diff options
Diffstat (limited to 'llvm/lib/CodeGen/StackColoring.cpp')
| -rw-r--r-- | llvm/lib/CodeGen/StackColoring.cpp | 1299 |
1 files changed, 1299 insertions, 0 deletions
diff --git a/llvm/lib/CodeGen/StackColoring.cpp b/llvm/lib/CodeGen/StackColoring.cpp new file mode 100644 index 000000000000..641b54205d62 --- /dev/null +++ b/llvm/lib/CodeGen/StackColoring.cpp @@ -0,0 +1,1299 @@ +//===- StackColoring.cpp --------------------------------------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This pass implements the stack-coloring optimization that looks for +// lifetime markers machine instructions (LIFESTART_BEGIN and LIFESTART_END), +// which represent the possible lifetime of stack slots. It attempts to +// merge disjoint stack slots and reduce the used stack space. +// NOTE: This pass is not StackSlotColoring, which optimizes spill slots. +// +// TODO: In the future we plan to improve stack coloring in the following ways: +// 1. Allow merging multiple small slots into a single larger slot at different +// offsets. +// 2. Merge this pass with StackSlotColoring and allow merging of allocas with +// spill slots. +// +//===----------------------------------------------------------------------===// + +#include "llvm/ADT/BitVector.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/DepthFirstIterator.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/CodeGen/LiveInterval.h" +#include "llvm/CodeGen/MachineBasicBlock.h" +#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineFunctionPass.h" +#include "llvm/CodeGen/MachineInstr.h" +#include "llvm/CodeGen/MachineMemOperand.h" +#include "llvm/CodeGen/MachineOperand.h" +#include "llvm/CodeGen/Passes.h" +#include "llvm/CodeGen/SelectionDAGNodes.h" +#include "llvm/CodeGen/SlotIndexes.h" +#include "llvm/CodeGen/TargetOpcodes.h" +#include "llvm/CodeGen/WinEHFuncInfo.h" +#include "llvm/Config/llvm-config.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DebugInfoMetadata.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/Metadata.h" +#include "llvm/IR/Use.h" +#include "llvm/IR/Value.h" +#include "llvm/Pass.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" +#include <algorithm> +#include <cassert> +#include <limits> +#include <memory> +#include <utility> + +using namespace llvm; + +#define DEBUG_TYPE "stack-coloring" + +static cl::opt<bool> +DisableColoring("no-stack-coloring", + cl::init(false), cl::Hidden, + cl::desc("Disable stack coloring")); + +/// The user may write code that uses allocas outside of the declared lifetime +/// zone. This can happen when the user returns a reference to a local +/// data-structure. We can detect these cases and decide not to optimize the +/// code. If this flag is enabled, we try to save the user. This option +/// is treated as overriding LifetimeStartOnFirstUse below. +static cl::opt<bool> +ProtectFromEscapedAllocas("protect-from-escaped-allocas", + cl::init(false), cl::Hidden, + cl::desc("Do not optimize lifetime zones that " + "are broken")); + +/// Enable enhanced dataflow scheme for lifetime analysis (treat first +/// use of stack slot as start of slot lifetime, as opposed to looking +/// for LIFETIME_START marker). See "Implementation notes" below for +/// more info. +static cl::opt<bool> +LifetimeStartOnFirstUse("stackcoloring-lifetime-start-on-first-use", + cl::init(true), cl::Hidden, + cl::desc("Treat stack lifetimes as starting on first use, not on START marker.")); + + +STATISTIC(NumMarkerSeen, "Number of lifetime markers found."); +STATISTIC(StackSpaceSaved, "Number of bytes saved due to merging slots."); +STATISTIC(StackSlotMerged, "Number of stack slot merged."); +STATISTIC(EscapedAllocas, "Number of allocas that escaped the lifetime region"); + +//===----------------------------------------------------------------------===// +// StackColoring Pass +//===----------------------------------------------------------------------===// +// +// Stack Coloring reduces stack usage by merging stack slots when they +// can't be used together. For example, consider the following C program: +// +// void bar(char *, int); +// void foo(bool var) { +// A: { +// char z[4096]; +// bar(z, 0); +// } +// +// char *p; +// char x[4096]; +// char y[4096]; +// if (var) { +// p = x; +// } else { +// bar(y, 1); +// p = y + 1024; +// } +// B: +// bar(p, 2); +// } +// +// Naively-compiled, this program would use 12k of stack space. However, the +// stack slot corresponding to `z` is always destroyed before either of the +// stack slots for `x` or `y` are used, and then `x` is only used if `var` +// is true, while `y` is only used if `var` is false. So in no time are 2 +// of the stack slots used together, and therefore we can merge them, +// compiling the function using only a single 4k alloca: +// +// void foo(bool var) { // equivalent +// char x[4096]; +// char *p; +// bar(x, 0); +// if (var) { +// p = x; +// } else { +// bar(x, 1); +// p = x + 1024; +// } +// bar(p, 2); +// } +// +// This is an important optimization if we want stack space to be under +// control in large functions, both open-coded ones and ones created by +// inlining. +// +// Implementation Notes: +// --------------------- +// +// An important part of the above reasoning is that `z` can't be accessed +// while the latter 2 calls to `bar` are running. This is justified because +// `z`'s lifetime is over after we exit from block `A:`, so any further +// accesses to it would be UB. The way we represent this information +// in LLVM is by having frontends delimit blocks with `lifetime.start` +// and `lifetime.end` intrinsics. +// +// The effect