aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/Transforms/Scalar/LoopPredication.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/Transforms/Scalar/LoopPredication.cpp')
-rw-r--r--llvm/lib/Transforms/Scalar/LoopPredication.cpp1019
1 files changed, 1019 insertions, 0 deletions
diff --git a/llvm/lib/Transforms/Scalar/LoopPredication.cpp b/llvm/lib/Transforms/Scalar/LoopPredication.cpp
new file mode 100644
index 000000000000..885c0e8f4b8b
--- /dev/null
+++ b/llvm/lib/Transforms/Scalar/LoopPredication.cpp
@@ -0,0 +1,1019 @@
+//===-- LoopPredication.cpp - Guard based loop predication pass -----------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// The LoopPredication pass tries to convert loop variant range checks to loop
+// invariant by widening checks across loop iterations. For example, it will
+// convert
+//
+// for (i = 0; i < n; i++) {
+// guard(i < len);
+// ...
+// }
+//
+// to
+//
+// for (i = 0; i < n; i++) {
+// guard(n - 1 < len);
+// ...
+// }
+//
+// After this transformation the condition of the guard is loop invariant, so
+// loop-unswitch can later unswitch the loop by this condition which basically
+// predicates the loop by the widened condition:
+//
+// if (n - 1 < len)
+// for (i = 0; i < n; i++) {
+// ...
+// }
+// else
+// deoptimize
+//
+// It's tempting to rely on SCEV here, but it has proven to be problematic.
+// Generally the facts SCEV provides about the increment step of add
+// recurrences are true if the backedge of the loop is taken, which implicitly
+// assumes that the guard doesn't fail. Using these facts to optimize the
+// guard results in a circular logic where the guard is optimized under the
+// assumption that it never fails.
+//
+// For example, in the loop below the induction variable will be marked as nuw
+// basing on the guard. Basing on nuw the guard predicate will be considered
+// monotonic. Given a monotonic condition it's tempting to replace the induction
+// variable in the condition with its value on the last iteration. But this
+// transformation is not correct, e.g. e = 4, b = 5 breaks the loop.
+//
+// for (int i = b; i != e; i++)
+// guard(i u< len)
+//
+// One of the ways to reason about this problem is to use an inductive proof
+// approach. Given the loop:
+//
+// if (B(0)) {
+// do {
+// I = PHI(0, I.INC)
+// I.INC = I + Step
+// guard(G(I));
+// } while (B(I));
+// }
+//
+// where B(x) and G(x) are predicates that map integers to booleans, we want a
+// loop invariant expression M such the following program has the same semantics
+// as the above:
+//
+// if (B(0)) {
+// do {
+// I = PHI(0, I.INC)
+// I.INC = I + Step
+// guard(G(0) && M);
+// } while (B(I));
+// }
+//
+// One solution for M is M = forall X . (G(X) && B(X)) => G(X + Step)
+//
+// Informal proof that the transformation above is correct:
+//
+// By the definition of guards we can rewrite the guard condition to:
+// G(I) && G(0) && M
+//
+// Let's prove that for each iteration of the loop:
+// G(0) && M => G(I)
+// And the condition above can be simplified to G(Start) && M.
+//
+// Induction base.
+// G(0) && M => G(0)
+//
+// Induction step. Assuming G(0) && M => G(I) on the subsequent
+// iteration:
+//
+// B(I) is true because it's the backedge condition.
+// G(I) is true because the backedge is guarded by this condition.
+//
+// So M = forall X . (G(X) && B(X)) => G(X + Step) implies G(I + Step).
+//
+// Note that we can use anything stronger than M, i.e. any condition which
+// implies M.
+//
+// When S = 1 (i.e. forward iterating loop), the transformation is supported
+// when:
+// * The loop has a single latch with the condition of the form:
+// B(X) = latchStart + X <pred> latchLimit,
+// where <pred> is u<, u<=, s<, or s<=.
+// * The guard condition is of the form
+// G(X) = guardStart + X u< guardLimit
+//
+// For the ult latch comparison case M is:
+// forall X . guardStart + X u< guardLimit && latchStart + X <u latchLimit =>
+// guardStart + X + 1 u< guardLimit
+//
+// The only way the antecedent can be true and the consequent can be false is
+// if
+// X == guardLimit - 1 - guardStart
+// (and guardLimit is non-zero, but we won't use this latter fact).
+// If X == guardLimit - 1 - guardStart then the second half of the antecedent is
+// latchStart + guardLimit - 1 - guardStart u< latchLimit
+// and its negation is
+// latchStart + guardLimit - 1 - guardStart u>= latchLimit
+//
+// In other words, if
+// latchLimit u<= latchStart + guardLimit - 1 - guardStart
+// then:
+// (the ranges below are written in ConstantRange notation, where [A, B) is the
+// set for (I = A; I != B; I++ /*maywrap*/) yield(I);)
+//
+// forall X . guardStart + X u< guardLimit &&
+// latchStart + X u< latchLimit =>
+// guardStart + X + 1 u< guardLimit
+// == forall X . guardStart + X u< guardLimit &&
+// latchStart + X u< latchStart + guardLimit - 1 - guardStart =>
+// guardStart + X + 1 u< guardLimit
+// == forall X . (guardStart + X) in [0, guardLimit) &&
+// (latchStart + X) in [0, latchStart + guardLimit - 1 - guardStart) =>
+// (guardStart + X + 1) in [0, guardLimit)
+// == forall X . X in [-guardStart, guardLimit - guardStart) &&
+// X in [-latchStart, guardLimit - 1 - guardStart) =>
+// X in [-guardStart - 1, guardLimit - guardStart - 1)
+// == true
+//
+// So the widened condition is:
+// guardStart u< guardLimit &&
+// latchStart + guardLimit - 1 - guardStart u>= latchLimit
+// Similarly for ule condition the widened condition is:
+// guardStart u< guardLimit &&
+// latchStart + guardLimit - 1 - guardStart u> latchLimit
+// For slt condition the widened condition is:
+// guardStart u< guardLimit &&
+// latchStart + guardLimit - 1 - guardStart s>= latchLimit
+// For sle condition the widened condition is:
+// guardStart u< guardLimit &&
+// latchStart + guardLimit - 1 - guardStart s> latchLimit
+//
+// When S = -1 (i.e. reverse iterating loop), the transformation is supported
+// when:
+// * The loop has a single latch with the condition of the form:
+// B(X) = X <pred> latchLimit, where <pred> is u>, u>=, s>, or s>=.
