aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/CodeGen/StackColoring.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/CodeGen/StackColoring.cpp')
-rw-r--r--llvm/lib/CodeGen/StackColoring.cpp1299
1 files changed, 1299 insertions, 0 deletions
diff --git a/llvm/lib/CodeGen/StackColoring.cpp b/llvm/lib/CodeGen/StackColoring.cpp
new file mode 100644
index 000000000000..641b54205d62
--- /dev/null
+++ b/llvm/lib/CodeGen/StackColoring.cpp
@@ -0,0 +1,1299 @@
+//===- StackColoring.cpp --------------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass implements the stack-coloring optimization that looks for
+// lifetime markers machine instructions (LIFESTART_BEGIN and LIFESTART_END),
+// which represent the possible lifetime of stack slots. It attempts to
+// merge disjoint stack slots and reduce the used stack space.
+// NOTE: This pass is not StackSlotColoring, which optimizes spill slots.
+//
+// TODO: In the future we plan to improve stack coloring in the following ways:
+// 1. Allow merging multiple small slots into a single larger slot at different
+// offsets.
+// 2. Merge this pass with StackSlotColoring and allow merging of allocas with
+// spill slots.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/BitVector.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/DepthFirstIterator.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/CodeGen/LiveInterval.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineMemOperand.h"
+#include "llvm/CodeGen/MachineOperand.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/CodeGen/SelectionDAGNodes.h"
+#include "llvm/CodeGen/SlotIndexes.h"
+#include "llvm/CodeGen/TargetOpcodes.h"
+#include "llvm/CodeGen/WinEHFuncInfo.h"
+#include "llvm/Config/llvm-config.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DebugInfoMetadata.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/IR/Use.h"
+#include "llvm/IR/Value.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+#include <cassert>
+#include <limits>
+#include <memory>
+#include <utility>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "stack-coloring"
+
+static cl::opt<bool>
+DisableColoring("no-stack-coloring",
+ cl::init(false), cl::Hidden,
+ cl::desc("Disable stack coloring"));
+
+/// The user may write code that uses allocas outside of the declared lifetime
+/// zone. This can happen when the user returns a reference to a local
+/// data-structure. We can detect these cases and decide not to optimize the
+/// code. If this flag is enabled, we try to save the user. This option
+/// is treated as overriding LifetimeStartOnFirstUse below.
+static cl::opt<bool>
+ProtectFromEscapedAllocas("protect-from-escaped-allocas",
+ cl::init(false), cl::Hidden,
+ cl::desc("Do not optimize lifetime zones that "
+ "are broken"));
+
+/// Enable enhanced dataflow scheme for lifetime analysis (treat first
+/// use of stack slot as start of slot lifetime, as opposed to looking
+/// for LIFETIME_START marker). See "Implementation notes" below for
+/// more info.
+static cl::opt<bool>
+LifetimeStartOnFirstUse("stackcoloring-lifetime-start-on-first-use",
+ cl::init(true), cl::Hidden,
+ cl::desc("Treat stack lifetimes as starting on first use, not on START marker."));
+
+
+STATISTIC(NumMarkerSeen, "Number of lifetime markers found.");
+STATISTIC(StackSpaceSaved, "Number of bytes saved due to merging slots.");
+STATISTIC(StackSlotMerged, "Number of stack slot merged.");
+STATISTIC(EscapedAllocas, "Number of allocas that escaped the lifetime region");
+
+//===----------------------------------------------------------------------===//
+// StackColoring Pass
+//===----------------------------------------------------------------------===//
+//
+// Stack Coloring reduces stack usage by merging stack slots when they
+// can't be used together. For example, consider the following C program:
+//
+// void bar(char *, int);
+// void foo(bool var) {
+// A: {
+// char z[4096];
+// bar(z, 0);
+// }
+//
+// char *p;
+// char x[4096];
+// char y[4096];
+// if (var) {
+// p = x;
+// } else {
+// bar(y, 1);
+// p = y + 1024;
+// }
+// B:
+// bar(p, 2);
+// }
+//
+// Naively-compiled, this program would use 12k of stack space. However, the
+// stack slot corresponding to `z` is always destroyed before either of the
+// stack slots for `x` or `y` are used, and then `x` is only used if `var`
+// is true, while `y` is only used if `var` is false. So in no time are 2
+// of the stack slots used together, and therefore we can merge them,
+// compiling the function using only a single 4k alloca:
+//
+// void foo(bool var) { // equivalent
+// char x[4096];
+// char *p;
+// bar(x, 0);
+// if (var) {
+// p = x;
+// } else {
+// bar(x, 1);
+// p = x + 1024;
+// }
+// bar(p, 2);
+// }
+//
+// This is an important optimization if we want stack space to be under
+// control in large functions, both open-coded ones and ones created by
+// inlining.
+//
+// Implementation Notes:
+// ---------------------
+//
+// An important part of the above reasoning is that `z` can't be accessed
+// while the latter 2 calls to `bar` are running. This is justified because
+// `z`'s lifetime is over after we exit from block `A:`, so any further
+// accesses to it would be UB. The way we represent this information
+// in LLVM is by having frontends delimit blocks with `lifetime.start`
+// and `lifetime.end` intrinsics.
+//
+// The effect of these intrinsics seems to be as follows (maybe I should
+// specify this in the reference?):
+//
+// L1) at start, each stack-slot is marked as *out-of-scope*, unless no
+// lifetime intrinsic refers to that stack slot, in which case
+// it is marked as *in-scope*.
+// L2) on a `lifetime.start`, a stack slot is marked as *in-scope* and
+// the stack slot is overwritten with `undef`.
+// L3) on a `lifetime.end`, a stack slot is marked as *out-of-scope*.
+// L4) on function exit, all stack slots are marked as *out-of-scope*.
+// L5) `lifetime.end` is a no-op when called on a slot that is already
+// *out-of-scope*.
+// L6) memory accesses to *out-of-scope* stack slots are UB.
+// L7) when a stack-slot is marked as *out-of-scope*, all pointers to it
+// are invalidated, unless the slot is "degenerate". This is used to
+// justify not marking slots as in-use until the pointer to them is
+// used, but feels a bit hacky in the presence of things like LICM. See
+// the "Degenerate Slots" section for more details.
+//
+// Now, let's ground stack coloring on these rules. We'll define a slot
+// as *in-use* at a (dynamic) point in execution if it either can be
+// written to at that point, or if it has a live and non-undef content
+// at that point.
+//
+// Obviously, slots that are never *in-use* together can be merged, and
+// in our example `foo`, the slots for `x`, `y` and `z` are never
+// in-use together (of course, sometimes slots that *are* in-use together
+// might still be mergable, but we don't care about that here).
