diff options
Diffstat (limited to 'llvm/lib/Transforms/Scalar/LoopPredication.cpp')
| -rw-r--r-- | llvm/lib/Transforms/Scalar/LoopPredication.cpp | 1019 |
1 files changed, 1019 insertions, 0 deletions
diff --git a/llvm/lib/Transforms/Scalar/LoopPredication.cpp b/llvm/lib/Transforms/Scalar/LoopPredication.cpp new file mode 100644 index 000000000000..885c0e8f4b8b --- /dev/null +++ b/llvm/lib/Transforms/Scalar/LoopPredication.cpp @@ -0,0 +1,1019 @@ +//===-- LoopPredication.cpp - Guard based loop predication pass -----------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// The LoopPredication pass tries to convert loop variant range checks to loop +// invariant by widening checks across loop iterations. For example, it will +// convert +// +// for (i = 0; i < n; i++) { +// guard(i < len); +// ... +// } +// +// to +// +// for (i = 0; i < n; i++) { +// guard(n - 1 < len); +// ... +// } +// +// After this transformation the condition of the guard is loop invariant, so +// loop-unswitch can later unswitch the loop by this condition which basically +// predicates the loop by the widened condition: +// +// if (n - 1 < len) +// for (i = 0; i < n; i++) { +// ... +// } +// else +// deoptimize +// +// It's tempting to rely on SCEV here, but it has proven to be problematic. +// Generally the facts SCEV provides about the increment step of add +// recurrences are true if the backedge of the loop is taken, which implicitly +// assumes that the guard doesn't fail. Using these facts to optimize the +// guard results in a circular logic where the guard is optimized under the +// assumption that it never fails. +// +// For example, in the loop below the induction variable will be marked as nuw +// basing on the guard. Basing on nuw the guard predicate will be considered +// monotonic. Given a monotonic condition it's tempting to replace the induction +// variable in the condition with its value on the last iteration. But this +// transformation is not correct, e.g. e = 4, b = 5 breaks the loop. +// +// for (int i = b; i != e; i++) +// guard(i u< len) +// +// One of the ways to reason about this problem is to use an inductive proof +// approach. Given the loop: +// +// if (B(0)) { +// do { +// I = PHI(0, I.INC) +// I.INC = I + Step +// guard(G(I)); +// } while (B(I)); +// } +// +// where B(x) and G(x) are predicates that map integers to booleans, we want a +// loop invariant expression M such the following program has the same semantics +// as the above: +// +// if (B(0)) { +// do { +// I = PHI(0, I.INC) +// I.INC = I + Step +// guard(G(0) && M); +// } while (B(I)); +// } +// +// One solution for M is M = forall X . (G(X) && B(X)) => G(X + Step) +// +// Informal proof that the transformation above is correct: +// +// By the definition of guards we can rewrite the guard condition to: +// G(I) && G(0) && M +// +// Let's prove that for each iteration of the loop: +// G(0) && M => G(I) +// And the condition above can be simplified to G(Start) && M. +// +// Induction base. +// G(0) && M => G(0) +// +// Induction step. Assuming G(0) && M => G(I) on the subsequent +// iteration: +// +// B(I) is true because it's the backedge condition. +// G(I) is true because the backedge is guarded by this condition. +// +// So M = forall X . (G(X) && B(X)) => G(X + Step) implies G(I + Step). +// +// Note that we can use anything stronger than M, i.e. any condition which +// implies M. +// +// When S = 1 (i.e. forward iterating loop), the transformation is supported +// when: +// * The loop has a single latch with the condition of the form: +// B(X) = latchStart + X <pred> latchLimit, +// where <pred> is u<, u<=, s<, or s<=. +// * The guard condition is of the form +// G(X) = guardStart + X u< guardLimit +// +// For the ult latch comparison case M is: +// forall X . guardStart + X u< guardLimit && latchStart + X <u latchLimit => +// guardStart + X + 1 u< guardLimit +// +// The only way the antecedent can be true and the consequent can be false is +// if +// X == guardLimit - 1 - guardStart +// (and guardLimit is non-zero, but we won't use this latter fact). +// If X == guardLimit - 1 - guardStart then the second half of the antecedent is +// latchStart + guardLimit - 1 - guardStart u< latchLimit +// and its negation is +// latchStart + guardLimit - 1 - guardStart u>= latchLimit +// +// In other words, if +// latchLimit u<= latchStart + guardLimit - 1 - guardStart +// then: +// (the ranges below are written in ConstantRange notation, where [A, B) is the +// set for (I = A; I != B; I++ /*maywrap*/) yield(I);) +// +// forall X . guardStart + X u< guardLimit && +// latchStart + X u< latchLimit => +// guardStart + X + 1 u< guardLimit +// == forall X . guardStart + X u< guardLimit && +// latchStart + X u< latchStart + guardLimit - 1 - guardStart => +// guardStart + X + 1 u< guardLimit +// == forall X . (guardStart + X) in [0, guardLimit) && +// (latchStart + X) in [0, latchStart + guardLimit - 1 - guardStart) => +// (guardStart + X + 1) in [0, guardLimit) +// == forall X . X in [-guardStart, guardLimit - guardStart) && +// X in [-latchStart, guardLimit - 1 - guardStart) => +// X in [-guardStart - 1, guardLimit - guardStart - 1) +// == true +// +// So the widened condition is: +// guardStart u< guardLimit && +// latchStart + guardLimit - 1 - guardStart u>= latchLimit +// Similarly for ule condition the widened condition is: +// guardStart u< guardLimit && +// latchStart + guardLimit - 1 - guardStart u> latchLimit +// For slt condition the widened condition is: +// guardStart u< guardLimit && +// latchStart + guardLimit - 1 - guardStart s>= latchLimit +// For sle condition the widened condition is: +// guardStart u< guardLimit && +// latchStart + guardLimit - 1 - guardStart s> latchLimit +// +// When S = -1 (i.e. reverse iterating loop), the transformation is supported +// when: +// * The loop has a single latch with the condition of the form: +// B(X) = X <pred> latchLimit, where <pred> is u>, u>=, s>, or s>=. +// * The guard condition is of the form +// G(X) = X - 1 u< guardLimit +// +// For the ugt latch comparison case M is: +// forall X. X-1 u< guardLimit and X u> latchLimit => X-2 u< guardLimit +// +// The only way the antecedent can be true and the consequent can be false is if +// X == 1. +// If X == 1 then the second half of the antecedent is +// 1 u> latchLimit, and its negation is latchLimit u>= 1. +// +// So the widened condition is: +// guardStart u< guardLimit && latchLimit u>= 1. +// Similarly for sgt condition the widened condition is: +// guardStart u< guardLimit && latchLimit s>= 1. +// For uge condition the widened condition is: +// guardStart u< guardLimit && latchLimit u> 1. +// For sge condition the widened condition is: +// guardStart u< guardLimit && latchLimit s> 1. +//===----------------------------------------------------------------------===// + +#include "llvm/Transforms/Scalar/LoopPredication.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Analysis/BranchProbabilityInfo.h" +#include "llvm/Analysis/GuardUtils.h" +#include "llvm/Analysis/LoopInfo.h" +#include "llvm/Analysis/LoopPass.h" +#include "llvm/Analysis/ScalarEvolution.h" +#include "llvm/Analysis/ScalarEvolutionExpander.h" +#include "llvm/Analysis/ScalarEvolutionExpressions.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/GlobalValue.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/PatternMatch.h" +#include "llvm/Pass.h" +#include "llvm/Support/Debug.h" +#include "llvm/Transforms/Scalar.h" +#include "llvm/Transforms/Utils/Local.h" +#include "llvm/Transforms/Utils/LoopUtils.h" + +#define DEBUG_TYPE "loop-predication" + +STATISTIC(TotalConsidered, "Number of guards considered"); +STATISTIC(TotalWidened, "Number of checks widened"); + +using namespace llvm; + +static cl::opt<bool> EnableIVTruncation("loop-predication-enable-iv-truncation", + cl::Hidden, cl::init(true)); + +static cl::opt<bool> EnableCountDownLoop("loop-predication-enable-count-down-loop", + cl::Hidden, cl::init(true)); + +static cl::opt<bool> + SkipProfitabilityChecks("loop-predication-skip-profitability-checks", + cl::Hidden, cl::init(false)); + +// This is the scale factor for the latch probability. We use this during +// profitability analysis to find other exiting blocks that have a much higher +// probability of exiting the loop instead of loop exiting via latch. +// This value should be greater than 1 for a sane profitability check. +static cl::opt<float> LatchExitProbabilityScale( + "loop-predication-latch-probability-scale", cl::Hidden, cl::init(2.0), + cl::desc("scale factor for the latch probability. Value should be greater " + "than 1. Lower values are ignored")); + +static cl::opt<bool> PredicateWidenableBranchGuards( + "loop-predication-predicate-widenable-branches-to-deopt", cl::Hidden, + cl::desc("Whether or not we should predicate guards " + "expressed as widenable branches to deoptimize blocks"), + cl::init(true)); + +namespace { +/// Represents an induction variable check: +/// icmp Pred, <induction variable>, <loop invariant limit> +struct LoopICmp { + ICmpInst::Predicate Pred; + const SCEVAddRecExpr *IV; + const SCEV *Limit; + LoopICmp(ICmpInst::Predicate Pred, const SCEVAddRecExpr *IV, + const SCEV *Limit) + : Pred(Pred), IV(IV), Limit(Limit) {} + LoopICmp() {} + void dump() { + dbgs() << "LoopICmp Pred = " << Pred << ", IV = " << *IV + << ", Limit = " << *Limit << "\n"; + } +}; + +class LoopPredication { + AliasAnalysis *AA; + ScalarEvolution *SE; + BranchProbabilityInfo *BPI; + + Loop *L; + const DataLayout *DL; + BasicBlock *Preheader; + LoopICmp