diff options
Diffstat (limited to 'sys/contrib/openzfs/module/os/linux/zfs/abd_os.c')
-rw-r--r-- | sys/contrib/openzfs/module/os/linux/zfs/abd_os.c | 1350 |
1 files changed, 1350 insertions, 0 deletions
diff --git a/sys/contrib/openzfs/module/os/linux/zfs/abd_os.c b/sys/contrib/openzfs/module/os/linux/zfs/abd_os.c new file mode 100644 index 000000000000..8a8316f63c48 --- /dev/null +++ b/sys/contrib/openzfs/module/os/linux/zfs/abd_os.c @@ -0,0 +1,1350 @@ +// SPDX-License-Identifier: CDDL-1.0 +/* + * CDDL HEADER START + * + * The contents of this file are subject to the terms of the + * Common Development and Distribution License (the "License"). + * You may not use this file except in compliance with the License. + * + * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE + * or https://opensource.org/licenses/CDDL-1.0. + * See the License for the specific language governing permissions + * and limitations under the License. + * + * When distributing Covered Code, include this CDDL HEADER in each + * file and include the License file at usr/src/OPENSOLARIS.LICENSE. + * If applicable, add the following below this CDDL HEADER, with the + * fields enclosed by brackets "[]" replaced with your own identifying + * information: Portions Copyright [yyyy] [name of copyright owner] + * + * CDDL HEADER END + */ +/* + * Copyright (c) 2014 by Chunwei Chen. All rights reserved. + * Copyright (c) 2019 by Delphix. All rights reserved. + * Copyright (c) 2023, 2024, Klara Inc. + */ + +/* + * See abd.c for a general overview of the arc buffered data (ABD). + * + * Linear buffers act exactly like normal buffers and are always mapped into the + * kernel's virtual memory space, while scattered ABD data chunks are allocated + * as physical pages and then mapped in only while they are actually being + * accessed through one of the abd_* library functions. Using scattered ABDs + * provides several benefits: + * + * (1) They avoid use of kmem_*, preventing performance problems where running + * kmem_reap on very large memory systems never finishes and causes + * constant TLB shootdowns. + * + * (2) Fragmentation is less of an issue since when we are at the limit of + * allocatable space, we won't have to search around for a long free + * hole in the VA space for large ARC allocations. Each chunk is mapped in + * individually, so even if we are using HIGHMEM (see next point) we + * wouldn't need to worry about finding a contiguous address range. + * + * (3) If we are not using HIGHMEM, then all physical memory is always + * mapped into the kernel's address space, so we also avoid the map / + * unmap costs on each ABD access. + * + * If we are not using HIGHMEM, scattered buffers which have only one chunk + * can be treated as linear buffers, because they are contiguous in the + * kernel's virtual address space. See abd_alloc_chunks() for details. + */ + +#include <sys/abd_impl.h> +#include <sys/param.h> +#include <sys/zio.h> +#include <sys/arc.h> +#include <sys/zfs_context.h> +#include <sys/zfs_znode.h> +#include <linux/kmap_compat.h> +#include <linux/mm_compat.h> +#include <linux/scatterlist.h> +#include <linux/version.h> + +#if defined(MAX_ORDER) +#define ABD_MAX_ORDER (MAX_ORDER) +#elif defined(MAX_PAGE_ORDER) +#define ABD_MAX_ORDER (MAX_PAGE_ORDER) +#endif + +typedef struct abd_stats { + kstat_named_t abdstat_struct_size; + kstat_named_t abdstat_linear_cnt; + kstat_named_t abdstat_linear_data_size; + kstat_named_t abdstat_scatter_cnt; + kstat_named_t abdstat_scatter_data_size; + kstat_named_t abdstat_scatter_chunk_waste; + kstat_named_t abdstat_scatter_orders[ABD_MAX_ORDER]; + kstat_named_t abdstat_scatter_page_multi_chunk; + kstat_named_t abdstat_scatter_page_multi_zone; + kstat_named_t abdstat_scatter_page_alloc_retry; + kstat_named_t abdstat_scatter_sg_table_retry; +} abd_stats_t; + +static abd_stats_t abd_stats = { + /* Amount of memory occupied by all of the abd_t struct allocations */ + { "struct_size", KSTAT_DATA_UINT64 }, + /* + * The number of linear ABDs which are currently allocated, excluding + * ABDs which don't own their data (for instance the ones which were + * allocated through abd_get_offset() and abd_get_from_buf()). If an + * ABD takes ownership of its buf then it will become tracked. + */ + { "linear_cnt", KSTAT_DATA_UINT64 }, + /* Amount of data stored in all linear ABDs tracked by linear_cnt */ + { "linear_data_size", KSTAT_DATA_UINT64 }, + /* + * The number of scatter ABDs which are currently allocated, excluding + * ABDs which don't own their data (for instance the ones which were + * allocated through abd_get_offset()). + */ + { "scatter_cnt", KSTAT_DATA_UINT64 }, + /* Amount of data stored in all scatter ABDs tracked by scatter_cnt */ + { "scatter_data_size", KSTAT_DATA_UINT64 }, + /* + * The amount of space wasted at the end of the last chunk across all + * scatter ABDs tracked by scatter_cnt. + */ + { "scatter_chunk_waste", KSTAT_DATA_UINT64 }, + /* + * The number of compound allocations of a given order. These + * allocations are spread over all currently allocated ABDs, and + * act as a measure of memory fragmentation. + */ + { { "scatter_order_N", KSTAT_DATA_UINT64 } }, + /* + * The number of scatter ABDs which contain multiple