+//
+// In this implementation, we successively merge pairs of slots that are
+// not *in-use* together. We could be smarter - for example, we could merge
+// a single large slot with 2 small slots, or we could construct the
+// interference graph and run a "smart" graph coloring algorithm, but with
+// that aside, how do we find out whether a pair of slots might be *in-use*
+// together?
+//
+// From our rules, we see that *out-of-scope* slots are never *in-use*,
+// and from (L7) we see that "non-degenerate" slots remain non-*in-use*
+// until their address is taken. Therefore, we can approximate slot activity
+// using dataflow.
+//
+// A subtle point: naively, we might try to figure out which pairs of
+// stack-slots interfere by propagating `S in-use` through the CFG for every
+// stack-slot `S`, and having `S` and `T` interfere if there is a CFG point in
+// which they are both *in-use*.
+//
+// That is sound, but overly conservative in some cases: in our (artificial)
+// example `foo`, either `x` or `y` might be in use at the label `B:`, but
+// as `x` is only in use if we came in from the `var` edge and `y` only
+// if we came from the `!var` edge, they still can't be in use together.
+// See PR32488 for an important real-life case.
+//
+// If we wanted to find all points of interference precisely, we could
+// propagate `S in-use` and `S&T in-use` predicates through the CFG. That
+// would be precise, but requires propagating `O(n^2)` dataflow facts.
+//
+// However, we aren't interested in the *set* of points of interference
+// between 2 stack slots, only *whether* there *is* such a point. So we
+// can rely on a little trick: for `S` and `T` to be in-use together,
+// one of them needs to become in-use while the other is in-use (or
+// they might both become in use simultaneously). We can check this
+// by also keeping track of the points at which a stack slot might *start*
+// being in-use.
+//
+// Exact first use:
+// ----------------
+//
+// Consider the following motivating example:
+//
+// int foo() {
+// char b1[1024], b2[1024];
+// if (...) {
+// char b3[1024];
+// <uses of b1, b3>;
+// return x;
+// } else {
+// char b4[1024], b5[1024];
+// <uses of b2, b4, b5>;
+// return y;
+// }
+// }
+//
+// In the code above, "b3" and "b4" are declared in distinct lexical
+// scopes, meaning that it is easy to prove that they can share the
+// same stack slot. Variables "b1" and "b2" are declared in the same
+// scope, meaning that from a lexical point of view, their lifetimes
+// overlap. From a control flow pointer of view, however, the two
+// variables are accessed in disjoint regions of the CFG, thus it
+// should be possible for them to share the same stack slot. An ideal
+// stack allocation for the function above would look like:
+//
+// slot 0: b1, b2
+// slot 1: b3, b4
+// slot 2: b5
+//
+// Achieving this allocation is tricky, however, due to the way
+// lifetime markers are inserted. Here is a simplified view of the
+// control flow graph for the code above:
+//
+// +------ block 0 -------+
+// 0| LIFETIME_START b1, b2 |
+// 1| <test 'if' condition> |
+// +-----------------------+
+// ./ \.
+// +------ block 1 -------+ +------ block 2 -------+
+// 2| LIFETIME_START b3 | 5| LIFETIME_START b4, b5 |
+// 3| <uses of b1, b3> | 6| <uses of b2, b4, b5> |
+// 4| LIFETIME_END b3 | 7| LIFETIME_END b4, b5 |
+// +-----------------------+ +-----------------------+
+// \. /.
+// +------ block 3 -------+
+// 8| <cleanupcode> |
+// 9| LIFETIME_END b1, b2 |
+// 10| return |
+// +-----------------------+
+//
+// If we create live intervals for the variables above strictly based
+// on the lifetime markers, we'll get the set of intervals on the
+// left. If we ignore the lifetime start markers and instead treat a
+// variable's lifetime as beginning with the first reference to the
+// var, then we get the intervals on the right.
+//
+// LIFETIME_START First Use
+// b1: [0,9] [3,4] [8,9]
+// b2: [0,9] [6,9]
+// b3: [2,4] [3,4]
+// b4: [5,7] [6,7]
+// b5: [5,7] [6,7]
+//
+// For the intervals on the left, the best we can do is overlap two
+// variables (b3 and b4, for example); this gives us a stack size of
+// 4*1024 bytes, not ideal. When treating first-use as the start of a
+// lifetime, we can additionally overlap b1 and b5, giving us a 3*1024
+// byte stack (better).
+//
+// Degenerate Slots:
+// -----------------
+//
+// Relying entirely on first-use of stack slots is problematic,
+// however, due to the fact that optimizations can sometimes migrate
+// uses of a variable outside of its lifetime start/end region. Here
+// is an example:
+//
+// int bar() {
+// char b1[1024], b2[1024];
+// if (...) {
+// <uses of b2>
+// return y;
+// } else {
+// <uses of b1>
+// while (...) {
+// char b3[1024];
+// <uses of b3>
+// }
+// }
+// }
+//
+// Before optimization, the control flow graph for the code above
+// might look like the following:
+//
+// +------ block 0 -------+
+// 0| LIFETIME_START b1, b2 |
+// 1| <test 'if' condition> |
+// +-----------------------+
+// ./ \.
+// +------ block 1 -------+ +------- block 2 -------+
+// 2| <uses of b2> | 3| <uses of b1> |
+// +-----------------------+ +-----------------------+
+// | |
+// | +------- block 3 -------+ <-\.
+// | 4| <while condition> | |
+// | +-----------------------+ |
+// | / | |
+// | / +------- block 4 -------+
+// \ / 5| LIFETIME_START b3 | |
+// \ / 6| <uses of b3> | |
+// \ / 7| LIFETIME_END b3 | |
+// \ | +------------------------+ |
+// \ | \ /
+// +------ block 5 -----+ \---------------
+// 8| <cleanupcode> |
+// 9| LIFETIME_END b1, b2 |
+// 10| return |
+// +---------------------+
+//
+// During optimization, however, it can happen that an instruction
+// computing an address in "b3" (for example, a loop-invariant GEP) is
+// hoisted up out of the loop from block 4 to block 2. [Note that
+// this is not an actual load from the stack, only an instruction that
+// computes the address to be loaded]. If this happens, there is now a
+// path leading from the first use of b3 to the return instruction
+// that does not encounter the b3 LIFETIME_END, hence b3's lifetime is
+// now larger than if we were computing live intervals strictly based
+// on lifetime markers. In the example above, this lengthened lifetime
+// would mean that it would appear illegal to overlap b3 with b2.