LatchCheck; + + bool isSupportedStep(const SCEV* Step); + Optional<LoopICmp> parseLoopICmp(ICmpInst *ICI); + Optional<LoopICmp> parseLoopLatchICmp(); + + /// Return an insertion point suitable for inserting a safe to speculate + /// instruction whose only user will be 'User' which has operands 'Ops'. A + /// trivial result would be the at the User itself, but we try to return a + /// loop invariant location if possible. + Instruction *findInsertPt(Instruction *User, ArrayRef<Value*> Ops); + /// Same as above, *except* that this uses the SCEV definition of invariant + /// which is that an expression *can be made* invariant via SCEVExpander. + /// Thus, this version is only suitable for finding an insert point to be be + /// passed to SCEVExpander! + Instruction *findInsertPt(Instruction *User, ArrayRef<const SCEV*> Ops); + + /// Return true if the value is known to produce a single fixed value across + /// all iterations on which it executes. Note that this does not imply + /// speculation safety. That must be established seperately. + bool isLoopInvariantValue(const SCEV* S); + + Value *expandCheck(SCEVExpander &Expander, Instruction *Guard, + ICmpInst::Predicate Pred, const SCEV *LHS, + const SCEV *RHS); + + Optional<Value *> widenICmpRangeCheck(ICmpInst *ICI, SCEVExpander &Expander, + Instruction *Guard); + Optional<Value *> widenICmpRangeCheckIncrementingLoop(LoopICmp LatchCheck, + LoopICmp RangeCheck, + SCEVExpander &Expander, + Instruction *Guard); + Optional<Value *> widenICmpRangeCheckDecrementingLoop(LoopICmp LatchCheck, + LoopICmp RangeCheck, + SCEVExpander &Expander, + Instruction *Guard); + unsigned collectChecks(SmallVectorImpl<Value *> &Checks, Value *Condition, + SCEVExpander &Expander, Instruction *Guard); + bool widenGuardConditions(IntrinsicInst *II, SCEVExpander &Expander); + bool widenWidenableBranchGuardConditions(BranchInst *Guard, SCEVExpander &Expander); + // If the loop always exits through another block in the loop, we should not + // predicate based on the latch check. For example, the latch check can be a + // very coarse grained check and there can be more fine grained exit checks + // within the loop. We identify such unprofitable loops through BPI. + bool isLoopProfitableToPredicate(); + +public: + LoopPredication(AliasAnalysis *AA, ScalarEvolution *SE, + BranchProbabilityInfo *BPI) + : AA(AA), SE(SE), BPI(BPI){}; + bool runOnLoop(Loop *L); +}; + +class LoopPredicationLegacyPass : public LoopPass { +public: + static char ID; + LoopPredicationLegacyPass() : LoopPass(ID) { + initializeLoopPredicationLegacyPassPass(*PassRegistry::getPassRegistry()); + } + + void getAnalysisUsage(AnalysisUsage &AU) const override { + AU.addRequired<BranchProbabilityInfoWrapperPass>(); + getLoopAnalysisUsage(AU); + } + + bool runOnLoop(Loop *L, LPPassManager &LPM) override { + if (skipLoop(L)) + return false; + auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); + BranchProbabilityInfo &BPI = + getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI(); + auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); + LoopPredication LP(AA, SE, &BPI); + return LP.runOnLoop(L); + } +}; + +char LoopPredicationLegacyPass::ID = 0; +} // end namespace llvm + +INITIALIZE_PASS_BEGIN(LoopPredicationLegacyPass, "loop-predication", + "Loop predication", false, false) +INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass) +INITIALIZE_PASS_DEPENDENCY(LoopPass) +INITIALIZE_PASS_END(LoopPredicationLegacyPass, "loop-predication", + "Loop predication", false, false) + +Pass *llvm::createLoopPredicationPass() { + return new LoopPredicationLegacyPass(); +} + +PreservedAnalyses LoopPredicationPass::run(Loop &L, LoopAnalysisManager &AM, + LoopStandardAnalysisResults &AR, + LPMUpdater &U) { + const auto &FAM = + AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager(); + Function *F = L.getHeader()->getParent(); + auto *BPI = FAM.getCachedResult<BranchProbabilityAnalysis>(*F); + LoopPredication LP(&AR.AA, &AR.SE, BPI); + if (!LP.runOnLoop(&L)) + return PreservedAnalyses::all(); + + return getLoopPassPreservedAnalyses(); +} + +Optional<LoopICmp> +LoopPredication::parseLoopICmp(ICmpInst *ICI) { + auto Pred = ICI->getPredicate(); + auto *LHS = ICI->getOperand(0); + auto *RHS = ICI->getOperand(1); + + const SCEV *LHSS = SE->getSCEV(LHS); + if (isa<SCEVCouldNotCompute>(LHSS)) + return None; + const SCEV *RHSS = SE->getSCEV(RHS); + if (isa<SCEVCouldNotCompute>(RHSS)) + return None; + + // Canonicalize RHS to be loop invariant bound, LHS - a loop computable IV + if (SE->isLoopInvariant(LHSS, L)) { + std::swap(LHS, RHS); + std::swap(LHSS, RHSS); + Pred = ICmpInst::getSwappedPredicate(Pred); + } + + const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHSS); + if (!AR || AR->getLoop() != L) + return