diff options
Diffstat (limited to 'llvm/lib/Transforms/Vectorize/VectorCombine.cpp')
-rw-r--r-- | llvm/lib/Transforms/Vectorize/VectorCombine.cpp | 699 |
1 files changed, 699 insertions, 0 deletions
diff --git a/llvm/lib/Transforms/Vectorize/VectorCombine.cpp b/llvm/lib/Transforms/Vectorize/VectorCombine.cpp new file mode 100644 index 000000000000..64b41bf9cefa --- /dev/null +++ b/llvm/lib/Transforms/Vectorize/VectorCombine.cpp @@ -0,0 +1,699 @@ +//===------- VectorCombine.cpp - Optimize partial vector operations -------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This pass optimizes scalar/vector interactions using target cost models. The +// transforms implemented here may not fit in traditional loop-based or SLP +// vectorization passes. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Transforms/Vectorize/VectorCombine.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/Analysis/BasicAliasAnalysis.h" +#include "llvm/Analysis/GlobalsModRef.h" +#include "llvm/Analysis/TargetTransformInfo.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/Analysis/VectorUtils.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/IRBuilder.h" +#include "llvm/IR/PatternMatch.h" +#include "llvm/InitializePasses.h" +#include "llvm/Pass.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Transforms/Utils/Local.h" +#include "llvm/Transforms/Vectorize.h" + +using namespace llvm; +using namespace llvm::PatternMatch; + +#define DEBUG_TYPE "vector-combine" +STATISTIC(NumVecCmp, "Number of vector compares formed"); +STATISTIC(NumVecBO, "Number of vector binops formed"); +STATISTIC(NumVecCmpBO, "Number of vector compare + binop formed"); +STATISTIC(NumShufOfBitcast, "Number of shuffles moved after bitcast"); +STATISTIC(NumScalarBO, "Number of scalar binops formed"); +STATISTIC(NumScalarCmp, "Number of scalar compares formed"); + +static cl::opt<bool> DisableVectorCombine( + "disable-vector-combine", cl::init(false), cl::Hidden, + cl::desc("Disable all vector combine transforms")); + +static cl::opt<bool> DisableBinopExtractShuffle( + "disable-binop-extract-shuffle", cl::init(false), cl::Hidden, + cl::desc("Disable binop extract to shuffle transforms")); + +static const unsigned InvalidIndex = std::numeric_limits<unsigned>::max(); + +namespace { +class VectorCombine { +public: + VectorCombine(Function &F, const TargetTransformInfo &TTI, + const DominatorTree &DT) + : F(F), Builder(F.getContext()), TTI(TTI), DT(DT) {} + + bool run(); + +private: + Function &F; + IRBuilder<> Builder; + const TargetTransformInfo &TTI; + const DominatorTree &DT; + + ExtractElementInst *getShuffleExtract(ExtractElementInst *Ext0, + ExtractElementInst *Ext1, + unsigned PreferredExtractIndex) const; + bool isExtractExtractCheap(ExtractElementInst *Ext0, ExtractElementInst *Ext1, + unsigned Opcode, + ExtractElementInst *&ConvertToShuffle, + unsigned PreferredExtractIndex); + void foldExtExtCmp(ExtractElementInst *Ext0, ExtractElementInst *Ext1, + Instruction &I); + void foldExtExtBinop(ExtractElementInst *Ext0, ExtractElementInst *Ext1, + Instruction &I); + bool foldExtractExtract(Instruction &I); + bool foldBitcastShuf(Instruction &I); + bool scalarizeBinopOrCmp(Instruction &I); + bool foldExtractedCmps(Instruction &I); +}; +} // namespace + +static void replaceValue(Value &Old, Value &New) { + Old.replaceAllUsesWith(&New); + New.takeName(&Old); +} + +/// Determine which, if any, of the inputs should be replaced by a shuffle +/// followed by extract from a different index. +ExtractElementInst *VectorCombine::getShuffleExtract( + ExtractElementInst *Ext0, ExtractElementInst *Ext1, + unsigned PreferredExtractIndex = InvalidIndex) const { + assert(isa<ConstantInt>(Ext0->getIndexOperand()) && + isa<ConstantInt>(Ext1->getIndexOperand()) && + "Expected constant extract indexes"); + + unsigned Index0 = cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue(); + unsigned Index1 = cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue(); + + // If