+//
+// To deal with this such cases, the code in ::collectMarkers() below
+// tries to identify "degenerate" slots -- those slots where on a single
+// forward pass through the CFG we encounter a first reference to slot
+// K before we hit the slot K lifetime start marker. For such slots,
+// we fall back on using the lifetime start marker as the beginning of
+// the variable's lifetime. NB: with this implementation, slots can
+// appear degenerate in cases where there is unstructured control flow:
+//
+// if (q) goto mid;
+// if (x > 9) {
+// int b[100];
+// memcpy(&b[0], ...);
+// mid: b[k] = ...;
+// abc(&b);
+// }
+//
+// If in RPO ordering chosen to walk the CFG we happen to visit the b[k]
+// before visiting the memcpy block (which will contain the lifetime start
+// for "b" then it will appear that 'b' has a degenerate lifetime.
+//
+
+namespace {
+
+/// StackColoring - A machine pass for merging disjoint stack allocations,
+/// marked by the LIFETIME_START and LIFETIME_END pseudo instructions.
+class StackColoring : public MachineFunctionPass {
+ MachineFrameInfo *MFI;
+ MachineFunction *MF;
+
+ /// A class representing liveness information for a single basic block.
+ /// Each bit in the BitVector represents the liveness property
+ /// for a different stack slot.
+ struct BlockLifetimeInfo {
+ /// Which slots BEGINs in each basic block.
+ BitVector Begin;
+
+ /// Which slots ENDs in each basic block.
+ BitVector End;
+
+ /// Which slots are marked as LIVE_IN, coming into each basic block.
+ BitVector LiveIn;
+
+ /// Which slots are marked as LIVE_OUT, coming out of each basic block.
+ BitVector LiveOut;
+ };
+
+ /// Maps active slots (per bit) for each basic block.
+ using LivenessMap = DenseMap<const MachineBasicBlock *, BlockLifetimeInfo>;
+ LivenessMap BlockLiveness;
+
+ /// Maps serial numbers to basic blocks.
+ DenseMap<const MachineBasicBlock *, int> BasicBlocks;
+
+ /// Maps basic blocks to a serial number.
+ SmallVector<const MachineBasicBlock *, 8> BasicBlockNumbering;
+
+ /// Maps slots to their use interval. Outside of this interval, slots
+ /// values are either dead or `undef` and they will not be written to.
+ SmallVector<std::unique_ptr<LiveInterval>, 16> Intervals;
+
+ /// Maps slots to the points where they can become in-use.
+ SmallVector<SmallVector<SlotIndex, 4>, 16> LiveStarts;
+
+ /// VNInfo is used for the construction of LiveIntervals.
+ VNInfo::Allocator VNInfoAllocator;
+
+ /// SlotIndex analysis object.
+ SlotIndexes *Indexes;
+
+ /// The list of lifetime markers found. These markers are to be removed
+ /// once the coloring is done.
+ SmallVector<MachineInstr*, 8> Markers;
+
+ /// Record the FI slots for which we have seen some sort of
+ /// lifetime marker (either start or end).
+ BitVector InterestingSlots;
+
+ /// FI slots that need to be handled conservatively (for these
+ /// slots lifetime-start-on-first-use is disabled).
+ BitVector ConservativeSlots;
+
+ /// Number of iterations taken during data flow analysis.
+ unsigned NumIterations;
+
+public:
+ static char ID;
+
+ StackColoring() : MachineFunctionPass(ID) {
+ initializeStackColoringPass(*PassRegistry::getPassRegistry());
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override;
+ bool runOnMachineFunction(MachineFunction &Func) override;
+
+private:
+ /// Used in collectMarkers
+ using BlockBitVecMap = DenseMap<const MachineBasicBlock *, BitVector>;
+
+ /// Debug.
+ void dump() const;
+ void dumpIntervals() const;
+ void dumpBB(MachineBasicBlock *MBB) const;
+ void dumpBV(const char *tag, const BitVector &BV) const;
+
+ /// Removes all of the lifetime marker instructions from the function.
+ /// \returns true if any markers were removed.
+ bool removeAllMarkers();
+
+ /// Scan the machine function and find all of the lifetime markers.
+ /// Record the findings in the BEGIN and END vectors.
+ /// \returns the number of markers found.
+ unsigned collectMarkers(unsigned NumSlot);
+
+ /// Perform the dataflow calculation and calculate the lifetime for each of
+ /// the slots, based on the BEGIN/END vectors. Set the LifetimeLIVE_IN and
+ /// LifetimeLIVE_OUT maps that represent which stack slots are live coming
+ /// in and out blocks.
+ void calculateLocalLiveness();
+
+ /// Returns TRUE if we're using the first-use-begins-lifetime method for
+ /// this slot (if FALSE, then the start marker is treated as start of lifetime).
+ bool applyFirstUse(int Slot) {
+ if (!LifetimeStartOnFirstUse || ProtectFromEscapedAllocas)
+ return false;
+ if (ConservativeSlots.test(Slot))
+ return false;
+ return true;
+ }
+
+ /// Examines the specified instruction and returns TRUE if the instruction
+ /// represents the start or end of an interesting lifetime. The slot or slots
+ /// starting or ending are added to the vector "slots" and "isStart" is set
+ /// accordingly.
+ /// \returns True if inst contains a lifetime start or end
+ bool isLifetimeStartOrEnd(const MachineInstr &MI,
+ SmallVector<int, 4> &slots,
+ bool &isStart);
+
+ /// Construct the LiveIntervals for the slots.
+ void calculateLiveIntervals(unsigned NumSlots);
+
+ /// Go over the machine function and change instructions which use stack
+ /// slots to use the joint slots.
+ void remapInstructions(DenseMap<int, int> &SlotRemap);
+
+ /// The input program may contain instructions which are not inside lifetime
+ /// markers. This can happen due to a bug in the compiler or due to a bug in
+ /// user code (for example, returning a reference to a local variable).
+ /// This procedure checks all of the instructions in the function and
+ /// invalidates lifetime ranges which do not contain all of the instructions
+ /// which access that frame slot.
+ void removeInvalidSlotRanges();
+
+ /// Map entries which point to other entries to their destination.
+ /// A->B->C becomes A->C.