None; + + return LoopICmp(Pred, AR, RHSS); +} + +Value *LoopPredication::expandCheck(SCEVExpander &Expander, + Instruction *Guard, + ICmpInst::Predicate Pred, const SCEV *LHS, + const SCEV *RHS) { + Type *Ty = LHS->getType(); + assert(Ty == RHS->getType() && "expandCheck operands have different types?"); + + if (SE->isLoopInvariant(LHS, L) && SE->isLoopInvariant(RHS, L)) { + IRBuilder<> Builder(Guard); + if (SE->isLoopEntryGuardedByCond(L, Pred, LHS, RHS)) + return Builder.getTrue(); + if (SE->isLoopEntryGuardedByCond(L, ICmpInst::getInversePredicate(Pred), + LHS, RHS)) + return Builder.getFalse(); + } + + Value *LHSV = Expander.expandCodeFor(LHS, Ty, findInsertPt(Guard, {LHS})); + Value *RHSV = Expander.expandCodeFor(RHS, Ty, findInsertPt(Guard, {RHS})); + IRBuilder<> Builder(findInsertPt(Guard, {LHSV, RHSV})); + return Builder.CreateICmp(Pred, LHSV, RHSV); +} + + +// Returns true if its safe to truncate the IV to RangeCheckType. +// When the IV type is wider than the range operand type, we can still do loop +// predication, by generating SCEVs for the range and latch that are of the +// same type. We achieve this by generating a SCEV truncate expression for the +// latch IV. This is done iff truncation of the IV is a safe operation, +// without loss of information. +// Another way to achieve this is by generating a wider type SCEV for the +// range check operand, however, this needs a more involved check that +// operands do not overflow. This can lead to loss of information when the +// range operand is of the form: add i32 %offset, %iv. We need to prove that +// sext(x + y) is same as sext(x) + sext(y). +// This function returns true if we can safely represent the IV type in +// the RangeCheckType without loss of information. +static bool isSafeToTruncateWideIVType(const DataLayout &DL, + ScalarEvolution &SE, + const LoopICmp LatchCheck, + Type *RangeCheckType) { + if (!EnableIVTruncation) + return false; + assert(DL.getTypeSizeInBits(LatchCheck.IV->getType()) > + DL.getTypeSizeInBits(RangeCheckType) && + "Expected latch check IV type to be larger than range check operand " + "type!"); + // The start and end values of the IV should be known. This is to guarantee + // that truncating the wide type will not lose information. + auto *Limit = dyn_cast<SCEVConstant>(LatchCheck.Limit); + auto *Start = dyn_cast<SCEVConstant>(LatchCheck.IV->getStart()); + if (!Limit || !Start) + return false; + // This check makes sure that the IV does not change sign during loop + // iterations. Consider latchType = i64, LatchStart = 5, Pred = ICMP_SGE, + // LatchEnd = 2, rangeCheckType = i32. If it's not a monotonic predicate, the + // IV wraps around, and the truncation of the IV would lose the range of + // iterations between 2^32 and 2^64. + bool Increasing; + if (!SE.isMonotonicPredicate(LatchCheck.IV, LatchCheck.Pred, Increasing)) + return false; + // The active bits should be less than the bits in the RangeCheckType. This + // guarantees that truncating the latch check to RangeCheckType is a safe + // operation. + auto RangeCheckTypeBitSize = DL.getTypeSizeInBits(RangeCheckType); + return Start->getAPInt().getActiveBits() < RangeCheckTypeBitSize && + Limit->getAPInt().getActiveBits() < RangeCheckTypeBitSize; +} + + +// Return an LoopICmp describing a latch check equivlent to LatchCheck but with +// the requested type if safe to do so. May involve the use of a new IV. +static Optional<LoopICmp> generateLoopLatchCheck(const DataLayout &DL, + ScalarEvolution &SE, + const LoopICmp LatchCheck, + Type *RangeCheckType) { + + auto *LatchType = LatchCheck.IV->getType(); + if (RangeCheckType == LatchType) + return LatchCheck; + // For now, bail out if latch type is narrower than range type. + if (DL.getTypeSizeInBits(LatchType) < DL.getTypeSizeInBits(RangeCheckType)) + return None; + if (!isSafeToTruncateWideIVType(DL, SE, LatchCheck, RangeCheckType)) + return None; + // We can now safely identify the truncated version of the IV and limit for + // RangeCheckType. + LoopICmp NewLatchCheck; + NewLatchCheck.Pred = LatchCheck.Pred; + NewLatchCheck.IV = dyn_cast<SCEVAddRecExpr>( + SE.getTruncateExpr(LatchCheck.IV, RangeCheckType)); + if (!NewLatchCheck.IV) + return None; + NewLatchCheck.Limit = SE.getTruncateExpr(LatchCheck.Limit, RangeCheckType); + LLVM_DEBUG(dbgs() << "IV of type: " << *LatchType + << "can be represented as range check type:" + << *RangeCheckType << "\n"); + LLVM_DEBUG(dbgs() << "LatchCheck.IV: " << *NewLatchCheck.IV << "\n"); + LLVM_DEBUG(dbgs() << "LatchCheck.Limit: " << *NewLatchCheck.Limit << "\n"); + return NewLatchCheck; +} + +bool LoopPredication::isSupportedStep(const SCEV* Step) { + return Step->isOne() || (Step->isAllOnesValue() && EnableCountDownLoop); +} + +Instruction *LoopPredication::findInsertPt(Instruction *Use, + ArrayRef<Value*> Ops) { + for (Value *Op : Ops) + if (!L->isLoopInvariant(Op)) + return Use; + return Preheader->getTerminator(); +} + +Instruction *LoopPredication::findInsertPt(Instruction *Use, + ArrayRef<const SCEV*> Ops) { + // Subtlety: SCEV considers things to be invariant if the value produced is + // the same across iterations. This is not the same as being able to + // evaluate outside the loop, which is what we actually need here. + for (const SCEV *Op : Ops) + if (!SE->isLoopInvariant(Op, L) || + !isSafeToExpandAt(Op, Preheader->getTerminator(), *SE)) + return Use; + return Preheader->getTerminator(); +} + +bool LoopPredication::isLoopInvariantValue(const SCEV* S) { + // Handling expressions which produce invariant results, but *haven't* yet + // been removed from the loop serves two important purposes. + // 1) Most importantly, it resolves a pass ordering cycle which would + // otherwise need us to iteration licm, loop-predication, and either + // loop-unswitch or loop-peeling to make progress on examples with lots of + // predicable range checks in a row. (Since, in the general case, we can't + // hoist the length checks until the dominating checks have been discharged + // as we can't prove doing so is safe.) + // 2) As a nice side effect, this exposes the value of peeling or unswitching + // much more obviously in the IR. Otherwise, the cost modeling for other + // transforms would end up needing to duplicate all of this logic to model a + // check which becomes predictable based on a modeled peel or unswitch. + // + // The cost of doing so in the worst case is an extra fill from the stack in + // the loop to materialize the loop invariant test value instead of checking + // against the original IV which is presumable in a register inside the loop. + // Such cases are presumably rare, and hint at missing oppurtunities for + // other passes. + + if (SE->isLoopInvariant(S, L)) + // Note: This the SCEV variant, so the original Value* may be within the + // loop even though SCEV has proven it is loop invariant. + return true; + + // Handle a particular important case which SCEV doesn't yet know about which + // shows up in range checks on arrays with immutable lengths. + // TODO: This should be sunk inside SCEV. + if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) + if (const auto *LI = dyn_cast<LoadInst>(U->getValue())) + if (LI->isUnordered() && L->hasLoopInvariantOperands(LI)) + if (AA->pointsToConstantMemory(LI->getOperand(0)) || + LI->hasMetadata(LLVMContext::MD_invariant_load)) + return true; + return false; +} + +Optional<Value *> LoopPredication::widenICmpRangeCheckIncrementingLoop( + LoopICmp LatchCheck, LoopICmp RangeCheck, + SCEVExpander &Expander, Instruction *Guard) { + auto *Ty = RangeCheck.IV->getType(); + // Generate the widened condition for the forward loop: + // guardStart u< guardLimit && + // latchLimit <pred> guardLimit - 1 - guardStart + latchStart + // where <pred> depends on the latch condition predicate. See the file + // header comment for the reasoning. + // guardLimit - guardStart + latchStart - 1 + const SCEV *GuardStart = RangeCheck.IV->getStart(); + const SCEV *GuardLimit = RangeCheck.Limit; + const SCEV *LatchStart = LatchCheck.IV->getStart(); + const SCEV *LatchLimit = LatchCheck.Limit; + // Subtlety: We need all the values to be *invariant* across all iterations, + // but we only need to check expansion safety for those which *aren't* + // already guaranteed to dominate the guard. + if (!isLoopInvariantValue(GuardStart) || + !isLoopInvariantValue(GuardLimit) || + !isLoopInvariantValue(LatchStart) || + !isLoopInvariantValue(LatchLimit)) { + LLVM_DEBUG(dbgs() << "Can't expand limit check!\n"); + return None; + } + if (!isSafeToExpandAt(LatchStart, Guard, *SE) || + !isSafeToExpandAt(LatchLimit, Guard, *SE)) { + LLVM_DEBUG(dbgs() << "Can't expand limit check!\n"); + return None; + } + + // guardLimit - guardStart + latchStart - 1 + const SCEV *RHS = + SE->getAddExpr(SE->getMinusSCEV(GuardLimit, GuardStart), + SE->getMinusSCEV(LatchStart, SE->getOne(Ty))); + auto LimitCheckPred = + ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred); + + LLVM_DEBUG(dbgs() << "LHS: " << *LatchLimit << "\n"); + LLVM_DEBUG(dbgs() << "RHS: " << *RHS << "\n"); + LLVM_DEBUG(dbgs() << "Pred: " << LimitCheckPred << "\n"); + + auto *LimitCheck = + expandCheck(Expander, Guard, LimitCheckPred, LatchLimit, RHS); + auto *FirstIterationCheck = expandCheck(Expander, Guard, RangeCheck.Pred, + GuardStart, GuardLimit); + IRBuilder<> Builder(findInsertPt(Guard, {FirstIterationCheck, LimitCheck})); + return Builder.CreateAnd(FirstIterationCheck, LimitCheck); +} + +Optional<Value *> LoopPredication::widenICmpRangeCheckDecrementingLoop( + LoopICmp LatchCheck, LoopICmp RangeCheck, + SCEVExpander &Expander, Instruction *Guard) { + auto *Ty = RangeCheck.IV->getType(); + const SCEV *GuardStart = RangeCheck.IV->getStart(); + const SCEV *GuardLimit = RangeCheck.Limit; + const SCEV *LatchStart = LatchCheck.IV->getStart(); + const SCEV *LatchLimit = LatchCheck.Limit; + // Subtlety: We need all the values to be *invariant* across all iterations, + // but we only need to check expansion safety for those which *aren't* + // already guaranteed to dominate the guard. + if (!isLoopInvariantValue(GuardStart) || + !isLoopInvariantValue(GuardLimit) || + !isLoopInvariantValue(LatchStart) || + !isLoopInvariantValue(LatchLimit)) { + LLVM_DEBUG(dbgs() << "Can't expand limit check!