+// * The guard condition is of the form
+// G(X) = X - 1 u< guardLimit
+//
+// For the ugt latch comparison case M is:
+// forall X. X-1 u< guardLimit and X u> latchLimit => X-2 u< guardLimit
+//
+// The only way the antecedent can be true and the consequent can be false is if
+// X == 1.
+// If X == 1 then the second half of the antecedent is
+// 1 u> latchLimit, and its negation is latchLimit u>= 1.
+//
+// So the widened condition is:
+// guardStart u< guardLimit && latchLimit u>= 1.
+// Similarly for sgt condition the widened condition is:
+// guardStart u< guardLimit && latchLimit s>= 1.
+// For uge condition the widened condition is:
+// guardStart u< guardLimit && latchLimit u> 1.
+// For sge condition the widened condition is:
+// guardStart u< guardLimit && latchLimit s> 1.
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/Scalar/LoopPredication.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/BranchProbabilityInfo.h"
+#include "llvm/Analysis/GuardUtils.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/LoopPass.h"
+#include "llvm/Analysis/ScalarEvolution.h"
+#include "llvm/Analysis/ScalarEvolutionExpander.h"
+#include "llvm/Analysis/ScalarEvolutionExpressions.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GlobalValue.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/PatternMatch.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/Transforms/Utils/LoopUtils.h"
+
+#define DEBUG_TYPE "loop-predication"
+
+STATISTIC(TotalConsidered, "Number of guards considered");
+STATISTIC(TotalWidened, "Number of checks widened");
+
+using namespace llvm;
+
+static cl::opt<bool> EnableIVTruncation("loop-predication-enable-iv-truncation",
+ cl::Hidden, cl::init(true));
+
+static cl::opt<bool> EnableCountDownLoop("loop-predication-enable-count-down-loop",
+ cl::Hidden, cl::init(true));
+
+static cl::opt<bool>
+ SkipProfitabilityChecks("loop-predication-skip-profitability-checks",
+ cl::Hidden, cl::init(false));
+
+// This is the scale factor for the latch probability. We use this during
+// profitability analysis to find other exiting blocks that have a much higher
+// probability of exiting the loop instead of loop exiting via latch.
+// This value should be greater than 1 for a sane profitability check.
+static cl::opt<float> LatchExitProbabilityScale(
+ "loop-predication-latch-probability-scale", cl::Hidden, cl::init(2.0),
+ cl::desc("scale factor for the latch probability. Value should be greater "
+ "than 1. Lower values are ignored"));
+
+static cl::opt<bool> PredicateWidenableBranchGuards(
+ "loop-predication-predicate-widenable-branches-to-deopt", cl::Hidden,
+ cl::desc("Whether or not we should predicate guards "
+ "expressed as widenable branches to deoptimize blocks"),
+ cl::init(true));
+
+namespace {
+/// Represents an induction variable check:
+/// icmp Pred, <induction variable>, <loop invariant limit>
+struct LoopICmp {
+ ICmpInst::Predicate Pred;
+ const SCEVAddRecExpr *IV;
+ const SCEV *Limit;
+ LoopICmp(ICmpInst::Predicate Pred, const SCEVAddRecExpr *IV,
+ const SCEV *Limit)
+ : Pred(Pred), IV(IV), Limit(Limit) {}
+ LoopICmp() {}
+ void dump() {
+ dbgs() << "LoopICmp Pred = " << Pred << ", IV = " << *IV
+ << ", Limit = " << *Limit << "\n";
+ }
+};
+
+class LoopPredication {
+ AliasAnalysis *AA;
+ ScalarEvolution *SE;
+ BranchProbabilityInfo *BPI;
+
+ Loop *L;
+ const DataLayout *DL;
+ BasicBlock *Preheader;
+ LoopICmp LatchCheck;
+
+ bool isSupportedStep(const SCEV* Step);
+ Optional<LoopICmp> parseLoopICmp(ICmpInst *ICI);
+ Optional<LoopICmp> parseLoopLatchICmp();
+
+ /// Return an insertion point suitable for inserting a safe to speculate
+ /// instruction whose only user will be 'User' which has operands 'Ops'. A
+ /// trivial result would be the at the User itself, but we try to return a
+ /// loop invariant location if possible.
+ Instruction *findInsertPt(Instruction *User, ArrayRef<Value*> Ops);
+ /// Same as above, *except* that this uses the SCEV definition of invariant
+ /// which is that an expression *can be made* invariant via SCEVExpander.
+ /// Thus, this version is only suitable for finding an insert point to be be
+ /// passed to SCEVExpander!
+ Instruction *findInsertPt(Instruction *User, ArrayRef<const SCEV*> Ops);
+
+ /// Return true if the value is known to produce a single fixed value across
+ /// all iterations on which it executes. Note that this does not imply
+ /// speculation safety. That must be established seperately.
