than the store +          // offset, then mark the dependence as loop carried potentially. +          const MachineOperand *BaseOp1, *BaseOp2; +          int64_t Offset1, Offset2; +          if (TII->getMemOperandWithOffset(LdMI, BaseOp1, Offset1, TRI) && +              TII->getMemOperandWithOffset(MI, BaseOp2, Offset2, TRI)) { +            if (BaseOp1->isIdenticalTo(*BaseOp2) && +                (int)Offset1 < (int)Offset2) { +              assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI) && +                     "What happened to the chain edge?"); +              SDep Dep(Load, SDep::Barrier); +              Dep.setLatency(1); +              SU.addPred(Dep); +              continue; +            } +          } +          // Second, the more expensive check that uses alias analysis on the +          // base registers. If they alias, and the load offset is less than +          // the store offset, the mark the dependence as loop carried. +          if (!AA) { +            SDep Dep(Load, SDep::Barrier); +            Dep.setLatency(1); +            SU.addPred(Dep); +            continue; +          } +          MachineMemOperand *MMO1 = *LdMI.memoperands_begin(); +          MachineMemOperand *MMO2 = *MI.memoperands_begin(); +          if (!MMO1->getValue() || !MMO2->getValue()) { +            SDep Dep(Load, SDep::Barrier); +            Dep.setLatency(1); +            SU.addPred(Dep); +            continue; +          } +          if (MMO1->getValue() == MMO2->getValue() && +              MMO1->getOffset() <= MMO2->getOffset()) { +            SDep Dep(Load, SDep::Barrier); +            Dep.setLatency(1); +            SU.addPred(Dep); +            continue; +          } +          AliasResult AAResult = AA->alias( +              MemoryLocation(MMO1->getValue(), LocationSize::unknown(), +                             MMO1->getAAInfo()), +              MemoryLocation(MMO2->getValue(), LocationSize::unknown(), +                             MMO2->getAAInfo())); + +          if (AAResult != NoAlias) { +            SDep Dep(Load, SDep::Barrier); +            Dep.setLatency(1); +            SU.addPred(Dep); +          } +        } +      } +    } +  } +} + +/// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer +/// processes dependences for PHIs. This function adds true dependences +/// from a PHI to a use, and a loop carried dependence from the use to the +/// PHI. The loop carried dependence is represented as an anti dependence +/// edge. This function also removes chain dependences between unrelated +/// PHIs. +void SwingSchedulerDAG::updatePhiDependences() { +  SmallVector<SDep, 4> RemoveDeps; +  const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>(); + +  // Iterate over each DAG node. +  for (SUnit &I : SUnits) { +    RemoveDeps.clear(); +    // Set to true if the instruction has an operand defined by a Phi. +    unsigned HasPhiUse = 0; +    unsigned HasPhiDef = 0; +    MachineInstr *MI = I.getInstr(); +    // Iterate over each operand, and we process the definitions. +    for (MachineInstr::mop_iterator MOI = MI->operands_begin(), +                                    MOE = MI->operands_end(); +         MOI != MOE; ++MOI) { +      if (!MOI->isReg()) +        continue; +      Register Reg = MOI->getReg(); +      if (MOI->isDef()) { +        // If the register is used by a Phi, then create an anti dependence. +        for (MachineRegisterInfo::use_instr_iterator +                 UI = MRI.use_instr_begin(Reg), +                 UE = MRI.use_instr_end(); +             UI != UE; ++UI) { +          MachineInstr *UseMI = &*UI; +          SUnit *SU = getSUnit(UseMI); +          if (SU != nullptr && UseMI->isPHI()) { +            if (!MI->isPHI()) { +              SDep Dep(SU, SDep::Anti, Reg); +              Dep.setLatency(1); +              I.addPred(Dep); +            } else { +              HasPhiDef = Reg; +              // Add a chain edge to a dependent Phi that isn't an existing +              // predecessor. +              if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) +                I.addPred(SDep(SU, SDep::Barrier)); +            } +          } +        } +      } else if (MOI->isUse()) { +        // If the register is defined by a Phi, then create a true dependence. +        MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg); +        if (DefMI == nullptr) +          continue; +        SUnit *SU = getSUnit(DefMI); +        if (SU != nullptr && DefMI->isPHI()) { +          if (!MI->isPHI()) { +            SDep Dep(SU, SDep::Data, Reg); +            Dep.setLatency(0); +            ST.adjustSchedDependency(SU, &I, Dep); +            I.addPred(Dep); +          } else { +            HasPhiUse = Reg; +            // Add a chain edge to a dependent Phi that isn't an existing +            // predecessor. +            if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) +              I.addPred(SDep(SU, SDep::Barrier)); +          } +        } +      } +    } +    // Remove order dependences from an unrelated Phi. +    if (!SwpPruneDeps) +      continue; +    for (auto &PI : I.Preds) { +      MachineInstr *PMI = PI.getSUnit()->getInstr(); +      if (PMI->isPHI() && PI.getKind() == SDep::Order) { +        if (I.getInstr()->isPHI()) { +          if (PMI->getOperand(0).getReg() == HasPhiUse) +            continue; +          if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef) +            continue; +        } +        RemoveDeps.push_back(PI); +      } +    } +    for (int i = 0, e = RemoveDeps.size(); i != e; ++i) +      I.removePred(RemoveDeps[i]); +  } +} + +/// Iterate over each DAG node and see if we can change any dependences +/// in order to reduce the recurrence MII. +void SwingSchedulerDAG::changeDependences() { +  // See if an instruction can use a value from the previous iteration. +  // If so, we update the base and offset of the instruction and change +  // the dependences. +  for (SUnit &I : SUnits) { +    unsigned BasePos = 0, OffsetPos = 0, NewBase = 0; +    int64_t NewOffset = 0; +    if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase, +                               NewOffset)) +      continue; + +    // Get the MI and SUnit for the instruction that defines the original base. +    Register OrigBase = I.getInstr()->getOperand(BasePos).getReg(); +    MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase); +    if (!DefMI) +      continue; +    SUnit *DefSU = getSUnit(DefMI); +    if (!DefSU) +      continue; +    // Get the MI and SUnit for the instruction that defins the new base. +    MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase); +    if (!LastMI) +      continue; +    SUnit *LastSU = getSUnit(LastMI); +    if (!LastSU) +      continue; + +    if (Topo.IsReachable(&I, LastSU)) +      continue; + +    // Remove the dependence. The value now depends on a prior iteration. +    SmallVector<SDep, 4> Deps; +    for (SUnit::pred_iterator P = I.Preds.begin(), E = I.Preds.end(); P != E; +         ++P) +      if (P->getSUnit() == DefSU) +        Deps.push_back(*P); +    for (int i = 0, e = Deps.size(); i != e; i++) { +      Topo.RemovePred(&I, Deps[i].getSUnit()); +      I.removePred(Deps[i]); +    } +    // Remove the chain dependence between the instructions. +    Deps.clear(); +    for (auto &P : LastSU->Preds) +      if (P.getSUnit() == &I && P.getKind() == SDep::Order) +        Deps.push_back(P); +    for (int i = 0, e = Deps.size(); i != e; i++) { +      Topo.RemovePred(LastSU, Deps[i].getSUnit()); +      LastSU->removePred(Deps[i]); +    } + +    // Add a dependence between the new instruction and the instruction +    // that defines the new base. +    SDep Dep(&I, SDep::Anti, NewBase); +    Topo.AddPred(LastSU, &I); +    LastSU->addPred(Dep); + +    // Remember the base and offset information so that we can update the +    // instruction during code generation. +    InstrChanges[&I] = std::make_pair(NewBase, NewOffset); +  } +} + +namespace { + +// FuncUnitSorter - Comparison operator used to sort instructions by +// the number of functional unit choices. +struct FuncUnitSorter { +  const InstrItineraryData *InstrItins; +  const MCSubtargetInfo *STI; +  DenseMap<unsigned, unsigned> Resources; + +  FuncUnitSorter(const TargetSubtargetInfo &TSI) +      : InstrItins(TSI.getInstrItineraryData()), STI(&TSI) {} + +  // Compute the number of functional unit alternatives needed +  // at each stage, and take the minimum value. We prioritize the +  // instructions by the least number of choices first. +  unsigned minFuncUnits(const MachineInstr *Inst, unsigned &F) const { +    unsigned SchedClass = Inst->getDesc().getSchedClass(); +    unsigned min = UINT_MAX; +    if (InstrItins && !InstrItins->isEmpty()) { +      for (const InstrStage &IS : +           make_range(InstrItins->beginStage(SchedClass), +                      InstrItins->endStage(SchedClass))) { +        unsigned funcUnits = IS.getUnits(); +        unsigned numAlternatives = countPopulation(funcUnits); +        if (numAlternatives < min) { +          min = numAlternatives; +          F = funcUnits; +        } +      } +      return min; +    } +    if (STI && STI->getSchedModel().hasInstrSchedModel()) { +      const MCSchedClassDesc *SCDesc = +          STI->getSchedModel().getSchedClassDesc(SchedClass); +      if (!SCDesc->isValid()) +        // No valid Schedule Class Desc for schedClass, should be +        // Pseudo/PostRAPseudo +        return min; + +      for (const MCWriteProcResEntry &PRE : +           make_range(STI->getWriteProcResBegin(SCDesc), +                      STI->getWriteProcResEnd(SCDesc))) { +        if (!PRE.Cycles) +          continue; +        const MCProcResourceDesc *ProcResource = +            STI->getSchedModel().getProcResource(PRE.ProcResourceIdx); +        unsigned NumUnits = ProcResource->NumUnits; +        if (NumUnits < min) { +          min = NumUnits; +          F = PRE.ProcResourceIdx; +        } +      } +      return min; +    } +    llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!"); +  } + +  // Compute the critical resources needed by the instruction. This +  // function records the functional units needed by instructions that +  // must use only one functional unit. We use this as a tie breaker +  // for computing the resource MII. The instrutions that require +  // the same, highly used, functional unit have high priority. +  void calcCriticalResources(MachineInstr &MI) { +    unsigned SchedClass = MI.getDesc().getSchedClass(); +    if (InstrItins && !InstrItins->isEmpty()) { +      for (const InstrStage &IS : +           make_range(InstrItins->beginStage(SchedClass), +                      InstrItins->endStage(SchedClass))) { +        unsigned FuncUnits = IS.getUnits(); +        if (countPopulation(FuncUnits) == 1) +          Resources[FuncUnits]++; +      } +      return; +    } +    if (STI && STI->getSchedModel().hasInstrSchedModel()) { +      const