+ void expungeSlotMap(DenseMap<int, int> &SlotRemap, unsigned NumSlots);
+};
+
+} // end anonymous namespace
+
+char StackColoring::ID = 0;
+
+char &llvm::StackColoringID = StackColoring::ID;
+
+INITIALIZE_PASS_BEGIN(StackColoring, DEBUG_TYPE,
+ "Merge disjoint stack slots", false, false)
+INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
+INITIALIZE_PASS_END(StackColoring, DEBUG_TYPE,
+ "Merge disjoint stack slots", false, false)
+
+void StackColoring::getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.addRequired<SlotIndexes>();
+ MachineFunctionPass::getAnalysisUsage(AU);
+}
+
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+LLVM_DUMP_METHOD void StackColoring::dumpBV(const char *tag,
+ const BitVector &BV) const {
+ dbgs() << tag << " : { ";
+ for (unsigned I = 0, E = BV.size(); I != E; ++I)
+ dbgs() << BV.test(I) << " ";
+ dbgs() << "}\n";
+}
+
+LLVM_DUMP_METHOD void StackColoring::dumpBB(MachineBasicBlock *MBB) const {
+ LivenessMap::const_iterator BI = BlockLiveness.find(MBB);
+ assert(BI != BlockLiveness.end() && "Block not found");
+ const BlockLifetimeInfo &BlockInfo = BI->second;
+
+ dumpBV("BEGIN", BlockInfo.Begin);
+ dumpBV("END", BlockInfo.End);
+ dumpBV("LIVE_IN", BlockInfo.LiveIn);
+ dumpBV("LIVE_OUT", BlockInfo.LiveOut);
+}
+
+LLVM_DUMP_METHOD void StackColoring::dump() const {
+ for (MachineBasicBlock *MBB : depth_first(MF)) {
+ dbgs() << "Inspecting block #" << MBB->getNumber() << " ["
+ << MBB->getName() << "]\n";
+ dumpBB(MBB);
+ }
+}
+
+LLVM_DUMP_METHOD void StackColoring::dumpIntervals() const {
+ for (unsigned I = 0, E = Intervals.size(); I != E; ++I) {
+ dbgs() << "Interval[" << I << "]:\n";
+ Intervals[I]->dump();
+ }
+}
+#endif
+
+static inline int getStartOrEndSlot(const MachineInstr &MI)
+{
+ assert((MI.getOpcode() == TargetOpcode::LIFETIME_START ||
+ MI.getOpcode() == TargetOpcode::LIFETIME_END) &&
+ "Expected LIFETIME_START or LIFETIME_END op");
+ const MachineOperand &MO = MI.getOperand(0);
+ int Slot = MO.getIndex();
+ if (Slot >= 0)
+ return Slot;
+ return -1;
+}
+
+// At the moment the only way to end a variable lifetime is with
+// a VARIABLE_LIFETIME op (which can't contain a start). If things
+// change and the IR allows for a single inst that both begins
+// and ends lifetime(s), this interface will need to be reworked.
+bool StackColoring::isLifetimeStartOrEnd(const MachineInstr &MI,
+ SmallVector<int, 4> &slots,
+ bool &isStart) {
+ if (MI.getOpcode() == TargetOpcode::LIFETIME_START ||
+ MI.getOpcode() == TargetOpcode::LIFETIME_END) {
+ int Slot = getStartOrEndSlot(MI);
+ if (Slot < 0)
+ return false;
+ if (!InterestingSlots.test(Slot))
+ return false;
+ slots.push_back(Slot);
+ if (MI.getOpcode() == TargetOpcode::LIFETIME_END) {
+ isStart = false;
+ return true;
+ }
+ if (!applyFirstUse(Slot)) {
+ isStart = true;
+ return true;
+ }
+ } else if (LifetimeStartOnFirstUse && !ProtectFromEscapedAllocas) {
+ if (!MI.isDebugInstr()) {
+ bool found = false;
+ for (const MachineOperand &MO : MI.operands()) {
+ if (!MO.isFI())
+ continue;
+ int Slot = MO.getIndex();
+ if (Slot<0)
+ continue;
+ if (InterestingSlots.test(Slot) && applyFirstUse(Slot)) {
+ slots.push_back(Slot);
+ found = true;
+ }
+ }
+ if (found) {
+ isStart = true;
+ return true;
+ }
+ }
+ }
+ return false;
+}
+
+unsigned StackColoring::collectMarkers(unsigned NumSlot) {
+ unsigned MarkersFound = 0;
+ BlockBitVecMap SeenStartMap;
+ InterestingSlots.clear();
+ InterestingSlots.resize(NumSlot);
+ ConservativeSlots.clear();
+ ConservativeSlots.resize(NumSlot);
+
+ // number of start and end lifetime ops for each slot
+ SmallVector<int, 8> NumStartLifetimes(NumSlot, 0);
+ SmallVector<int, 8> NumEndLifetimes(NumSlot, 0);
+
+ // Step 1: collect markers and populate the "InterestingSlots"
+ // and "ConservativeSlots" sets.
+ for (MachineBasicBlock *MBB : depth_first(MF)) {
+ // Compute the set of slots for which we've seen a START marker but have
+ // not yet seen an END marker at this point in the walk (e.g. on entry
+ // to this bb).
+ BitVector BetweenStartEnd;
+ BetweenStartEnd.resize(NumSlot);
+ for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
+ PE = MBB->pred_end(); PI != PE; ++PI) {
+ BlockBitVecMap::const_iterator I = SeenStartMap.find(*PI);
+ if (I != SeenStartMap.end()) {
+ BetweenStartEnd |= I->second;
+ }
+ }
+
+ // Walk the instructions in the block to look for start/end ops.
+ for (MachineInstr &MI : *MBB) {
+ if (MI.getOpcode() == TargetOpcode::LIFETIME_START ||
+ MI.getOpcode() == TargetOpcode::LIFETIME_END) {
+ int Slot = getStartOrEndSlot(MI);
+ if (Slot < 0)
+ continue;
+ InterestingSlots.set(Slot);
+ if (MI.getOpcode() == TargetOpcode::LIFETIME_START) {
+ BetweenStartEnd.set(Slot);
+ NumStartLifetimes[Slot] += 1;
+ } else {
+ BetweenStartEnd.reset(Slot);
+ NumEndLifetimes[Slot] += 1;
+ }
+ const AllocaInst *Allocation = MFI->getObjectAllocation(Slot);
+ if (Allocation) {
+ LLVM_DEBUG(dbgs() << "Found a lifetime ");
+ LLVM_DEBUG(dbgs() << (MI.getOpcode() == TargetOpcode::LIFETIME_START
+ ? "start"
+ : "end"));
+ LLVM_DEBUG(dbgs() << " marker for slot #" << Slot);
+ LLVM_DEBUG(dbgs()
+ << " with allocation: " << Allocation->getName() << "\n");
+ }
+ Markers.push_back(&MI);
+ MarkersFound += 1;
+ } else {
+ for (const MachineOperand &MO : MI.operands()) {
+ if (!MO.isFI())
+ continue;
+ int Slot = MO.getIndex();
+ if (Slot < 0)
+ continue;
+ if (! BetweenStartEnd.test(Slot)) {
+ ConservativeSlots.set(Slot);
+ }
+ }
+ }
+ }
+ BitVector &SeenStart = SeenStartMap[MBB];
+ SeenStart |= BetweenStartEnd;
+ }
+ if (!MarkersFound) {
+ return 0;
+ }
+
+ // PR27903: slots with multiple start or end lifetime ops are not
+ // safe to enable for "lifetime-start-on-first-use".