chunks. + * ABDs are preferentially allocated from the minimum number of + * contiguous multi-page chunks, a single chunk is optimal. + */ + { "scatter_page_multi_chunk", KSTAT_DATA_UINT64 }, + /* + * The number of scatter ABDs which are split across memory zones. + * ABDs are preferentially allocated using pages from a single zone. + */ + { "scatter_page_multi_zone", KSTAT_DATA_UINT64 }, + /* + * The total number of retries encountered when attempting to + * allocate the pages to populate the scatter ABD. + */ + { "scatter_page_alloc_retry", KSTAT_DATA_UINT64 }, + /* + * The total number of retries encountered when attempting to + * allocate the sg table for an ABD. + */ + { "scatter_sg_table_retry", KSTAT_DATA_UINT64 }, +}; + +static struct { + wmsum_t abdstat_struct_size; + wmsum_t abdstat_linear_cnt; + wmsum_t abdstat_linear_data_size; + wmsum_t abdstat_scatter_cnt; + wmsum_t abdstat_scatter_data_size; + wmsum_t abdstat_scatter_chunk_waste; + wmsum_t abdstat_scatter_orders[ABD_MAX_ORDER]; + wmsum_t abdstat_scatter_page_multi_chunk; + wmsum_t abdstat_scatter_page_multi_zone; + wmsum_t abdstat_scatter_page_alloc_retry; + wmsum_t abdstat_scatter_sg_table_retry; +} abd_sums; + +#define abd_for_each_sg(abd, sg, n, i) \ + for_each_sg(ABD_SCATTER(abd).abd_sgl, sg, n, i) + +/* + * zfs_abd_scatter_min_size is the minimum allocation size to use scatter + * ABD's. Smaller allocations will use linear ABD's which uses + * zio_[data_]buf_alloc(). + * + * Scatter ABD's use at least one page each, so sub-page allocations waste + * some space when allocated as scatter (e.g. 2KB scatter allocation wastes + * half of each page). Using linear ABD's for small allocations means that + * they will be put on slabs which contain many allocations. This can + * improve memory efficiency, but it also makes it much harder for ARC + * evictions to actually free pages, because all the buffers on one slab need + * to be freed in order for the slab (and underlying pages) to be freed. + * Typically, 512B and 1KB kmem caches have 16 buffers per slab, so it's + * possible for them to actually waste more memory than scatter (one page per + * buf = wasting 3/4 or 7/8th; one buf per slab = wasting 15/16th). + * + * Spill blocks are typically 512B and are heavily used on systems running + * selinux with the default dnode size and the `xattr=sa` property set. + * + * By default we use linear allocations for 512B and 1KB, and scatter + * allocations for larger (1.5KB and up). + */ +static int zfs_abd_scatter_min_size = 512 * 3; + +/* + * We use a scattered SPA_MAXBLOCKSIZE sized ABD whose pages are + * just a single zero'd page. This allows us to conserve memory by + * only using a single zero page for the scatterlist. + */ +abd_t *abd_zero_scatter = NULL; + +struct page; + +/* + * abd_zero_page is assigned to each of the pages of abd_zero_scatter. It will + * point to ZERO_PAGE if it is available or it will be an allocated zero'd + * PAGESIZE buffer. + */ +static struct page *abd_zero_page = NULL; + +static kmem_cache_t *abd_cache = NULL; +static kstat_t *abd_ksp; + +static uint_t +abd_chunkcnt_for_bytes(size_t size) +{ + return (P2ROUNDUP(size, PAGESIZE) / PAGESIZE); +} + +abd_t * +abd_alloc_struct_impl(size_t size) +{ + /* + * In Linux we do not use the size passed in during ABD + * allocation, so we just ignore it. + */ + (void) size; + abd_t *abd = kmem_cache_alloc(abd_cache, KM_PUSHPAGE); + ASSERT3P(abd, !=, NULL); + ABDSTAT_INCR(abdstat_struct_size, sizeof (abd_t)); + + return (abd); +} + +void +abd_free_struct_impl(abd_t *abd) +{ + kmem_cache_free(abd_cache, abd); + ABDSTAT_INCR(abdstat_struct_size, -(int)sizeof (abd_t)); +} + +static unsigned zfs_abd_scatter_max_order = ABD_MAX_ORDER - 1; + +/* + * Mark zfs data pages so they can be excluded from kernel crash dumps + */ +#ifdef _LP64 +#define ABD_FILE_CACHE_PAGE 0x2F5ABDF11ECAC4E + +static inline void +abd_mark_zfs_page(struct page *page) +{ + get_page(page); + SetPagePrivate(page); + set_page_private(page, ABD_FILE_CACHE_PAGE); +} + +static inline void +abd_unmark_zfs_page(struct page *page) +{ + set_page_private(page, 0UL); + ClearPagePrivate(page); + put_page(page); +} +#else +#define abd_mark_zfs_page(page) +#define abd_unmark_zfs_page(page) +#endif /* _LP64 */ + +#ifndef CONFIG_HIGHMEM + +/* + * The goal is to minimize fragmentation by preferentially populating ABDs + * with higher order compound pages from a single zone. Allocation size is + * progressively decreased until it can be satisfied without performing + * reclaim or compaction. When necessary this function will degenerate to + * allocating individual pages and allowing reclaim to satisfy allocations. + */ +void +abd_alloc_chunks(abd_t *abd, size_t size) +{ + struct list_head pages; + struct sg_table table; + struct scatterlist *sg; + struct page *page, *tmp_page = NULL; + gfp_t gfp = __GFP_RECLAIMABLE | __GFP_NOWARN | GFP_NOIO; + gfp_t gfp_comp = (gfp | __GFP_NORETRY | __GFP_COMP) & ~__GFP_RECLAIM; + unsigned int max_order = MIN(zfs_abd_scatter_max_order, + ABD_MAX_ORDER - 1); + unsigned int nr_pages = abd_chunkcnt_for_bytes(size); + unsigned int chunks = 0, zones = 0; + size_t remaining_size; + int nid = NUMA_NO_NODE; + unsigned int alloc_pages = 