MCSchedClassDesc *SCDesc = +          STI->getSchedModel().getSchedClassDesc(SchedClass); +      if (!SCDesc->isValid()) +        // No valid Schedule Class Desc for schedClass, should be +        // Pseudo/PostRAPseudo +        return; + +      for (const MCWriteProcResEntry &PRE : +           make_range(STI->getWriteProcResBegin(SCDesc), +                      STI->getWriteProcResEnd(SCDesc))) { +        if (!PRE.Cycles) +          continue; +        Resources[PRE.ProcResourceIdx]++; +      } +      return; +    } +    llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!"); +  } + +  /// Return true if IS1 has less priority than IS2. +  bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const { +    unsigned F1 = 0, F2 = 0; +    unsigned MFUs1 = minFuncUnits(IS1, F1); +    unsigned MFUs2 = minFuncUnits(IS2, F2); +    if (MFUs1 == MFUs2) +      return Resources.lookup(F1) < Resources.lookup(F2); +    return MFUs1 > MFUs2; +  } +}; + +} // end anonymous namespace + +/// Calculate the resource constrained minimum initiation interval for the +/// specified loop. We use the DFA to model the resources needed for +/// each instruction, and we ignore dependences. A different DFA is created +/// for each cycle that is required. When adding a new instruction, we attempt +/// to add it to each existing DFA, until a legal space is found. If the +/// instruction cannot be reserved in an existing DFA, we create a new one. +unsigned SwingSchedulerDAG::calculateResMII() { + +  LLVM_DEBUG(dbgs() << "calculateResMII:\n"); +  SmallVector<ResourceManager*, 8> Resources; +  MachineBasicBlock *MBB = Loop.getHeader(); +  Resources.push_back(new ResourceManager(&MF.getSubtarget())); + +  // Sort the instructions by the number of available choices for scheduling, +  // least to most. Use the number of critical resources as the tie breaker. +  FuncUnitSorter FUS = FuncUnitSorter(MF.getSubtarget()); +  for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(), +                                   E = MBB->getFirstTerminator(); +       I != E; ++I) +    FUS.calcCriticalResources(*I); +  PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter> +      FuncUnitOrder(FUS); + +  for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(), +                                   E = MBB->getFirstTerminator(); +       I != E; ++I) +    FuncUnitOrder.push(&*I); + +  while (!FuncUnitOrder.empty()) { +    MachineInstr *MI = FuncUnitOrder.top(); +    FuncUnitOrder.pop(); +    if (TII->isZeroCost(MI->getOpcode())) +      continue; +    // Attempt to reserve the instruction in an existing DFA. At least one +    // DFA is needed for each cycle. +    unsigned NumCycles = getSUnit(MI)->Latency; +    unsigned ReservedCycles = 0; +    SmallVectorImpl<ResourceManager *>::iterator RI = Resources.begin(); +    SmallVectorImpl<ResourceManager *>::iterator RE = Resources.end(); +    LLVM_DEBUG({ +      dbgs() << "Trying to reserve resource for " << NumCycles +             << " cycles for \n"; +      MI->dump(); +    }); +    for (unsigned C = 0; C < NumCycles; ++C) +      while (RI != RE) { +        if ((*RI)->canReserveResources(*MI)) { +          (*RI)->reserveResources(*MI); +          ++ReservedCycles; +          break; +        } +        RI++; +      } +    LLVM_DEBUG(dbgs() << "ReservedCycles:" << ReservedCycles +                      << ", NumCycles:" << NumCycles << "\n"); +    // Add new DFAs, if needed, to reserve resources. +    for (unsigned C = ReservedCycles; C < NumCycles; ++C) { +      LLVM_DEBUG(if (SwpDebugResource) dbgs() +                 << "NewResource created to reserve resources" +                 << "\n"); +      ResourceManager *NewResource = new ResourceManager(&MF.getSubtarget()); +      assert(NewResource->canReserveResources(*MI) && "Reserve error."); +      NewResource->reserveResources(*MI); +      Resources.push_back(NewResource); +    } +  } +  int Resmii = Resources.size(); +  LLVM_DEBUG(dbgs() << "Retrun Res MII:" << Resmii << "\n"); +  // Delete the memory for each of the DFAs that were created earlier. +  for (ResourceManager *RI : Resources) { +    ResourceManager *D = RI; +    delete D; +  } +  Resources.clear(); +  return Resmii; +} + +/// Calculate the recurrence-constrainted minimum initiation interval. +/// Iterate over each circuit.  Compute the delay(c) and distance(c) +/// for each circuit. The II needs to satisfy the inequality +/// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest +/// II that satisfies the inequality, and the RecMII is the maximum +/// of those values. +unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) { +  unsigned RecMII = 0; + +  for (NodeSet &Nodes : NodeSets) { +    if (Nodes.empty()) +      continue; + +    unsigned Delay = Nodes.getLatency(); +    unsigned Distance = 1; + +    // ii = ceil(delay / distance) +    unsigned CurMII = (Delay + Distance - 1) / Distance; +    Nodes.setRecMII(CurMII); +    if (CurMII > RecMII) +      RecMII = CurMII; +  } + +  return RecMII; +} + +/// Swap all the anti dependences in the DAG. That means it is no longer a DAG, +/// but we do this to find the circuits, and then change them back. +static void swapAntiDependences(std::vector<SUnit> &SUnits) { +  SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded; +  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { +    SUnit *SU = &SUnits[i]; +    for (SUnit::pred_iterator IP = SU->Preds.begin(), EP = SU->Preds.end(); +         IP != EP; ++IP) { +      if (IP->getKind() != SDep::Anti) +        continue; +      DepsAdded.push_back(std::make_pair(SU, *IP)); +    } +  } +  for (SmallVector<std::pair<SUnit *, SDep>, 8>::iterator I = DepsAdded.begin(), +                                                          E = DepsAdded.end(); +       I != E; ++I) { +    // Remove this anti dependency and add one in the reverse direction. +    SUnit *SU = I->first; +    SDep &D = I->second; +    SUnit *TargetSU = D.getSUnit(); +    unsigned Reg = D.getReg(); +    unsigned Lat = D.getLatency(); +    SU->removePred(D); +    SDep Dep(SU, SDep::Anti, Reg); +    Dep.setLatency(Lat); +    TargetSU->addPred(Dep); +  } +} + +/// Create the adjacency structure of the nodes in the graph. +void SwingSchedulerDAG::Circuits::createAdjacencyStructure( +    SwingSchedulerDAG *DAG) { +  BitVector Added(SUnits.size()); +  DenseMap<int, int> OutputDeps; +  for (int i = 0, e = SUnits.size(); i != e; ++i) { +    Added.reset(); +    // Add any successor to the adjacency matrix and exclude duplicates. +    for (auto &SI : SUnits[i].Succs) { +      // Only create a back-edge on the first and last nodes of a dependence +      // chain. This records any chains and adds them later. +      if (SI.getKind() == SDep::Output) { +        int N = SI.getSUnit()->NodeNum; +        int BackEdge = i; +        auto Dep = OutputDeps.find(BackEdge); +        if (Dep != OutputDeps.end()) { +          BackEdge = Dep->second; +          OutputDeps.erase(Dep); +        } +        OutputDeps[N] = BackEdge; +      } +      // Do not process a boundary node, an artificial node. +      // A back-edge is processed only if it goes to a Phi. +      if (SI.getSUnit()->isBoundaryNode() || SI.isArtificial() || +          (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI())) +        continue; +      int N = SI.getSUnit()->NodeNum; +      if (!Added.test(N)) { +        AdjK[i].push_back(N); +        Added.set(N); +      } +    } +    // A chain edge between a store and a load is treated as a back-edge in the +    // adjacency matrix. +    for (auto &PI : SUnits[i].Preds) { +      if (!SUnits[i].getInstr()->mayStore() || +          !DAG->isLoopCarriedDep(&SUnits[i], PI, false)) +        continue; +      if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) { +        int N = PI.getSUnit()->NodeNum; +        if (!Added.test(N)) { +          AdjK[i].push_back(N); +          Added.set(N); +        } +      } +    } +  } +  // Add back-edges in the adjacency matrix for the output dependences. +  for (auto &OD : OutputDeps) +    if (!Added.test(OD.second)) { +      AdjK[OD.first].push_back(OD.second); +      Added.set(OD.second); +    } +} + +/// Identify an elementary circuit in the dependence graph starting at the +/// specified node. +bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets, +                                          bool HasBackedge) { +  SUnit *SV = &SUnits[V]; +  bool F = false; +  Stack.insert(SV); +  Blocked.set(V); + +  for (auto W : AdjK[V]) { +    if (NumPaths > MaxPaths) +      break; +    if (W < S) +      continue; +    if (W == S) { +      if (!HasBackedge) +        NodeSets.push_back(NodeSet(Stack.begin(), Stack.end())); +      F = true; +      ++NumPaths; +      break; +    } else if (!Blocked.test(W)) { +      if (circuit(W, S, NodeSets, +                  Node2Idx->at(W) < Node2Idx->at(V) ? true : HasBackedge)) +        F = true; +    } +  } + +  if (F) +    unblock(V); +  else { +    for (auto W : AdjK[V]) { +      if (W < S) +        continue; +      if (B[W].count(SV) == 0) +        B[W].insert(SV); +    } +  } +  Stack.pop_back(); +  return F; +} + +/// Unblock a node in the circuit finding algorithm. +void SwingSchedulerDAG::Circuits::unblock(int U) { +  Blocked.reset(U); +  SmallPtrSet<SUnit *, 4> &BU = B[U]; +  while (!BU.empty()) { +    SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin(); +    assert(SI != BU.end() && "Invalid B set."); +    SUnit *W = *SI; +    BU.erase(W); +    if (Blocked.test(W->NodeNum)) +      unblock(W->NodeNum); +  } +} + +/// Identify all the elementary circuits in the dependence graph using +/// Johnson's circuit algorithm. +void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) { +  // Swap all the anti dependences in the DAG. That means it is no longer a DAG, +  // but we do this to find the circuits, and then change them back. +  swapAntiDependences(SUnits); + +  Circuits Cir(SUnits, Topo); +  // Create the adjacency structure. +  Cir.createAdjacencyStructure(this); +  for (int i = 0, e = SUnits.size(); i != e; ++i) { +    Cir.reset(); +    Cir.circuit(i, i, NodeSets); +  } + +  // Change the dependences back so that we've created a DAG again. +  swapAntiDependences(SUnits); +} + +// Create artificial dependencies between the source of COPY/REG_SEQUENCE that +// is loop-carried to the USE in next iteration. This will help pipeliner avoid +// additional copies that are needed across iterations. An artificial dependence +// edge is added from USE to SOURCE of COPY/REG_SEQUENCE. + +// PHI-------Anti-Dep-----> COPY/REG_SEQUENCE (loop-carried) +// SRCOfCopY------True-Dep---> COPY/REG_SEQUENCE +// PHI-------True-Dep------> USEOfPhi + +// The mutation creates +// USEOfPHI -------Artificial-Dep---> SRCOfCopy + +// This overall will ensure, the USEOfPHI is scheduled before SRCOfCopy +// (since USE is a predecessor), implies, the COPY/ REG_SEQUENCE is scheduled +// late  to avoid additional copies across