the extract indexes are identical, no shuffle is needed. + if (Index0 == Index1) + return nullptr; + + Type *VecTy = Ext0->getVectorOperand()->getType(); + assert(VecTy == Ext1->getVectorOperand()->getType() && "Need matching types"); + int Cost0 = TTI.getVectorInstrCost(Ext0->getOpcode(), VecTy, Index0); + int Cost1 = TTI.getVectorInstrCost(Ext1->getOpcode(), VecTy, Index1); + + // We are extracting from 2 different indexes, so one operand must be shuffled + // before performing a vector operation and/or extract. The more expensive + // extract will be replaced by a shuffle. + if (Cost0 > Cost1) + return Ext0; + if (Cost1 > Cost0) + return Ext1; + + // If the costs are equal and there is a preferred extract index, shuffle the + // opposite operand. + if (PreferredExtractIndex == Index0) + return Ext1; + if (PreferredExtractIndex == Index1) + return Ext0; + + // Otherwise, replace the extract with the higher index. + return Index0 > Index1 ? Ext0 : Ext1; +} + +/// Compare the relative costs of 2 extracts followed by scalar operation vs. +/// vector operation(s) followed by extract. Return true if the existing +/// instructions are cheaper than a vector alternative. Otherwise, return false +/// and if one of the extracts should be transformed to a shufflevector, set +/// \p ConvertToShuffle to that extract instruction. +bool VectorCombine::isExtractExtractCheap(ExtractElementInst *Ext0, + ExtractElementInst *Ext1, + unsigned Opcode, + ExtractElementInst *&ConvertToShuffle, + unsigned PreferredExtractIndex) { + assert(isa<ConstantInt>(Ext0->getOperand(1)) && + isa<ConstantInt>(Ext1->getOperand(1)) && + "Expected constant extract indexes"); + Type *ScalarTy = Ext0->getType(); + auto *VecTy = cast<VectorType>(Ext0->getOperand(0)->getType()); + int ScalarOpCost, VectorOpCost; + + // Get cost estimates for scalar and vector versions of the operation. + bool IsBinOp = Instruction::isBinaryOp(Opcode); + if (IsBinOp) { + ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy); + VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy); + } else { + assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && + "Expected a compare"); + ScalarOpCost = TTI.getCmpSelInstrCost(Opcode, ScalarTy, + CmpInst::makeCmpResultType(ScalarTy)); + VectorOpCost = TTI.getCmpSelInstrCost(Opcode, VecTy, + CmpInst::makeCmpResultType(VecTy)); + } + + // Get cost estimates for the extract elements. These costs will factor into + // both sequences. + unsigned Ext0Index = cast<ConstantInt>(Ext0->getOperand(1))->getZExtValue(); + unsigned Ext1Index = cast<ConstantInt>(Ext1->getOperand(1))->getZExtValue(); + + int Extract0Cost = + TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, Ext0Index); + int Extract1Cost = + TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, Ext1Index); + + // A more expensive extract will always be replaced by a splat shuffle. + // For example, if Ext0 is more expensive: + // opcode (extelt V0, Ext0), (ext V1, Ext1) --> + // extelt (opcode (splat V0, Ext0), V1), Ext1 + // TODO: Evaluate whether that always results in lowest cost. Alternatively, + // check the cost of creating a broadcast shuffle and shuffling both + // operands to element 0. + int CheapExtractCost = std::min(Extract0Cost, Extract1Cost); + + // Extra uses of the extracts mean that we include those costs in the + // vector total because those instructions will not be eliminated. + int OldCost, NewCost; + if (Ext0->getOperand(0) == Ext1->getOperand(0) && Ext0Index == Ext1Index) { + // Handle a special case. If the 2 extracts are identical, adjust the + // formulas to account for that. The extra use charge allows for either the + // CSE'd pattern or an unoptimized form with identical values: + // opcode (extelt V, C), (extelt V, C) --> extelt (opcode V, V), C + bool HasUseTax = Ext0 == Ext1 ? !Ext0->hasNUses(2) + : !Ext0->hasOneUse() || !Ext1->hasOneUse(); + OldCost = CheapExtractCost + ScalarOpCost; + NewCost = VectorOpCost + CheapExtractCost + HasUseTax * CheapExtractCost; + } else { + // Handle the general case. Each extract is actually a different value: + // opcode (extelt V0, C0), (extelt V1, C1) --> extelt (opcode V0, V1), C + OldCost = Extract0Cost + Extract1Cost + ScalarOpCost; + NewCost = VectorOpCost + CheapExtractCost + + !Ext0->hasOneUse() * Extract0Cost + + !Ext1->hasOneUse() * Extract1Cost; + } + + ConvertToShuffle = getShuffleExtract(Ext0, Ext1, PreferredExtractIndex); + if (ConvertToShuffle) { + if (IsBinOp && DisableBinopExtractShuffle) + return true; + + // If we are extracting from 2 different indexes, then one operand must be + // shuffled before performing the vector operation. The shuffle mask is + // undefined except for 1 lane that is being translated to the remaining + // extraction lane. Therefore, it is a splat shuffle. Ex: + // ShufMask = { undef, undef, 0, undef } + // TODO: The cost model has an option for a "broadcast" shuffle + // (splat-from-element-0), but no option for a more general splat. + NewCost += + TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy); + } + + // Aggressively form a vector op if the cost is equal because the transform + // may enable further optimization. + // Codegen can reverse this transform (scalarize) if it was not profitable. + return OldCost < NewCost; +} + +/// Create a shuffle that translates (shifts) 1 element from the input vector +/// to a new element location. +static Value *createShiftShuffle(Value *Vec, unsigned OldIndex, + unsigned NewIndex, IRBuilder<> &Builder) { + // The shuffle mask is undefined except for 1 lane that is being translated + // to the new element index. Example for OldIndex == 2 and NewIndex == 0: + // ShufMask = { 2, undef, undef, undef } + auto *VecTy = cast<FixedVectorType>(Vec->getType()); + SmallVector<int, 32> ShufMask(VecTy->getNumElements(), UndefMaskElem); + ShufMask[NewIndex] = OldIndex; + Value *Undef = UndefValue::get(VecTy); + return Builder.CreateShuffleVector(Vec, Undef, ShufMask, "shift"); +} + +/// Given an extract element instruction with constant index operand, shuffle +/// the source vector (shift the scalar element) to a NewIndex for extraction. +/// Return null if the input can be constant folded, so that we are not creating +/// unnecessary instructions. +static ExtractElementInst *translateExtract(ExtractElementInst *ExtElt, + unsigned NewIndex, + IRBuilder<> &Builder) { + // If the extract can be constant-folded, this code is unsimplified. Defer + // to other passes to handle that. + Value *X = ExtElt->getVectorOperand(); + Value *C = ExtElt->getIndexOperand(); + assert(isa<ConstantInt>(C) && "Expected a constant index operand"); + if (isa<Constant>(X)) + return nullptr; + + Value *Shuf = createShiftShuffle(X, cast<ConstantInt>(C)->getZExtValue(), + NewIndex, Builder); + return cast<ExtractElementInst>(Builder.CreateExtractElement(Shuf, NewIndex)); +} + +/// Try to reduce extract element costs by converting scalar compares to vector +/// compares followed by extract. +/// cmp (ext0 V0, C), (ext1 V1, C) +void VectorCombine::foldExtExtCmp(ExtractElementInst *Ext0, + ExtractElementInst *Ext1, Instruction &I) { + assert(isa<CmpInst>(&I) && "Expected a compare"); + assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() == + cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() && + "Expected matching constant extract indexes"); + + // cmp Pred (extelt V0, C), (extelt V1, C) --> extelt (cmp Pred V0, V1), C + ++NumVecCmp; + CmpInst::Predicate Pred = cast<CmpInst>(&I)->getPredicate(); + Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand(); + Value *VecCmp = Builder.CreateCmp(Pred, V0, V1); + Value *NewExt = Builder.CreateExtractElement(VecCmp, Ext0->getIndexOperand()); + replaceValue(I, *NewExt); +} + +/// Try to reduce extract element costs by converting scalar binops to vector +/// binops followed by extract. +/// bo (ext0 V0, C), (ext1 