0; + + INIT_LIST_HEAD(&pages); + + ASSERT3U(alloc_pages, <, nr_pages); + + while (alloc_pages < nr_pages) { + unsigned int chunk_pages; + unsigned int order; + + order = MIN(highbit64(nr_pages - alloc_pages) - 1, max_order); + chunk_pages = (1U << order); + + page = alloc_pages_node(nid, order ? gfp_comp : gfp, order); + if (page == NULL) { + if (order == 0) { + ABDSTAT_BUMP(abdstat_scatter_page_alloc_retry); + schedule_timeout_interruptible(1); + } else { + max_order = MAX(0, order - 1); + } + continue; + } + + list_add_tail(&page->lru, &pages); + + if ((nid != NUMA_NO_NODE) && (page_to_nid(page) != nid)) + zones++; + + nid = page_to_nid(page); + ABDSTAT_BUMP(abdstat_scatter_orders[order]); + chunks++; + alloc_pages += chunk_pages; + } + + ASSERT3S(alloc_pages, ==, nr_pages); + + while (sg_alloc_table(&table, chunks, gfp)) { + ABDSTAT_BUMP(abdstat_scatter_sg_table_retry); + schedule_timeout_interruptible(1); + } + + sg = table.sgl; + remaining_size = size; + list_for_each_entry_safe(page, tmp_page, &pages, lru) { + size_t sg_size = MIN(PAGESIZE << compound_order(page), + remaining_size); + sg_set_page(sg, page, sg_size, 0); + abd_mark_zfs_page(page); + remaining_size -= sg_size; + + sg = sg_next(sg); + list_del(&page->lru); + } + + /* + * These conditions ensure that a possible transformation to a linear + * ABD would be valid. + */ + ASSERT(!PageHighMem(sg_page(table.sgl))); + ASSERT0(ABD_SCATTER(abd).abd_offset); + + if (table.nents == 1) { + /* + * Since there is only one entry, this ABD can be represented + * as a linear buffer. All single-page (4K) ABD's can be + * represented this way. Some multi-page ABD's can also be + * represented this way, if we were able to allocate a single + * "chunk" (higher-order "page" which represents a power-of-2 + * series of physically-contiguous pages). This is often the + * case for 2-page (8K) ABD's. + * + * Representing a single-entry scatter ABD as a linear ABD + * has the performance advantage of avoiding the copy (and + * allocation) in abd_borrow_buf_copy / abd_return_buf_copy. + * A performance increase of around 5% has been observed for + * ARC-cached reads (of small blocks which can take advantage + * of this). + * + * Note that this optimization is only possible because the + * pages are always mapped into the kernel's address space. + * This is not the case for highmem pages, so the + * optimization can not be made there. + */ + abd->abd_flags |= ABD_FLAG_LINEAR; + abd->abd_flags |= ABD_FLAG_LINEAR_PAGE; + abd->abd_u.abd_linear.abd_sgl = table.sgl; + ABD_LINEAR_BUF(abd) = page_address(sg_page(table.sgl)); + } else if (table.nents > 1) { + ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk); + abd->abd_flags |= ABD_FLAG_MULTI_CHUNK; + + if (zones) { + ABDSTAT_BUMP(abdstat_scatter_page_multi_zone); + abd->abd_flags |= ABD_FLAG_MULTI_ZONE; + } + + ABD_SCATTER(abd).abd_sgl = table.sgl; + ABD_SCATTER(abd).abd_nents = table.nents; + } +} +#else + +/* + * Allocate N individual pages to construct a scatter ABD. This function + * makes no attempt to request contiguous pages and requires the minimal + * number of kernel interfaces. It's designed for maximum compatibility. + */ +void +abd_alloc_chunks(abd_t *abd, size_t size) +{ + struct scatterlist *sg = NULL; + struct sg_table table; + struct page *page; + gfp_t gfp = __GFP_RECLAIMABLE | __GFP_NOWARN | GFP_NOIO; + int nr_pages = abd_chunkcnt_for_bytes(size); + int i = 0; + + while (sg_alloc_table(&table, nr_pages, gfp)) { + ABDSTAT_BUMP(abdstat_scatter_sg_table_retry); + schedule_timeout_interruptible(1); + } + + ASSERT3U(table.nents, ==, nr_pages); + ABD_SCATTER(abd).abd_sgl = table.sgl; + ABD_SCATTER(abd).abd_nents = nr_pages; + + abd_for_each_sg(abd, sg, nr_pages, i) { + while ((page = __page_cache_alloc(gfp)) == NULL) { + ABDSTAT_BUMP(abdstat_scatter_page_alloc_retry); + schedule_timeout_interruptible(1); + } + + ABDSTAT_BUMP(abdstat_scatter_orders[0]); + sg_set_page(sg, page, PAGESIZE, 0); + abd_mark_zfs_page(page); + } + + if (nr_pages > 1) { + ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk); + abd->abd_flags |= ABD_FLAG_MULTI_CHUNK; + } +} +#endif /* !CONFIG_HIGHMEM */ + +/* + * This must be called if any of the sg_table allocation functions + * are called. + */ +static void +abd_free_sg_table(abd_t *abd) +{ + struct sg_table table; + + table.sgl = ABD_SCATTER(abd).abd_sgl; + table.nents = table.orig_nents = ABD_SCATTER(abd).abd_nents; + sg_free_table(&table); +} + +void +abd_free_chunks(abd_t *abd) +{ + struct scatterlist *sg = NULL; + struct page *page; + int nr_pages = ABD_SCATTER(abd).abd_nents; + int order, i = 0; + + if (abd->abd_flags & ABD_FLAG_MULTI_ZONE) + ABDSTAT_BUMPDOWN(abdstat_scatter_page_multi_zone); + + if (abd->abd_flags & ABD_FLAG_MULTI_CHUNK) + ABDSTAT_BUMPDOWN(abdstat_scatter_page_multi_chunk); + + /* + * Scatter ABDs may be constructed by abd_alloc_from_pages() from + * an array of pages. In which case they should not be freed. + */ + if (!abd_is_from_pages(abd)) { + abd_for_each_sg(abd, sg, nr_pages, i) { + page = sg_page(sg); + abd_unmark_zfs_page(page); + order = compound_order(page); + __free_pages(page, order); + ASSERT3U(sg->length, <=, PAGE_SIZE << order); + ABDSTAT_BUMPDOWN(abdstat_scatter_orders[order]); + } + } + + abd_free_sg_table(abd); +} + +/* + * Allocate