iterations. The possible scheduling +// order would be +// USEOfPHI --- SRCOfCopy---  COPY/REG_SEQUENCE. + +void SwingSchedulerDAG::CopyToPhiMutation::apply(ScheduleDAGInstrs *DAG) { +  for (SUnit &SU : DAG->SUnits) { +    // Find the COPY/REG_SEQUENCE instruction. +    if (!SU.getInstr()->isCopy() && !SU.getInstr()->isRegSequence()) +      continue; + +    // Record the loop carried PHIs. +    SmallVector<SUnit *, 4> PHISUs; +    // Record the SrcSUs that feed the COPY/REG_SEQUENCE instructions. +    SmallVector<SUnit *, 4> SrcSUs; + +    for (auto &Dep : SU.Preds) { +      SUnit *TmpSU = Dep.getSUnit(); +      MachineInstr *TmpMI = TmpSU->getInstr(); +      SDep::Kind DepKind = Dep.getKind(); +      // Save the loop carried PHI. +      if (DepKind == SDep::Anti && TmpMI->isPHI()) +        PHISUs.push_back(TmpSU); +      // Save the source of COPY/REG_SEQUENCE. +      // If the source has no pre-decessors, we will end up creating cycles. +      else if (DepKind == SDep::Data && !TmpMI->isPHI() && TmpSU->NumPreds > 0) +        SrcSUs.push_back(TmpSU); +    } + +    if (PHISUs.size() == 0 || SrcSUs.size() == 0) +      continue; + +    // Find the USEs of PHI. If the use is a PHI or REG_SEQUENCE, push back this +    // SUnit to the container. +    SmallVector<SUnit *, 8> UseSUs; +    for (auto I = PHISUs.begin(); I != PHISUs.end(); ++I) { +      for (auto &Dep : (*I)->Succs) { +        if (Dep.getKind() != SDep::Data) +          continue; + +        SUnit *TmpSU = Dep.getSUnit(); +        MachineInstr *TmpMI = TmpSU->getInstr(); +        if (TmpMI->isPHI() || TmpMI->isRegSequence()) { +          PHISUs.push_back(TmpSU); +          continue; +        } +        UseSUs.push_back(TmpSU); +      } +    } + +    if (UseSUs.size() == 0) +      continue; + +    SwingSchedulerDAG *SDAG = cast<SwingSchedulerDAG>(DAG); +    // Add the artificial dependencies if it does not form a cycle. +    for (auto I : UseSUs) { +      for (auto Src : SrcSUs) { +        if (!SDAG->Topo.IsReachable(I, Src) && Src != I) { +          Src->addPred(SDep(I, SDep::Artificial)); +          SDAG->Topo.AddPred(Src, I); +        } +      } +    } +  } +} + +/// Return true for DAG nodes that we ignore when computing the cost functions. +/// We ignore the back-edge recurrence in order to avoid unbounded recursion +/// in the calculation of the ASAP, ALAP, etc functions. +static bool ignoreDependence(const SDep &D, bool isPred) { +  if (D.isArtificial()) +    return true; +  return D.getKind() == SDep::Anti && isPred; +} + +/// Compute several functions need to order the nodes for scheduling. +///  ASAP - Earliest time to schedule a node. +///  ALAP - Latest time to schedule a node. +///  MOV - Mobility function, difference between ALAP and ASAP. +///  D - Depth of each node. +///  H - Height of each node. +void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) { +  ScheduleInfo.resize(SUnits.size()); + +  LLVM_DEBUG({ +    for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(), +                                                    E = Topo.end(); +         I != E; ++I) { +      const SUnit &SU = SUnits[*I]; +      dumpNode(SU); +    } +  }); + +  int maxASAP = 0; +  // Compute ASAP and ZeroLatencyDepth. +  for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(), +                                                  E = Topo.end(); +       I != E; ++I) { +    int asap = 0; +    int zeroLatencyDepth = 0; +    SUnit *SU = &SUnits[*I]; +    for (SUnit::const_pred_iterator IP = SU->Preds.begin(), +                                    EP = SU->Preds.end(); +         IP != EP; ++IP) { +      SUnit *pred = IP->getSUnit(); +      if (IP->getLatency() == 0) +        zeroLatencyDepth = +            std::max(zeroLatencyDepth, getZeroLatencyDepth(pred) + 1); +      if (ignoreDependence(*IP, true)) +        continue; +      asap = std::max(asap, (int)(getASAP(pred) + IP->getLatency() - +                                  getDistance(pred, SU, *IP) * MII)); +    } +    maxASAP = std::max(maxASAP, asap); +    ScheduleInfo[*I].ASAP = asap; +    ScheduleInfo[*I].ZeroLatencyDepth = zeroLatencyDepth; +  } + +  // Compute ALAP, ZeroLatencyHeight, and MOV. +  for (ScheduleDAGTopologicalSort::const_reverse_iterator I = Topo.rbegin(), +                                                          E = Topo.rend(); +       I != E; ++I) { +    int alap = maxASAP; +    int zeroLatencyHeight = 0; +    SUnit *SU = &SUnits[*I]; +    for (SUnit::const_succ_iterator IS = SU->Succs.begin(), +                                    ES = SU->Succs.end(); +         IS != ES; ++IS) { +      SUnit *succ = IS->getSUnit(); +      if (IS->getLatency() == 0) +        zeroLatencyHeight = +            std::max(zeroLatencyHeight, getZeroLatencyHeight(succ) + 1); +      if (ignoreDependence(*IS, true)) +        continue; +      alap = std::min(alap, (int)(getALAP(succ) - IS->getLatency() + +                                  getDistance(SU, succ, *IS) * MII)); +    } + +    ScheduleInfo[*I].ALAP = alap; +    ScheduleInfo[*I].ZeroLatencyHeight = zeroLatencyHeight; +  } + +  // After computing the node functions, compute the summary for each node set. +  for (NodeSet &I : NodeSets) +    I.computeNodeSetInfo(this); + +  LLVM_DEBUG({ +    for (unsigned i = 0; i < SUnits.size(); i++) { +      dbgs() << "\tNode " << i << ":\n"; +      dbgs() << "\t   ASAP = " << getASAP(&SUnits[i]) << "\n"; +      dbgs() << "\t   ALAP = " << getALAP(&SUnits[i]) << "\n"; +      dbgs() << "\t   MOV  = " << getMOV(&SUnits[i]) << "\n"; +      dbgs() << "\t   D    = " << getDepth(&SUnits[i]) << "\n"; +      dbgs() << "\t   H    = " << getHeight(&SUnits[i]) << "\n"; +      dbgs() << "\t   ZLD  = " << getZeroLatencyDepth(&SUnits[i]) << "\n"; +      dbgs() << "\t   ZLH  = " << getZeroLatencyHeight(&SUnits[i]) << "\n"; +    } +  }); +} + +/// Compute the Pred_L(O) set, as defined in the paper. The set is defined +/// as the predecessors of the elements of NodeOrder that are not also in +/// NodeOrder. +static bool pred_L(SetVector<SUnit *> &NodeOrder, +                   SmallSetVector<SUnit *, 8> &Preds, +                   const NodeSet *S = nullptr) { +  Preds.clear(); +  for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end(); +       I != E; ++I) { +    for (SUnit::pred_iterator PI = (*I)->Preds.begin(), PE = (*I)->Preds.end(); +         PI != PE; ++PI) { +      if (S && S->count(PI->getSUnit()) == 0) +        continue; +      if (ignoreDependence(*PI, true)) +        continue; +      if (NodeOrder.count(PI->getSUnit()) == 0) +        Preds.insert(PI->getSUnit()); +    } +    // Back-edges are predecessors with an anti-dependence. +    for (SUnit::const_succ_iterator IS = (*I)->Succs.begin(), +                                    ES = (*I)->Succs.end(); +         IS != ES; ++IS) { +      if (IS->getKind() != SDep::Anti) +        continue; +      if (S && S->count(IS->getSUnit()) == 0) +        continue; +      if (NodeOrder.count(IS->getSUnit()) == 0) +        Preds.insert(IS->getSUnit()); +    } +  } +  return !Preds.empty(); +} + +/// Compute the Succ_L(O) set, as defined in the paper. The set is defined +/// as the successors of the elements of NodeOrder that are not also in +/// NodeOrder. +static bool succ_L(SetVector<SUnit *> &NodeOrder, +                   SmallSetVector<SUnit *, 8> &Succs, +                   const NodeSet *S = nullptr) { +  Succs.clear(); +  for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end(); +       I != E; ++I) { +    for (SUnit::succ_iterator SI = (*I)->Succs.begin(), SE = (*I)->Succs.end(); +         SI != SE; ++SI) { +      if (S && S->count(SI->getSUnit()) == 0) +        continue; +      if (ignoreDependence(*SI, false)) +        continue; +      if (NodeOrder.count(SI->getSUnit()) == 0) +        Succs.insert(SI->getSUnit()); +    } +    for (SUnit::const_pred_iterator PI = (*I)->Preds.begin(), +                                    PE = (*I)->Preds.end(); +         PI != PE; ++PI) { +      if (PI->getKind() != SDep::Anti) +        continue; +      if (S && S->count(PI->getSUnit()) == 0) +        continue; +      if (NodeOrder.count(PI->getSUnit()) == 0) +        Succs.insert(PI->getSUnit()); +    } +  } +  return !Succs.empty(); +} + +/// Return true if there is a path from the specified node to any of the nodes +/// in DestNodes. Keep track and return the nodes in any path. +static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path, +                        SetVector<SUnit *> &DestNodes, +                        SetVector<SUnit *> &Exclude, +                        SmallPtrSet<SUnit *, 8> &Visited) { +  if (Cur->isBoundaryNode()) +    return false; +  if (Exclude.count(Cur) != 0) +    return false; +  if (DestNodes.count(Cur) != 0) +    return true; +  if (!Visited.insert(Cur).second) +    return Path.count(Cur) != 0; +  bool FoundPath = false; +  for (auto &SI : Cur->Succs) +    FoundPath |= computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited); +  for (auto &PI : Cur->Preds) +    if (PI.getKind() == SDep::Anti) +      FoundPath |= +          computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited); +  if (FoundPath) +    Path.insert(Cur); +  return FoundPath; +} + +/// Return true if Set1 is a subset of Set2. +template <class S1Ty, class S2Ty> static bool isSubset(S1Ty &Set1, S2Ty &Set2) { +  for (typename S1Ty::iterator I = Set1.begin(), E = Set1.end(); I != E; ++I) +    if (Set2.count(*I) == 0) +      return false; +  return true; +} + +/// Compute the live-out registers for the instructions in a node-set. +/// The live-out registers are those that are defined in the node-set, +/// but not used. Except for use operands of Phis. +static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker, +                            NodeSet &NS) { +  const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); +  MachineRegisterInfo &MRI = MF.getRegInfo(); +  SmallVector<RegisterMaskPair, 8> LiveOutRegs; +  SmallSet<unsigned, 4> Uses; +  for (SUnit *SU : NS) { +    const MachineInstr *MI = SU->getInstr(); +    if (MI->isPHI()) +      continue; +    for (const MachineOperand &MO : MI->operands()) +      if (MO.isReg() && MO.isUse()) { +        Register Reg = MO.getReg(); +        if (Register::isVirtualRegister(Reg)) +          Uses.insert(Reg); +        else if (MRI.isAllocatable(Reg)) +          for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) +            Uses.insert(*Units); +      } +  } +  for (SUnit *SU : NS) +    for (const MachineOperand &MO : SU->getInstr()->operands()) +      if (MO.isReg() && MO.isDef() && !MO.isDead()) { +        Register Reg = MO.getReg(); +        if (Register::isVirtualRegister(Reg)) { +          if (!Uses.count(Reg)) +            LiveOutRegs.push_back(RegisterMaskPair(Reg, +                                                   LaneBitmask::getNone())); +        } else if (MRI.isAllocatable(Reg)) { +          for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) +            