\n"); + return None; + } + if (!isSafeToExpandAt(LatchStart, Guard, *SE) || + !isSafeToExpandAt(LatchLimit, Guard, *SE)) { + LLVM_DEBUG(dbgs() << "Can't expand limit check!\n"); + return None; + } + // The decrement of the latch check IV should be the same as the + // rangeCheckIV. + auto *PostDecLatchCheckIV = LatchCheck.IV->getPostIncExpr(*SE); + if (RangeCheck.IV != PostDecLatchCheckIV) { + LLVM_DEBUG(dbgs() << "Not the same. PostDecLatchCheckIV: " + << *PostDecLatchCheckIV + << " and RangeCheckIV: " << *RangeCheck.IV << "\n"); + return None; + } + + // Generate the widened condition for CountDownLoop: + // guardStart u< guardLimit && + // latchLimit <pred> 1. + // See the header comment for reasoning of the checks. + auto LimitCheckPred = + ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred); + auto *FirstIterationCheck = expandCheck(Expander, Guard, + ICmpInst::ICMP_ULT, + GuardStart, GuardLimit); + auto *LimitCheck = expandCheck(Expander, Guard, LimitCheckPred, LatchLimit, + SE->getOne(Ty)); + IRBuilder<> Builder(findInsertPt(Guard, {FirstIterationCheck, LimitCheck})); + return Builder.CreateAnd(FirstIterationCheck, LimitCheck); +} + +static void normalizePredicate(ScalarEvolution *SE, Loop *L, + LoopICmp& RC) { + // LFTR canonicalizes checks to the ICMP_NE/EQ form; normalize back to the + // ULT/UGE form for ease of handling by our caller. + if (ICmpInst::isEquality(RC.Pred) && + RC.IV->getStepRecurrence(*SE)->isOne() && + SE->isKnownPredicate(ICmpInst::ICMP_ULE, RC.IV->getStart(), RC.Limit)) + RC.Pred = RC.Pred == ICmpInst::ICMP_NE ? + ICmpInst::ICMP_ULT : ICmpInst::ICMP_UGE; +} + + +/// If ICI can be widened to a loop invariant condition emits the loop +/// invariant condition in the loop preheader and return it, otherwise +/// returns None. +Optional<Value *> LoopPredication::widenICmpRangeCheck(ICmpInst *ICI, + SCEVExpander &Expander, + Instruction *Guard) { + LLVM_DEBUG(dbgs() << "Analyzing ICmpInst condition:\n"); + LLVM_DEBUG(ICI->dump()); + + // parseLoopStructure guarantees that the latch condition is: + // ++i <pred> latchLimit, where <pred> is u<, u<=, s<, or s<=. + // We are looking for the range checks of the form: + // i u< guardLimit + auto RangeCheck = parseLoopICmp(ICI); + if (!RangeCheck) { + LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n"); + return None; + } + LLVM_DEBUG(dbgs() << "Guard check:\n"); + LLVM_DEBUG(RangeCheck->dump()); + if (RangeCheck->Pred != ICmpInst::ICMP_ULT) { + LLVM_DEBUG(dbgs() << "Unsupported range check predicate(" + << RangeCheck->Pred << ")!\n"); + return None; + } + auto *RangeCheckIV = RangeCheck->IV; + if (!RangeCheckIV->isAffine()) { + LLVM_DEBUG(dbgs() << "Range check IV is not affine!\n"); + return None; + } + auto *Step = RangeCheckIV->getStepRecurrence(*SE); + // We cannot just compare with latch IV step because the latch and range IVs + // may have different types. + if (!isSupportedStep(Step)) { + LLVM_DEBUG(dbgs() << "Range check and latch have IVs different steps!\n"); + return None; + } + auto *Ty = RangeCheckIV->getType(); + auto CurrLatchCheckOpt = generateLoopLatchCheck(*DL, *SE, LatchCheck, Ty); + if (!CurrLatchCheckOpt) { + LLVM_DEBUG(dbgs() << "Failed to generate a loop latch check " + "corresponding to range type: " + << *Ty << "\n"); + return None; + } + + LoopICmp CurrLatchCheck = *CurrLatchCheckOpt; + // At this point, the range and latch step should have the same type, but need + // not have the same value (we support both 1 and -1 steps). + assert(Step->getType() == + CurrLatchCheck.IV->getStepRecurrence(*SE)->getType() && + "Range and latch steps should be of same type!"); + if (Step != CurrLatchCheck.IV->getStepRecurrence(*SE)) { + LLVM_DEBUG(dbgs() << "Range and latch have different step values!