V1, C) +void VectorCombine::foldExtExtBinop(ExtractElementInst *Ext0, + ExtractElementInst *Ext1, Instruction &I) { + assert(isa<BinaryOperator>(&I) && "Expected a binary operator"); + assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() == + cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() && + "Expected matching constant extract indexes"); + + // bo (extelt V0, C), (extelt V1, C) --> extelt (bo V0, V1), C + ++NumVecBO; + Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand(); + Value *VecBO = + Builder.CreateBinOp(cast<BinaryOperator>(&I)->getOpcode(), V0, V1); + + // All IR flags are safe to back-propagate because any potential poison + // created in unused vector elements is discarded by the extract. + if (auto *VecBOInst = dyn_cast<Instruction>(VecBO)) + VecBOInst->copyIRFlags(&I); + + Value *NewExt = Builder.CreateExtractElement(VecBO, Ext0->getIndexOperand()); + replaceValue(I, *NewExt); +} + +/// Match an instruction with extracted vector operands. +bool VectorCombine::foldExtractExtract(Instruction &I) { + // It is not safe to transform things like div, urem, etc. because we may + // create undefined behavior when executing those on unknown vector elements. + if (!isSafeToSpeculativelyExecute(&I)) + return false; + + Instruction *I0, *I1; + CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; + if (!match(&I, m_Cmp(Pred, m_Instruction(I0), m_Instruction(I1))) && + !match(&I, m_BinOp(m_Instruction(I0), m_Instruction(I1)))) + return false; + + Value *V0, *V1; + uint64_t C0, C1; + if (!match(I0, m_ExtractElt(m_Value(V0), m_ConstantInt(C0))) || + !match(I1, m_ExtractElt(m_Value(V1), m_ConstantInt(C1))) || + V0->getType() != V1->getType()) + return false; + + // If the scalar value 'I' is going to be re-inserted into a vector, then try + // to create an extract to that same element. The extract/insert can be + // reduced to a "select shuffle". + // TODO: If we add a larger pattern match that starts from an insert, this + // probably becomes unnecessary. + auto *Ext0 = cast<ExtractElementInst>(I0); + auto *Ext1 = cast<ExtractElementInst>(I1); + uint64_t InsertIndex = InvalidIndex; + if (I.hasOneUse()) + match(I.user_back(), + m_InsertElt(m_Value(), m_Value(), m_ConstantInt(InsertIndex))); + + ExtractElementInst *ExtractToChange; + if (isExtractExtractCheap(Ext0, Ext1, I.getOpcode(), ExtractToChange, + InsertIndex)) + return false; + + if (ExtractToChange) { + unsigned CheapExtractIdx = ExtractToChange == Ext0 ? C1 : C0; + ExtractElementInst *NewExtract = + translateExtract(ExtractToChange, CheapExtractIdx, Builder); + if (!NewExtract) + return false; + if (ExtractToChange == Ext0) + Ext0 = NewExtract; + else + Ext1 = NewExtract; + } + + if (Pred != CmpInst::BAD_ICMP_PREDICATE) + foldExtExtCmp(Ext0, Ext1, I); + else + foldExtExtBinop(Ext0, Ext1, I); + + return true; +} + +/// If this is a bitcast of a shuffle, try to bitcast the source vector to the +/// destination type followed by shuffle. This can enable further transforms by +/// moving bitcasts or shuffles together. +bool VectorCombine::foldBitcastShuf(Instruction &I) { + Value *V; + ArrayRef<int> Mask; + if (!match(&I, m_BitCast( + m_OneUse(m_Shuffle(m_Value(V), m_Undef(), m_Mask(Mask)))))) + return false; + + // Disallow non-vector casts and length-changing shuffles. + // TODO: We could allow any shuffle. + auto *DestTy = dyn_cast<VectorType>(I.getType()); + auto *SrcTy = cast<VectorType>(V->getType()); + if (!DestTy || I.getOperand(0)->getType() != SrcTy) + return false; + + // The new shuffle must not cost more than the old shuffle. The bitcast is + // moved ahead of the shuffle, so assume that it has the same cost as before. + if (TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, DestTy) > + TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, SrcTy)) + return false; + + unsigned DestNumElts = DestTy->getNumElements(); + unsigned SrcNumElts = SrcTy->getNumElements(); + SmallVector<int, 