aboutsummaryrefslogtreecommitdiff
path: root/sys/contrib/openzfs/module/os/linux/zfs/vdev_disk.c
diff options
context:
space:
mode:
Diffstat (limited to 'sys/contrib/openzfs/module/os/linux/zfs/vdev_disk.c')
-rw-r--r--sys/contrib/openzfs/module/os/linux/zfs/vdev_disk.c1359
1 files changed, 1359 insertions, 0 deletions
diff --git a/sys/contrib/openzfs/module/os/linux/zfs/vdev_disk.c b/sys/contrib/openzfs/module/os/linux/zfs/vdev_disk.c
new file mode 100644
index 000000000000..1bd3500e9f66
--- /dev/null
+++ b/sys/contrib/openzfs/module/os/linux/zfs/vdev_disk.c
@@ -0,0 +1,1359 @@
+// SPDX-License-Identifier: CDDL-1.0
+/*
+ * CDDL HEADER START
+ *
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License (the "License").
+ * You may not use this file except in compliance with the License.
+ *
+ * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
+ * or https://opensource.org/licenses/CDDL-1.0.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When distributing Covered Code, include this CDDL HEADER in each
+ * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+/*
+ * Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC.
+ * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
+ * Rewritten for Linux by Brian Behlendorf <behlendorf1@llnl.gov>.
+ * LLNL-CODE-403049.
+ * Copyright (c) 2012, 2019 by Delphix. All rights reserved.
+ * Copyright (c) 2023, 2024, 2025, Klara, Inc.
+ */
+
+#include <sys/zfs_context.h>
+#include <sys/spa_impl.h>
+#include <sys/vdev_disk.h>
+#include <sys/vdev_impl.h>
+#include <sys/vdev_trim.h>
+#include <sys/abd.h>
+#include <sys/fs/zfs.h>
+#include <sys/zio.h>
+#include <linux/blkpg.h>
+#include <linux/msdos_fs.h>
+#include <linux/vfs_compat.h>
+#include <linux/blk-cgroup.h>
+
+/*
+ * Linux 6.8.x uses a bdev_handle as an instance/refcount for an underlying
+ * block_device. Since it carries the block_device inside, its convenient to
+ * just use the handle as a proxy.
+ *
+ * Linux 6.9.x uses a file for the same purpose.
+ *
+ * For pre-6.8, we just emulate this with a cast, since we don't need any of
+ * the other fields inside the handle.
+ */
+#if defined(HAVE_BDEV_OPEN_BY_PATH)
+typedef struct bdev_handle zfs_bdev_handle_t;
+#define BDH_BDEV(bdh) ((bdh)->bdev)
+#define BDH_IS_ERR(bdh) (IS_ERR(bdh))
+#define BDH_PTR_ERR(bdh) (PTR_ERR(bdh))
+#define BDH_ERR_PTR(err) (ERR_PTR(err))
+#elif defined(HAVE_BDEV_FILE_OPEN_BY_PATH)
+typedef struct file zfs_bdev_handle_t;
+#define BDH_BDEV(bdh) (file_bdev(bdh))
+#define BDH_IS_ERR(bdh) (IS_ERR(bdh))
+#define BDH_PTR_ERR(bdh) (PTR_ERR(bdh))
+#define BDH_ERR_PTR(err) (ERR_PTR(err))
+#else
+typedef void zfs_bdev_handle_t;
+#define BDH_BDEV(bdh) ((struct block_device *)bdh)
+#define BDH_IS_ERR(bdh) (IS_ERR(BDH_BDEV(bdh)))
+#define BDH_PTR_ERR(bdh) (PTR_ERR(BDH_BDEV(bdh)))
+#define BDH_ERR_PTR(err) (ERR_PTR(err))
+#endif
+
+typedef struct vdev_disk {
+ zfs_bdev_handle_t *vd_bdh;
+ krwlock_t vd_lock;
+} vdev_disk_t;
+
+/*
+ * Maximum number of segments to add to a bio (min 4). If this is higher than
+ * the maximum allowed by the device queue or the kernel itself, it will be
+ * clamped. Setting it to zero will cause the kernel's ideal size to be used.
+ */
+uint_t zfs_vdev_disk_max_segs = 0;
+
+/*
+ * Unique identifier for the exclusive vdev holder.