of these intrinsics seems to be as follows (maybe I should +// specify this in the reference?): +// +// L1) at start, each stack-slot is marked as *out-of-scope*, unless no +// lifetime intrinsic refers to that stack slot, in which case +// it is marked as *in-scope*. +// L2) on a `lifetime.start`, a stack slot is marked as *in-scope* and +// the stack slot is overwritten with `undef`. +// L3) on a `lifetime.end`, a stack slot is marked as *out-of-scope*. +// L4) on function exit, all stack slots are marked as *out-of-scope*. +// L5) `lifetime.end` is a no-op when called on a slot that is already +// *out-of-scope*. +// L6) memory accesses to *out-of-scope* stack slots are UB. +// L7) when a stack-slot is marked as *out-of-scope*, all pointers to it +// are invalidated, unless the slot is "degenerate". This is used to +// justify not marking slots as in-use until the pointer to them is +// used, but feels a bit hacky in the presence of things like LICM. See +// the "Degenerate Slots" section for more details. +// +// Now, let's ground stack coloring on these rules. We'll define a slot +// as *in-use* at a (dynamic) point in execution if it either can be +// written to at that point, or if it has a live and non-undef content +// at that point. +// +// Obviously, slots that are never *in-use* together can be merged, and +// in our example `foo`, the slots for `x`, `y` and `z` are never +// in-use together (of course, sometimes slots that *are* in-use together +// might still be mergable, but we don't care about that here). +// +// In this implementation, we successively merge pairs of slots that are +// not *in-use* together. We could be smarter - for example, we could merge +// a single large slot with 2 small slots, or we could construct the +// interference graph and run a "smart" graph coloring algorithm, but with +// that aside, how do we find out whether a pair of slots might be *in-use* +// together? +// +// From our rules, we see that *out-of-scope* slots are never *in-use*, +// and from (L7) we see that "non-degenerate" slots remain non-*in-use* +// until their address is taken. Therefore, we can approximate slot activity +// using dataflow. +// +// A subtle point: naively, we might try to figure out which pairs of +// stack-slots interfere by propagating `S in-use` through the CFG for every +// stack-slot `S`, and having `S` and `T` interfere if there is a CFG point in +// which they are both *in-use*. +// +// That is sound, but overly conservative in some cases: in our (artificial) +// example `foo`, either `x` or `y` might be in use at the label `B:`, but +// as `x` is only in use if we came in from the `var` edge and `y` only +// if we came from the `!var` edge, they still can't be in use together. +// See PR32488 for an important real-life case. +// +// If we wanted to find all points of interference precisely, we could +// propagate `S in-use` and `S&T in-use` predicates through the CFG. That +// would be precise, but requires propagating `O(n^2)` dataflow facts. +// +// However, we aren't interested in the *set* of points of interference +// between 2 stack slots, only *whether* there *is* such a point. So we +// can rely on a little trick: for `S` and `T` to be in-use together, +// one of them needs to become in-use while the other is in-use (or +// they might both become in use simultaneously). We can check this +// by also keeping track of the points at which a stack slot might *start* +// being in-use. +// +// Exact first use: +// ---------------- +// +// Consider the following motivating example: +// +// int foo() { +// char b1[1024], b2[1024]; +// if (...) { +// char b3[1024]; +// <uses of b1, b3>; +// return x; +// } else { +// char b4[1024], b5[1024]; +// <uses of b2, b4, b5>; +// return y; +// } +// } +// +// In the code above, "b3" and "b4" are declared in distinct lexical +// scopes, meaning that it is easy to prove that they can share the +// same stack slot. Variables "b1" and "b2" are declared in the same +// scope, meaning that from a lexical point of view, their lifetimes +// overlap. From a control flow pointer of view, however, the two +// variables are accessed in disjoint regions of the CFG, thus it +// should be possible for them to share the same stack slot. An ideal +// stack allocation for the function above would look like: +// +// slot 0: b1, b2 +// slot 1: b3, b4 +// slot 2: b5 +// +// Achieving this allocation is tricky, however, due to the way +// lifetime markers are inserted. Here is a simplified view of the +// control flow graph for the code above: +// +// +------ block 0 -------+ +// 0| LIFETIME_START b1, b2 | +// 1| <test 'if' condition> | +// +-----------------------+ +// ./ \. +// +------ block 1 -------+ +------ block 2 -------+ +// 2| LIFETIME_START b3 | 5| LIFETIME_START b4, b5 | +// 3| <uses of b1, b3> | 6| <uses of b2, b4, b5> | +// 4| LIFETIME_END b3 | 7| LIFETIME_END b4, b5 | +// +-----------------------+ +-----------------------+ +// \. /. +// +------ block 3 -------+ +// 8| <cleanupcode> | +// 9| LIFETIME_END b1, b2 | +// 10| return | +// +-----------------------+ +// +// If we create live intervals for the variables above strictly based +// on the lifetime markers, we'll get the set of intervals on the +// left. If we ignore the lifetime start markers and instead treat a +// variable's lifetime as beginning with the first reference to the +// var, then we get the intervals on the right. +// +// LIFETIME_START First Use +// b1: [0,9] [3,4] [8,9] +// b2: [0,9] [6,9] +// b3: [2,4] [3,4] +// b4: [5,7] [6,7] +// b5: [5,7] [6,7] +// +// For