+ bool isLoopInvariantValue(const SCEV* S);
+
+ Value *expandCheck(SCEVExpander &Expander, Instruction *Guard,
+ ICmpInst::Predicate Pred, const SCEV *LHS,
+ const SCEV *RHS);
+
+ Optional<Value *> widenICmpRangeCheck(ICmpInst *ICI, SCEVExpander &Expander,
+ Instruction *Guard);
+ Optional<Value *> widenICmpRangeCheckIncrementingLoop(LoopICmp LatchCheck,
+ LoopICmp RangeCheck,
+ SCEVExpander &Expander,
+ Instruction *Guard);
+ Optional<Value *> widenICmpRangeCheckDecrementingLoop(LoopICmp LatchCheck,
+ LoopICmp RangeCheck,
+ SCEVExpander &Expander,
+ Instruction *Guard);
+ unsigned collectChecks(SmallVectorImpl<Value *> &Checks, Value *Condition,
+ SCEVExpander &Expander, Instruction *Guard);
+ bool widenGuardConditions(IntrinsicInst *II, SCEVExpander &Expander);
+ bool widenWidenableBranchGuardConditions(BranchInst *Guard, SCEVExpander &Expander);
+ // If the loop always exits through another block in the loop, we should not
+ // predicate based on the latch check. For example, the latch check can be a
+ // very coarse grained check and there can be more fine grained exit checks
+ // within the loop. We identify such unprofitable loops through BPI.
+ bool isLoopProfitableToPredicate();
+
+public:
+ LoopPredication(AliasAnalysis *AA, ScalarEvolution *SE,
+ BranchProbabilityInfo *BPI)
+ : AA(AA), SE(SE), BPI(BPI){};
+ bool runOnLoop(Loop *L);
+};
+
+class LoopPredicationLegacyPass : public LoopPass {
+public:
+ static char ID;
+ LoopPredicationLegacyPass() : LoopPass(ID) {
+ initializeLoopPredicationLegacyPassPass(*PassRegistry::getPassRegistry());
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<BranchProbabilityInfoWrapperPass>();
+ getLoopAnalysisUsage(AU);
+ }
+
+ bool runOnLoop(Loop *L, LPPassManager &LPM) override {
+ if (skipLoop(L))
+ return false;
+ auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
+ BranchProbabilityInfo &BPI =
+ getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
+ auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
+ LoopPredication LP(AA, SE, &BPI);
+ return LP.runOnLoop(L);
+ }
+};
+
+char LoopPredicationLegacyPass::ID = 0;
+} // end namespace llvm
+
+INITIALIZE_PASS_BEGIN(LoopPredicationLegacyPass, "loop-predication",
+ "Loop predication", false, false)
+INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(LoopPass)
+INITIALIZE_PASS_END(LoopPredicationLegacyPass, "loop-predication",
+ "Loop predication", false, false)
+
+Pass *llvm::createLoopPredicationPass() {
+ return new LoopPredicationLegacyPass();
+}
+
+PreservedAnalyses LoopPredicationPass::run(Loop &L, LoopAnalysisManager &AM,
+ LoopStandardAnalysisResults &AR,
+ LPMUpdater &U) {
+ const auto &FAM =
+ AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager();
+ Function *F = L.getHeader()->getParent();
+ auto *BPI = FAM.getCachedResult<BranchProbabilityAnalysis>(*F);
+ LoopPredication LP(&AR.AA, &AR.SE, BPI);
+ if (!LP.runOnLoop(&L))
+ return PreservedAnalyses::all();
+
+ return getLoopPassPreservedAnalyses();
+}
+
+Optional<LoopICmp>
+LoopPredication::parseLoopICmp(ICmpInst *ICI) {
+ auto Pred = ICI->getPredicate();
+ auto *LHS = ICI->getOperand(0);
+ auto *RHS = ICI->getOperand(1);
+
+ const SCEV *LHSS = SE->getSCEV(LHS);
+ if (isa<SCEVCouldNotCompute>(LHSS))
+ return None;
+ const SCEV *RHSS = SE->getSCEV(RHS);
+ if (isa<SCEVCouldNotCompute>(RHSS))
+ return None;
+
+ // Canonicalize RHS to be loop invariant bound, LHS - a loop computable IV
+ if (SE->isLoopInvariant(LHSS, L)) {
+ std::swap(LHS, RHS);
+ std::swap(LHSS, RHSS);
+ Pred = ICmpInst::getSwappedPredicate(Pred);
+ }
+
+ const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHSS);
+ if (!AR || AR->getLoop() != L)
+ return None;
+
+ return LoopICmp(Pred, AR, RHSS);
+}
+
+Value *LoopPredication::expandCheck(SCEVExpander &Expander,
+ Instruction *Guard,
+ ICmpInst::Predicate Pred, const SCEV *LHS,
+ const SCEV *RHS) {
+ Type *Ty = LHS->getType();
+ assert(Ty == RHS->getType() && "expandCheck operands have different types?");
+
+ if (SE->isLoopInvariant(LHS, L) && SE->isLoopInvariant(RHS, L)) {
+ IRBuilder<> Builder(Guard);
+ if (SE->isLoopEntryGuardedByCond(L, Pred, LHS, RHS))
+ return Builder.getTrue();
+ if (SE->isLoopEntryGuardedByCond(L, ICmpInst::getInversePredicate(Pred),
+ LHS, RHS))
+ return Builder.getFalse();
+ }
+
+ Value *LHSV = Expander.expandCodeFor(LHS, Ty, findInsertPt(Guard, {LHS}));
+ Value *RHSV = Expander.expandCodeFor(RHS, Ty, findInsertPt(Guard, {RHS}));
+ IRBuilder<> Builder(findInsertPt(Guard, {LHSV, RHSV}));
+ return Builder.CreateICmp(Pred, LHSV, RHSV);
+}
+
+
+// Returns true if its safe to truncate the IV to RangeCheckType.