+ */
+static void *zfs_vdev_holder = VDEV_HOLDER;
+
+/*
+ * Wait up to zfs_vdev_open_timeout_ms milliseconds before determining the
+ * device is missing. The missing path may be transient since the links
+ * can be briefly removed and recreated in response to udev events.
+ */
+static uint_t zfs_vdev_open_timeout_ms = 1000;
+
+/*
+ * Size of the "reserved" partition, in blocks.
+ */
+#define EFI_MIN_RESV_SIZE (16 * 1024)
+
+/*
+ * BIO request failfast mask.
+ */
+
+static unsigned int zfs_vdev_failfast_mask = 1;
+
+/*
+ * Convert SPA mode flags into bdev open mode flags.
+ */
+#ifdef HAVE_BLK_MODE_T
+typedef blk_mode_t vdev_bdev_mode_t;
+#define VDEV_BDEV_MODE_READ BLK_OPEN_READ
+#define VDEV_BDEV_MODE_WRITE BLK_OPEN_WRITE
+#define VDEV_BDEV_MODE_EXCL BLK_OPEN_EXCL
+#define VDEV_BDEV_MODE_MASK (BLK_OPEN_READ|BLK_OPEN_WRITE|BLK_OPEN_EXCL)
+#else
+typedef fmode_t vdev_bdev_mode_t;
+#define VDEV_BDEV_MODE_READ FMODE_READ
+#define VDEV_BDEV_MODE_WRITE FMODE_WRITE
+#define VDEV_BDEV_MODE_EXCL FMODE_EXCL
+#define VDEV_BDEV_MODE_MASK (FMODE_READ|FMODE_WRITE|FMODE_EXCL)
+#endif
+
+static vdev_bdev_mode_t
+vdev_bdev_mode(spa_mode_t smode)
+{
+ ASSERT3U(smode, !=, SPA_MODE_UNINIT);
+ ASSERT0(smode & ~(SPA_MODE_READ|SPA_MODE_WRITE));
+
+ vdev_bdev_mode_t bmode = VDEV_BDEV_MODE_EXCL;
+
+ if (smode & SPA_MODE_READ)
+ bmode |= VDEV_BDEV_MODE_READ;
+
+ if (smode & SPA_MODE_WRITE)
+ bmode |= VDEV_BDEV_MODE_WRITE;
+
+ ASSERT(bmode & VDEV_BDEV_MODE_MASK);
+ ASSERT0(bmode & ~VDEV_BDEV_MODE_MASK);
+
+ return (bmode);
+}
+
+/*
+ * Returns the usable capacity (in bytes) for the partition or disk.
+ */
+static uint64_t
+bdev_capacity(struct block_device *bdev)
+{
+#ifdef HAVE_BDEV_NR_BYTES
+ return (bdev_nr_bytes(bdev));
+#else
+ return (i_size_read(bdev->bd_inode));
+#endif
+}
+
+#if !defined(HAVE_BDEV_WHOLE)
+static inline struct block_device *
+bdev_whole(struct block_device *bdev)
+{
+ return (bdev->bd_contains);
+}
+#endif
+
+#if defined(HAVE_BDEVNAME)
+#define vdev_bdevname(bdev, name) bdevname(bdev, name)
+#else
+static inline void
+vdev_bdevname(struct block_device *bdev, char *name)
+{
+ snprintf(name, BDEVNAME_SIZE, "%pg", bdev);
+}
+#endif
+
+/*
+ * Returns the maximum expansion capacity of the block device (in bytes).
+ *
+ * It is possible to expand a vdev when it has been created as a wholedisk
+ * and the containing block device has increased in capacity. Or when the
+ * partition containing the pool has been manually increased in size.
+ *
+ * This function is only responsible for calculating the potential expansion
+ * size so it can be reported by 'zpool list'. The efi_use_whole_disk() is
+ * responsible for verifying the expected partition layout in the wholedisk
+ * case, and updating the partition table if appropriate. Once the partition
+ * size has been increased the additional capacity will be visible using
+ * bdev_capacity().
+ *
+ * The returned maximum expansion capacity is always expected to be larger, or
+ * at the very least equal, to its usable capacity to prevent overestimating
+ * the pool expandsize.
+ */
+static uint64_t
+bdev_max_capacity(struct block_device *bdev, uint64_t wholedisk)
+{
+ uint64_t psize;
+ int64_t available;
+
+ if (wholedisk && bdev != bdev_whole(bdev)) {
+ /*
+ * When reporting maximum expansion capacity for a wholedisk
+ * deduct any capacity which is expected to be lost due to
+ * alignment restrictions. Over reporting this value isn't
+ * harmful and would only result in slightly less capacity
+ * than expected post expansion.