+ for (unsigned slot = 0; slot < NumSlot; ++slot)
+ if (NumStartLifetimes[slot] > 1 || NumEndLifetimes[slot] > 1)
+ ConservativeSlots.set(slot);
+ LLVM_DEBUG(dumpBV("Conservative slots", ConservativeSlots));
+
+ // Step 2: compute begin/end sets for each block
+
+ // NOTE: We use a depth-first iteration to ensure that we obtain a
+ // deterministic numbering.
+ for (MachineBasicBlock *MBB : depth_first(MF)) {
+ // Assign a serial number to this basic block.
+ BasicBlocks[MBB] = BasicBlockNumbering.size();
+ BasicBlockNumbering.push_back(MBB);
+
+ // Keep a reference to avoid repeated lookups.
+ BlockLifetimeInfo &BlockInfo = BlockLiveness[MBB];
+
+ BlockInfo.Begin.resize(NumSlot);
+ BlockInfo.End.resize(NumSlot);
+
+ SmallVector<int, 4> slots;
+ for (MachineInstr &MI : *MBB) {
+ bool isStart = false;
+ slots.clear();
+ if (isLifetimeStartOrEnd(MI, slots, isStart)) {
+ if (!isStart) {
+ assert(slots.size() == 1 && "unexpected: MI ends multiple slots");
+ int Slot = slots[0];
+ if (BlockInfo.Begin.test(Slot)) {
+ BlockInfo.Begin.reset(Slot);
+ }
+ BlockInfo.End.set(Slot);
+ } else {
+ for (auto Slot : slots) {
+ LLVM_DEBUG(dbgs() << "Found a use of slot #" << Slot);
+ LLVM_DEBUG(dbgs()
+ << " at " << printMBBReference(*MBB) << " index ");
+ LLVM_DEBUG(Indexes->getInstructionIndex(MI).print(dbgs()));
+ const AllocaInst *Allocation = MFI->getObjectAllocation(Slot);
+ if (Allocation) {
+ LLVM_DEBUG(dbgs()
+ << " with allocation: " << Allocation->getName());
+ }
+ LLVM_DEBUG(dbgs() << "\n");
+ if (BlockInfo.End.test(Slot)) {
+ BlockInfo.End.reset(Slot);
+ }
+ BlockInfo.Begin.set(Slot);
+ }
+ }
+ }
+ }
+ }
+
+ // Update statistics.
+ NumMarkerSeen += MarkersFound;
+ return MarkersFound;
+}
+
+void StackColoring::calculateLocalLiveness() {
+ unsigned NumIters = 0;
+ bool changed = true;
+ while (changed) {
+ changed = false;
+ ++NumIters;
+
+ for (const MachineBasicBlock *BB : BasicBlockNumbering) {
+ // Use an iterator to avoid repeated lookups.
+ LivenessMap::iterator BI = BlockLiveness.find(BB);
+ assert(BI != BlockLiveness.end() && "Block not found");
+ BlockLifetimeInfo &BlockInfo = BI->second;
+
+ // Compute LiveIn by unioning together the LiveOut sets of all preds.
+ BitVector LocalLiveIn;
+ for (MachineBasicBlock::const_pred_iterator PI = BB->pred_begin(),
+ PE = BB->pred_end(); PI != PE; ++PI) {
+ LivenessMap::const_iterator I = BlockLiveness.find(*PI);
+ // PR37130: transformations prior to stack coloring can
+ // sometimes leave behind statically unreachable blocks; these
+ // can be safely skipped here.
+ if (I != BlockLiveness.end())
+ LocalLiveIn |= I->second.LiveOut;
+ }
+
+ // Compute LiveOut by subtracting out lifetimes that end in this
+ // block, then adding in lifetimes that begin in this block. If
+ // we have both BEGIN and END markers in the same basic block
+ // then we know that the BEGIN marker comes after the END,
+ // because we already handle the case where the BEGIN comes
+ // before the END when collecting the markers (and building the
+ // BEGIN/END vectors).
+ BitVector LocalLiveOut = LocalLiveIn;
+ LocalLiveOut.reset(BlockInfo.End);
+ LocalLiveOut |= BlockInfo.Begin;
+
+ // Update block LiveIn set, noting whether it has changed.
+ if (LocalLiveIn.test(BlockInfo.LiveIn)) {
+ changed = true;
+ BlockInfo.LiveIn |= LocalLiveIn;
+ }
+
+ // Update block LiveOut set, noting whether it has changed.
+ if (LocalLiveOut.test(BlockInfo.LiveOut)) {
+ changed = true;
+ BlockInfo.LiveOut |= LocalLiveOut;
+ }
+ }
+ } // while changed.
+
+ NumIterations = NumIters;
+}
+
+void StackColoring::calculateLiveIntervals(unsigned NumSlots) {
+ SmallVector<SlotIndex, 16> Starts;
+ SmallVector<bool, 16> DefinitelyInUse;
+
+ // For each block, find which slots are active within this block
+ // and update the live intervals.
+ for (const MachineBasicBlock &MBB : *MF) {
+ Starts.clear();
+ Starts.resize(NumSlots);
+ DefinitelyInUse.clear();
+ DefinitelyInUse.resize(NumSlots);
+
+ // Start the interval of the slots that we previously found to be 'in-use'.
+ BlockLifetimeInfo &MBBLiveness = BlockLiveness[&MBB];
+ for (int pos = MBBLiveness.LiveIn.find_first(); pos != -1;
+ pos = MBBLiveness.LiveIn.find_next(pos)) {
+ Starts[pos] = Indexes->getMBBStartIdx(&MBB);
+ }
+
+ // Create the interval for the basic blocks containing lifetime begin/end.