\n"); + return None; + } + + if (Step->isOne()) + return widenICmpRangeCheckIncrementingLoop(CurrLatchCheck, *RangeCheck, + Expander, Guard); + else { + assert(Step->isAllOnesValue() && "Step should be -1!"); + return widenICmpRangeCheckDecrementingLoop(CurrLatchCheck, *RangeCheck, + Expander, Guard); + } +} + +unsigned LoopPredication::collectChecks(SmallVectorImpl<Value *> &Checks, + Value *Condition, + SCEVExpander &Expander, + Instruction *Guard) { + unsigned NumWidened = 0; + // The guard condition is expected to be in form of: + // cond1 && cond2 && cond3 ... + // Iterate over subconditions looking for icmp conditions which can be + // widened across loop iterations. Widening these conditions remember the + // resulting list of subconditions in Checks vector. + SmallVector<Value *, 4> Worklist(1, Condition); + SmallPtrSet<Value *, 4> Visited; + Value *WideableCond = nullptr; + do { + Value *Condition = Worklist.pop_back_val(); + if (!Visited.insert(Condition).second) + continue; + + Value *LHS, *RHS; + using namespace llvm::PatternMatch; + if (match(Condition, m_And(m_Value(LHS), m_Value(RHS)))) { + Worklist.push_back(LHS); + Worklist.push_back(RHS); + continue; + } + + if (match(Condition, + m_Intrinsic<Intrinsic::experimental_widenable_condition>())) { + // Pick any, we don't care which + WideableCond = Condition; + continue; + } + + if (ICmpInst *ICI = dyn_cast<ICmpInst>(Condition)) { + if (auto NewRangeCheck = widenICmpRangeCheck(ICI, Expander, + Guard)) { + Checks.push_back(NewRangeCheck.getValue()); + NumWidened++; + continue; + } + } + + // Save the condition as is if we can't widen it + Checks.push_back(Condition); + } while (!Worklist.empty()); + // At the moment, our matching logic for wideable conditions implicitly + // assumes we preserve the form: (br (and Cond, WC())). FIXME + // Note that if there were multiple calls to wideable condition in the + // traversal, we only need to keep one, and which one is arbitrary. + if (WideableCond) + Checks.push_back(WideableCond); + return NumWidened; +} + +bool LoopPredication::widenGuardConditions(IntrinsicInst *Guard, + SCEVExpander &Expander) { + LLVM_DEBUG(dbgs() << "Processing guard:\n"); + LLVM_DEBUG(Guard->dump()); + + TotalConsidered++; + SmallVector<Value *, 4> Checks; + unsigned NumWidened = collectChecks(Checks, Guard->getOperand(0), Expander, + Guard); + if (NumWidened == 0) + return false; + + TotalWidened += NumWidened; + + // Emit the new guard condition + IRBuilder<> Builder(findInsertPt(Guard, Checks)); + Value *AllChecks = Builder.CreateAnd(Checks); + auto *OldCond = Guard->getOperand(0); + Guard->setOperand(0, AllChecks); + RecursivelyDeleteTriviallyDeadInstructions(OldCond); + + LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n"); + return true; +} + +bool LoopPredication::widenWidenableBranchGuardConditions( + BranchInst *BI, SCEVExpander &Expander) { + assert(isGuardAsWidenableBranch(BI) && "Must be!"); + LLVM_DEBUG(dbgs() << "Processing guard:\n"); + LLVM_DEBUG(BI->dump()); + + TotalConsidered++; + SmallVector<Value *, 4> Checks; + unsigned NumWidened = collectChecks(Checks, BI->getCondition(), + Expander, BI); + if (NumWidened == 0) + return false; + + TotalWidened += NumWidened; + + // Emit the new guard condition + IRBuilder<> Builder(findInsertPt(BI, Checks)); + Value *AllChecks = Builder.CreateAnd(Checks); + auto *OldCond = BI->getCondition(); + BI->setCondition(AllChecks); + assert(isGuardAsWidenableBranch(BI) && + "Stopped being a guard after transform?"); + RecursivelyDeleteTriviallyDeadInstructions(OldCond); + + LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n"); + return true; +} + +Optional<LoopICmp> LoopPredication::parseLoopLatchICmp() { + using namespace PatternMatch; + + BasicBlock *LoopLatch = L->getLoopLatch(); + if (!LoopLatch) { + LLVM_DEBUG(dbgs() << "The loop doesn't have a single latch!\n"); + return None; + } + + auto *BI = dyn_cast<BranchInst>(LoopLatch->getTerminator()); + if (!BI || !BI->isConditional()) { + LLVM_DEBUG(dbgs() << "Failed to match the latch terminator!\n"); + return None; + } + BasicBlock *TrueDest = BI->getSuccessor(0); + assert( + (TrueDest == L->getHeader() || BI->getSuccessor(1) == L->getHeader()) && + "One of the latch's destinations must be the header"); + + auto *ICI = dyn_cast<ICmpInst>(BI->getCondition()); + if (!ICI) { + LLVM_DEBUG(dbgs() << "Failed to match the latch condition!\n"); + return None; + } + auto Result = parseLoopICmp(ICI); + if (!Result) { + LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n"); + return None; + } + + if (TrueDest != L->getHeader()) + Result->Pred = ICmpInst::getInversePredicate(Result->Pred); + + // Check affine first, so if it's not we don't try to compute the step + // recurrence. + if (!Result->IV->isAffine()) { + LLVM_DEBUG(dbgs() << "The induction variable is not affine!\n"); + return None; + } + + auto *Step = Result->IV->getStepRecurrence(*SE); + if (!isSupportedStep(Step)) { + LLVM_DEBUG(dbgs() << "Unsupported loop stride(" << *Step << ")!