the intervals on the left, the best we can do is overlap two +// variables (b3 and b4, for example); this gives us a stack size of +// 4*1024 bytes, not ideal. When treating first-use as the start of a +// lifetime, we can additionally overlap b1 and b5, giving us a 3*1024 +// byte stack (better). +// +// Degenerate Slots: +// ----------------- +// +// Relying entirely on first-use of stack slots is problematic, +// however, due to the fact that optimizations can sometimes migrate +// uses of a variable outside of its lifetime start/end region. Here +// is an example: +// +// int bar() { +// char b1[1024], b2[1024]; +// if (...) { +// <uses of b2> +// return y; +// } else { +// <uses of b1> +// while (...) { +// char b3[1024]; +// <uses of b3> +// } +// } +// } +// +// Before optimization, the control flow graph for the code above +// might look like the following: +// +// +------ block 0 -------+ +// 0| LIFETIME_START b1, b2 | +// 1| <test 'if' condition> | +// +-----------------------+ +// ./ \. +// +------ block 1 -------+ +------- block 2 -------+ +// 2| <uses of b2> | 3| <uses of b1> | +// +-----------------------+ +-----------------------+ +// | | +// | +------- block 3 -------+ <-\. +// | 4| <while condition> | | +// | +-----------------------+ | +// | / | | +// | / +------- block 4 -------+ +// \ / 5| LIFETIME_START b3 | | +// \ / 6| <uses of b3> | | +// \ / 7| LIFETIME_END b3 | | +// \ | +------------------------+ | +// \ | \ / +// +------ block 5 -----+ \--------------- +// 8| <cleanupcode> | +// 9| LIFETIME_END b1, b2 | +// 10| return | +// +---------------------+ +// +// During optimization, however, it can happen that an instruction +// computing an address in "b3" (for example, a loop-invariant GEP) is +// hoisted up out of the loop from block 4 to block 2. [Note that +// this is not an actual load from the stack, only an instruction that +// computes the address to be loaded]. If this happens, there is now a +// path leading from the first use of b3 to the return instruction +// that does not encounter the b3 LIFETIME_END, hence b3's lifetime is +// now larger than if we were computing live intervals strictly based +// on lifetime markers. In the example above, this lengthened lifetime +// would mean that it would appear illegal to overlap b3 with b2. +// +// To deal with this such cases, the code in ::collectMarkers() below +// tries to identify "degenerate" slots -- those slots where on a single +// forward pass through the CFG we encounter a first reference to slot +// K before we hit the slot K lifetime start marker. For such slots, +// we fall back on using the lifetime start marker as the beginning of +// the variable's lifetime. NB: with this implementation, slots can +// appear degenerate in cases where there is unstructured control flow: +// +// if (q) goto mid; +// if (x > 9) { +// int b[100]; +// memcpy(&b[0], ...); +// mid: b[k] = ...; +// abc(&b); +// } +// +// If in RPO ordering chosen to walk the CFG we happen to visit the b[k] +// before visiting the memcpy block (which will contain the lifetime start +// for "b" then it will appear that 'b' has a degenerate lifetime. +// + +namespace { + +/// StackColoring - A machine pass for merging disjoint stack allocations, +/// marked by the LIFETIME_START and LIFETIME_END pseudo instructions. +class StackColoring : public MachineFunctionPass { + MachineFrameInfo *MFI; + MachineFunction *MF; + + /// A class representing liveness information for a single basic block. + /// Each bit in the BitVector represents the liveness property + /// for a different stack slot. + struct BlockLifetimeInfo { + /// Which slots BEGINs in each basic block. + BitVector Begin; + + /// Which slots ENDs in each basic block. + BitVector End; + + /// Which slots are marked as LIVE_IN, coming into each basic block. + BitVector LiveIn; + + /// Which slots are marked as LIVE_OUT, coming out of each basic block. + BitVector LiveOut; + }; + + /// Maps active slots (per bit) for each basic block. + using LivenessMap = DenseMap<const MachineBasicBlock *, BlockLifetimeInfo>; + LivenessMap BlockLiveness; + + /// Maps serial numbers to basic blocks. + DenseMap<const MachineBasicBlock *, int> BasicBlocks; + + /// Maps basic blocks to a serial number. + SmallVector<const MachineBasicBlock *, 8> BasicBlockNumbering; + + /// Maps slots to their use interval. Outside of this interval, slots + /// values are either dead or `undef` and they will not be written to. + SmallVector<std::unique_ptr<LiveInterval>, 16> Intervals; + + /// Maps slots to the points where they can become in-use. + SmallVector<SmallVector<SlotIndex, 4>, 16> LiveStarts; + + /// VNInfo is used for the construction of LiveIntervals. + VNInfo::Allocator VNInfoAllocator; + + /// SlotIndex analysis object. + SlotIndexes *Indexes; + + /// The list of lifetime markers found. These markers are to be removed + /// once the coloring is done. + SmallVector<MachineInstr*, 8> Markers; + + /// Record the FI slots for which we have seen some sort of + /// lifetime marker (either start or end). + BitVector InterestingSlots; + + /// FI slots that need to be handled conservatively (for these + /// slots lifetime-start-on-first-use is disabled). + BitVector ConservativeSlots; + + /// Number of iterations taken during data flow analysis. + unsigned NumIterations; + +public: + static char ID; + + StackColoring() : MachineFunctionPass(ID) { + initializeStackColoringPass(*PassRegistry::getPassRegistry()); + } + + void getAnalysisUsage(AnalysisUsage &AU) const override; + bool runOnMachineFunction(MachineFunction &Func) override; + +private: + /// Used in collectMarkers + using BlockBitVecMap = DenseMap<const MachineBasicBlock *, BitVector>; + + /// Debug. + void dump() const; + void dumpIntervals() const; + void dumpBB(MachineBasicBlock *MBB) const; + void dumpBV(const char *tag, const BitVector &BV) const; + + /// Removes all of the lifetime marker instructions from the function. + /// \returns true if any markers were removed. + bool removeAllMarkers(); + + /// Scan the machine function and find all of the lifetime markers. + /// Record the findings in the BEGIN and END vectors. + /// \returns the number of markers found. + unsigned collectMarkers(unsigned NumSlot); + + /// Perform the dataflow calculation and calculate the lifetime for each of + /// the slots, based on the BEGIN/END vectors. Set the LifetimeLIVE_IN and + /// LifetimeLIVE_OUT maps that represent which stack slots are live coming + /// in and out blocks. + void calculateLocalLiveness(); + + /// Returns TRUE if we're using the first-use-begins-lifetime method for + /// this slot (if FALSE, then the start marker is treated as start of lifetime). + bool applyFirstUse(int Slot) { + if (!LifetimeStartOnFirstUse || ProtectFromEscapedAllocas) + return false; + if (ConservativeSlots.test(Slot)) + return false; + return true; + } + + /// Examines the specified instruction and returns TRUE if the instruction + /// represents the start or end of an interesting lifetime. The slot or slots + /// starting or ending are added to the vector "slots" and "isStart" is set + /// accordingly. + /// \returns True if inst contains a lifetime start or end + bool isLifetimeStartOrEnd(const MachineInstr &MI, + SmallVector<int, 4> &slots, + bool &isStart); + + /// Construct the LiveIntervals for the slots. + void calculateLiveIntervals(unsigned NumSlots); + + /// Go over the machine function and change instructions which use stack + /// slots to use the joint slots. + void remapInstructions(DenseMap<int, int> &SlotRemap); + + /// The input program may contain instructions which are not inside lifetime + /// markers. This can happen due to a bug in the compiler or due to a bug in + /// user code (for example, returning a reference to a local variable). + /// This procedure checks all of the instructions in the function and + /// invalidates lifetime ranges which do not contain all of the instructions + /// which access that frame slot. + void removeInvalidSlotRanges(); + + /// Map entries which point to other entries to their destination. + /// A->B->C becomes A->C. + void expungeSlotMap(DenseMap<int, int> &SlotRemap, unsigned NumSlots); +}; + +} // end anonymous namespace + +char StackColoring::ID = 0; + +char &llvm::StackColoringID = StackColoring::ID; + +INITIALIZE_PASS_BEGIN(StackColoring, DEBUG_TYPE, + "Merge disjoint stack slots", false, false) +INITIALIZE_PASS_DEPENDENCY(SlotIndexes) +INITIALIZE_PASS_END(StackColoring, DEBUG_TYPE, + "Merge disjoint stack slots", false, false) + +void StackColoring::getAnalysisUsage(AnalysisUsage &AU) const { + AU.addRequired<SlotIndexes>(); + MachineFunctionPass::getAnalysisUsage(AU); +} + +#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) +LLVM_DUMP_METHOD void StackColoring::dumpBV(const char *tag, + const BitVector &BV) const { + dbgs() << tag << " : { "; + for (unsigned I = 0, E = BV.size(); I != E; ++I) + dbgs() << BV.test(I) << " "; + dbgs() << "}\n"; +} + +LLVM_DUMP_METHOD void StackColoring::dumpBB(MachineBasicBlock *MBB) const { + LivenessMap::const_iterator BI = BlockLiveness.find(MBB); + assert(BI != BlockLiveness.end() && "Block not found"); + const BlockLifetimeInfo &BlockInfo = BI->second; + + dumpBV("BEGIN", BlockInfo.Begin); + dumpBV("END", BlockInfo.End); + dumpBV("LIVE_IN", BlockInfo.LiveIn); + dumpBV("LIVE_OUT", BlockInfo.LiveOut); +} + +LLVM_DUMP_METHOD void StackColoring::dump() const { + for (MachineBasicBlock *MBB : depth_first(MF)) { + dbgs() << "Inspecting block #" << MBB->getNumber() << " [" + << MBB->getName() << "]\n"; + dumpBB(MBB); + } +} + +LLVM_DUMP_METHOD void StackColoring::dumpIntervals() const { + for (unsigned I = 0, E = Intervals.size(); I != E; ++I) { + dbgs() << "Interval[" << I << "]:\n"; + Intervals[I]->dump(); + } +} +#endif + +static inline int getStartOrEndSlot(const MachineInstr &MI) +{ + assert((MI.getOpcode() == TargetOpcode::LIFETIME_START || + MI.getOpcode() == TargetOpcode::LIFETIME_END) && + "Expected LIFETIME_START or LIFETIME_END op"); + const MachineOperand &MO = MI.getOperand(0); + int Slot = MO.getIndex(); + if (Slot >= 0) + return Slot; + return -1; +} + +// At the moment the only way to end a variable lifetime is with +// a VARIABLE_LIFETIME op (which can't contain a start). If things +// change and the IR allows for a single inst that both begins +// and ends lifetime(s), this interface will need to be reworked. +bool StackColoring::isLifetimeStartOrEnd(const MachineInstr &MI, + SmallVector<int, 4> &slots, + bool &isStart) { + if (MI.getOpcode() == TargetOpcode::LIFETIME_START || + MI.getOpcode() == TargetOpcode::LIFETIME_END) { + int Slot = getStartOrEndSlot(MI); + if (Slot < 0) + return false; + if (!InterestingSlots.test(Slot)) + return false; + slots.push_back(Slot); + if (MI.getOpcode() == TargetOpcode::LIFETIME_END) { + isStart = false; + return true; + } + if (!applyFirstUse(Slot)) { + isStart = true; + return true; + } + } else if (LifetimeStartOnFirstUse && !ProtectFromEscapedAllocas) { + if (!MI.isDebugInstr()) { + bool found = false; + for (const MachineOperand &MO : MI.operands()) { + if (!MO.isFI()) + continue; + int Slot = MO.getIndex(); + if (Slot<0) + continue; + if (InterestingSlots.test(Slot) && applyFirstUse(Slot)) { + slots.push_back(Slot); + found = true; + } + } + if (found) { + isStart = true; + return true; + } + } + } + return false; +} + +unsigned StackColoring::collectMarkers(unsigned NumSlot) { + unsigned MarkersFound = 0; + BlockBitVecMap SeenStartMap; + InterestingSlots.clear(); + InterestingSlots.resize(NumSlot); + ConservativeSlots.clear(); + ConservativeSlots.resize(NumSlot); + + // number of start and end lifetime ops for each slot + SmallVector<int, 8> NumStartLifetimes(NumSlot, 0); + SmallVector<int, 8> NumEndLifetimes(NumSlot, 0); + + // Step 1: collect markers and populate the "InterestingSlots" + // and "ConservativeSlots" sets. + for (MachineBasicBlock *MBB : depth_first(MF)) { + // Compute the set of slots for which we've seen a START marker but have + // not yet seen an END marker at this point in the walk (e.g. on entry + // to this bb). + BitVector BetweenStartEnd; + BetweenStartEnd.resize(NumSlot); + for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), + PE = MBB->pred_end(); PI != PE; ++PI) { + BlockBitVecMap::const_iterator I = SeenStartMap.find(*PI); + if (I != SeenStartMap.end()) { + BetweenStartEnd |= I->second; + } + } + + // Walk the instructions in the block to look for start/end ops. + for (MachineInstr &MI : *MBB) { + if (MI.getOpcode() == TargetOpcode::LIFETIME_START || + MI.getOpcode() == TargetOpcode::LIFETIME_END) { + int Slot = getStartOrEndSlot(MI); + if (Slot < 0) + continue; + InterestingSlots.set(Slot); + if (MI.getOpcode() == TargetOpcode::LIFETIME_START) { + BetweenStartEnd.set(Slot); + NumStartLifetimes[Slot] += 1; + } else { + BetweenStartEnd.reset(Slot); + NumEndLifetimes[Slot] += 1; + } + const AllocaInst *Allocation = MFI->getObjectAllocation(Slot); + if (Allocation) { + LLVM_DEBUG(dbgs() << "Found a lifetime "); + LLVM_DEBUG(dbgs() << (MI.getOpcode() == TargetOpcode::LIFETIME_START + ? "start" + : "end")); + LLVM_DEBUG(dbgs() << " marker for slot #" << Slot); + LLVM_DEBUG(dbgs() + << " with allocation: " << Allocation->getName() << "\n"); + } + Markers.push_back(&MI); + MarkersFound += 1; + } else { + for (const MachineOperand &MO : MI.operands()) { + if (!MO.isFI()) + continue; + int Slot = MO.getIndex(); + if (Slot < 0) + continue; + if (! BetweenStartEnd.test(Slot)) { + ConservativeSlots.set(Slot); + } + } + } + } + BitVector &SeenStart = SeenStartMap[MBB]; + SeenStart |= BetweenStartEnd; + } + if (!MarkersFound) { + return 0; + } + + // PR27903: slots with multiple start or end lifetime ops are not + // safe to enable for "lifetime-start-on-first-use". + for (unsigned slot = 0; slot < NumSlot; ++slot) + if (NumStartLifetimes[slot] > 1 || NumEndLifetimes[slot] > 1) + ConservativeSlots.set(slot); + LLVM_DEBUG(dumpBV("Conservative slots", ConservativeSlots)); + + // Step 2: compute begin/end sets for each block + + // NOTE: We use a depth-first iteration to ensure that we obtain a + // deterministic numbering. + for (MachineBasicBlock *MBB : depth_first(MF)) { + // Assign a serial number to this basic block. + BasicBlocks[MBB] = BasicBlockNumbering.size(); + BasicBlockNumbering.push_back(MBB); + + // Keep a reference to avoid repeated lookups. + BlockLifetimeInfo &BlockInfo = BlockLiveness[MBB]; + + BlockInfo.Begin.resize(NumSlot); + BlockInfo.End.resize(NumSlot); + + SmallVector<int, 4> slots; + for (MachineInstr &MI : *MBB) { + bool isStart = false; + slots.clear(); + if (isLifetimeStartOrEnd(MI, slots, isStart)) { + if (!isStart) { + assert(slots.size() == 1 && "unexpected: MI ends multiple slots"); + int Slot = slots[0]; + if (BlockInfo.Begin.test(Slot)) { + BlockInfo.Begin.reset(Slot); + } + BlockInfo.End.set(Slot); + } else { + for (auto Slot : slots) { + LLVM_DEBUG(dbgs() << "Found a use of slot #" << Slot); + LLVM_DEBUG(dbgs() + << " at " << printMBBReference(*MBB) << " index "); + LLVM_DEBUG(Indexes->getInstructionIndex(MI).print(dbgs())); + const AllocaInst *Allocation = MFI->getObjectAllocation(Slot); + if (Allocation) { + LLVM_DEBUG(dbgs() + << " with allocation: " << Allocation->getName()); + } + LLVM_DEBUG(dbgs() << "\n"); + if (BlockInfo.End.test(Slot)) { + BlockInfo.End.reset(Slot); + } + BlockInfo.Begin.set(Slot); + } + } + } + } + } + + // Update statistics. + NumMarkerSeen += MarkersFound; + return MarkersFound; +} + +void StackColoring::calculateLocalLiveness() { + unsigned NumIters = 0; + bool changed = true; + while (changed) { + changed = false; + ++NumIters; + + for (const MachineBasicBlock *BB : BasicBlockNumbering) { + // Use an iterator to avoid repeated lookups. + LivenessMap::iterator BI = BlockLiveness.find(BB); + assert(BI != BlockLiveness.end() && "Block not found"); + BlockLifetimeInfo &BlockInfo = BI->second; + + // Compute LiveIn by unioning together the LiveOut sets of all preds. + BitVector LocalLiveIn; + for (MachineBasicBlock::const_pred_iterator PI = BB->pred_begin(), + PE = BB->pred_end(); PI != PE; ++PI) { + LivenessMap::const_iterator I = BlockLiveness.find(*PI); + // PR37130: transformations prior to stack coloring can + // sometimes leave behind statically unreachable blocks; these + // can be safely skipped here. + if (I != BlockLiveness.end()) + LocalLiveIn |= I->second.LiveOut; + } + + // Compute LiveOut by subtracting out lifetimes that end in this + // block, then adding in lifetimes that begin in this block. If + // we have both BEGIN and END markers in the same basic block + // then we know that the BEGIN marker comes after the END, + // because we already handle the case where the BEGIN comes + // before the END when collecting