+// When the IV type is wider than the range operand type, we can still do loop
+// predication, by generating SCEVs for the range and latch that are of the
+// same type. We achieve this by generating a SCEV truncate expression for the
+// latch IV. This is done iff truncation of the IV is a safe operation,
+// without loss of information.
+// Another way to achieve this is by generating a wider type SCEV for the
+// range check operand, however, this needs a more involved check that
+// operands do not overflow. This can lead to loss of information when the
+// range operand is of the form: add i32 %offset, %iv. We need to prove that
+// sext(x + y) is same as sext(x) + sext(y).
+// This function returns true if we can safely represent the IV type in
+// the RangeCheckType without loss of information.
+static bool isSafeToTruncateWideIVType(const DataLayout &DL,
+ ScalarEvolution &SE,
+ const LoopICmp LatchCheck,
+ Type *RangeCheckType) {
+ if (!EnableIVTruncation)
+ return false;
+ assert(DL.getTypeSizeInBits(LatchCheck.IV->getType()) >
+ DL.getTypeSizeInBits(RangeCheckType) &&
+ "Expected latch check IV type to be larger than range check operand "
+ "type!");
+ // The start and end values of the IV should be known. This is to guarantee
+ // that truncating the wide type will not lose information.
+ auto *Limit = dyn_cast<SCEVConstant>(LatchCheck.Limit);
+ auto *Start = dyn_cast<SCEVConstant>(LatchCheck.IV->getStart());
+ if (!Limit || !Start)
+ return false;
+ // This check makes sure that the IV does not change sign during loop
+ // iterations. Consider latchType = i64, LatchStart = 5, Pred = ICMP_SGE,
+ // LatchEnd = 2, rangeCheckType = i32. If it's not a monotonic predicate, the
+ // IV wraps around, and the truncation of the IV would lose the range of
+ // iterations between 2^32 and 2^64.
+ bool Increasing;
+ if (!SE.isMonotonicPredicate(LatchCheck.IV, LatchCheck.Pred, Increasing))
+ return false;
+ // The active bits should be less than the bits in the RangeCheckType. This
+ // guarantees that truncating the latch check to RangeCheckType is a safe
+ // operation.
+ auto RangeCheckTypeBitSize = DL.getTypeSizeInBits(RangeCheckType);
+ return Start->getAPInt().getActiveBits() < RangeCheckTypeBitSize &&
+ Limit->getAPInt().getActiveBits() < RangeCheckTypeBitSize;
+}
+
+
+// Return an LoopICmp describing a latch check equivlent to LatchCheck but with
+// the requested type if safe to do so. May involve the use of a new IV.
+static Optional<LoopICmp> generateLoopLatchCheck(const DataLayout &DL,
+ ScalarEvolution &SE,
+ const LoopICmp LatchCheck,
+ Type *RangeCheckType) {
+
+ auto *LatchType = LatchCheck.IV->getType();
+ if (RangeCheckType == LatchType)
+ return LatchCheck;
+ // For now, bail out if latch type is narrower than range type.
+ if (DL.getTypeSizeInBits(LatchType) < DL.getTypeSizeInBits(RangeCheckType))
+ return None;
+ if (!isSafeToTruncateWideIVType(DL, SE, LatchCheck, RangeCheckType))
+ return None;
+ // We can now safely identify the truncated version of the IV and limit for
+ // RangeCheckType.
+ LoopICmp NewLatchCheck;
+ NewLatchCheck.Pred = LatchCheck.Pred;
+ NewLatchCheck.IV = dyn_cast<SCEVAddRecExpr>(
+ SE.getTruncateExpr(LatchCheck.IV, RangeCheckType));
+ if (!NewLatchCheck.IV)
+ return None;
+ NewLatchCheck.Limit = SE.getTruncateExpr(LatchCheck.Limit, RangeCheckType);
+ LLVM_DEBUG(dbgs() << "IV of type: " << *LatchType
+ << "can be represented as range check type:"
+ << *RangeCheckType << "\n");
+ LLVM_DEBUG(dbgs() << "LatchCheck.IV: " << *NewLatchCheck.IV << "\n");
+ LLVM_DEBUG(dbgs() << "LatchCheck.Limit: " << *NewLatchCheck.Limit << "\n");
+ return NewLatchCheck;
+}
+
+bool LoopPredication::isSupportedStep(const SCEV* Step) {
+ return Step->isOne() || (Step->isAllOnesValue() && EnableCountDownLoop);
+}
+
+Instruction *LoopPredication::findInsertPt(Instruction *Use,
+ ArrayRef<Value*> Ops) {
+ for (Value *Op : Ops)
+ if (!L->isLoopInvariant(Op))
+ return Use;
+ return Preheader->getTerminator();
+}
+
+Instruction *LoopPredication::findInsertPt(Instruction *Use,
+ ArrayRef<const SCEV*> Ops) {
+ // Subtlety: SCEV considers things to be invariant if the value produced is
+ // the same across iterations. This is not the same as being able to
+ // evaluate outside the loop, which is what we actually need here.
+ for (const SCEV *Op : Ops)
+ if (!SE->isLoopInvariant(Op, L) ||
+ !isSafeToExpandAt(Op, Preheader->getTerminator(), *SE))
+ return Use;
+ return Preheader->getTerminator();
+}
+
+bool LoopPredication::isLoopInvariantValue(const SCEV* S) {
+ // Handling expressions which produce invariant results, but *haven't* yet
+ // been removed from the loop serves two important purposes.