16> NewMask; + if (SrcNumElts <= DestNumElts) { + // The bitcast is from wide to narrow/equal elements. The shuffle mask can + // always be expanded to the equivalent form choosing narrower elements. + assert(DestNumElts % SrcNumElts == 0 && "Unexpected shuffle mask"); + unsigned ScaleFactor = DestNumElts / SrcNumElts; + narrowShuffleMaskElts(ScaleFactor, Mask, NewMask); + } else { + // The bitcast is from narrow elements to wide elements. The shuffle mask + // must choose consecutive elements to allow casting first. + assert(SrcNumElts % DestNumElts == 0 && "Unexpected shuffle mask"); + unsigned ScaleFactor = SrcNumElts / DestNumElts; + if (!widenShuffleMaskElts(ScaleFactor, Mask, NewMask)) + return false; + } + // bitcast (shuf V, MaskC) --> shuf (bitcast V), MaskC' + ++NumShufOfBitcast; + Value *CastV = Builder.CreateBitCast(V, DestTy); + Value *Shuf = + Builder.CreateShuffleVector(CastV, UndefValue::get(DestTy), NewMask); + replaceValue(I, *Shuf); + return true; +} + +/// Match a vector binop or compare instruction with at least one inserted +/// scalar operand and convert to scalar binop/cmp followed by insertelement. +bool VectorCombine::scalarizeBinopOrCmp(Instruction &I) { + CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; + Value *Ins0, *Ins1; + if (!match(&I, m_BinOp(m_Value(Ins0), m_Value(Ins1))) && + !match(&I, m_Cmp(Pred, m_Value(Ins0), m_Value(Ins1)))) + return false; + + // Do not convert the vector condition of a vector select into a scalar + // condition. That may cause problems for codegen because of differences in + // boolean formats and register-file transfers. + // TODO: Can we account for that in the cost model? + bool IsCmp = Pred != CmpInst::Predicate::BAD_ICMP_PREDICATE; + if (IsCmp) + for (User *U : I.users()) + if (match(U, m_Select(m_Specific(&I), m_Value(), m_Value()))) + return false; + + // Match against one or both scalar values being inserted into constant + // vectors: + // vec_op VecC0, (inselt VecC1, V1, Index) + // vec_op (inselt VecC0, V0, Index), VecC1 + // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index) + // TODO: Deal with mismatched index constants and variable indexes? + Constant *VecC0 = nullptr, *VecC1 = nullptr; + Value *V0 = nullptr, *V1 = nullptr; + uint64_t Index0 = 0, Index1 = 0; + if (!match(Ins0, m_InsertElt(m_Constant(VecC0), m_Value(V0), + m_ConstantInt(Index0))) && + !match(Ins0, m_Constant(VecC0))) + return false; + if (!match(Ins1, m_InsertElt(m_Constant(VecC1), m_Value(V1), + m_ConstantInt(Index1))) && + !match(Ins1, m_Constant(VecC1))) + return false; + + bool IsConst0 = !V0; + bool IsConst1 = !V1; + if (IsConst0 && IsConst1) + return false; + if (!IsConst0 && !IsConst1 && Index0 != Index1) + return false; + + // Bail for single insertion if it is a load. + // TODO: Handle this once getVectorInstrCost can cost for load/stores. + auto *I0 = dyn_cast_or_null<Instruction>(V0); + auto *I1 = dyn_cast_or_null<Instruction>(V1); + if ((IsConst0 && I1 && I1->mayReadFromMemory()) || + (IsConst1 && I0 && I0->mayReadFromMemory())) + return false; + + uint64_t Index = IsConst0 ? Index1 : Index0; + Type *ScalarTy = IsConst0 ? V1->getType() : V0->getType(); + Type *VecTy = I.getType(); + assert(VecTy->isVectorTy() && + (IsConst0 || IsConst1 || V0->getType() == V1->getType()) && + (ScalarTy->isIntegerTy() || ScalarTy->isFloatingPointTy() || + ScalarTy->isPointerTy()) && + "Unexpected types for insert element into binop or cmp"); + + unsigned Opcode = I.getOpcode(); + int ScalarOpCost, VectorOpCost; + if (IsCmp) { + ScalarOpCost = TTI.getCmpSelInstrCost(Opcode, ScalarTy); + VectorOpCost = TTI.getCmpSelInstrCost(Opcode, VecTy); + } else { + ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy); + VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy); + } + + // Get cost estimate for the insert element. This cost will factor into + // both sequences. + int InsertCost = + TTI.getVectorInstrCost(Instruction::InsertElement, VecTy, Index); + int OldCost = (IsConst0 ? 