+ for (const MachineInstr &MI : MBB) {
+ SmallVector<int, 4> slots;
+ bool IsStart = false;
+ if (!isLifetimeStartOrEnd(MI, slots, IsStart))
+ continue;
+ SlotIndex ThisIndex = Indexes->getInstructionIndex(MI);
+ for (auto Slot : slots) {
+ if (IsStart) {
+ // If a slot is already definitely in use, we don't have to emit
+ // a new start marker because there is already a pre-existing
+ // one.
+ if (!DefinitelyInUse[Slot]) {
+ LiveStarts[Slot].push_back(ThisIndex);
+ DefinitelyInUse[Slot] = true;
+ }
+ if (!Starts[Slot].isValid())
+ Starts[Slot] = ThisIndex;
+ } else {
+ if (Starts[Slot].isValid()) {
+ VNInfo *VNI = Intervals[Slot]->getValNumInfo(0);
+ Intervals[Slot]->addSegment(
+ LiveInterval::Segment(Starts[Slot], ThisIndex, VNI));
+ Starts[Slot] = SlotIndex(); // Invalidate the start index
+ DefinitelyInUse[Slot] = false;
+ }
+ }
+ }
+ }
+
+ // Finish up started segments
+ for (unsigned i = 0; i < NumSlots; ++i) {
+ if (!Starts[i].isValid())
+ continue;
+
+ SlotIndex EndIdx = Indexes->getMBBEndIdx(&MBB);
+ VNInfo *VNI = Intervals[i]->getValNumInfo(0);
+ Intervals[i]->addSegment(LiveInterval::Segment(Starts[i], EndIdx, VNI));
+ }
+ }
+}
+
+bool StackColoring::removeAllMarkers() {
+ unsigned Count = 0;
+ for (MachineInstr *MI : Markers) {
+ MI->eraseFromParent();
+ Count++;
+ }
+ Markers.clear();
+
+ LLVM_DEBUG(dbgs() << "Removed " << Count << " markers.\n");
+ return Count;
+}
+
+void StackColoring::remapInstructions(DenseMap<int, int> &SlotRemap) {
+ unsigned FixedInstr = 0;
+ unsigned FixedMemOp = 0;
+ unsigned FixedDbg = 0;
+
+ // Remap debug information that refers to stack slots.
+ for (auto &VI : MF->getVariableDbgInfo()) {
+ if (!VI.Var)
+ continue;
+ if (SlotRemap.count(VI.Slot)) {
+ LLVM_DEBUG(dbgs() << "Remapping debug info for ["
+ << cast<DILocalVariable>(VI.Var)->getName() << "].\n");
+ VI.Slot = SlotRemap[VI.Slot];
+ FixedDbg++;
+ }
+ }
+
+ // Keep a list of *allocas* which need to be remapped.
+ DenseMap<const AllocaInst*, const AllocaInst*> Allocas;
+
+ // Keep a list of allocas which has been affected by the remap.
+ SmallPtrSet<const AllocaInst*, 32> MergedAllocas;
+
+ for (const std::pair<int, int> &SI : SlotRemap) {
+ const AllocaInst *From = MFI->getObjectAllocation(SI.first);
+ const AllocaInst *To = MFI->getObjectAllocation(SI.second);
+ assert(To && From && "Invalid allocation object");
+ Allocas[From] = To;
+
+ // AA might be used later for instruction scheduling, and we need it to be
+ // able to deduce the correct aliasing releationships between pointers
+ // derived from the alloca being remapped and the target of that remapping.
+ // The only safe way, without directly informing AA about the remapping
+ // somehow, is to directly update the IR to reflect the change being made
+ // here.
+ Instruction *Inst = const_cast<AllocaInst *>(To);
+ if (From->getType() != To->getType()) {
+ BitCastInst *Cast = new BitCastInst(Inst, From->getType());
+ Cast->insertAfter(Inst);
+ Inst = Cast;
+ }
+
+ // We keep both slots to maintain AliasAnalysis metadata later.
+ MergedAllocas.insert(From);
+ MergedAllocas.insert(To);
+
+ // Transfer the stack protector layout tag, but make sure that SSPLK_AddrOf
+ // does not overwrite SSPLK_SmallArray or SSPLK_LargeArray, and make sure
+ // that SSPLK_SmallArray does not overwrite SSPLK_LargeArray.
+ MachineFrameInfo::SSPLayoutKind FromKind
+ = MFI->getObjectSSPLayout(SI.first);
+ MachineFrameInfo::SSPLayoutKind ToKind = MFI->getObjectSSPLayout(SI.second);
+ if (FromKind != MachineFrameInfo::SSPLK_None &&
+ (ToKind == MachineFrameInfo::SSPLK_None ||
+ (ToKind != MachineFrameInfo::SSPLK_LargeArray &&
+ FromKind != MachineFrameInfo::SSPLK_AddrOf)))
+ MFI->setObjectSSPLayout(SI.second, FromKind);
+
+ // The new alloca might not be valid in a llvm.dbg.declare for this
+ // variable, so undef out the use to make the verifier happy.
+ AllocaInst *FromAI = const_cast<AllocaInst *>(From);
+ if (FromAI->isUsedByMetadata())
+ ValueAsMetadata::handleRAUW(FromAI, UndefValue::get(FromAI->getType()));
+ for (auto &Use : FromAI->uses()) {
+ if (BitCastInst *BCI = dyn_cast<BitCastInst>(Use.get()))
+ if (BCI->isUsedByMetadata())
+ ValueAsMetadata::handleRAUW(BCI, UndefValue::get(BCI->getType()));
+ }
+
+ // Note that this will not replace uses in MMOs (which we'll update below),
+ // or anywhere else (which is why we won't delete the original
+ // instruction).
+ FromAI->replaceAllUsesWith(Inst);
+ }
+
+ // Remap all instructions to the new stack slots.
+ for (MachineBasicBlock &BB : *MF)
+ for (MachineInstr &I : BB) {
+ // Skip lifetime markers. We'll remove them soon.
+ if (I.getOpcode() == TargetOpcode::LIFETIME_START ||
+ I.getOpcode() == TargetOpcode::LIFETIME_END)
+ continue;
+
+ // Update the MachineMemOperand to use the new alloca.
+ for (MachineMemOperand *MMO : I.memoperands()) {
+ // We've replaced IR-level uses of the remapped allocas, so we only
+ // need to replace direct uses here.
+ const AllocaInst *AI = dyn_cast_or_null<AllocaInst>(MMO->getValue());
+ if (!AI)
+ continue;
+
+ if (!Allocas.count(AI))
+ continue;
+
+ MMO->setValue(Allocas[AI]);
+ FixedMemOp++;
+ }
+
+ // Update all of the machine instruction operands.