+ // 1) Most importantly, it resolves a pass ordering cycle which would
+ // otherwise need us to iteration licm, loop-predication, and either
+ // loop-unswitch or loop-peeling to make progress on examples with lots of
+ // predicable range checks in a row. (Since, in the general case, we can't
+ // hoist the length checks until the dominating checks have been discharged
+ // as we can't prove doing so is safe.)
+ // 2) As a nice side effect, this exposes the value of peeling or unswitching
+ // much more obviously in the IR. Otherwise, the cost modeling for other
+ // transforms would end up needing to duplicate all of this logic to model a
+ // check which becomes predictable based on a modeled peel or unswitch.
+ //
+ // The cost of doing so in the worst case is an extra fill from the stack in
+ // the loop to materialize the loop invariant test value instead of checking
+ // against the original IV which is presumable in a register inside the loop.
+ // Such cases are presumably rare, and hint at missing oppurtunities for
+ // other passes.
+
+ if (SE->isLoopInvariant(S, L))
+ // Note: This the SCEV variant, so the original Value* may be within the
+ // loop even though SCEV has proven it is loop invariant.
+ return true;
+
+ // Handle a particular important case which SCEV doesn't yet know about which
+ // shows up in range checks on arrays with immutable lengths.
+ // TODO: This should be sunk inside SCEV.
+ if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S))
+ if (const auto *LI = dyn_cast<LoadInst>(U->getValue()))
+ if (LI->isUnordered() && L->hasLoopInvariantOperands(LI))
+ if (AA->pointsToConstantMemory(LI->getOperand(0)) ||
+ LI->hasMetadata(LLVMContext::MD_invariant_load))
+ return true;
+ return false;
+}
+
+Optional<Value *> LoopPredication::widenICmpRangeCheckIncrementingLoop(
+ LoopICmp LatchCheck, LoopICmp RangeCheck,
+ SCEVExpander &Expander, Instruction *Guard) {
+ auto *Ty = RangeCheck.IV->getType();
+ // Generate the widened condition for the forward loop:
+ // guardStart u< guardLimit &&
+ // latchLimit <pred> guardLimit - 1 - guardStart + latchStart
+ // where <pred> depends on the latch condition predicate. See the file
+ // header comment for the reasoning.
+ // guardLimit - guardStart + latchStart - 1
+ const SCEV *GuardStart = RangeCheck.IV->getStart();
+ const SCEV *GuardLimit = RangeCheck.Limit;
+ const SCEV *LatchStart = LatchCheck.IV->getStart();
+ const SCEV *LatchLimit = LatchCheck.Limit;
+ // Subtlety: We need all the values to be *invariant* across all iterations,
+ // but we only need to check expansion safety for those which *aren't*
+ // already guaranteed to dominate the guard.
+ if (!isLoopInvariantValue(GuardStart) ||
+ !isLoopInvariantValue(GuardLimit) ||
+ !isLoopInvariantValue(LatchStart) ||
+ !isLoopInvariantValue(LatchLimit)) {
+ LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
+ return None;
+ }
+ if (!isSafeToExpandAt(LatchStart, Guard, *SE) ||
+ !isSafeToExpandAt(LatchLimit, Guard, *SE)) {
+ LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
+ return None;
+ }
+
+ // guardLimit - guardStart + latchStart - 1
+ const SCEV *RHS =
+ SE->getAddExpr(SE->getMinusSCEV(GuardLimit, GuardStart),
+ SE->getMinusSCEV(LatchStart, SE->getOne(Ty)));
+ auto LimitCheckPred =
+ ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred);
+
+ LLVM_DEBUG(dbgs() << "LHS: " << *LatchLimit << "\n");
+ LLVM_DEBUG(dbgs() << "RHS: " << *RHS << "\n");
+ LLVM_DEBUG(dbgs() << "Pred: " << LimitCheckPred << "\n");
+
+ auto *LimitCheck =
+ expandCheck(Expander, Guard, LimitCheckPred, LatchLimit, RHS);
+ auto *FirstIterationCheck = expandCheck(Expander, Guard, RangeCheck.Pred,
+ GuardStart, GuardLimit);
+ IRBuilder<> Builder(findInsertPt(Guard, {FirstIterationCheck, LimitCheck}));
+ return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
+}
+
+Optional<Value *> LoopPredication::widenICmpRangeCheckDecrementingLoop(
+ LoopICmp LatchCheck, LoopICmp RangeCheck,
+ SCEVExpander &Expander, Instruction *Guard) {
+ auto *Ty = RangeCheck.IV->getType();
+ const SCEV *GuardStart = RangeCheck.IV->getStart();
+ const SCEV *GuardLimit = RangeCheck.Limit;
+ const SCEV *LatchStart = LatchCheck.IV->getStart();
+ const SCEV *LatchLimit = LatchCheck.Limit;
+ // Subtlety: We need all the values to be *invariant* across all iterations,
+ // but we only need to check expansion safety for those which *aren't*
+ // already guaranteed to dominate the guard.
+ if (!isLoopInvariantValue(GuardStart) ||
+ !isLoopInvariantValue(GuardLimit) ||
+ !isLoopInvariantValue(LatchStart) ||
+ !isLoopInvariantValue(LatchLimit)) {
+ LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
+ return None;
+ }
+ if (!isSafeToExpandAt(LatchStart, Guard, *SE) ||
+ !isSafeToExpandAt(LatchLimit, Guard, *SE)) {
+ LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
+ return None;
+ }
+ // The decrement of the latch check IV should be the same as the
+ // rangeCheckIV.