if (!Uses.count(*Units)) +              LiveOutRegs.push_back(RegisterMaskPair(*Units, +                                                     LaneBitmask::getNone())); +        } +      } +  RPTracker.addLiveRegs(LiveOutRegs); +} + +/// A heuristic to filter nodes in recurrent node-sets if the register +/// pressure of a set is too high. +void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) { +  for (auto &NS : NodeSets) { +    // Skip small node-sets since they won't cause register pressure problems. +    if (NS.size() <= 2) +      continue; +    IntervalPressure RecRegPressure; +    RegPressureTracker RecRPTracker(RecRegPressure); +    RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true); +    computeLiveOuts(MF, RecRPTracker, NS); +    RecRPTracker.closeBottom(); + +    std::vector<SUnit *> SUnits(NS.begin(), NS.end()); +    llvm::sort(SUnits, [](const SUnit *A, const SUnit *B) { +      return A->NodeNum > B->NodeNum; +    }); + +    for (auto &SU : SUnits) { +      // Since we're computing the register pressure for a subset of the +      // instructions in a block, we need to set the tracker for each +      // instruction in the node-set. The tracker is set to the instruction +      // just after the one we're interested in. +      MachineBasicBlock::const_iterator CurInstI = SU->getInstr(); +      RecRPTracker.setPos(std::next(CurInstI)); + +      RegPressureDelta RPDelta; +      ArrayRef<PressureChange> CriticalPSets; +      RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta, +                                             CriticalPSets, +                                             RecRegPressure.MaxSetPressure); +      if (RPDelta.Excess.isValid()) { +        LLVM_DEBUG( +            dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") " +                   << TRI->getRegPressureSetName(RPDelta.Excess.getPSet()) +                   << ":" << RPDelta.Excess.getUnitInc()); +        NS.setExceedPressure(SU); +        break; +      } +      RecRPTracker.recede(); +    } +  } +} + +/// A heuristic to colocate node sets that have the same set of +/// successors. +void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) { +  unsigned Colocate = 0; +  for (int i = 0, e = NodeSets.size(); i < e; ++i) { +    NodeSet &N1 = NodeSets[i]; +    SmallSetVector<SUnit *, 8> S1; +    if (N1.empty() || !succ_L(N1, S1)) +      continue; +    for (int j = i + 1; j < e; ++j) { +      NodeSet &N2 = NodeSets[j]; +      if (N1.compareRecMII(N2) != 0) +        continue; +      SmallSetVector<SUnit *, 8> S2; +      if (N2.empty() || !succ_L(N2, S2)) +        continue; +      if (isSubset(S1, S2) && S1.size() == S2.size()) { +        N1.setColocate(++Colocate); +        N2.setColocate(Colocate); +        break; +      } +    } +  } +} + +/// Check if the existing node-sets are profitable. If not, then ignore the +/// recurrent node-sets, and attempt to schedule all nodes together. This is +/// a heuristic. If the MII is large and all the recurrent node-sets are small, +/// then it's best to try to schedule all instructions together instead of +/// starting with the recurrent node-sets. +void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) { +  // Look for loops with a large MII. +  if (MII < 17) +    return; +  // Check if the node-set contains only a simple add recurrence. +  for (auto &NS : NodeSets) { +    if (NS.getRecMII() > 2) +      return; +    if (NS.getMaxDepth() > MII) +      return; +  } +  NodeSets.clear(); +  LLVM_DEBUG(dbgs() << "Clear recurrence node-sets\n"); +  return; +} + +/// Add the nodes that do not belong to a recurrence set into groups +/// based upon connected componenets. +void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) { +  SetVector<SUnit *> NodesAdded; +  SmallPtrSet<SUnit *, 8> Visited; +  // Add the nodes that are on a path between the previous node sets and +  // the current node set. +  for (NodeSet &I : NodeSets) { +    SmallSetVector<SUnit *, 8> N; +    // Add the nodes from the current node set to the previous node set. +    if (succ_L(I, N)) { +      SetVector<SUnit *> Path; +      for (SUnit *NI : N) { +        Visited.clear(); +        computePath(NI, Path, NodesAdded, I, Visited); +      } +      if (!Path.empty()) +        I.insert(Path.begin(), Path.end()); +    } +    // Add the nodes from the previous node set to the current node set. +    N.clear(); +    if (succ_L(NodesAdded, N)) { +      SetVector<SUnit *> Path; +      for (SUnit *NI : N) { +        Visited.clear(); +        computePath(NI, Path, I, NodesAdded, Visited); +      } +      if (!Path.empty()) +        I.insert(Path.begin(), Path.end()); +    } +    NodesAdded.insert(I.begin(), I.end()); +  } + +  // Create a new node set with the connected nodes of any successor of a node +  // in a recurrent set. +  NodeSet NewSet; +  SmallSetVector<SUnit *, 8> N; +  if (succ_L(NodesAdded, N)) +    for (SUnit *I : N) +      addConnectedNodes(I, NewSet, NodesAdded); +  if (!NewSet.empty()) +    NodeSets.push_back(NewSet); + +  // Create a new node set with the connected nodes of any predecessor of a node +  // in a recurrent set. +  NewSet.clear(); +  if (pred_L(NodesAdded, N)) +    for (SUnit *I : N) +      addConnectedNodes(I, NewSet, NodesAdded); +  if (!NewSet.empty()) +    NodeSets.push_back(NewSet); + +  // Create new nodes sets with the connected nodes any remaining node that +  // has no predecessor. +  for (unsigned i = 0; i < SUnits.size(); ++i) { +    SUnit *SU = &SUnits[i]; +    if (NodesAdded.count(SU) == 0) { +      NewSet.clear(); +      addConnectedNodes(SU, NewSet, NodesAdded); +      if (!NewSet.empty()) +        NodeSets.push_back(NewSet); +    } +  } +} + +/// Add the node to the set, and add all of its connected nodes to the set. +void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet, +                                          SetVector<SUnit *> &NodesAdded) { +  NewSet.insert(SU); +  NodesAdded.insert(SU); +  for (auto &SI : SU->Succs) { +    SUnit *Successor = SI.getSUnit(); +    if (!SI.isArtificial() && NodesAdded.count(Successor) == 0) +      addConnectedNodes(Successor, NewSet, NodesAdded); +  } +  for (auto &PI : SU->Preds) { +    SUnit *Predecessor = PI.getSUnit(); +    if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0) +      addConnectedNodes(Predecessor, NewSet, NodesAdded); +  } +} + +/// Return true if Set1 contains elements in Set2. The elements in common +/// are returned in a different container. +static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2, +                        SmallSetVector<SUnit *, 8> &Result) { +  Result.clear(); +  for (unsigned i = 0, e = Set1.size(); i != e; ++i) { +    SUnit *SU = Set1[i]; +    if (Set2.count(SU) != 0) +      Result.insert(SU); +  } +  return !Result.empty(); +} + +/// Merge the recurrence node sets that have the same initial node. +void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) { +  for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; +       ++I) { +    NodeSet &NI = *I; +    for (NodeSetType::iterator J = I + 1; J != E;) { +      NodeSet &NJ = *J; +      if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) { +        if (NJ.compareRecMII(NI) > 0) +          NI.setRecMII(NJ.getRecMII()); +        for (NodeSet::iterator NII = J->begin(), ENI = J->end(); NII != ENI; +             ++NII) +          I->insert(*NII); +        NodeSets.erase(J); +        E = NodeSets.end(); +      } else { +        ++J; +      } +    } +  } +} + +/// Remove nodes that have been scheduled in previous NodeSets. +void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) { +  for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; +       ++I) +    for (NodeSetType::iterator J = I + 1; J != E;) { +      J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); }); + +      if (J->empty()) { +        NodeSets.erase(J); +        E = NodeSets.end(); +      } else { +        ++J; +      } +    } +} + +/// Compute an ordered list of the dependence graph nodes, which +/// indicates the order that the nodes will be scheduled.  This is a +/// two-level algorithm. First, a partial order is created, which +/// consists of a list of sets ordered from highest to lowest priority. +void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) { +  SmallSetVector<SUnit *, 8> R; +  NodeOrder.clear(); + +  for (auto &Nodes : NodeSets) { +    LLVM_DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n"); +    OrderKind Order; +    SmallSetVector<SUnit *, 8> N; +    if (pred_L(NodeOrder, N) && isSubset(N, Nodes)) { +      R.insert(N.begin(), N.end()); +      Order = BottomUp; +      LLVM_DEBUG(dbgs() << "  Bottom up (preds) "); +    } else if (succ_L(NodeOrder, N) && isSubset(N, Nodes)) { +      R.insert(N.begin(), N.end()); +      Order = TopDown; +      LLVM_DEBUG(dbgs() << "  Top down (succs) "); +    } else if (isIntersect(N, Nodes, R)) { +      // If some of the successors are in the existing node-set, then use the +      // top-down ordering. +      Order = TopDown; +      LLVM_DEBUG(dbgs() << "  Top down (intersect) "); +    } else if (NodeSets.size() == 1) { +      for (auto &N : Nodes) +        if (N->Succs.size() == 0) +          R.insert(N); +      Order = BottomUp; +      LLVM_DEBUG(dbgs() << "  Bottom up (all) "); +    } else { +      // Find the node with the highest ASAP. +      SUnit *maxASAP = nullptr; +      for (SUnit *SU : Nodes) { +        if (maxASAP == nullptr || getASAP(SU) > getASAP(maxASAP) || +            (getASAP(SU) == getASAP(maxASAP) && SU->NodeNum > maxASAP->NodeNum)) +          maxASAP = SU; +      } +      R.insert(maxASAP); +      Order = BottomUp; +      LLVM_DEBUG(dbgs() << "  Bottom up (default) "); +    } + +    while (!R.empty()) { +      if (Order == TopDown) { +        // Choose the node with the maximum height.  If more than one, choose +        // the node wiTH the maximum ZeroLatencyHeight. If still more than one, +        // choose the node with the lowest MOV. +        while (!R.empty()) { +          SUnit *maxHeight = nullptr; +          for (SUnit *I : R) { +            if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight)) +              maxHeight = I; +            else if (getHeight(I) == getHeight(maxHeight) && +                     getZeroLatencyHeight(I) > getZeroLatencyHeight(maxHeight)) +              maxHeight = I; +            else if (getHeight(I) == getHeight(maxHeight) && +                     getZeroLatencyHeight(I) == +                         getZeroLatencyHeight(maxHeight) && +                     getMOV(I) < getMOV(maxHeight)) +              maxHeight = I; +          } +          NodeOrder.insert(maxHeight); +          LLVM_DEBUG(dbgs() << maxHeight->NodeNum << " "); +          R.remove(maxHeight); +          for (const auto &I : maxHeight->Succs) { +            if (Nodes.count(I.getSUnit()) == 0) +              continue; +            if (NodeOrder.count(I.getSUnit()) != 0) +              continue; +            if (ignoreDependence(I, false)) +              continue; +            R.insert(I.getSUnit()); +          } +          // Back-edges are predecessors with an anti-dependence. +          for (const auto &I : maxHeight->Preds) { +            if (I.getKind() != SDep::Anti) +              continue; +            if (Nodes.count(I.getSUnit()) == 0) +              continue; +            if (NodeOrder.count(I.getSUnit()) != 0) +              continue; +            R.insert(I.getSUnit()); +          } +        } +        Order = BottomUp; +        LLVM_DEBUG(dbgs() << "\n   Switching order to bottom up "); +        SmallSetVector<SUnit *, 8> N; +        if (pred_L(NodeOrder, N, &Nodes)) +          R.insert(N.begin(), N.end()); +      } else { +        // Choose the node with the maximum depth.  