0 : InsertCost) + (IsConst1 ? 0 : InsertCost) + + VectorOpCost; + int NewCost = ScalarOpCost + InsertCost + + (IsConst0 ? 0 : !Ins0->hasOneUse() * InsertCost) + + (IsConst1 ? 0 : !Ins1->hasOneUse() * InsertCost); + + // We want to scalarize unless the vector variant actually has lower cost. + if (OldCost < NewCost) + return false; + + // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index) --> + // inselt NewVecC, (scalar_op V0, V1), Index + if (IsCmp) + ++NumScalarCmp; + else + ++NumScalarBO; + + // For constant cases, extract the scalar element, this should constant fold. + if (IsConst0) + V0 = ConstantExpr::getExtractElement(VecC0, Builder.getInt64(Index)); + if (IsConst1) + V1 = ConstantExpr::getExtractElement(VecC1, Builder.getInt64(Index)); + + Value *Scalar = + IsCmp ? Builder.CreateCmp(Pred, V0, V1) + : Builder.CreateBinOp((Instruction::BinaryOps)Opcode, V0, V1); + + Scalar->setName(I.getName() + ".scalar"); + + // All IR flags are safe to back-propagate. There is no potential for extra + // poison to be created by the scalar instruction. + if (auto *ScalarInst = dyn_cast<Instruction>(Scalar)) + ScalarInst->copyIRFlags(&I); + + // Fold the vector constants in the original vectors into a new base vector. + Constant *NewVecC = IsCmp ? ConstantExpr::getCompare(Pred, VecC0, VecC1) + : ConstantExpr::get(Opcode, VecC0, VecC1); + Value *Insert = Builder.CreateInsertElement(NewVecC, Scalar, Index); + replaceValue(I, *Insert); + return true; +} + +/// Try to combine a scalar binop + 2 scalar compares of extracted elements of +/// a vector into vector operations followed by extract. Note: The SLP pass +/// may miss this pattern because of implementation problems. +bool VectorCombine::foldExtractedCmps(Instruction &I) { + // We are looking for a scalar binop of booleans. + // binop i1 (cmp Pred I0, C0), (cmp Pred I1, C1) + if (!I.isBinaryOp() || !I.getType()->isIntegerTy(1)) + return false; + + // The compare predicates should match, and each compare should have a + // constant operand. + // TODO: Relax the one-use constraints. + Value *B0 = I.getOperand(0), *B1 = I.getOperand(1); + Instruction *I0, *I1; + Constant *C0, *C1; + CmpInst::Predicate P0, P1; + if (!match(B0, m_OneUse(m_Cmp(P0, m_Instruction(I0), m_Constant(C0)))) || + !match(B1, m_OneUse(m_Cmp(P1, m_Instruction(I1), m_Constant(C1)))) || + P0 != P1) + return false; + + // The compare operands must be extracts of the same vector with constant + // extract indexes. + // TODO: Relax the one-use constraints. + Value *X; + uint64_t Index0, Index1; + if (!match(I0, m_OneUse(m_ExtractElt(m_Value(X), m_ConstantInt(Index0)))) || + !match(I1, m_OneUse(m_ExtractElt(m_Specific(X), m_ConstantInt(Index1))))) + return false; + + auto *Ext0 = cast<ExtractElementInst>(I0); + auto *Ext1 = cast<ExtractElementInst>(I1); + ExtractElementInst *ConvertToShuf = getShuffleExtract(Ext0, Ext1); + if (!ConvertToShuf) + return false; + + // The original scalar pattern is: + // binop i1 (cmp Pred (ext X, Index0), C0), (cmp Pred (ext X, Index1), C1) + CmpInst::Predicate Pred = P0; + unsigned CmpOpcode = CmpInst::isFPPredicate(Pred) ? Instruction::FCmp + : Instruction::ICmp; + auto *VecTy = dyn_cast<FixedVectorType>(X->getType()); + if (!VecTy) + return false; + + int OldCost = TTI.getVectorInstrCost(Ext0->getOpcode(), VecTy, Index0); + OldCost += TTI.getVectorInstrCost(Ext1->getOpcode(), VecTy, Index1); + OldCost += TTI.getCmpSelInstrCost(CmpOpcode, I0->getType()) * 2; + OldCost += TTI.getArithmeticInstrCost(I.getOpcode(), I.getType()); + + // The proposed vector pattern is: + // vcmp = cmp Pred X, VecC + // ext (binop vNi1 vcmp, (shuffle vcmp, Index1)), Index0 + int CheapIndex = ConvertToShuf == Ext0 ? Index1 : Index0; + int ExpensiveIndex = ConvertToShuf == Ext0 ? Index0 : Index1; + auto *CmpTy = cast<FixedVectorType>(CmpInst::makeCmpResultType(X->getType())); + int NewCost = TTI.getCmpSelInstrCost(CmpOpcode, X->getType()); + NewCost += + TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, CmpTy); + NewCost += TTI.getArithmeticInstrCost(I.getOpcode(), CmpTy); + NewCost += TTI.getVectorInstrCost(Ext0->getOpcode(), CmpTy, CheapIndex); + + // Aggressively form vector ops if the cost is equal because the transform + // may enable further optimization. + // Codegen can reverse this transform (scalarize) if it was not profitable. + if (OldCost < NewCost) + return false; + + // Create a vector constant from the 2 scalar constants. + SmallVector<Constant *, 32> CmpC(VecTy->getNumElements(), + UndefValue::get(VecTy->getElementType())); + CmpC[Index0] = C0; + CmpC[Index1] = C1; + Value *VCmp = Builder.CreateCmp(Pred, X, ConstantVector::get(CmpC)); + + Value *Shuf = createShiftShuffle(VCmp, ExpensiveIndex, CheapIndex, Builder); + Value *VecLogic = Builder.CreateBinOp(cast<BinaryOperator>(I).getOpcode(), + VCmp, Shuf); + Value *NewExt = Builder.CreateExtractElement(VecLogic, CheapIndex); + replaceValue(I, *NewExt); + ++NumVecCmpBO; + return true; +} + +/// This is the entry point for all transforms. Pass manager differences are +/// handled in the callers of this function. +bool VectorCombine::run() { + if (DisableVectorCombine) + return false; + + bool MadeChange = false; + for (BasicBlock &BB : F) { + // Ignore unreachable basic blocks. + if (!DT.isReachableFromEntry(&BB)) + continue; + // Do not delete instructions under here and invalidate the iterator. + // Walk the block forwards to enable simple iterative chains of transforms. + // TODO: It could be more efficient to remove dead instructions + // iteratively in this loop rather than waiting until the end. + for (Instruction &I : BB) { + if (isa<DbgInfoIntrinsic>(I)) + continue; + Builder.SetInsertPoint(&I); + MadeChange |= foldExtractExtract(I); + MadeChange |= foldBitcastShuf(I); + MadeChange |= scalarizeBinopOrCmp(I); + MadeChange |= foldExtractedCmps(I); + } + } + + // We're done with transforms, so remove dead instructions. + if (MadeChange) + for (BasicBlock &BB : F) + SimplifyInstructionsInBlock(&BB); + + return MadeChange; +} + +// Pass manager boilerplate below here. + +namespace { +class VectorCombineLegacyPass : public FunctionPass { +public: + static char ID; + VectorCombineLegacyPass() : FunctionPass(ID) { + initializeVectorCombineLegacyPassPass(*PassRegistry::getPassRegistry()); + } + + void getAnalysisUsage(AnalysisUsage &AU) const override { + AU.addRequired<DominatorTreeWrapperPass>(); + AU.addRequired<TargetTransformInfoWrapperPass>(); + AU.setPreservesCFG(); + AU.addPreserved<DominatorTreeWrapperPass>(); + AU.addPreserved<GlobalsAAWrapperPass>(); + AU.addPreserved<AAResultsWrapperPass>(); + AU.addPreserved<BasicAAWrapperPass>(); + FunctionPass::getAnalysisUsage(AU); + } + + bool runOnFunction(Function &F) override { + if (skipFunction(F)) + return false; + auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); + auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); + VectorCombine Combiner(F, TTI, DT); + return Combiner.run(); + } +}; +} // namespace + +char VectorCombineLegacyPass::ID = 0; +INITIALIZE_PASS_BEGIN(VectorCombineLegacyPass, "vector-combine", + "Optimize scalar/vector ops", false, + false) +INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) +INITIALIZE_PASS_END(VectorCombineLegacyPass, "vector-combine", + "Optimize scalar/vector ops", false, false) +Pass *llvm::createVectorCombinePass() { + return new VectorCombineLegacyPass(); +} + +PreservedAnalyses VectorCombinePass::run(Function &F, + FunctionAnalysisManager &FAM) { + TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(F); + DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F); + VectorCombine Combiner(F, TTI, DT); + if (!Combiner.run()) + return PreservedAnalyses::all(); + PreservedAnalyses PA; + PA.preserveSet<CFGAnalyses>(); + PA.preserve<GlobalsAA>(); + PA.preserve<AAManager>(); + PA.preserve<BasicAA>(); + return PA; +} |