scatter ABD of size SPA_MAXBLOCKSIZE, where each page in + * the scatterlist will be set to the zero'd out buffer abd_zero_page. + */ +static void +abd_alloc_zero_scatter(void) +{ + struct scatterlist *sg = NULL; + struct sg_table table; + gfp_t gfp = __GFP_NOWARN | GFP_NOIO; + int nr_pages = abd_chunkcnt_for_bytes(SPA_MAXBLOCKSIZE); + int i = 0; + +#if defined(HAVE_ZERO_PAGE_GPL_ONLY) + gfp_t gfp_zero_page = gfp | __GFP_ZERO; + while ((abd_zero_page = __page_cache_alloc(gfp_zero_page)) == NULL) { + ABDSTAT_BUMP(abdstat_scatter_page_alloc_retry); + schedule_timeout_interruptible(1); + } + abd_mark_zfs_page(abd_zero_page); +#else + abd_zero_page = ZERO_PAGE(0); +#endif /* HAVE_ZERO_PAGE_GPL_ONLY */ + + while (sg_alloc_table(&table, nr_pages, gfp)) { + ABDSTAT_BUMP(abdstat_scatter_sg_table_retry); + schedule_timeout_interruptible(1); + } + ASSERT3U(table.nents, ==, nr_pages); + + abd_zero_scatter = abd_alloc_struct(SPA_MAXBLOCKSIZE); + abd_zero_scatter->abd_flags |= ABD_FLAG_OWNER; + ABD_SCATTER(abd_zero_scatter).abd_offset = 0; + ABD_SCATTER(abd_zero_scatter).abd_sgl = table.sgl; + ABD_SCATTER(abd_zero_scatter).abd_nents = nr_pages; + abd_zero_scatter->abd_size = SPA_MAXBLOCKSIZE; + abd_zero_scatter->abd_flags |= ABD_FLAG_MULTI_CHUNK; + + abd_for_each_sg(abd_zero_scatter, sg, nr_pages, i) { + sg_set_page(sg, abd_zero_page, PAGESIZE, 0); + } + + ABDSTAT_BUMP(abdstat_scatter_cnt); + ABDSTAT_INCR(abdstat_scatter_data_size, PAGESIZE); + ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk); +} + +boolean_t +abd_size_alloc_linear(size_t size) +{ + return (!zfs_abd_scatter_enabled || size < zfs_abd_scatter_min_size); +} + +void +abd_update_scatter_stats(abd_t *abd, abd_stats_op_t op) +{ + ASSERT(op == ABDSTAT_INCR || op == ABDSTAT_DECR); + int waste = P2ROUNDUP(abd->abd_size, PAGESIZE) - abd->abd_size; + if (op == ABDSTAT_INCR) { + ABDSTAT_BUMP(abdstat_scatter_cnt); + ABDSTAT_INCR(abdstat_scatter_data_size, abd->abd_size); + ABDSTAT_INCR(abdstat_scatter_chunk_waste, waste); + arc_space_consume(waste, ARC_SPACE_ABD_CHUNK_WASTE); + } else { + ABDSTAT_BUMPDOWN(abdstat_scatter_cnt); + ABDSTAT_INCR(abdstat_scatter_data_size, -(int)abd->abd_size); + ABDSTAT_INCR(abdstat_scatter_chunk_waste, -waste); + arc_space_return(waste, ARC_SPACE_ABD_CHUNK_WASTE); + } +} + +void +abd_update_linear_stats(abd_t *abd, abd_stats_op_t op) +{ + ASSERT(op == ABDSTAT_INCR || op == ABDSTAT_DECR); + if (op == ABDSTAT_INCR) { + ABDSTAT_BUMP(abdstat_linear_cnt); + ABDSTAT_INCR(abdstat_linear_data_size, abd->abd_size); + } else { + ABDSTAT_BUMPDOWN(abdstat_linear_cnt); + ABDSTAT_INCR(abdstat_linear_data_size, -(int)abd->abd_size); + } +} + +void +abd_verify_scatter(abd_t *abd) +{ + ASSERT3U(ABD_SCATTER(abd).abd_nents, >, 0); + ASSERT3U(ABD_SCATTER(abd).abd_offset, <, + ABD_SCATTER(abd).abd_sgl->length); + +#ifdef ZFS_DEBUG + struct scatterlist *sg = NULL; + size_t n = ABD_SCATTER(abd).abd_nents; + int i = 0; + + abd_for_each_sg(abd, sg, n, i) { + ASSERT3P(sg_page(sg), !=, NULL); + } +#endif +} + +static void +abd_free_zero_scatter(void) +{ + ABDSTAT_BUMPDOWN(abdstat_scatter_cnt); + ABDSTAT_INCR(abdstat_scatter_data_size, -(int)PAGESIZE); + ABDSTAT_BUMPDOWN(abdstat_scatter_page_multi_chunk); + + abd_free_sg_table(abd_zero_scatter); + abd_free_struct(abd_zero_scatter); + abd_zero_scatter = NULL; + ASSERT3P(abd_zero_page, !=, NULL); +#if defined(HAVE_ZERO_PAGE_GPL_ONLY) + abd_unmark_zfs_page(abd_zero_page); + __free_page(abd_zero_page); +#endif /* HAVE_ZERO_PAGE_GPL_ONLY */ +} + +static int +abd_kstats_update(kstat_t *ksp, int rw) +{ + abd_stats_t *as = ksp->ks_data; + + if (rw == KSTAT_WRITE) + return (EACCES); + as->abdstat_struct_size.value.ui64 = + wmsum_value(&abd_sums.abdstat_struct_size); + as->abdstat_linear_cnt.value.ui64 = + wmsum_value(&abd_sums.abdstat_linear_cnt); + as->abdstat_linear_data_size.value.ui64 = + wmsum_value(&abd_sums.abdstat_linear_data_size); + as->abdstat_scatter_cnt.value.ui64 = + wmsum_value(&abd_sums.abdstat_scatter_cnt); + as->abdstat_scatter_data_size.value.ui64 = + wmsum_value(&abd_sums.abdstat_scatter_data_size); + as->abdstat_scatter_chunk_waste.value.ui64 = + wmsum_value(&abd_sums.abdstat_scatter_chunk_waste); + for (int i = 0; i < ABD_MAX_ORDER; i++) { + as->abdstat_scatter_orders[i].value.ui64 = + wmsum_value(&abd_sums.abdstat_scatter_orders[i]); + } + as->abdstat_scatter_page_multi_chunk.value.ui64 = + wmsum_value(&abd_sums.abdstat_scatter_page_multi_chunk); + as->abdstat_scatter_page_multi_zone.value.ui64 = + wmsum_value(&abd_sums.abdstat_scatter_page_multi_zone); + as->abdstat_scatter_page_alloc_retry.value.ui64 = + wmsum_value(&abd_sums.abdstat_scatter_page_alloc_retry); + as->abdstat_scatter_sg_table_retry.value.ui64 = + wmsum_value(&abd_sums.abdstat_scatter_sg_table_retry); + return (0); +} + +void +abd_init(void) +{ + int i; + + abd_cache = kmem_cache_create("abd_t", sizeof (abd_t), + 0, NULL, NULL, NULL, NULL, NULL, KMC_RECLAIMABLE); + + wmsum_init(&abd_sums.abdstat_struct_size, 0); + wmsum_init(&abd_sums.abdstat_linear_cnt, 0); + wmsum_init(&abd_sums.abdstat_linear_data_size, 0); + wmsum_init(&abd_sums.abdstat_scatter_cnt, 0); + wmsum_init(&abd_sums.abdstat_scatter_data_size, 