If more than one, choose +        // the node with the maximum ZeroLatencyDepth. If still more than one, +        // choose the node with the lowest MOV. +        while (!R.empty()) { +          SUnit *maxDepth = nullptr; +          for (SUnit *I : R) { +            if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth)) +              maxDepth = I; +            else if (getDepth(I) == getDepth(maxDepth) && +                     getZeroLatencyDepth(I) > getZeroLatencyDepth(maxDepth)) +              maxDepth = I; +            else if (getDepth(I) == getDepth(maxDepth) && +                     getZeroLatencyDepth(I) == getZeroLatencyDepth(maxDepth) && +                     getMOV(I) < getMOV(maxDepth)) +              maxDepth = I; +          } +          NodeOrder.insert(maxDepth); +          LLVM_DEBUG(dbgs() << maxDepth->NodeNum << " "); +          R.remove(maxDepth); +          if (Nodes.isExceedSU(maxDepth)) { +            Order = TopDown; +            R.clear(); +            R.insert(Nodes.getNode(0)); +            break; +          } +          for (const auto &I : maxDepth->Preds) { +            if (Nodes.count(I.getSUnit()) == 0) +              continue; +            if (NodeOrder.count(I.getSUnit()) != 0) +              continue; +            R.insert(I.getSUnit()); +          } +          // Back-edges are predecessors with an anti-dependence. +          for (const auto &I : maxDepth->Succs) { +            if (I.getKind() != SDep::Anti) +              continue; +            if (Nodes.count(I.getSUnit()) == 0) +              continue; +            if (NodeOrder.count(I.getSUnit()) != 0) +              continue; +            R.insert(I.getSUnit()); +          } +        } +        Order = TopDown; +        LLVM_DEBUG(dbgs() << "\n   Switching order to top down "); +        SmallSetVector<SUnit *, 8> N; +        if (succ_L(NodeOrder, N, &Nodes)) +          R.insert(N.begin(), N.end()); +      } +    } +    LLVM_DEBUG(dbgs() << "\nDone with Nodeset\n"); +  } + +  LLVM_DEBUG({ +    dbgs() << "Node order: "; +    for (SUnit *I : NodeOrder) +      dbgs() << " " << I->NodeNum << " "; +    dbgs() << "\n"; +  }); +} + +/// Process the nodes in the computed order and create the pipelined schedule +/// of the instructions, if possible. Return true if a schedule is found. +bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) { + +  if (NodeOrder.empty()){ +    LLVM_DEBUG(dbgs() << "NodeOrder is empty! abort scheduling\n" ); +    return false; +  } + +  bool scheduleFound = false; +  unsigned II = 0; +  // Keep increasing II until a valid schedule is found. +  for (II = MII; II <= MAX_II && !scheduleFound; ++II) { +    Schedule.reset(); +    Schedule.setInitiationInterval(II); +    LLVM_DEBUG(dbgs() << "Try to schedule with " << II << "\n"); + +    SetVector<SUnit *>::iterator NI = NodeOrder.begin(); +    SetVector<SUnit *>::iterator NE = NodeOrder.end(); +    do { +      SUnit *SU = *NI; + +      // Compute the schedule time for the instruction, which is based +      // upon the scheduled time for any predecessors/successors. +      int EarlyStart = INT_MIN; +      int LateStart = INT_MAX; +      // These values are set when the size of the schedule window is limited +      // due to chain dependences. +      int SchedEnd = INT_MAX; +      int SchedStart = INT_MIN; +      Schedule.computeStart(SU, &EarlyStart, &LateStart, &SchedEnd, &SchedStart, +                            II, this); +      LLVM_DEBUG({ +        dbgs() << "\n"; +        dbgs() << "Inst (" << SU->NodeNum << ") "; +        SU->getInstr()->dump(); +        dbgs() << "\n"; +      }); +      LLVM_DEBUG({ +        dbgs() << format("\tes: %8x ls: %8x me: %8x ms: %8x\n", EarlyStart, +                         LateStart, SchedEnd, SchedStart); +      }); + +      if (EarlyStart > LateStart || SchedEnd < EarlyStart || +          SchedStart > LateStart) +        scheduleFound = false; +      else if (EarlyStart != INT_MIN && LateStart == INT_MAX) { +        SchedEnd = std::min(SchedEnd, EarlyStart + (int)II - 1); +        scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II); +      } else if (EarlyStart == INT_MIN && LateStart != INT_MAX) { +        SchedStart = std::max(SchedStart, LateStart - (int)II + 1); +        scheduleFound = Schedule.insert(SU, LateStart, SchedStart, II); +      } else if (EarlyStart != INT_MIN && LateStart != INT_MAX) { +        SchedEnd = +            std::min(SchedEnd, std::min(LateStart, EarlyStart + (int)II - 1)); +        // When scheduling a Phi it is better to start at the late cycle and go +        // backwards. The default order may insert the Phi too far away from +        // its first dependence. +        if (SU->getInstr()->isPHI()) +          scheduleFound = Schedule.insert(SU, SchedEnd, EarlyStart, II); +        else +          scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II); +      } else { +        int FirstCycle = Schedule.getFirstCycle(); +        scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU), +                                        FirstCycle + getASAP(SU) + II - 1, II); +      } +      // Even if we find a schedule, make sure the schedule doesn't exceed the +      // allowable number of stages. We keep trying if this happens. +      if (scheduleFound) +        if (SwpMaxStages > -1 && +            Schedule.getMaxStageCount() > (unsigned)SwpMaxStages) +          scheduleFound = false; + +      LLVM_DEBUG({ +        if (!scheduleFound) +          dbgs() << "\tCan't schedule\n"; +      }); +    } while (++NI != NE && scheduleFound); + +    // If a schedule is found, check if it is a valid schedule too. +    if (scheduleFound) +      scheduleFound = Schedule.isValidSchedule(this); +  } + +  LLVM_DEBUG(dbgs() << "Schedule Found? " << scheduleFound << " (II=" << II +                    << ")\n"); + +  if (scheduleFound) +    Schedule.finalizeSchedule(this); +  else +    Schedule.reset(); + +  return scheduleFound && Schedule.getMaxStageCount() > 0; +} + +/// Return true if we can compute the amount the instruction changes +/// during each iteration. Set Delta to the amount of the change. +bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) { +  const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); +  const MachineOperand *BaseOp; +  int64_t Offset; +  if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, TRI)) +    return false; + +  if (!BaseOp->isReg()) +    return false; + +  Register BaseReg = BaseOp->getReg(); + +  MachineRegisterInfo &MRI = MF.getRegInfo(); +  // Check if there is a Phi. If so, get the definition in the loop. +  MachineInstr *BaseDef = MRI.getVRegDef(BaseReg); +  if (BaseDef && BaseDef->isPHI()) { +    BaseReg = getLoopPhiReg(*BaseDef, MI.getParent()); +    BaseDef = MRI.getVRegDef(BaseReg); +  } +  if (!BaseDef) +    return false; + +  int D = 0; +  if (!TII->getIncrementValue(*BaseDef, D) && D >= 0) +    return false; + +  Delta = D; +  return true; +} + +/// Check if we can change the instruction to use an offset value from the +/// previous iteration. If so, return true and set the base and offset values +/// so that we can rewrite the load, if necessary. +///   v1 = Phi(v0, v3) +///   v2 = load v1, 0 +///   v3 = post_store v1, 4, x +/// This function enables the load to be rewritten as v2 = load v3, 4. +bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI, +                                              unsigned &BasePos, +                                              unsigned &OffsetPos, +                                              unsigned &NewBase, +                                              int64_t &Offset) { +  // Get the load instruction. +  if (TII->isPostIncrement(*MI)) +    return false; +  unsigned BasePosLd, OffsetPosLd; +  if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd)) +    return false; +  Register BaseReg = MI->getOperand(BasePosLd).getReg(); + +  // Look for the Phi instruction. +  MachineRegisterInfo &MRI = MI->getMF()->getRegInfo(); +  MachineInstr *Phi = MRI.getVRegDef(BaseReg); +  if (!Phi || !Phi->isPHI()) +    return false; +  // Get the register defined in the loop block. +  unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent()); +  if (!PrevReg) +    return false; + +  // Check for the post-increment load/store instruction. +  MachineInstr *PrevDef = MRI.getVRegDef(PrevReg); +  if (!PrevDef || PrevDef == MI) +    return false; + +  if (!TII->isPostIncrement(*PrevDef)) +    return false; + +  unsigned BasePos1 = 0, OffsetPos1 = 0; +  if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1)) +    return false; + +  // Make sure that the instructions do not access the same memory location in +  // the next iteration. +  int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm(); +  int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm(); +  MachineInstr *NewMI = MF.CloneMachineInstr(MI); +  NewMI->getOperand(OffsetPosLd).setImm(LoadOffset + StoreOffset); +  bool Disjoint = TII->areMemAccessesTriviallyDisjoint(*NewMI, *PrevDef); +  MF.DeleteMachineInstr(NewMI); +  if (!Disjoint) +    return false; + +  // Set the return value once we determine that we return true. +  BasePos = BasePosLd; +  OffsetPos = OffsetPosLd; +  NewBase = PrevReg; +  Offset = StoreOffset; +  return true; +} + +/// Apply changes to the instruction if needed. The changes are need +/// to improve the scheduling and depend up on the final schedule. +void SwingSchedulerDAG::applyInstrChange(MachineInstr *MI, +                                         SMSchedule &Schedule) { +  SUnit *SU = getSUnit(MI); +  DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = +      InstrChanges.find(SU); +  if (It != InstrChanges.end()) { +    std::pair<unsigned, int64_t> RegAndOffset = It->second; +    unsigned BasePos, OffsetPos; +    if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) +      return; +    Register BaseReg = MI->getOperand(BasePos).getReg(); +    MachineInstr *LoopDef = findDefInLoop(BaseReg); +    int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef)); +    int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef)); +    