+ auto *PostDecLatchCheckIV = LatchCheck.IV->getPostIncExpr(*SE);
+ if (RangeCheck.IV != PostDecLatchCheckIV) {
+ LLVM_DEBUG(dbgs() << "Not the same. PostDecLatchCheckIV: "
+ << *PostDecLatchCheckIV
+ << " and RangeCheckIV: " << *RangeCheck.IV << "\n");
+ return None;
+ }
+
+ // Generate the widened condition for CountDownLoop:
+ // guardStart u< guardLimit &&
+ // latchLimit <pred> 1.
+ // See the header comment for reasoning of the checks.
+ auto LimitCheckPred =
+ ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred);
+ auto *FirstIterationCheck = expandCheck(Expander, Guard,
+ ICmpInst::ICMP_ULT,
+ GuardStart, GuardLimit);
+ auto *LimitCheck = expandCheck(Expander, Guard, LimitCheckPred, LatchLimit,
+ SE->getOne(Ty));
+ IRBuilder<> Builder(findInsertPt(Guard, {FirstIterationCheck, LimitCheck}));
+ return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
+}
+
+static void normalizePredicate(ScalarEvolution *SE, Loop *L,
+ LoopICmp& RC) {
+ // LFTR canonicalizes checks to the ICMP_NE/EQ form; normalize back to the
+ // ULT/UGE form for ease of handling by our caller.
+ if (ICmpInst::isEquality(RC.Pred) &&
+ RC.IV->getStepRecurrence(*SE)->isOne() &&
+ SE->isKnownPredicate(ICmpInst::ICMP_ULE, RC.IV->getStart(), RC.Limit))
+ RC.Pred = RC.Pred == ICmpInst::ICMP_NE ?
+ ICmpInst::ICMP_ULT : ICmpInst::ICMP_UGE;
+}
+
+
+/// If ICI can be widened to a loop invariant condition emits the loop
+/// invariant condition in the loop preheader and return it, otherwise
+/// returns None.
+Optional<Value *> LoopPredication::widenICmpRangeCheck(ICmpInst *ICI,
+ SCEVExpander &Expander,
+ Instruction *Guard) {
+ LLVM_DEBUG(dbgs() << "Analyzing ICmpInst condition:\n");
+ LLVM_DEBUG(ICI->dump());
+
+ // parseLoopStructure guarantees that the latch condition is:
+ // ++i <pred> latchLimit, where <pred> is u<, u<=, s<, or s<=.
+ // We are looking for the range checks of the form:
+ // i u< guardLimit
+ auto RangeCheck = parseLoopICmp(ICI);
+ if (!RangeCheck) {
+ LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
+ return None;
+ }
+ LLVM_DEBUG(dbgs() << "Guard check:\n");
+ LLVM_DEBUG(RangeCheck->dump());
+ if (RangeCheck->Pred != ICmpInst::ICMP_ULT) {
+ LLVM_DEBUG(dbgs() << "Unsupported range check predicate("
+ << RangeCheck->Pred << ")!\n");
+ return None;
+ }
+ auto *RangeCheckIV = RangeCheck->IV;
+ if (!RangeCheckIV->isAffine()) {
+ LLVM_DEBUG(dbgs() << "Range check IV is not affine!\n");
+ return None;
+ }
+ auto *Step = RangeCheckIV->getStepRecurrence(*SE);
+ // We cannot just compare with latch IV step because the latch and range IVs
+ // may have different types.
+ if (!isSupportedStep(Step)) {
+ LLVM_DEBUG(dbgs() << "Range check and latch have IVs different steps!\n");
+ return None;
+ }
+ auto *Ty = RangeCheckIV->getType();
+ auto CurrLatchCheckOpt = generateLoopLatchCheck(*DL, *SE, LatchCheck, Ty);
+ if (!CurrLatchCheckOpt) {
+ LLVM_DEBUG(dbgs() << "Failed to generate a loop latch check "
+ "corresponding to range type: "
+ << *Ty << "\n");
+ return None;
+ }
+
+ LoopICmp CurrLatchCheck = *CurrLatchCheckOpt;
+ // At this point, the range and latch step should have the same type, but need
+ // not have the same value (we support both 1 and -1 steps).
+ assert(Step->getType() ==
+ CurrLatchCheck.IV->getStepRecurrence(*SE)->getType() &&
+ "Range and latch steps should be of same type!");
+ if (Step != CurrLatchCheck.IV->getStepRecurrence(*SE)) {
+ LLVM_DEBUG(dbgs() << "Range and latch have different step values!\n");
+ return None;
+ }
+
+ if (Step->isOne())
+ return widenICmpRangeCheckIncrementingLoop(CurrLatchCheck, *RangeCheck,
+ Expander, Guard);
+ else {
+ assert(Step->isAllOnesValue() && "Step should be -1!");
+ return widenICmpRangeCheckDecrementingLoop(CurrLatchCheck, *RangeCheck,
+ Expander, Guard);
+ }
+}
+
+unsigned LoopPredication::collectChecks(SmallVectorImpl<Value *> &Checks,
+ Value *Condition,
+ SCEVExpander &Expander,
+ Instruction *Guard) {
+ unsigned NumWidened = 0;
+ // The guard condition is expected to be in form of:
+ // cond1 && cond2 && cond3 ...
+ // Iterate over subconditions looking for icmp conditions which can be
+ // widened across loop iterations. Widening these conditions remember the
+ // resulting list of subconditions in Checks vector.