+ for (MachineOperand &MO : I.operands()) {
+ if (!MO.isFI())
+ continue;
+ int FromSlot = MO.getIndex();
+
+ // Don't touch arguments.
+ if (FromSlot<0)
+ continue;
+
+ // Only look at mapped slots.
+ if (!SlotRemap.count(FromSlot))
+ continue;
+
+ // In a debug build, check that the instruction that we are modifying is
+ // inside the expected live range. If the instruction is not inside
+ // the calculated range then it means that the alloca usage moved
+ // outside of the lifetime markers, or that the user has a bug.
+ // NOTE: Alloca address calculations which happen outside the lifetime
+ // zone are okay, despite the fact that we don't have a good way
+ // for validating all of the usages of the calculation.
+#ifndef NDEBUG
+ bool TouchesMemory = I.mayLoad() || I.mayStore();
+ // If we *don't* protect the user from escaped allocas, don't bother
+ // validating the instructions.
+ if (!I.isDebugInstr() && TouchesMemory && ProtectFromEscapedAllocas) {
+ SlotIndex Index = Indexes->getInstructionIndex(I);
+ const LiveInterval *Interval = &*Intervals[FromSlot];
+ assert(Interval->find(Index) != Interval->end() &&
+ "Found instruction usage outside of live range.");
+ }
+#endif
+
+ // Fix the machine instructions.
+ int ToSlot = SlotRemap[FromSlot];
+ MO.setIndex(ToSlot);
+ FixedInstr++;
+ }
+
+ // We adjust AliasAnalysis information for merged stack slots.
+ SmallVector<MachineMemOperand *, 2> NewMMOs;
+ bool ReplaceMemOps = false;
+ for (MachineMemOperand *MMO : I.memoperands()) {
+ // If this memory location can be a slot remapped here,
+ // we remove AA information.
+ bool MayHaveConflictingAAMD = false;
+ if (MMO->getAAInfo()) {
+ if (const Value *MMOV = MMO->getValue()) {
+ SmallVector<Value *, 4> Objs;
+ getUnderlyingObjectsForCodeGen(MMOV, Objs, MF->getDataLayout());
+
+ if (Objs.empty())
+ MayHaveConflictingAAMD = true;
+ else
+ for (Value *V : Objs) {
+ // If this memory location comes from a known stack slot
+ // that is not remapped, we continue checking.
+ // Otherwise, we need to invalidate AA infomation.
+ const AllocaInst *AI = dyn_cast_or_null<AllocaInst>(V);
+ if (AI && MergedAllocas.count(AI)) {
+ MayHaveConflictingAAMD = true;
+ break;
+ }
+ }
+ }
+ }
+ if (MayHaveConflictingAAMD) {
+ NewMMOs.push_back(MF->getMachineMemOperand(MMO, AAMDNodes()));
+ ReplaceMemOps = true;
+ } else {
+ NewMMOs.push_back(MMO);
+ }
+ }
+
+ // If any memory operand is updated, set memory references of
+ // this instruction.
+ if (ReplaceMemOps)
+ I.setMemRefs(*MF, NewMMOs);
+ }
+
+ // Update the location of C++ catch objects for the MSVC personality routine.
+ if (WinEHFuncInfo *EHInfo = MF->getWinEHFuncInfo())
+ for (WinEHTryBlockMapEntry &TBME : EHInfo->TryBlockMap)
+ for (WinEHHandlerType &H : TBME.HandlerArray)
+ if (H.CatchObj.FrameIndex != std::numeric_limits<int>::max() &&
+ SlotRemap.count(H.CatchObj.FrameIndex))
+ H.CatchObj.FrameIndex = SlotRemap[H.CatchObj.FrameIndex];
+
+ LLVM_DEBUG(dbgs() << "Fixed " << FixedMemOp << " machine memory operands.\n");
+ LLVM_DEBUG(dbgs() << "Fixed " << FixedDbg << " debug locations.\n");
+ LLVM_DEBUG(dbgs() << "Fixed " << FixedInstr << " machine instructions.\n");
+}
+
+void StackColoring::removeInvalidSlotRanges() {
+ for (MachineBasicBlock &BB : *MF)
+ for (MachineInstr &I : BB) {
+ if (I.getOpcode() == TargetOpcode::LIFETIME_START ||
+ I.getOpcode() == TargetOpcode::LIFETIME_END || I.isDebugInstr())
+ continue;
+
+ // Some intervals are suspicious! In some cases we find address
+ // calculations outside of the lifetime zone, but not actual memory
+ // read or write. Memory accesses outside of the lifetime zone are a clear
+ // violation, but address calculations are okay. This can happen when
+ // GEPs are hoisted outside of the lifetime zone.
+ // So, in here we only check instructions which can read or write memory.
+ if (!I.mayLoad() && !I.mayStore())
+ continue;
+
+ // Check all of the machine operands.
+ for (const MachineOperand &MO : I.operands()) {
+ if (!MO.isFI())
+ continue;
+
+ int Slot = MO.getIndex();
+
+ if (Slot<0)
+ continue;
+
+ if (Intervals[Slot]->empty())
+ continue;
+
+ // Check that the used slot is inside the calculated lifetime range.
+ // If it is not, warn about it and invalidate the range.
+ LiveInterval *Interval = &*Intervals[Slot];
+ SlotIndex Index = Indexes->getInstructionIndex(I);
+ if (Interval->find(Index) == Interval->end()) {
+ Interval->clear();
+ LLVM_DEBUG(dbgs() << "Invalidating range #" << Slot << "\n");
+ EscapedAllocas++;
+ }
+ }
+ }
+}
+
+void StackColoring::expungeSlotMap(DenseMap<int, int> &SlotRemap,
+ unsigned NumSlots) {
+ // Expunge slot remap map.
+ for (unsigned i=0; i < NumSlots; ++i) {
+ // If we are remapping i
+ if (SlotRemap.count(i)) {
+ int Target = SlotRemap[i];
+ // As long as our target is mapped to something else, follow it.
+ while (SlotRemap.count(Target)) {
+ Target = SlotRemap[Target];
+ SlotRemap[i] = Target;
+ }
+ }
+ }
+}
+
+bool StackColoring::runOnMachineFunction(MachineFunction &Func) {
+ LLVM_DEBUG(dbgs() << "********** Stack Coloring **********\n"
+ << "********** Function: " << Func.getName() << '\n');
+ MF = &Func;
+ MFI = &MF->getFrameInfo();
+ Indexes = &getAnalysis<SlotIndexes>();
+ BlockLiveness.clear();
+ BasicBlocks.clear();
+ BasicBlockNumbering.clear();
+ Markers.clear();
+ Intervals.clear();
+ LiveStarts.clear();
+ VNInfoAllocator.Reset();
+
+ unsigned NumSlots = MFI->getObjectIndexEnd();
+
+ // If there are no stack slots then there are no markers to remove.