the markers (and building the + // BEGIN/END vectors). + BitVector LocalLiveOut = LocalLiveIn; + LocalLiveOut.reset(BlockInfo.End); + LocalLiveOut |= BlockInfo.Begin; + + // Update block LiveIn set, noting whether it has changed. + if (LocalLiveIn.test(BlockInfo.LiveIn)) { + changed = true; + BlockInfo.LiveIn |= LocalLiveIn; + } + + // Update block LiveOut set, noting whether it has changed. + if (LocalLiveOut.test(BlockInfo.LiveOut)) { + changed = true; + BlockInfo.LiveOut |= LocalLiveOut; + } + } + } // while changed. + + NumIterations = NumIters; +} + +void StackColoring::calculateLiveIntervals(unsigned NumSlots) { + SmallVector<SlotIndex, 16> Starts; + SmallVector<bool, 16> DefinitelyInUse; + + // For each block, find which slots are active within this block + // and update the live intervals. + for (const MachineBasicBlock &MBB : *MF) { + Starts.clear(); + Starts.resize(NumSlots); + DefinitelyInUse.clear(); + DefinitelyInUse.resize(NumSlots); + + // Start the interval of the slots that we previously found to be 'in-use'. + BlockLifetimeInfo &MBBLiveness = BlockLiveness[&MBB]; + for (int pos = MBBLiveness.LiveIn.find_first(); pos != -1; + pos = MBBLiveness.LiveIn.find_next(pos)) { + Starts[pos] = Indexes->getMBBStartIdx(&MBB); + } + + // Create the interval for the basic blocks containing lifetime begin/end. + for (const MachineInstr &MI : MBB) { + SmallVector<int, 4> slots; + bool IsStart = false; + if (!isLifetimeStartOrEnd(MI, slots, IsStart)) + continue; + SlotIndex ThisIndex = Indexes->getInstructionIndex(MI); + for (auto Slot : slots) { + if (IsStart) { + // If a slot is already definitely in use, we don't have to emit + // a new start marker because there is already a pre-existing + // one. + if (!DefinitelyInUse[Slot]) { + LiveStarts[Slot].push_back(ThisIndex); + DefinitelyInUse[Slot] = true; + } + if (!Starts[Slot].isValid()) + Starts[Slot] = ThisIndex; + } else { + if (Starts[Slot].isValid()) { + VNInfo *VNI = Intervals[Slot]->getValNumInfo(0); + Intervals[Slot]->addSegment( + LiveInterval::Segment(Starts[Slot], ThisIndex, VNI)); + Starts[Slot] = SlotIndex(); // Invalidate the start index + DefinitelyInUse[Slot] = false; + } + } + } + } + + // Finish up started segments + for (unsigned i = 0; i < NumSlots; ++i) { + if (!Starts[i].isValid()) + continue; + + SlotIndex EndIdx = Indexes->getMBBEndIdx(&MBB); + VNInfo *VNI = Intervals[i]->getValNumInfo(0); + Intervals[i]->addSegment(LiveInterval::Segment(Starts[i], EndIdx, VNI)); + } + } +} + +bool StackColoring::removeAllMarkers() { + unsigned Count = 0; + for (MachineInstr *MI : Markers) { + MI->eraseFromParent(); + Count++; + } + Markers.clear(); + + LLVM_DEBUG(dbgs() << "Removed " << Count << " markers.\n"); + return Count; +} + +void StackColoring::remapInstructions(DenseMap<int, int> &SlotRemap) { + unsigned FixedInstr = 0; + unsigned FixedMemOp = 0; + unsigned FixedDbg = 0; + + // Remap debug information that refers to stack slots. + for (auto &VI : MF->getVariableDbgInfo()) { + if (!VI.Var) + continue; + if (SlotRemap.count(VI.Slot)) { + LLVM_DEBUG(dbgs() << "Remapping debug info for [" + << cast<DILocalVariable>(VI.Var)->getName() << "].\n"); + VI.Slot = SlotRemap[VI.Slot]; + FixedDbg++; + } + } + + // Keep a list of *allocas* which need to be remapped. + DenseMap<const AllocaInst*, const AllocaInst*> Allocas; + + // Keep a list of allocas which has been affected by the remap. + SmallPtrSet<const AllocaInst*, 32> MergedAllocas; + + for (const std::pair<int, int> &SI : SlotRemap) { + const AllocaInst *From = MFI->getObjectAllocation(SI.first); + const AllocaInst *To = MFI->getObjectAllocation(SI.second); + assert(To && From && "Invalid allocation object"); + Allocas[From] = To; + + // AA might be used later for instruction scheduling, and we need it to be + // able to deduce the correct aliasing releationships between pointers + // derived from the alloca being remapped and the target of that remapping. + // The only safe way, without directly informing AA about the remapping + // somehow, is to directly update the IR to reflect the change being made + // here. + Instruction *Inst = const_cast<AllocaInst *>(To); + if (From->getType() != To->getType()) { + BitCastInst *Cast = new BitCastInst(Inst, From->getType()); + Cast->insertAfter(Inst); + Inst = Cast; + } + + // We keep both slots to maintain AliasAnalysis metadata later. + MergedAllocas.insert(From); + MergedAllocas.insert(To); + + // Transfer the stack protector layout tag, but make sure that SSPLK_AddrOf + // does not overwrite SSPLK_SmallArray or SSPLK_LargeArray, and make sure + // that SSPLK_SmallArray does not overwrite SSPLK_LargeArray. + MachineFrameInfo::SSPLayoutKind FromKind + = MFI->getObjectSSPLayout(SI.first); + MachineFrameInfo::SSPLayoutKind ToKind = MFI->getObjectSSPLayout(SI.second); + if (FromKind != MachineFrameInfo::SSPLK_None && + (ToKind == MachineFrameInfo::SSPLK_None || + (ToKind != MachineFrameInfo::SSPLK_LargeArray && + FromKind != MachineFrameInfo::SSPLK_AddrOf))) + MFI->setObjectSSPLayout(SI.second, FromKind); + + // The new alloca might not be valid in a llvm.dbg.declare for this + // variable, so undef out the use to make the verifier happy. + AllocaInst *FromAI = const_cast<AllocaInst *>(From); + if (FromAI->isUsedByMetadata()) + ValueAsMetadata::handleRAUW(FromAI, UndefValue::get(FromAI->getType())); + for (auto &Use : FromAI->uses()) { + if (BitCastInst *BCI = dyn_cast<BitCastInst>(Use.get())) + if (BCI->isUsedByMetadata()) + ValueAsMetadata::handleRAUW(BCI, UndefValue::get(BCI->getType())); + } + + // Note that this will not replace uses