+ SmallVector<Value *, 4> Worklist(1, Condition);
+ SmallPtrSet<Value *, 4> Visited;
+ Value *WideableCond = nullptr;
+ do {
+ Value *Condition = Worklist.pop_back_val();
+ if (!Visited.insert(Condition).second)
+ continue;
+
+ Value *LHS, *RHS;
+ using namespace llvm::PatternMatch;
+ if (match(Condition, m_And(m_Value(LHS), m_Value(RHS)))) {
+ Worklist.push_back(LHS);
+ Worklist.push_back(RHS);
+ continue;
+ }
+
+ if (match(Condition,
+ m_Intrinsic<Intrinsic::experimental_widenable_condition>())) {
+ // Pick any, we don't care which
+ WideableCond = Condition;
+ continue;
+ }
+
+ if (ICmpInst *ICI = dyn_cast<ICmpInst>(Condition)) {
+ if (auto NewRangeCheck = widenICmpRangeCheck(ICI, Expander,
+ Guard)) {
+ Checks.push_back(NewRangeCheck.getValue());
+ NumWidened++;
+ continue;
+ }
+ }
+
+ // Save the condition as is if we can't widen it
+ Checks.push_back(Condition);
+ } while (!Worklist.empty());
+ // At the moment, our matching logic for wideable conditions implicitly
+ // assumes we preserve the form: (br (and Cond, WC())). FIXME
+ // Note that if there were multiple calls to wideable condition in the
+ // traversal, we only need to keep one, and which one is arbitrary.
+ if (WideableCond)
+ Checks.push_back(WideableCond);
+ return NumWidened;
+}
+
+bool LoopPredication::widenGuardConditions(IntrinsicInst *Guard,
+ SCEVExpander &Expander) {
+ LLVM_DEBUG(dbgs() << "Processing guard:\n");
+ LLVM_DEBUG(Guard->dump());
+
+ TotalConsidered++;
+ SmallVector<Value *, 4> Checks;
+ unsigned NumWidened = collectChecks(Checks, Guard->getOperand(0), Expander,
+ Guard);
+ if (NumWidened == 0)
+ return false;
+
+ TotalWidened += NumWidened;
+
+ // Emit the new guard condition
+ IRBuilder<> Builder(findInsertPt(Guard, Checks));
+ Value *AllChecks = Builder.CreateAnd(Checks);
+ auto *OldCond = Guard->getOperand(0);
+ Guard->setOperand(0, AllChecks);
+ RecursivelyDeleteTriviallyDeadInstructions(OldCond);
+
+ LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n");
+ return true;
+}
+
+bool LoopPredication::widenWidenableBranchGuardConditions(
+ BranchInst *BI, SCEVExpander &Expander) {
+ assert(isGuardAsWidenableBranch(BI) && "Must be!");
+ LLVM_DEBUG(dbgs() << "Processing guard:\n");
+ LLVM_DEBUG(BI->dump());
+
+ TotalConsidered++;
+ SmallVector<Value *, 4> Checks;
+ unsigned NumWidened = collectChecks(Checks, BI->getCondition(),
+ Expander, BI);
+ if (NumWidened == 0)
+ return false;
+
+ TotalWidened += NumWidened;
+
+ // Emit the new guard condition
+ IRBuilder<> Builder(findInsertPt(BI, Checks));
+ Value *AllChecks = Builder.CreateAnd(Checks);
+ auto *OldCond = BI->getCondition();
+ BI->setCondition(AllChecks);
+ assert(isGuardAsWidenableBranch(BI) &&
+ "Stopped being a guard after transform?");
+ RecursivelyDeleteTriviallyDeadInstructions(OldCond);
+
+ LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n");
+ return true;
+}
+
+Optional<LoopICmp> LoopPredication::parseLoopLatchICmp() {
+ using namespace PatternMatch;
+
+ BasicBlock *LoopLatch = L->getLoopLatch();
+ if (!LoopLatch) {
+ LLVM_DEBUG(dbgs() << "The loop doesn't have a single latch!\n");
+ return None;
+ }
+
+ auto *BI = dyn_cast<BranchInst>(LoopLatch->getTerminator());
+ if (!BI || !BI->isConditional()) {
+ LLVM_DEBUG(dbgs() << "Failed to match the latch terminator!\n");
+ return None;
+ }
+ BasicBlock *TrueDest = BI->getSuccessor(0);
+ assert(
+ (TrueDest == L->getHeader() || BI->getSuccessor(1) == L->getHeader()) &&
+ "One of the latch's destinations must be the header");
+
+ auto *ICI = dyn_cast<ICmpInst>(BI->getCondition());
+ if (!ICI) {
+ LLVM_DEBUG(dbgs() << "Failed to match the latch condition!\n");
+ return None;
+ }
+ auto Result = parseLoopICmp(ICI);
+ if (!Result) {
+ LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
+ return None;
+ }
+
+ if (TrueDest != L->getHeader())
+ Result->Pred = ICmpInst::getInversePredicate(Result->Pred);
+
+ // Check affine first, so if it's not we don't try to compute the step
+ // recurrence.