+ if (!NumSlots)
+ return false;
+
+ SmallVector<int, 8> SortedSlots;
+ SortedSlots.reserve(NumSlots);
+ Intervals.reserve(NumSlots);
+ LiveStarts.resize(NumSlots);
+
+ unsigned NumMarkers = collectMarkers(NumSlots);
+
+ unsigned TotalSize = 0;
+ LLVM_DEBUG(dbgs() << "Found " << NumMarkers << " markers and " << NumSlots
+ << " slots\n");
+ LLVM_DEBUG(dbgs() << "Slot structure:\n");
+
+ for (int i=0; i < MFI->getObjectIndexEnd(); ++i) {
+ LLVM_DEBUG(dbgs() << "Slot #" << i << " - " << MFI->getObjectSize(i)
+ << " bytes.\n");
+ TotalSize += MFI->getObjectSize(i);
+ }
+
+ LLVM_DEBUG(dbgs() << "Total Stack size: " << TotalSize << " bytes\n\n");
+
+ // Don't continue because there are not enough lifetime markers, or the
+ // stack is too small, or we are told not to optimize the slots.
+ if (NumMarkers < 2 || TotalSize < 16 || DisableColoring ||
+ skipFunction(Func.getFunction())) {
+ LLVM_DEBUG(dbgs() << "Will not try to merge slots.\n");
+ return removeAllMarkers();
+ }
+
+ for (unsigned i=0; i < NumSlots; ++i) {
+ std::unique_ptr<LiveInterval> LI(new LiveInterval(i, 0));
+ LI->getNextValue(Indexes->getZeroIndex(), VNInfoAllocator);
+ Intervals.push_back(std::move(LI));
+ SortedSlots.push_back(i);
+ }
+
+ // Calculate the liveness of each block.
+ calculateLocalLiveness();
+ LLVM_DEBUG(dbgs() << "Dataflow iterations: " << NumIterations << "\n");
+ LLVM_DEBUG(dump());
+
+ // Propagate the liveness information.
+ calculateLiveIntervals(NumSlots);
+ LLVM_DEBUG(dumpIntervals());
+
+ // Search for allocas which are used outside of the declared lifetime
+ // markers.
+ if (ProtectFromEscapedAllocas)
+ removeInvalidSlotRanges();
+
+ // Maps old slots to new slots.
+ DenseMap<int, int> SlotRemap;
+ unsigned RemovedSlots = 0;
+ unsigned ReducedSize = 0;
+
+ // Do not bother looking at empty intervals.
+ for (unsigned I = 0; I < NumSlots; ++I) {
+ if (Intervals[SortedSlots[I]]->empty())
+ SortedSlots[I] = -1;
+ }
+
+ // This is a simple greedy algorithm for merging allocas. First, sort the
+ // slots, placing the largest slots first. Next, perform an n^2 scan and look
+ // for disjoint slots. When you find disjoint slots, merge the samller one
+ // into the bigger one and update the live interval. Remove the small alloca
+ // and continue.
+
+ // Sort the slots according to their size. Place unused slots at the end.
+ // Use stable sort to guarantee deterministic code generation.
+ llvm::stable_sort(SortedSlots, [this](int LHS, int RHS) {
+ // We use -1 to denote a uninteresting slot. Place these slots at the end.
+ if (LHS == -1)
+ return false;
+ if (RHS == -1)
+ return true;
+ // Sort according to size.
+ return MFI->getObjectSize(LHS) > MFI->getObjectSize(RHS);
+ });
+
+ for (auto &s : LiveStarts)
+ llvm::sort(s);
+
+ bool Changed = true;
+ while (Changed) {
+ Changed = false;
+ for (unsigned I = 0; I < NumSlots; ++I) {
+ if (SortedSlots[I] == -1)
+ continue;
+
+ for (unsigned J=I+1; J < NumSlots; ++J) {
+ if (SortedSlots[J] == -1)
+ continue;
+
+ int FirstSlot = SortedSlots[I];
+ int SecondSlot = SortedSlots[J];
+ LiveInterval *First = &*Intervals[FirstSlot];
+ LiveInterval *Second = &*Intervals[SecondSlot];
+ auto &FirstS = LiveStarts[FirstSlot];
+ auto &SecondS = LiveStarts[SecondSlot];
+ assert(!First->empty() && !Second->empty() && "Found an empty range");
+
+ // Merge disjoint slots. This is a little bit tricky - see the
+ // Implementation Notes section for an explanation.
+ if (!First->isLiveAtIndexes(SecondS) &&
+ !Second->isLiveAtIndexes(FirstS)) {
+ Changed = true;
+ First->MergeSegmentsInAsValue(*Second, First->getValNumInfo(0));
+
+ int OldSize = FirstS.size();
+ FirstS.append(SecondS.begin(), SecondS.end());
+ auto Mid = FirstS.begin() + OldSize;
+ std::inplace_merge(FirstS.begin(), Mid, FirstS.end());
+
+ SlotRemap[SecondSlot] = FirstSlot;
+ SortedSlots[J] = -1;
+ LLVM_DEBUG(dbgs() << "Merging #" << FirstSlot << " and slots #"
+ << SecondSlot << " together.\n");
+ unsigned MaxAlignment = std::max(MFI->getObjectAlignment(FirstSlot),
+ MFI->getObjectAlignment(SecondSlot));
+
+ assert(MFI->getObjectSize(FirstSlot) >=
+ MFI->getObjectSize(SecondSlot) &&
+ "Merging a small object into a larger one");
+
+ RemovedSlots+=1;
+ ReducedSize += MFI->getObjectSize(SecondSlot);
+ MFI->setObjectAlignment(FirstSlot, MaxAlignment);
+ MFI->RemoveStackObject(SecondSlot);
+ }
+ }
+ }
+ }// While changed.
+
+ // Record statistics.
+ StackSpaceSaved += ReducedSize;
+ StackSlotMerged += RemovedSlots;
+ LLVM_DEBUG(dbgs() << "Merge " << RemovedSlots << " slots. Saved "
+ << ReducedSize << " bytes\n");
+
+ // Scan the entire function and update all machine operands that use frame
+ // indices to use the remapped frame index.
+ expungeSlotMap(SlotRemap, NumSlots);
+ remapInstructions(SlotRemap);
+
+ return removeAllMarkers();
+}