int BaseStageNum = Schedule.stageScheduled(SU); +    int BaseCycleNum = Schedule.cycleScheduled(SU); +    if (BaseStageNum < DefStageNum) { +      MachineInstr *NewMI = MF.CloneMachineInstr(MI); +      int OffsetDiff = DefStageNum - BaseStageNum; +      if (DefCycleNum < BaseCycleNum) { +        NewMI->getOperand(BasePos).setReg(RegAndOffset.first); +        if (OffsetDiff > 0) +          --OffsetDiff; +      } +      int64_t NewOffset = +          MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff; +      NewMI->getOperand(OffsetPos).setImm(NewOffset); +      SU->setInstr(NewMI); +      MISUnitMap[NewMI] = SU; +      NewMIs[MI] = NewMI; +    } +  } +} + +/// Return the instruction in the loop that defines the register. +/// If the definition is a Phi, then follow the Phi operand to +/// the instruction in the loop. +MachineInstr *SwingSchedulerDAG::findDefInLoop(unsigned Reg) { +  SmallPtrSet<MachineInstr *, 8> Visited; +  MachineInstr *Def = MRI.getVRegDef(Reg); +  while (Def->isPHI()) { +    if (!Visited.insert(Def).second) +      break; +    for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) +      if (Def->getOperand(i + 1).getMBB() == BB) { +        Def = MRI.getVRegDef(Def->getOperand(i).getReg()); +        break; +      } +  } +  return Def; +} + +/// Return true for an order or output dependence that is loop carried +/// potentially. A dependence is loop carried if the destination defines a valu +/// that may be used or defined by the source in a subsequent iteration. +bool SwingSchedulerDAG::isLoopCarriedDep(SUnit *Source, const SDep &Dep, +                                         bool isSucc) { +  if ((Dep.getKind() != SDep::Order && Dep.getKind() != SDep::Output) || +      Dep.isArtificial()) +    return false; + +  if (!SwpPruneLoopCarried) +    return true; + +  if (Dep.getKind() == SDep::Output) +    return true; + +  MachineInstr *SI = Source->getInstr(); +  MachineInstr *DI = Dep.getSUnit()->getInstr(); +  if (!isSucc) +    std::swap(SI, DI); +  assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI."); + +  // Assume ordered loads and stores may have a loop carried dependence. +  if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() || +      SI->mayRaiseFPException() || DI->mayRaiseFPException() || +      SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef()) +    return true; + +  // Only chain dependences between a load and store can be loop carried. +  if (!DI->mayStore() || !SI->mayLoad()) +    return false; + +  unsigned DeltaS, DeltaD; +  if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD)) +    return true; + +  const MachineOperand *BaseOpS, *BaseOpD; +  int64_t OffsetS, OffsetD; +  const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); +  if (!TII->getMemOperandWithOffset(*SI, BaseOpS, OffsetS, TRI) || +      !TII->getMemOperandWithOffset(*DI, BaseOpD, OffsetD, TRI)) +    return true; + +  if (!BaseOpS->isIdenticalTo(*BaseOpD)) +    return true; + +  // Check that the base register is incremented by a constant value for each +  // iteration. +  MachineInstr *Def = MRI.getVRegDef(BaseOpS->getReg()); +  if (!Def || !Def->isPHI()) +    return true; +  unsigned InitVal = 0; +  unsigned LoopVal = 0; +  getPhiRegs(*Def, BB, InitVal, LoopVal); +  MachineInstr *LoopDef = MRI.getVRegDef(LoopVal); +  int D = 0; +  if (!LoopDef || !TII->getIncrementValue(*LoopDef, D)) +    return true; + +  uint64_t AccessSizeS = (*SI->memoperands_begin())->getSize(); +  uint64_t AccessSizeD = (*DI->memoperands_begin())->getSize(); + +  // This is the main test, which checks the offset values and the loop +  // increment value to determine if the accesses may be loop carried. +  if (AccessSizeS == MemoryLocation::UnknownSize || +      AccessSizeD == MemoryLocation::UnknownSize) +    return true; + +  if (DeltaS != DeltaD || DeltaS < AccessSizeS || DeltaD < AccessSizeD) +    return true; + +  return (OffsetS + (int64_t)AccessSizeS < OffsetD + (int64_t)AccessSizeD); +} + +void SwingSchedulerDAG::postprocessDAG() { +  for (auto &M : Mutations) +    M->apply(this); +} + +/// Try to schedule the node at the specified StartCycle and continue +/// until the node is schedule or the EndCycle is reached.  This function +/// returns true if the node is scheduled.  This routine may search either +/// forward or backward for a place to insert the instruction based upon +/// the relative values of StartCycle and EndCycle. +bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) { +  bool forward = true; +  LLVM_DEBUG({ +    dbgs() << "Trying to insert node between " << StartCycle << " and " +           << EndCycle << " II: " << II << "\n"; +  }); +  if (StartCycle > EndCycle) +    forward = false; + +  // The terminating condition depends on the direction. +  int termCycle = forward ? EndCycle + 1 : EndCycle - 1; +  for (int curCycle = StartCycle; curCycle != termCycle; +       forward ? ++curCycle : --curCycle) { + +    // Add the already scheduled instructions at the specified cycle to the +    // DFA. +    ProcItinResources.clearResources(); +    for (int checkCycle = FirstCycle + ((curCycle - FirstCycle) % II); +         checkCycle <= LastCycle; checkCycle += II) { +      std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[checkCycle]; + +      for (std::deque<SUnit *>::iterator I = cycleInstrs.begin(), +                                         E = cycleInstrs.end(); +           I != E; ++I) { +        if (ST.getInstrInfo()->isZeroCost((*I)->getInstr()->getOpcode())) +          continue; +        assert(ProcItinResources.canReserveResources(*(*I)->getInstr()) && +               "These instructions have already been scheduled."); +        ProcItinResources.reserveResources(*(*I)->getInstr()); +      } +    } +    if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) || +        ProcItinResources.canReserveResources(*SU->getInstr())) { +      LLVM_DEBUG({ +        dbgs() << "\tinsert at cycle " << curCycle << " "; +        SU->getInstr()->dump(); +      }); + +      ScheduledInstrs[curCycle].push_back(SU); +      InstrToCycle.insert(std::make_pair(SU, curCycle)); +      if (curCycle > LastCycle) +        LastCycle = curCycle; +      if (curCycle < FirstCycle) +        FirstCycle = curCycle; +      return true; +    } +    LLVM_DEBUG({ +      dbgs() << "\tfailed to insert at cycle " << curCycle << " "; +      SU->getInstr()->dump(); +    }); +  } +  return false; +} + +// Return the cycle of the earliest scheduled instruction in the chain. +int SMSchedule::earliestCycleInChain(const SDep &Dep) { +  SmallPtrSet<SUnit *, 8> Visited; +  SmallVector<SDep, 8> Worklist; +  Worklist.push_back(Dep); +  int EarlyCycle = INT_MAX; +  while (!Worklist.empty()) { +    const SDep &Cur = Worklist.pop_back_val(); +    SUnit *PrevSU = Cur.getSUnit(); +    if (Visited.count(PrevSU)) +      continue; +    std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU); +    if (it == InstrToCycle.end()) +      continue; +    EarlyCycle = std::min(EarlyCycle, it->second); +    for (const auto &PI : PrevSU->Preds) +      if (PI.getKind() == SDep::Order || Dep.getKind() == SDep::Output) +        Worklist.push_back(PI); +    Visited.insert(PrevSU); +  } +  return EarlyCycle; +} + +// Return the cycle of the latest scheduled instruction in the chain. +int SMSchedule::latestCycleInChain(const SDep &Dep) { +  SmallPtrSet<SUnit *, 8> Visited; +  SmallVector<SDep, 8> Worklist; +  Worklist.push_back(Dep); +  int LateCycle = INT_MIN; +  while (!Worklist.empty()) { +    const SDep &Cur = Worklist.pop_back_val(); +    SUnit *SuccSU = Cur.getSUnit(); +    if (Visited.count(SuccSU)) +      continue; +    std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU); +    if (it == InstrToCycle.end()) +      continue; +    LateCycle = std::max(LateCycle, it->second); +    for (const auto &SI : SuccSU->Succs) +      if (SI.getKind() == SDep::Order || Dep.getKind() == SDep::Output) +        Worklist.push_back(SI); +    Visited.insert(SuccSU); +  } +  return LateCycle; +} + +/// If an instruction has a use that spans multiple iterations, then +/// return true. These instructions are characterized by having a back-ege +/// to a Phi, which contains a reference to another Phi. +static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) { +  for (auto &P : SU->Preds) +    if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI()) +      for (auto &S : P.getSUnit()->Succs) +        if (S.getKind() == SDep::Data && S.getSUnit()->getInstr()->isPHI()) +          return P.getSUnit(); +  return nullptr; +} + +/// Compute the scheduling start slot for the instruction.  The start slot +/// depends on any predecessor or successor nodes scheduled already. +void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart, +                              int *MinEnd, int *MaxStart, int II, +                              SwingSchedulerDAG *DAG) { +  // Iterate over each instruction that has been scheduled already.  The start +  // slot computation depends on whether the previously scheduled instruction +  // is a predecessor or successor of the specified instruction. +  for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) { + +    // Iterate over each instruction in the current cycle. +    for (SUnit *I : getInstructions(cycle)) { +      // Because we're processing a DAG for the dependences, we recognize +      // the back-edge in recurrences by anti dependences. +      for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) { +        const SDep &Dep = SU->Preds[i]; +        if (Dep.getSUnit() == I) { +          if (!DAG->isBackedge(SU, Dep)) { +            int EarlyStart = cycle + Dep.getLatency() - +                             DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; +            *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); +            if (DAG->isLoopCarriedDep(SU, Dep, false)) { +              int End = earliestCycleInChain(Dep) + (II - 1); +              *MinEnd = std::min(*MinEnd, End); +            } +          } else { +            int LateStart = cycle - Dep.getLatency() + +                            DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; +            *MinLateStart = std::min(*MinLateStart, LateStart); +          } +        } +        // For instruction that requires multiple iterations, make sure that +        // the dependent instruction is not scheduled past the definition. +        SUnit *BE = multipleIterations(I, DAG); +        if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() && +            !SU->isPred(I)) +          *MinLateStart = std::min(*MinLateStart, cycle); +      } +      for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i) { +        if (SU->Succs[i].getSUnit() == I) { +          const SDep &Dep = SU->Succs[i]; +          if (!DAG->isBackedge(SU, Dep)) { +            int LateStart = cycle - Dep.getLatency() + +                            DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; +            *MinLateStart = std::min(*MinLateStart, LateStart); +            if (DAG->isLoopCarriedDep(SU, Dep)) { +              int Start = latestCycleInChain(Dep) + 1 - II; +              *MaxStart = std::max(*MaxStart, Start); +            } +          } else { +            int EarlyStart = cycle + Dep.getLatency() - +                             DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; +            *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); +          } +        } +      } +    } +  } +} + +/// Order the instructions within a cycle so that the definitions occur +/// before the uses. Returns true if the instruction is added to the start +/// of the list, or false if added to the end. +void SMSchedule::orderDependence(SwingSchedulerDAG *SSD, SUnit *SU, +                                 std::deque<SUnit *> &Insts) { +  MachineInstr *MI = SU->getInstr(); +  bool OrderBeforeUse = false; +  bool OrderAfterDef = false; +  bool OrderBeforeDef = false; +  unsigned MoveDef = 0; +  unsigned MoveUse = 0; +  int StageInst1 = stageScheduled(SU); + +  unsigned Pos = 0; +  for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E; +       ++I, ++Pos) { +    for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { +      MachineOperand &MO = MI->getOperand(i); +      if (!MO.isReg() || !Register::isVirtualRegister(MO.getReg())) +        continue; + +      Register Reg = MO.getReg(); +      unsigned BasePos, OffsetPos; +      if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) +        if (MI->getOperand(BasePos).getReg() == Reg) +          if (unsigned NewReg = SSD->getInstrBaseReg(SU)) +            Reg = NewReg; +      bool Reads, Writes; +      std::tie(Reads, Writes) = +          (*I)->getInstr()->readsWritesVirtualRegister(Reg); +      if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) { +        OrderBeforeUse = true; +        if (MoveUse == 0) +          MoveUse = Pos; +      } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) { +        // Add the instruction after the scheduled instruction. +        OrderAfterDef = true; +        MoveDef = Pos; +      } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) { +        if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) { +          OrderBeforeUse = true; +          if (MoveUse == 0) +            MoveUse = Pos; +        } else { +          OrderAfterDef = true; +          MoveDef = Pos; +        } +      } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) { +        OrderBeforeUse = true; +        if (MoveUse == 0) +          MoveUse = Pos; +        if (MoveUse != 0) { +          OrderAfterDef = true; +          MoveDef = Pos - 1; +        } +      } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) { +        // Add the instruction before the scheduled instruction. +        OrderBeforeUse = true; +        if (MoveUse == 0) +          MoveUse = Pos; +      } else if (MO.isUse() && stageScheduled(*I) == StageInst1 && +                 isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) { +        if (MoveUse == 0) { +          OrderBeforeDef = true; +          MoveUse = Pos; +        } +      } +    } +    // Check for order dependences between instructions. Make sure the source +    // is ordered before the destination. +    for (auto &S : SU->Succs) { +      if (S.getSUnit() != *I) +        continue; +      if (S.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) { +        OrderBeforeUse = true; +        if (Pos < MoveUse) +          MoveUse = Pos; +      } +      // We did not handle HW dependences in previous for loop, +      // and we normally set Latency = 0 for Anti deps, +      // so may have nodes in same cycle with Anti denpendent on HW regs. +      else if (S.getKind() == SDep::Anti && stageScheduled(*I) == StageInst1) { +        OrderBeforeUse = true; +        if ((MoveUse == 0) || (Pos < MoveUse)) +          MoveUse = Pos; +      } +    } +    for (auto &P : SU->Preds) { +      if (P.getSUnit() != *I) +        continue; +      if (P.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) { +        OrderAfterDef = true; +        MoveDef = Pos; +      } +    } +  } + +  // A circular dependence. +  if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef) +    OrderBeforeUse = false; + +  // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due +  // to a loop-carried dependence. +  if (OrderBeforeDef) +    OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef); + +  // The uncommon case when the instruction order needs to be updated because +  // there is both a use and def. +  if (OrderBeforeUse && OrderAfterDef) { +    SUnit *UseSU = Insts.at(MoveUse); +    SUnit *DefSU = Insts.at(MoveDef); +    if (MoveUse > MoveDef) { +      Insts.erase(Insts.begin() + MoveUse); +      Insts.erase(Insts.begin() + MoveDef); +    } else { +      Insts.erase(Insts.begin() + MoveDef); +      Insts.erase(Insts.begin() + MoveUse); +    } +    orderDependence(SSD, UseSU, Insts); +    orderDependence(SSD, SU, Insts); +    orderDependence(SSD, DefSU, Insts); +    return; +  } +  // Put the new instruction first if there is a use in the list. Otherwise, +  // put it at the end of the list. +  if (OrderBeforeUse) +    Insts.push_front(SU); +  else +    Insts.push_back(SU); +} + +/// Return true if the scheduled Phi has a loop carried operand. +bool SMSchedule::isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi) { +  if (!Phi.isPHI()) +    return false; +  assert(Phi.isPHI() && "Expecting a Phi."); +  SUnit *DefSU = SSD->getSUnit(&Phi); +  unsigned DefCycle = cycleScheduled(DefSU); +  int DefStage = stageScheduled(DefSU); + +  unsigned InitVal = 0; +  unsigned LoopVal = 0; +  getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal); +  SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal)); +  if (!UseSU) +    return true; +  if (UseSU->getInstr()->isPHI()) +    return true; +  unsigned LoopCycle = cycleScheduled(UseSU); +  int LoopStage = stageScheduled(UseSU); +  return (LoopCycle > DefCycle) || (LoopStage <= DefStage); +} + +/// Return true if the instruction is a definition that is loop carried +/// and defines the use on the next iteration. +///        v1 = phi(v2, v3) +///  (Def) v3 = op v1 +///  (MO)   = v1 +/// If MO appears before Def, then then v1 and v3 may get assigned to the same +/// register. +bool SMSchedule::isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD, +                                       MachineInstr *Def, MachineOperand &MO) { +  if (!MO.isReg()) +    return false; +  if (Def->isPHI()) +    return false; +  MachineInstr *Phi = MRI.getVRegDef(MO.getReg()); +  if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent()) +    return false; +  if (!isLoopCarried(SSD, *Phi)) +    return false; +  unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent()); +  for (unsigned i = 0, e = Def->getNumOperands(); i != e; ++i) { +    MachineOperand &DMO = Def->getOperand(i); +    if (!DMO.isReg() || !DMO.isDef()) +      continue; +    if (DMO.getReg() == LoopReg) +      return true; +  } +  return false; +} + +// Check if the generated schedule is valid. This function checks if +// an instruction that uses a physical register is scheduled in a +// different stage than the definition. The pipeliner does not handle +// physical register values that may cross a basic block boundary. +bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) { +  for (int i = 0, e = SSD->SUnits.size(); i < e; ++i) { +    SUnit &SU = SSD->SUnits[i]; +    if (!SU.hasPhysRegDefs) +      continue; +    int StageDef = stageScheduled(&SU); +    assert(StageDef != -1 && "Instruction should have been scheduled."); +    for (auto &SI : SU.Succs) +      if (SI.isAssignedRegDep()) +        if (Register::isPhysicalRegister(SI.getReg())) +          if (stageScheduled(SI.getSUnit()) != StageDef) +            return false; +  } +  return true; +} + +/// A property of the node order in swing-modulo-scheduling is +/// that for nodes outside circuits the following holds: +/// none of them is scheduled after both a successor and a +/// predecessor. +/// The method below checks whether the property is met. +/// If not, debug information is printed and statistics information updated. +/// Note that we do not use an assert statement. +/// The reason is that although an invalid node oder may prevent +/// the pipeliner from finding a pipelined schedule for arbitrary II, +/// it does not lead to the generation of incorrect code. +void SwingSchedulerDAG::checkValidNodeOrder(const NodeSetType &Circuits) const { + +  // a sorted vector that maps each SUnit to its index in the NodeOrder +  typedef std::pair<SUnit *, unsigned> UnitIndex; +  std::vector<UnitIndex> Indices(NodeOrder.size(), std::make_pair(nullptr, 0)); + +  for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) +    Indices.push_back(std::make_pair(NodeOrder[i], i)); + +  auto CompareKey = [](UnitIndex i1, UnitIndex i2) { +    return std::get<0>(i1) < std::get<0>(i2); +  }; + +  // sort, so that we can perform a binary search +  llvm::sort(Indices, CompareKey); + +  bool Valid = true; +  (void)Valid; +  // for each SUnit in the NodeOrder, check whether +  // it appears after both a successor and a predecessor +  // of the SUnit. If this is the case, and the SUnit +  // is not part of circuit, then the NodeOrder is not +  // valid. +  for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) { +    SUnit *SU = NodeOrder[i]; +    unsigned Index = i; + +    bool PredBefore = false; +    bool SuccBefore = false; + +    SUnit *Succ; +    SUnit *Pred; +    (void)Succ; +    (void)Pred; + +    for (SDep &PredEdge : SU->Preds) { +      SUnit *PredSU = PredEdge.getSUnit(); +      unsigned PredIndex = std::get<1>( +          *llvm::lower_bound(Indices, std::make_pair(PredSU, 0), CompareKey)); +      if (!PredSU->getInstr()->isPHI() && PredIndex < Index) { +        PredBefore = true; +        Pred = PredSU; +        break; +      } +    } + +    for (SDep &SuccEdge : SU->Succs) { +      SUnit *SuccSU = SuccEdge.getSUnit(); +      // Do not process a boundary node, it was not included in NodeOrder, +      // hence not in Indices either, call to std::lower_bound() below will +      // return Indices.end(). +      if (SuccSU->isBoundaryNode()) +        continue; +      unsigned SuccIndex = std::get<1>( +          *llvm::lower_bound(Indices, std::make_pair(SuccSU, 0), CompareKey)); +      if (!SuccSU->getInstr()->isPHI() && SuccIndex < Index) { +        SuccBefore = true; +        Succ = SuccSU; +        break; +      } +    } + +    if (PredBefore && SuccBefore && !SU->getInstr()->isPHI()) { +      // instructions in circuits are allowed to be scheduled +      // after both a successor and predecessor. +      bool InCircuit = llvm::any_of( +          Circuits, [SU](const NodeSet &Circuit) { return Circuit.count(SU); }); +      if (InCircuit) +        LLVM_DEBUG(dbgs() << "In a circuit, predecessor ";); +      else { +        Valid = false; +        NumNodeOrderIssues++; +        LLVM_DEBUG(dbgs() << "Predecessor ";); +      } +      LLVM_DEBUG(dbgs() << Pred->NodeNum << " and successor " << Succ->NodeNum +                        << " are scheduled before node " << SU->NodeNum +                        << "\n";); +    } +  } + +  LLVM_DEBUG({ +    if (!Valid) +      dbgs() << "Invalid node order found!