+ if (!Result->IV->isAffine()) {
+ LLVM_DEBUG(dbgs() << "The induction variable is not affine!\n");
+ return None;
+ }
+
+ auto *Step = Result->IV->getStepRecurrence(*SE);
+ if (!isSupportedStep(Step)) {
+ LLVM_DEBUG(dbgs() << "Unsupported loop stride(" << *Step << ")!\n");
+ return None;
+ }
+
+ auto IsUnsupportedPredicate = [](const SCEV *Step, ICmpInst::Predicate Pred) {
+ if (Step->isOne()) {
+ return Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_SLT &&
+ Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_SLE;
+ } else {
+ assert(Step->isAllOnesValue() && "Step should be -1!");
+ return Pred != ICmpInst::ICMP_UGT && Pred != ICmpInst::ICMP_SGT &&
+ Pred != ICmpInst::ICMP_UGE && Pred != ICmpInst::ICMP_SGE;
+ }
+ };
+
+ normalizePredicate(SE, L, *Result);
+ if (IsUnsupportedPredicate(Step, Result->Pred)) {
+ LLVM_DEBUG(dbgs() << "Unsupported loop latch predicate(" << Result->Pred
+ << ")!\n");
+ return None;
+ }
+
+ return Result;
+}
+
+
+bool LoopPredication::isLoopProfitableToPredicate() {
+ if (SkipProfitabilityChecks || !BPI)
+ return true;
+
+ SmallVector<std::pair<BasicBlock *, BasicBlock *>, 8> ExitEdges;
+ L->getExitEdges(ExitEdges);
+ // If there is only one exiting edge in the loop, it is always profitable to
+ // predicate the loop.
+ if (ExitEdges.size() == 1)
+ return true;
+
+ // Calculate the exiting probabilities of all exiting edges from the loop,
+ // starting with the LatchExitProbability.
+ // Heuristic for profitability: If any of the exiting blocks' probability of
+ // exiting the loop is larger than exiting through the latch block, it's not
+ // profitable to predicate the loop.
+ auto *LatchBlock = L->getLoopLatch();
+ assert(LatchBlock && "Should have a single latch at this point!");
+ auto *LatchTerm = LatchBlock->getTerminator();
+ assert(LatchTerm->getNumSuccessors() == 2 &&
+ "expected to be an exiting block with 2 succs!");
+ unsigned LatchBrExitIdx =
+ LatchTerm->getSuccessor(0) == L->getHeader() ? 1 : 0;
+ BranchProbability LatchExitProbability =
+ BPI->getEdgeProbability(LatchBlock, LatchBrExitIdx);
+
+ // Protect against degenerate inputs provided by the user. Providing a value
+ // less than one, can invert the definition of profitable loop predication.
+ float ScaleFactor = LatchExitProbabilityScale;
+ if (ScaleFactor < 1) {
+ LLVM_DEBUG(
+ dbgs()
+ << "Ignored user setting for loop-predication-latch-probability-scale: "
+ << LatchExitProbabilityScale << "\n");
+ LLVM_DEBUG(dbgs() << "The value is set to 1.0\n");
+ ScaleFactor = 1.0;
+ }
+ const auto LatchProbabilityThreshold =
+ LatchExitProbability * ScaleFactor;
+
+ for (const auto &ExitEdge : ExitEdges) {
+ BranchProbability ExitingBlockProbability =
+ BPI->getEdgeProbability(ExitEdge.first, ExitEdge.second);
+ // Some exiting edge has higher probability than the latch exiting edge.
+ // No longer profitable to predicate.
+ if (ExitingBlockProbability > LatchProbabilityThreshold)
+ return false;
+ }
+ // Using BPI, we have concluded that the most probable way to exit from the
+ // loop is through the latch (or there's no profile information and all
+ // exits are equally likely).
+ return true;
+}
+
+bool LoopPredication::runOnLoop(Loop *Loop) {
+ L = Loop;
+
+ LLVM_DEBUG(dbgs() << "Analyzing ");
+ LLVM_DEBUG(L->dump());
+
+ Module *M = L->getHeader()->getModule();
+
+ // There is nothing to do if the module doesn't use guards
+ auto *GuardDecl =
+ M->getFunction(Intrinsic::getName(Intrinsic::experimental_guard));
+ bool HasIntrinsicGuards = GuardDecl && !GuardDecl->use_empty();
+ auto *WCDecl = M->getFunction(
+ Intrinsic::getName(Intrinsic::experimental_widenable_condition));
+ bool HasWidenableConditions =
+ PredicateWidenableBranchGuards && WCDecl && !WCDecl->use_empty();
+ if (!HasIntrinsicGuards && !HasWidenableConditions)
+ return false;
+
+ DL = &M->getDataLayout();
+
+ Preheader = L->getLoopPreheader();
+ if (!Preheader)
+ return false;
+
+ auto LatchCheckOpt = parseLoopLatchICmp();
+ if (!LatchCheckOpt)
+ return false;
+ LatchCheck = *LatchCheckOpt;
+
+ LLVM_DEBUG(dbgs() << "Latch check:\n");
+ LLVM_DEBUG(LatchCheck.dump());
+
+ if (!isLoopProfitableToPredicate()) {
+ LLVM_DEBUG(dbgs() << "Loop not profitable to predicate!\n");
+ return false;
+ }
+ // Collect all the guards into a vector and process later, so as not
+ // to invalidate the instruction iterator.
+ SmallVector<IntrinsicInst *, 4> Guards;
+ SmallVector<BranchInst *, 4> GuardsAsWidenableBranches;
+ for (const auto BB : L->blocks()) {
+ for (auto &I : *BB)
+ if (isGuard(&I))
+ Guards.push_back(cast<IntrinsicInst>(&I));
+ if (PredicateWidenableBranchGuards &&
+ isGuardAsWidenableBranch(BB->getTerminator()))
+ GuardsAsWidenableBranches.push_back(
+ cast<BranchInst>(BB->getTerminator()));
+ }
+
+ if (Guards.empty() && GuardsAsWidenableBranches.empty())
+ return false;
+
+ SCEVExpander Expander(*SE, *DL, "loop-predication");
+
+ bool Changed = false;
+ for (auto *Guard : Guards)
+ Changed |= widenGuardConditions(Guard, Expander);
+ for (auto *Guard : GuardsAsWidenableBranches)
+ Changed |= widenWidenableBranchGuardConditions(Guard, Expander);
+
+ return Changed;
+}