\n"); + return None; + } + + auto IsUnsupportedPredicate = [](const SCEV *Step, ICmpInst::Predicate Pred) { + if (Step->isOne()) { + return Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_SLT && + Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_SLE; + } else { + assert(Step->isAllOnesValue() && "Step should be -1!"); + return Pred != ICmpInst::ICMP_UGT && Pred != ICmpInst::ICMP_SGT && + Pred != ICmpInst::ICMP_UGE && Pred != ICmpInst::ICMP_SGE; + } + }; + + normalizePredicate(SE, L, *Result); + if (IsUnsupportedPredicate(Step, Result->Pred)) { + LLVM_DEBUG(dbgs() << "Unsupported loop latch predicate(" << Result->Pred + << ")!\n"); + return None; + } + + return Result; +} + + +bool LoopPredication::isLoopProfitableToPredicate() { + if (SkipProfitabilityChecks || !BPI) + return true; + + SmallVector<std::pair<BasicBlock *, BasicBlock *>, 8> ExitEdges; + L->getExitEdges(ExitEdges); + // If there is only one exiting edge in the loop, it is always profitable to + // predicate the loop. + if (ExitEdges.size() == 1) + return true; + + // Calculate the exiting probabilities of all exiting edges from the loop, + // starting with the LatchExitProbability. + // Heuristic for profitability: If any of the exiting blocks' probability of + // exiting the loop is larger than exiting through the latch block, it's not + // profitable to predicate the loop. + auto *LatchBlock = L->getLoopLatch(); + assert(LatchBlock && "Should have a single latch at this point!"); + auto *LatchTerm = LatchBlock->getTerminator(); + assert(LatchTerm->getNumSuccessors() == 2 && + "expected to be an exiting block with 2 succs!"); + unsigned LatchBrExitIdx = + LatchTerm->getSuccessor(0) == L->getHeader() ? 1 : 0; + BranchProbability LatchExitProbability = + BPI->getEdgeProbability(LatchBlock, LatchBrExitIdx); + + // Protect against degenerate inputs provided by the user. Providing a value + // less than one, can invert the definition of profitable loop predication. + float ScaleFactor = LatchExitProbabilityScale; + if (ScaleFactor < 1) { + LLVM_DEBUG( + dbgs() + << "Ignored user setting for loop-predication-latch-probability-scale: " + << LatchExitProbabilityScale << "\n"); + LLVM_DEBUG(dbgs() << "The value is set to 1.0\n"); + ScaleFactor = 1.0; + } + const auto LatchProbabilityThreshold = + LatchExitProbability * ScaleFactor; + + for (const auto &ExitEdge : ExitEdges) { + BranchProbability ExitingBlockProbability = + BPI->getEdgeProbability(ExitEdge.first, ExitEdge.second); + // Some exiting edge has higher probability than the latch exiting edge. + // No longer profitable to predicate. + if (ExitingBlockProbability > LatchProbabilityThreshold) + return false; + } + // Using BPI, we have concluded that the most probable way to exit from the + // loop is through the latch (or there's no profile information and all + // exits are equally likely). + return true; +} + +bool LoopPredication::runOnLoop(Loop *Loop) { + L = Loop; + + LLVM_DEBUG(dbgs() << "Analyzing "); + LLVM_DEBUG(L->dump()); + + Module *M = L->getHeader()->getModule(); + + // There is nothing to do if the module doesn't use guards + auto *GuardDecl = + M->getFunction(Intrinsic::getName(Intrinsic::experimental_guard)); + bool HasIntrinsicGuards = GuardDecl && !GuardDecl->use_empty(); + auto *WCDecl = M->getFunction( + Intrinsic::getName(Intrinsic::experimental_widenable_condition)); + bool HasWidenableConditions = + PredicateWidenableBranchGuards && WCDecl && !WCDecl->use_empty(); + if (!HasIntrinsicGuards && !HasWidenableConditions) + return false; + + DL = &M->getDataLayout(); + + Preheader = L->getLoopPreheader(); + if (!Preheader) + return false; + + auto LatchCheckOpt = parseLoopLatchICmp(); + if (!LatchCheckOpt) + return false; + LatchCheck = *LatchCheckOpt; + + LLVM_DEBUG(dbgs() << "Latch check:\n"); + LLVM_DEBUG(LatchCheck.dump()); + + if (!isLoopProfitableToPredicate()) { + LLVM_DEBUG(dbgs() << "Loop not profitable to predicate!\n"); + return false; + } + // Collect all the guards into a vector and process later, so as not + // to invalidate the instruction iterator. + SmallVector<IntrinsicInst *, 4> Guards; + SmallVector<BranchInst *, 4> GuardsAsWidenableBranches; + for (const auto BB : L->blocks()) { + for (auto &I : *BB) + if (isGuard(&I)) + Guards.push_back(cast<IntrinsicInst>(&I)); + if (PredicateWidenableBranchGuards && + isGuardAsWidenableBranch(BB->getTerminator())) + GuardsAsWidenableBranches.push_back( + cast<BranchInst>(BB->getTerminator())); + } + + if (Guards.empty() && GuardsAsWidenableBranches.empty()) + return false; + + SCEVExpander Expander(*SE, *DL, "loop-predication"); + + bool Changed = false; + for (auto *Guard : Guards) + Changed |= widenGuardConditions(Guard, Expander); + for (auto *Guard : GuardsAsWidenableBranches) + Changed |= widenWidenableBranchGuardConditions(Guard, Expander); + + return Changed; +} |