in MMOs (which we'll update below), + // or anywhere else (which is why we won't delete the original + // instruction). + FromAI->replaceAllUsesWith(Inst); + } + + // Remap all instructions to the new stack slots. + for (MachineBasicBlock &BB : *MF) + for (MachineInstr &I : BB) { + // Skip lifetime markers. We'll remove them soon. + if (I.getOpcode() == TargetOpcode::LIFETIME_START || + I.getOpcode() == TargetOpcode::LIFETIME_END) + continue; + + // Update the MachineMemOperand to use the new alloca. + for (MachineMemOperand *MMO : I.memoperands()) { + // We've replaced IR-level uses of the remapped allocas, so we only + // need to replace direct uses here. + const AllocaInst *AI = dyn_cast_or_null<AllocaInst>(MMO->getValue()); + if (!AI) + continue; + + if (!Allocas.count(AI)) + continue; + + MMO->setValue(Allocas[AI]); + FixedMemOp++; + } + + // Update all of the machine instruction operands. + for (MachineOperand &MO : I.operands()) { + if (!MO.isFI()) + continue; + int FromSlot = MO.getIndex(); + + // Don't touch arguments. + if (FromSlot<0) + continue; + + // Only look at mapped slots. + if (!SlotRemap.count(FromSlot)) + continue; + + // In a debug build, check that the instruction that we are modifying is + // inside the expected live range. If the instruction is not inside + // the calculated range then it means that the alloca usage moved + // outside of the lifetime markers, or that the user has a bug. + // NOTE: Alloca address calculations which happen outside the lifetime + // zone are okay, despite the fact that we don't have a good way + // for validating all of the usages of the calculation. +#ifndef NDEBUG + bool TouchesMemory = I.mayLoad() || I.mayStore(); + // If we *don't* protect the user from escaped allocas, don't bother + // validating the instructions. + if (!I.isDebugInstr() && TouchesMemory && ProtectFromEscapedAllocas) { + SlotIndex Index = Indexes->getInstructionIndex(I); + const LiveInterval *Interval = &*Intervals[FromSlot]; + assert(Interval->find(Index) != Interval->end() && + "Found instruction usage outside of live range."); + } +#endif + + // Fix the machine instructions. + int ToSlot = SlotRemap[FromSlot]; + MO.setIndex(ToSlot); + FixedInstr++; + } + + // We adjust AliasAnalysis information for merged stack slots. + SmallVector<MachineMemOperand *, 2> NewMMOs; + bool ReplaceMemOps = false; + for (MachineMemOperand *MMO : I.memoperands()) { + // If this memory location can be a slot remapped here, + // we remove AA information. + bool MayHaveConflictingAAMD = false; + if (MMO->getAAInfo()) { + if (const Value *MMOV = MMO->getValue()) { + SmallVector<Value *, 4> Objs; + getUnderlyingObjectsForCodeGen(MMOV, Objs, MF->getDataLayout()); + + if (Objs.empty()) + MayHaveConflictingAAMD = true; + else + for (Value *V : Objs) { + // If this memory location comes from a known stack slot + // that is not remapped, we continue checking. + // Otherwise, we need to invalidate AA infomation. + const AllocaInst *AI = dyn_cast_or_null<AllocaInst>(V); + if (AI && MergedAllocas.count(AI)) { + MayHaveConflictingAAMD = true; + break; + } + } + } + } + if (MayHaveConflictingAAMD) { + NewMMOs.push_back(MF->getMachineMemOperand(MMO, AAMDNodes())); + ReplaceMemOps = true; + } else { + NewMMOs.push_back(MMO); + } + } + + // If any memory operand is updated, set memory references of + // this instruction. + if (ReplaceMemOps) + I.setMemRefs(*MF, NewMMOs); + } + + // Update the location of C++ catch objects for the MSVC personality routine. + if (WinEHFuncInfo *EHInfo = MF->getWinEHFuncInfo()) + for (WinEHTryBlockMapEntry &TBME : EHInfo->TryBlockMap) + for (WinEHHandlerType &H : TBME.HandlerArray) + if (H.CatchObj.FrameIndex != std::numeric_limits<int>::max() && + SlotRemap.count(H.CatchObj.FrameIndex)) + H.CatchObj.FrameIndex = SlotRemap[H.CatchObj.FrameIndex]; + + LLVM_DEBUG(dbgs() << "Fixed " << FixedMemOp << " machine memory operands.\n"); + LLVM_DEBUG(dbgs() << "Fixed " << FixedDbg << " debug locations.\n"); + LLVM_DEBUG(dbgs() << "Fixed " << FixedInstr << " machine instructions.\n"); +} + +void StackColoring::removeInvalidSlotRanges() { + for (MachineBasicBlock &BB : *MF) + for (MachineInstr &I : BB) { + if (I.getOpcode() == TargetOpcode::LIFETIME_START || + I.getOpcode() == TargetOpcode::LIFETIME_END || I.isDebugInstr()) + continue; + + // Some intervals are suspicious! In some cases we find address + // calculations outside of the lifetime zone, but not actual memory + // read or write. Memory accesses outside of the lifetime zone are a clear + // violation, but address calculations are okay. This can happen when + // GEPs are hoisted outside of the lifetime zone. + // So, in here we only check instructions which can read or write memory. + if (!I.mayLoad() && !I.mayStore()) + continue; + + // Check all of the machine operands. + for (const MachineOperand &MO : I.operands()) { + if (!MO.isFI()) + continue; + + int Slot = MO.getIndex(); + + if (Slot<0) + continue; + + if (Intervals[Slot]->empty()) + continue; + + // Check that the used slot is inside the calculated lifetime range. + // If it is not, warn about it and invalidate the range. + LiveInterval *Interval = &*Intervals[Slot]; + SlotIndex Index = Indexes->getInstructionIndex(I); + if (Interval->find(Index) == Interval->end()) { + Interval->clear(); + LLVM_DEBUG(dbgs() << "Invalidating range #" << Slot << "\n"); + EscapedAllocas++; + } + } + } +} + +void StackColoring::expungeSlotMap(DenseMap<int, int> &SlotRemap, + unsigned NumSlots) { + // Expunge slot remap map. + for (unsigned i=0; i < NumSlots; ++i) { + // If we are remapping