0); + wmsum_init(&abd_sums.abdstat_scatter_chunk_waste, 0); + for (i = 0; i < ABD_MAX_ORDER; i++) + wmsum_init(&abd_sums.abdstat_scatter_orders[i], 0); + wmsum_init(&abd_sums.abdstat_scatter_page_multi_chunk, 0); + wmsum_init(&abd_sums.abdstat_scatter_page_multi_zone, 0); + wmsum_init(&abd_sums.abdstat_scatter_page_alloc_retry, 0); + wmsum_init(&abd_sums.abdstat_scatter_sg_table_retry, 0); + + abd_ksp = kstat_create("zfs", 0, "abdstats", "misc", KSTAT_TYPE_NAMED, + sizeof (abd_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); + if (abd_ksp != NULL) { + for (i = 0; i < ABD_MAX_ORDER; i++) { + snprintf(abd_stats.abdstat_scatter_orders[i].name, + KSTAT_STRLEN, "scatter_order_%d", i); + abd_stats.abdstat_scatter_orders[i].data_type = + KSTAT_DATA_UINT64; + } + abd_ksp->ks_data = &abd_stats; + abd_ksp->ks_update = abd_kstats_update; + kstat_install(abd_ksp); + } + + abd_alloc_zero_scatter(); +} + +void +abd_fini(void) +{ + abd_free_zero_scatter(); + + if (abd_ksp != NULL) { + kstat_delete(abd_ksp); + abd_ksp = NULL; + } + + wmsum_fini(&abd_sums.abdstat_struct_size); + wmsum_fini(&abd_sums.abdstat_linear_cnt); + wmsum_fini(&abd_sums.abdstat_linear_data_size); + wmsum_fini(&abd_sums.abdstat_scatter_cnt); + wmsum_fini(&abd_sums.abdstat_scatter_data_size); + wmsum_fini(&abd_sums.abdstat_scatter_chunk_waste); + for (int i = 0; i < ABD_MAX_ORDER; i++) + wmsum_fini(&abd_sums.abdstat_scatter_orders[i]); + wmsum_fini(&abd_sums.abdstat_scatter_page_multi_chunk); + wmsum_fini(&abd_sums.abdstat_scatter_page_multi_zone); + wmsum_fini(&abd_sums.abdstat_scatter_page_alloc_retry); + wmsum_fini(&abd_sums.abdstat_scatter_sg_table_retry); + + if (abd_cache) { + kmem_cache_destroy(abd_cache); + abd_cache = NULL; + } +} + +void +abd_free_linear_page(abd_t *abd) +{ + /* Transform it back into a scatter ABD for freeing */ + struct scatterlist *sg = abd->abd_u.abd_linear.abd_sgl; + + /* When backed by user page unmap it */ + if (abd_is_from_pages(abd)) + zfs_kunmap(sg_page(sg)); + else + abd_update_scatter_stats(abd, ABDSTAT_DECR); + + abd->abd_flags &= ~ABD_FLAG_LINEAR; + abd->abd_flags &= ~ABD_FLAG_LINEAR_PAGE; + ABD_SCATTER(abd).abd_nents = 1; + ABD_SCATTER(abd).abd_offset = 0; + ABD_SCATTER(abd).abd_sgl = sg; + abd_free_chunks(abd); +} + +/* + * Allocate a scatter ABD structure from user pages. The pages must be + * pinned with get_user_pages, or similiar, but need not be mapped via + * the kmap interfaces. + */ +abd_t * +abd_alloc_from_pages(struct page **pages, unsigned long offset, uint64_t size) +{ + uint_t npages = DIV_ROUND_UP(size, PAGE_SIZE); + struct sg_table table; + + VERIFY3U(size, <=, DMU_MAX_ACCESS); + ASSERT3U(offset, <, PAGE_SIZE); + ASSERT3P(pages, !=, NULL); + + /* + * Even if this buf is filesystem metadata, we only track that we + * own the underlying data buffer, which is not true in this case. + * Therefore, we don't ever use ABD_FLAG_META here. + */ + abd_t *abd = abd_alloc_struct(0); + abd->abd_flags |= ABD_FLAG_FROM_PAGES | ABD_FLAG_OWNER; + abd->abd_size = size; + + while (sg_alloc_table_from_pages(&table, pages, npages, offset, + size, __GFP_NOWARN | GFP_NOIO) != 0) { + ABDSTAT_BUMP(abdstat_scatter_sg_table_retry); + schedule_timeout_interruptible(1); + } + + if ((offset + size) <= PAGE_SIZE) { + /* + * Since there is only one entry, this ABD can be represented + * as a linear buffer. All single-page (4K) ABD's constructed + * from a user page can be represented this way as long as the + * page is mapped to a virtual address. This allows us to + * apply an offset in to the mapped page. + * + * Note that kmap() must be used, not kmap_atomic(), because + * the mapping needs to bet set up on all CPUs. Using kmap() + * also enables the user of highmem pages when required. + */ + abd->abd_flags |= ABD_FLAG_LINEAR | ABD_FLAG_LINEAR_PAGE; + abd->abd_u.abd_linear.abd_sgl = table.sgl; + zfs_kmap(sg_page(table.sgl)); + ABD_LINEAR_BUF(abd) = sg_virt(table.sgl); + } else { + ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk); + abd->abd_flags |= ABD_FLAG_MULTI_CHUNK; + + ABD_SCATTER(abd).abd_offset = offset; + ABD_SCATTER(abd).abd_sgl = table.sgl; + ABD_SCATTER(abd).abd_nents = table.nents; + + ASSERT0(ABD_SCATTER(abd).abd_offset); + } + + return (abd); +} + +/* + * If we're going to use this ABD for doing I/O using the block layer, the + * consumer of the ABD data doesn't care if it's scattered or not, and we don't + * plan to store this ABD in memory for a long period of time, we should + * allocate the ABD type that requires the least data copying to do the I/O. + * + * On Linux the optimal thing to do would be to use abd_get_offset() and + * construct a new ABD which shares the original pages thereby eliminating + * the copy. But for the moment a new linear ABD is allocated until this + * performance optimization can be implemented. + */ +abd_t * +abd_alloc_for_io(size_t size, boolean_t is_metadata) +{ + return (abd_alloc(size, is_metadata)); +} + +abd_t * +abd_get_offset_scatter(abd_t *abd, abd_t *sabd, size_t off, + size_t size) +{ + (void) size; + int i = 0; + struct scatterlist *sg = NULL; + + abd_verify(sabd); + ASSERT3U(off, <=, sabd->abd_size); + + size_t new_offset = ABD_SCATTER(sabd).abd_offset + off; + + if (abd == NULL) + abd = abd_alloc_struct(0); + + /* + * Even if this buf is filesystem metadata, we only track that + * if we own the underlying data buffer, which is not true in + * this case. Therefore, we don't ever use ABD_FLAG_META here. + */ + + abd_for_each_sg(sabd, sg, ABD_SCATTER(sabd).abd_nents, i) { + if (new_offset < sg->length) + break; + new_offset -= sg->length; + } + + ABD_SCATTER(abd).abd_sgl = sg; + ABD_SCATTER(abd).abd_offset = new_offset; + ABD_SCATTER(abd).abd_nents = ABD_SCATTER(sabd).abd_nents - i; + + if (abd_is_from_pages(sabd)) + abd->abd_flags |= ABD_FLAG_FROM_PAGES; + + return (abd); +} + +/* + * Initialize the abd_iter. + */ +void +abd_iter_init(struct abd_iter *aiter, abd_t *abd) +{ + ASSERT(!abd_is_gang(abd)); + abd_verify(abd); + memset(aiter, 0, sizeof (struct abd_iter)); + aiter->iter_abd = abd; + if (!abd_is_linear(abd)) { + aiter->iter_offset = ABD_SCATTER(abd).abd_offset; + aiter->iter_sg = ABD_SCATTER(abd).abd_sgl; + } +} + +/* + * This is just a helper function to see if we have exhausted the + * abd_iter and reached the end. + */ +boolean_t +abd_iter_at_end(struct abd_iter *aiter) +{ + ASSERT3U(aiter->iter_pos, <=, aiter->iter_abd->abd_size); + return (aiter->iter_pos == aiter->iter_abd->abd_size); +} + +/* + * Advance the iterator by a certain amount. Cannot be called when a chunk is + * in use. This can be safely called when the aiter has already exhausted, in + * which case this does nothing. + */ +void +abd_iter_advance(struct abd_iter *aiter, size_t amount) +{ + /* + * Ensure that last chunk is not in use. abd_iterate_*() must clear + * this state (directly or abd_iter_unmap()) before advancing. + */ + ASSERT0P(aiter->iter_mapaddr); + ASSERT0(aiter->iter_mapsize); + ASSERT0P(aiter->iter_page); + ASSERT0(aiter->iter_page_doff); + ASSERT0(aiter->iter_page_dsize); + + /* There's nothing left to advance to, so do nothing */ + if (abd_iter_at_end(aiter)) + return; + + aiter->iter_pos += amount; + aiter->iter_offset += amount; + if (!abd_is_linear(aiter->iter_abd)) { + while (aiter->iter_offset >= aiter->iter_sg->length) { + aiter->iter_offset -= aiter->iter_sg->length; + aiter->iter_sg = sg_next(aiter->iter_sg); + if (aiter->iter_sg == NULL) { + ASSERT0(aiter->iter_offset); + break; + } + } + } +} + +/* + * Map the current chunk into aiter. This can be safely called when the aiter + * has already exhausted, in which case this does nothing. + */ +void +abd_iter_map(struct abd_iter *aiter) +{ + void *paddr; + size_t offset = 0; + + ASSERT0P(aiter->iter_mapaddr); + ASSERT0(aiter->iter_mapsize); + + /* There's nothing left to iterate over, so do nothing */ + if (abd_iter_at_end(aiter)) + return; + + if (abd_is_linear(aiter->iter_abd)) { + ASSERT3U(aiter->iter_pos, ==, aiter->iter_offset); + offset = aiter->iter_offset; + aiter->iter_mapsize = aiter->iter_abd->abd_size - offset; + paddr = ABD_LINEAR_BUF(aiter->iter_abd); + } else { + offset = aiter->iter_offset; + aiter->iter_mapsize = MIN(aiter->iter_sg->length - offset, + aiter->iter_abd->abd_size - aiter->iter_pos); + + paddr = zfs_kmap_local(sg_page(aiter->iter_sg)); + } + + aiter->iter_mapaddr = (char *)paddr + offset; +} + +/* + * Unmap the current chunk from aiter. This can be safely called when the aiter + * has already exhausted, in which case this does nothing. + */ +void +abd_iter_unmap(struct abd_iter *aiter) +{ + /* There's nothing left to unmap, so do nothing */ + if (abd_iter_at_end(aiter)) + return; + + if (!abd_is_linear(aiter->iter_abd)) { + /* LINTED E_FUNC_SET_NOT_USED */ + zfs_kunmap_local(aiter->iter_mapaddr - aiter->iter_offset); + } + + ASSERT3P(aiter->iter_mapaddr, !=, NULL); + ASSERT3U(aiter->iter_mapsize, >, 0); + + aiter->iter_mapaddr = NULL; + aiter->iter_mapsize = 0; +} + +void +abd_cache_reap_now(void) +{ +} + +/* + * Borrow a raw buffer from an ABD without copying the contents of the ABD + * into the buffer. If the ABD is scattered, this will allocate a raw buffer + * whose contents are undefined. To copy over the existing data in the ABD, use + * abd_borrow_buf_copy() instead. + */ +void * +abd_borrow_buf(abd_t *abd, size_t n) +{ + void *buf; + abd_verify(abd); + ASSERT3U(abd->abd_size, >=, 0); + /* + * In the event the ABD is composed of a single user page from Direct + * I/O we can not direclty return the raw buffer. This is a consequence + * of not being able to write protect the page and the contents of the + * page can be changed at any time by the user. + */ + if (abd_is_from_pages(abd)) { + buf = zio_buf_alloc(n); + } else if (abd_is_linear(abd)) { + buf = abd_to_buf(abd); + } else { + buf = zio_buf_alloc(n); + } + +#ifdef ZFS_DEBUG + (void) zfs_refcount_add_many(&abd->abd_children, n, buf); +#endif + return (buf); +} + +void * +abd_borrow_buf_copy(abd_t *abd, size_t n) +{ + void *buf = abd_borrow_buf(abd, n); + + /* + * In the event the ABD is composed of a single user page from Direct + * I/O we must make sure copy the data over into the newly allocated + * buffer. This is a consequence of the fact that we can not write + * protect the user page and there is a risk the contents of the page + * could be changed by the user at any moment. + */ + if (!abd_is_linear(abd) || abd_is_from_pages(abd)) { + abd_copy_to_buf(buf, abd, n); + } + return (buf); +} + +/* + * Return a borrowed raw buffer to an ABD. If the ABD is scatterd, this will + * not change the contents of the ABD. If you want any changes you made to + * buf to be copied back to abd, use abd_return_buf_copy() instead. If the + * ABD is not constructed from user pages for Direct I/O then an ASSERT + * checks to make sure the contents of buffer have not changed since it was + * borrowed. We can not ASSERT that the contents of the buffer have not changed + * if it is composed of user pages because the pages can not be placed under + * write protection and the user could have possibly changed the contents in + * the pages at any time. This is also an issue for Direct I/O reads. Checksum + * verifications in the ZIO pipeline check for this issue and handle it by + * returning an error on checksum verification failure. + */ +void +abd_return_buf(abd_t *abd, void *buf, size_t n) +{ + abd_verify(abd); + ASSERT3U(abd->abd_size, >=, n); +#ifdef ZFS_DEBUG + (void) zfs_refcount_remove_many(&abd->abd_children, n, buf); +#endif + if (abd_is_from_pages(abd)) { + zio_buf_free(buf, n); + } else if (abd_is_linear(abd)) { + ASSERT3P(buf, ==, abd_to_buf(abd)); + } else if (abd_is_gang(abd)) { +#ifdef ZFS_DEBUG + /* + * We have to be careful with gang ABD's that we do not ASSERT0 + * for any ABD's that contain user pages from Direct I/O. In + * order to handle this, we just iterate through the gang ABD + * and only verify ABDs that are not from user pages. + */ + void *cmp_buf = buf; + + for (abd_t *cabd = list_head(&ABD_GANG(abd).abd_gang_chain); + cabd != NULL; + cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd)) { + if (!abd_is_from_pages(cabd)) { + ASSERT0(abd_cmp_buf(cabd, cmp_buf, + cabd->abd_size)); + } + cmp_buf = (char *)cmp_buf + cabd->abd_size; + } +#endif + zio_buf_free(buf, n); + } else { + ASSERT0(abd_cmp_buf(abd, buf, n)); + zio_buf_free(buf, n); + } +} + +void +abd_return_buf_copy(abd_t *abd, void *buf, size_t n) +{ + if (!abd_is_linear(abd) || abd_is_from_pages(abd)) { + abd_copy_from_buf(abd, buf, n); + } + abd_return_buf(abd, buf, n); +} + +/* + * This is abd_iter_page(), the function underneath abd_iterate_page_func(). + * It yields the next page struct and data offset and size within it, without + * mapping it into the address space. + */ + +/* + * "Compound pages" are a group of pages that can be referenced from a single + * struct page *. Its organised as a "head" page, followed by a series of + * "tail" pages. + * + * In OpenZFS, compound pages are allocated using the __GFP_COMP flag, which we + * get from scatter ABDs and SPL vmalloc slabs (ie >16K allocations). So a + * great many of the IO buffers we get are going to be of this type. + * + * The tail pages are just regular PAGESIZE pages, and can be safely used + * as-is. However, the head page has length covering itself and all the tail + * pages. If the ABD chunk spans multiple pages, then we can use the head page + * and a >PAGESIZE length, which is far more efficient. + * + * Before kernel 4.5 however, compound page heads were refcounted separately + * from tail pages, such that moving back to the head page would require us to + * take a reference to it and releasing it once we're completely finished with + * it. In practice, that meant when our caller is done with the ABD, which we + * have no insight into from here. Rather than contort this API to track head + * page references on such ancient kernels, we disabled this special compound + * page handling on kernels before 4.5, instead just using treating each page + * within it as a regular PAGESIZE page (which it is). This is slightly less + * efficient, but makes everything far simpler. + * + * We no longer support kernels before 4.5, so in theory none of this is + * necessary. However, this code is still relatively new in the grand scheme of + * things, so I'm leaving the ability to compile this out for the moment. + * + * Setting/clearing ABD_ITER_COMPOUND_PAGES below enables/disables the special + * handling, by defining the ABD_ITER_PAGE_SIZE(page) macro to understand + * compound pages, or not, and compiling in/out the support to detect compound + * tail pages and move back to the start. + */ + +/* On by default */ +#define ABD_ITER_COMPOUND_PAGES + +#ifdef ABD_ITER_COMPOUND_PAGES +#define ABD_ITER_PAGE_SIZE(page) \ + (PageCompound(page) ? page_size(page) : PAGESIZE) +#else +#define ABD_ITER_PAGE_SIZE(page) (PAGESIZE) +#endif + +void +abd_iter_page(struct abd_iter *aiter) +{ + if (abd_iter_at_end(aiter)) { + aiter->iter_page = NULL; + aiter->iter_page_doff = 0; + aiter->iter_page_dsize = 0; + return; + } + + struct page *page; + size_t doff, dsize; + + /* + * Find the page, and the start of the data within it. This is computed + * differently for linear and scatter ABDs; linear is referenced by + * virtual memory location, while scatter is referenced by page + * pointer. + */ + if (abd_is_linear(aiter->iter_abd)) { + ASSERT3U(aiter->iter_pos, ==, aiter->iter_offset); + + /* memory address at iter_pos */ + void *paddr = ABD_LINEAR_BUF(aiter->iter_abd) + aiter->iter_pos; + + /* struct page for address */ + page = is_vmalloc_addr(paddr) ? + vmalloc_to_page(paddr) : virt_to_page(paddr); + + /* offset