\n"; +  }); +} + +/// Attempt to fix the degenerate cases when the instruction serialization +/// causes the register lifetimes to overlap. For example, +///   p' = store_pi(p, b) +///      = load p, offset +/// In this case p and p' overlap, which means that two registers are needed. +/// Instead, this function changes the load to use p' and updates the offset. +void SwingSchedulerDAG::fixupRegisterOverlaps(std::deque<SUnit *> &Instrs) { +  unsigned OverlapReg = 0; +  unsigned NewBaseReg = 0; +  for (SUnit *SU : Instrs) { +    MachineInstr *MI = SU->getInstr(); +    for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { +      const MachineOperand &MO = MI->getOperand(i); +      // Look for an instruction that uses p. The instruction occurs in the +      // same cycle but occurs later in the serialized order. +      if (MO.isReg() && MO.isUse() && MO.getReg() == OverlapReg) { +        // Check that the instruction appears in the InstrChanges structure, +        // which contains instructions that can have the offset updated. +        DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = +          InstrChanges.find(SU); +        if (It != InstrChanges.end()) { +          unsigned BasePos, OffsetPos; +          // Update the base register and adjust the offset. +          if (TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) { +            MachineInstr *NewMI = MF.CloneMachineInstr(MI); +            NewMI->getOperand(BasePos).setReg(NewBaseReg); +            int64_t NewOffset = +                MI->getOperand(OffsetPos).getImm() - It->second.second; +            NewMI->getOperand(OffsetPos).setImm(NewOffset); +            SU->setInstr(NewMI); +            MISUnitMap[NewMI] = SU; +            NewMIs[MI] = NewMI; +          } +        } +        OverlapReg = 0; +        NewBaseReg = 0; +        break; +      } +      // Look for an instruction of the form p' = op(p), which uses and defines +      // two virtual registers that get allocated to the same physical register. +      unsigned TiedUseIdx = 0; +      if (MI->isRegTiedToUseOperand(i, &TiedUseIdx)) { +        // OverlapReg is p in the example above. +        OverlapReg = MI->getOperand(TiedUseIdx).getReg(); +        // NewBaseReg is p' in the example above. +        NewBaseReg = MI->getOperand(i).getReg(); +        break; +      } +    } +  } +} + +/// After the schedule has been formed, call this function to combine +/// the instructions from the different stages/cycles.  That is, this +/// function creates a schedule that represents a single iteration. +void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) { +  // Move all instructions to the first stage from later stages. +  for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { +    for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage; +         ++stage) { +      std::deque<SUnit *> &cycleInstrs = +          ScheduledInstrs[cycle + (stage * InitiationInterval)]; +      for (std::deque<SUnit *>::reverse_iterator I = cycleInstrs.rbegin(), +                                                 E = cycleInstrs.rend(); +           I != E; ++I) +        ScheduledInstrs[cycle].push_front(*I); +    } +  } + +  // Erase all the elements in the later stages. Only one iteration should +  // remain in the scheduled list, and it contains all the instructions. +  for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle) +    ScheduledInstrs.erase(cycle); + +  // Change the registers in instruction as specified in the InstrChanges +  // map. We need to use the new registers to create the correct order. +  for (int i = 0, e = SSD->SUnits.size(); i != e; ++i) { +    SUnit *SU = &SSD->SUnits[i]; +    SSD->applyInstrChange(SU->getInstr(), *this); +  } + +  // Reorder the instructions in each cycle to fix and improve the +  // generated code. +  for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) { +    std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle]; +    std::deque<SUnit *> newOrderPhi; +    for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) { +      SUnit *SU = cycleInstrs[i]; +      if (SU->getInstr()->isPHI()) +        newOrderPhi.push_back(SU); +    } +    std::deque<SUnit *> newOrderI; +    for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) { +      SUnit *SU = cycleInstrs[i]; +      if (!SU->getInstr()->isPHI()) +        orderDependence(SSD, SU, newOrderI); +    } +    // Replace the old order with the new order. +    cycleInstrs.swap(newOrderPhi); +    cycleInstrs.insert(cycleInstrs.end(), newOrderI.begin(), newOrderI.end()); +    SSD->fixupRegisterOverlaps(cycleInstrs); +  } + +  LLVM_DEBUG(dump();); +} + +void NodeSet::print(raw_ostream &os) const { +  os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV +     << " depth " << MaxDepth << " col " << Colocate << "\n"; +  for (const auto &I : Nodes) +    os << "   SU(" << I->NodeNum << ") " << *(I->getInstr()); +  os << "\n"; +} + +#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) +/// Print the schedule information to the given output. +void SMSchedule::print(raw_ostream &os) const { +  // Iterate over each cycle. +  for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { +    // Iterate over each instruction in the cycle. +    const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle); +    for (SUnit *CI : cycleInstrs->second) { +      os << "cycle " << cycle << " (" << stageScheduled(CI) << ") "; +      os << "(" << CI->NodeNum << ") "; +      CI->getInstr()->print(os); +      os << "\n"; +    } +  } +} + +/// Utility function used for debugging to print the schedule. +LLVM_DUMP_METHOD void SMSchedule::dump() const { print(dbgs()); } +LLVM_DUMP_METHOD void NodeSet::dump() const { print(dbgs()); } + +#endif + +void ResourceManager::initProcResourceVectors( +    const MCSchedModel &SM, SmallVectorImpl<uint64_t> &Masks) { +  unsigned ProcResourceID = 0; + +  // We currently limit the resource kinds to 64 and below so that we can use +  // uint64_t for Masks +  assert(SM.getNumProcResourceKinds() < 64 && +         "Too many kinds of resources, unsupported"); +  // Create a unique bitmask for every processor resource unit. +  // Skip resource at index 0, since it always references 'InvalidUnit'. +  Masks.resize(SM.getNumProcResourceKinds()); +  for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { +    const MCProcResourceDesc &Desc = *SM.getProcResource(I); +    if (Desc.SubUnitsIdxBegin) +      continue; +    Masks[I] = 1ULL << ProcResourceID; +    ProcResourceID++; +  } +  // Create a unique bitmask for every processor resource group. +  for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { +    const MCProcResourceDesc &Desc = *SM.getProcResource(I); +    if (!Desc.SubUnitsIdxBegin) +      continue; +    Masks[I] = 1ULL << ProcResourceID; +    for (unsigned U = 0; U < Desc.NumUnits; ++U) +      Masks[I] |= Masks[Desc.SubUnitsIdxBegin[U]]; +    ProcResourceID++; +  } +  LLVM_DEBUG({ +    if (SwpShowResMask) { +      dbgs() << "ProcResourceDesc:\n"; +      for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { +        const MCProcResourceDesc *ProcResource = SM.getProcResource(I); +        dbgs() << format(" %16s(%2d): Mask: 0x%08x, NumUnits:%2d\n", +                         ProcResource->Name, I, Masks[I], +                         ProcResource->NumUnits); +      } +      dbgs() << " -----------------\n"; +    } +  }); +} + +bool ResourceManager::canReserveResources(const MCInstrDesc *MID) const { + +  LLVM_DEBUG({ +    if (SwpDebugResource) +      dbgs() << "canReserveResources:\n"; +  }); +  if (UseDFA) +    return DFAResources->canReserveResources(MID); + +  unsigned InsnClass = MID->getSchedClass(); +  const MCSchedClassDesc *SCDesc = SM.getSchedClassDesc(InsnClass); +  if (!SCDesc->isValid()) { +    LLVM_DEBUG({ +      dbgs() << "No valid Schedule Class Desc for schedClass!\n"; +      dbgs() << "isPseduo:" << MID->isPseudo() << "\n"; +    }); +    return true; +  } + +  const MCWriteProcResEntry *I = STI->getWriteProcResBegin(SCDesc); +  const MCWriteProcResEntry *E = STI->getWriteProcResEnd(SCDesc); +  for (; I != E; ++I) { +    if (!I->Cycles) +      continue; +    const MCProcResourceDesc *ProcResource = +        SM.getProcResource(I->ProcResourceIdx); +    unsigned NumUnits = ProcResource->NumUnits; +    LLVM_DEBUG({ +      if (SwpDebugResource) +        dbgs() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n", +                         ProcResource->Name, I->ProcResourceIdx, +                         ProcResourceCount[I->ProcResourceIdx], NumUnits, +                         I->Cycles); +    }); +    if (ProcResourceCount[I->ProcResourceIdx] >= NumUnits) +      return false; +  } +  LLVM_DEBUG(if (SwpDebugResource) dbgs() << "return true\n\n";); +  return true; +} + +void ResourceManager::reserveResources(const MCInstrDesc *MID) { +  LLVM_DEBUG({ +    if (SwpDebugResource) +      dbgs() << "reserveResources:\n"; +  }); +  if (UseDFA) +    return DFAResources->reserveResources(MID); + +  unsigned InsnClass = MID->getSchedClass(); +  const MCSchedClassDesc *SCDesc = SM.getSchedClassDesc(InsnClass); +  if (!SCDesc->isValid()) { +    LLVM_DEBUG({ +      dbgs() << "No valid Schedule Class Desc for schedClass!\n"; +      dbgs() << "isPseduo:" << MID->isPseudo() << "\n"; +    }); +    return; +  } +  for (const MCWriteProcResEntry &PRE : +       make_range(STI->getWriteProcResBegin(SCDesc), +                  STI->getWriteProcResEnd(SCDesc))) { +    if (!PRE.Cycles) +      continue; +    ++ProcResourceCount[PRE.ProcResourceIdx]; +    LLVM_DEBUG({ +      if (SwpDebugResource) { +        const MCProcResourceDesc *ProcResource = +            SM.getProcResource(PRE.ProcResourceIdx); +        dbgs() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n", +                         ProcResource->Name, PRE.ProcResourceIdx, +                         ProcResourceCount[PRE.ProcResourceIdx], +                         ProcResource->NumUnits, PRE.Cycles); +      } +    }); +  } +  LLVM_DEBUG({ +    if (SwpDebugResource) +      dbgs() << "reserveResources: done!\n\n"; +  }); +} + +bool ResourceManager::canReserveResources(const MachineInstr &MI) const { +  return canReserveResources(&MI.getDesc()); +} + +void ResourceManager::reserveResources(const MachineInstr &MI) { +  return reserveResources(&MI.getDesc()); +} + +void ResourceManager::clearResources() { +  if (UseDFA) +    return DFAResources->clearResources(); +  std::fill(ProcResourceCount.begin(), ProcResourceCount.end(), 0); +} | 