i + if (SlotRemap.count(i)) { + int Target = SlotRemap[i]; + // As long as our target is mapped to something else, follow it. + while (SlotRemap.count(Target)) { + Target = SlotRemap[Target]; + SlotRemap[i] = Target; + } + } + } +} + +bool StackColoring::runOnMachineFunction(MachineFunction &Func) { + LLVM_DEBUG(dbgs() << "********** Stack Coloring **********\n" + << "********** Function: " << Func.getName() << '\n'); + MF = &Func; + MFI = &MF->getFrameInfo(); + Indexes = &getAnalysis<SlotIndexes>(); + BlockLiveness.clear(); + BasicBlocks.clear(); + BasicBlockNumbering.clear(); + Markers.clear(); + Intervals.clear(); + LiveStarts.clear(); + VNInfoAllocator.Reset(); + + unsigned NumSlots = MFI->getObjectIndexEnd(); + + // If there are no stack slots then there are no markers to remove. + if (!NumSlots) + return false; + + SmallVector<int, 8> SortedSlots; + SortedSlots.reserve(NumSlots); + Intervals.reserve(NumSlots); + LiveStarts.resize(NumSlots); + + unsigned NumMarkers = collectMarkers(NumSlots); + + unsigned TotalSize = 0; + LLVM_DEBUG(dbgs() << "Found " << NumMarkers << " markers and " << NumSlots + << " slots\n"); + LLVM_DEBUG(dbgs() << "Slot structure:\n"); + + for (int i=0; i < MFI->getObjectIndexEnd(); ++i) { + LLVM_DEBUG(dbgs() << "Slot #" << i << " - " << MFI->getObjectSize(i) + << " bytes.\n"); + TotalSize += MFI->getObjectSize(i); + } + + LLVM_DEBUG(dbgs() << "Total Stack size: " << TotalSize << " bytes\n\n"); + + // Don't continue because there are not enough lifetime markers, or the + // stack is too small, or we are told not to optimize the slots. + if (NumMarkers < 2 || TotalSize < 16 || DisableColoring || + skipFunction(Func.getFunction())) { + LLVM_DEBUG(dbgs() << "Will not try to merge slots.\n"); + return removeAllMarkers(); + } + + for (unsigned i=0; i < NumSlots; ++i) { + std::unique_ptr<LiveInterval> LI(new LiveInterval(i, 0)); + LI->getNextValue(Indexes->getZeroIndex(), VNInfoAllocator); + Intervals.push_back(std::move(LI)); + SortedSlots.push_back(i); + } + + // Calculate the liveness of each block. + calculateLocalLiveness(); + LLVM_DEBUG(dbgs() << "Dataflow iterations: " << NumIterations << "\n"); + LLVM_DEBUG(dump()); + + // Propagate the liveness information. + calculateLiveIntervals(NumSlots); + LLVM_DEBUG(dumpIntervals()); + + // Search for allocas which are used outside of the declared lifetime + // markers. + if (ProtectFromEscapedAllocas) + removeInvalidSlotRanges(); + + // Maps old slots to new slots. + DenseMap<int, int> SlotRemap; + unsigned RemovedSlots = 0; + unsigned ReducedSize = 0; + + // Do not bother looking at empty intervals. + for (unsigned I = 0; I < NumSlots; ++I) { + if (Intervals[SortedSlots[I]]->empty()) + SortedSlots[I] = -1; + } + + // This is a simple greedy algorithm for merging allocas. First, sort the + // slots, placing the largest slots first. Next, perform an n^2 scan and look + // for disjoint slots. When you find disjoint slots, merge the samller one + // into the bigger one and update the live interval. Remove the small alloca + // and continue. + + // Sort the slots according to their size. Place unused slots at the end. + // Use stable sort to guarantee deterministic code generation. + llvm::stable_sort(SortedSlots, [this](int LHS, int RHS) { + // We use -1 to denote a uninteresting slot. Place these slots at the end. + if (LHS == -1) + return false; + if (RHS == -1) + return true; + // Sort according to size. + return MFI->getObjectSize(LHS) > MFI->getObjectSize(RHS); + }); + + for (auto &s : LiveStarts) + llvm::sort(s); + + bool Changed = true; + while (Changed) { + Changed = false; + for (unsigned I = 0; I < NumSlots; ++I) { + if (SortedSlots[I] == -1) + continue; + + for (unsigned J=I+1; J < NumSlots; ++J) { + if (SortedSlots[J] == -1) + continue; + + int FirstSlot = SortedSlots[I]; + int SecondSlot = SortedSlots[J]; + LiveInterval *First = &*Intervals[FirstSlot]; + LiveInterval *Second = &*Intervals[SecondSlot]; + auto &FirstS = LiveStarts[FirstSlot]; + auto &SecondS = LiveStarts[SecondSlot]; + assert(!First->empty() && !Second->empty() && "Found an empty range"); + + // Merge disjoint slots. This is a little bit tricky - see the + // Implementation Notes section for an explanation. + if (!First->isLiveAtIndexes(SecondS) && + !Second->isLiveAtIndexes(FirstS)) { + Changed = true; + First->MergeSegmentsInAsValue(*Second, First->getValNumInfo(0)); + + int OldSize = FirstS.size(); + FirstS.append(SecondS.begin(), SecondS.end()); + auto Mid = FirstS.begin() + OldSize; + std::inplace_merge(FirstS.begin(), Mid, FirstS.end()); + + SlotRemap[SecondSlot] = FirstSlot; + SortedSlots[J] = -1; + LLVM_DEBUG(dbgs() << "Merging #" << FirstSlot << " and slots #" + << SecondSlot << " together.\n"); + unsigned MaxAlignment = std::max(MFI->getObjectAlignment(FirstSlot), + MFI->getObjectAlignment(SecondSlot)); + + assert(MFI->getObjectSize(FirstSlot) >= + MFI->getObjectSize(SecondSlot) && + "Merging a small object into a larger one"); + + RemovedSlots+=1; + ReducedSize += MFI->getObjectSize(SecondSlot); + MFI->setObjectAlignment(FirstSlot, MaxAlignment); + MFI->RemoveStackObject(SecondSlot); + } + } + } + }// While changed. + + // Record statistics. + StackSpaceSaved += ReducedSize; + StackSlotMerged += RemovedSlots; + LLVM_DEBUG(dbgs() << "Merge " << RemovedSlots << " slots. Saved " + << ReducedSize << " bytes\n"); + + // Scan the entire function and update all machine operands that use frame + // indices to use the remapped frame index. + expungeSlotMap(SlotRemap, NumSlots); + remapInstructions(SlotRemap); + + return removeAllMarkers(); +} |