of address within the page */ + doff = offset_in_page(paddr); + } else { + ASSERT(!abd_is_gang(aiter->iter_abd)); + + /* current scatter page */ + page = nth_page(sg_page(aiter->iter_sg), + aiter->iter_offset >> PAGE_SHIFT); + + /* position within page */ + doff = aiter->iter_offset & (PAGESIZE - 1); + } + +#ifdef ABD_ITER_COMPOUND_PAGES + if (PageTail(page)) { + /* + * If this is a compound tail page, move back to the head, and + * adjust the offset to match. This may let us yield a much + * larger amount of data from a single logical page, and so + * leave our caller with fewer pages to process. + */ + struct page *head = compound_head(page); + doff += ((page - head) * PAGESIZE); + page = head; + } +#endif + + ASSERT(page); + + /* + * Compute the maximum amount of data we can take from this page. This + * is the smaller of: + * - the remaining space in the page + * - the remaining space in this scatterlist entry (which may not cover + * the entire page) + * - the remaining space in the abd (which may not cover the entire + * scatterlist entry) + */ + dsize = MIN(ABD_ITER_PAGE_SIZE(page) - doff, + aiter->iter_abd->abd_size - aiter->iter_pos); + if (!abd_is_linear(aiter->iter_abd)) + dsize = MIN(dsize, aiter->iter_sg->length - aiter->iter_offset); + ASSERT3U(dsize, >, 0); + + /* final iterator outputs */ + aiter->iter_page = page; + aiter->iter_page_doff = doff; + aiter->iter_page_dsize = dsize; +} + +/* + * Note: ABD BIO functions only needed to support vdev_classic. See comments in + * vdev_disk.c. + */ + +/* + * bio_nr_pages for ABD. + * @off is the offset in @abd + */ +unsigned long +abd_nr_pages_off(abd_t *abd, unsigned int size, size_t off) +{ + unsigned long pos; + + if (abd_is_gang(abd)) { + unsigned long count = 0; + + for (abd_t *cabd = abd_gang_get_offset(abd, &off); + cabd != NULL && size != 0; + cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd)) { + ASSERT3U(off, <, cabd->abd_size); + int mysize = MIN(size, cabd->abd_size - off); + count += abd_nr_pages_off(cabd, mysize, off); + size -= mysize; + off = 0; + } + return (count); + } + + if (abd_is_linear(abd)) + pos = (unsigned long)abd_to_buf(abd) + off; + else + pos = ABD_SCATTER(abd).abd_offset + off; + + return (((pos + size + PAGESIZE - 1) >> PAGE_SHIFT) - + (pos >> PAGE_SHIFT)); +} + +static unsigned int +bio_map(struct bio *bio, void *buf_ptr, unsigned int bio_size) +{ + unsigned int offset, size, i; + struct page *page; + + offset = offset_in_page(buf_ptr); + for (i = 0; i < bio->bi_max_vecs; i++) { + size = PAGE_SIZE - offset; + + if (bio_size <= 0) + break; + + if (size > bio_size) + size = bio_size; + + if (is_vmalloc_addr(buf_ptr)) + page = vmalloc_to_page(buf_ptr); + else + page = virt_to_page(buf_ptr); + + /* + * Some network related block device uses tcp_sendpage, which + * doesn't behave well when using 0-count page, this is a + * safety net to catch them. + */ + ASSERT3S(page_count(page), >, 0); + + if (bio_add_page(bio, page, size, offset) != size) + break; + + buf_ptr += size; + bio_size -= size; + offset = 0; + } + + return (bio_size); +} + +/* + * bio_map for gang ABD. + */ +static unsigned int +abd_gang_bio_map_off(struct bio *bio, abd_t *abd, + unsigned int io_size, size_t off) +{ + ASSERT(abd_is_gang(abd)); + + for (abd_t *cabd = abd_gang_get_offset(abd, &off); + cabd != NULL; + cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd)) { + ASSERT3U(off, <, cabd->abd_size); + int size = MIN(io_size, cabd->abd_size - off); + int remainder = abd_bio_map_off(bio, cabd, size, off); + io_size -= (size - remainder); + if (io_size == 0 || remainder > 0) + return (io_size); + off = 0; + } + ASSERT0(io_size); + return (io_size); +} + +/* + * bio_map for ABD. + * @off is the offset in @abd + * Remaining IO size is returned + */ +unsigned int +abd_bio_map_off(struct bio *bio, abd_t *abd, + unsigned int io_size, size_t off) +{ + struct abd_iter aiter; + + ASSERT3U(io_size, <=, abd->abd_size - off); + if (abd_is_linear(abd)) + return (bio_map(bio, ((char *)abd_to_buf(abd)) + off, io_size)); + + ASSERT(!abd_is_linear(abd)); + if (abd_is_gang(abd)) + return (abd_gang_bio_map_off(bio, abd, io_size, off)); + + abd_iter_init(&aiter, abd); + abd_iter_advance(&aiter, off); + + for (int i = 0; i < bio->bi_max_vecs; i++) { + struct page *pg; + size_t len, sgoff, pgoff; + struct scatterlist *sg; + + if (io_size <= 0) + break; + + sg = aiter.iter_sg; + sgoff = aiter.iter_offset; + pgoff = sgoff & (PAGESIZE - 1); + len = MIN(io_size, PAGESIZE - pgoff); + ASSERT(len > 0); + + pg = nth_page(sg_page(sg), sgoff >> PAGE_SHIFT); + if (bio_add_page(bio, pg, len, pgoff) != len) + break; + + io_size -= len; + abd_iter_advance(&aiter, len); + } + + return (io_size); +} + +EXPORT_SYMBOL(abd_alloc_from_pages); + +/* Tunable Parameters */ +module_param(zfs_abd_scatter_enabled, int, 0644); +MODULE_PARM_DESC(zfs_abd_scatter_enabled, + "Toggle whether ABD allocations must be linear."); +module_param(zfs_abd_scatter_min_size, int, 0644); +MODULE_PARM_DESC(zfs_abd_scatter_min_size, + "Minimum size of scatter allocations."); +module_param(zfs_abd_scatter_max_order, uint, 0644); +MODULE_PARM_DESC(zfs_abd_scatter_max_order, + "Maximum order allocation used for a scatter ABD."); |