+ * The estimated available space may be slightly smaller than
+ * bdev_capacity() for devices where the number of sectors is
+ * not a multiple of the alignment size and the partition layout
+ * is keeping less than PARTITION_END_ALIGNMENT bytes after the
+ * "reserved" EFI partition: in such cases return the device
+ * usable capacity.
+ */
+ available = bdev_capacity(bdev_whole(bdev)) -
+ ((EFI_MIN_RESV_SIZE + NEW_START_BLOCK +
+ PARTITION_END_ALIGNMENT) << SECTOR_BITS);
+ psize = MAX(available, bdev_capacity(bdev));
+ } else {
+ psize = bdev_capacity(bdev);
+ }
+
+ return (psize);
+}
+
+static void
+vdev_disk_error(zio_t *zio)
+{
+ /*
+ * This function can be called in interrupt context, for instance while
+ * handling IRQs coming from a misbehaving disk device; use printk()
+ * which is safe from any context.
+ */
+ printk(KERN_WARNING "zio pool=%s vdev=%s error=%d type=%d "
+ "offset=%llu size=%llu flags=%llu\n", spa_name(zio->io_spa),
+ zio->io_vd->vdev_path, zio->io_error, zio->io_type,
+ (u_longlong_t)zio->io_offset, (u_longlong_t)zio->io_size,
+ zio->io_flags);
+}
+
+static void
+vdev_disk_kobj_evt_post(vdev_t *v)
+{
+ vdev_disk_t *vd = v->vdev_tsd;
+ if (vd && vd->vd_bdh) {
+ spl_signal_kobj_evt(BDH_BDEV(vd->vd_bdh));
+ } else {
+ vdev_dbgmsg(v, "vdev_disk_t is NULL for VDEV:%s\n",
+ v->vdev_path);
+ }
+}
+
+static zfs_bdev_handle_t *
+vdev_blkdev_get_by_path(const char *path, spa_mode_t smode, void *holder)
+{
+ vdev_bdev_mode_t bmode = vdev_bdev_mode(smode);
+
+#if defined(HAVE_BDEV_FILE_OPEN_BY_PATH)
+ return (bdev_file_open_by_path(path, bmode, holder, NULL));
+#elif defined(HAVE_BDEV_OPEN_BY_PATH)
+ return (bdev_open_by_path(path, bmode, holder, NULL));
+#elif defined(HAVE_BLKDEV_GET_BY_PATH_4ARG)
+ return (blkdev_get_by_path(path, bmode, holder, NULL));
+#else
+ return (blkdev_get_by_path(path, bmode, holder));
+#endif
+}
+
+static void
+vdev_blkdev_put(zfs_bdev_handle_t *bdh, spa_mode_t smode, void *holder)
+{
+#if defined(HAVE_BDEV_RELEASE)
+ return (bdev_release(bdh));
+#elif defined(HAVE_BLKDEV_PUT_HOLDER)
+ return (blkdev_put(BDH_BDEV(bdh), holder));
+#elif defined(HAVE_BLKDEV_PUT)
+ return (blkdev_put(BDH_BDEV(bdh), vdev_bdev_mode(smode)));
+#else
+ fput(bdh);
+#endif
+}
+
+static int
+vdev_disk_open(vdev_t *v, uint64_t *psize, uint64_t *max_psize,
+ uint64_t *logical_ashift, uint64_t *physical_ashift)
+{
+ zfs_bdev_handle_t *bdh;
+ spa_mode_t smode = spa_mode(v->vdev_spa);
+ hrtime_t timeout = MSEC2NSEC(zfs_vdev_open_timeout_ms);
+ vdev_disk_t *vd;
+
+ /* Must have a pathname and it must be absolute. */
+ if (v->vdev_path == NULL || v->vdev_path[0] != '/') {
+ v->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
+ vdev_dbgmsg(v, "invalid vdev_path");
+ return (SET_ERROR(EINVAL));
+ }
+
+ /*
+ * Reopen the device if it is currently open. When expanding a
+ * partition force re-scanning the partition table if userland
+ * did not take care of this already. We need to do this while closed
+ * in order to get an accurate updated block device size. Then
+ * since udev may need to recreate the device links increase the
+ * open retry timeout before reporting the device as unavailable.
+ */
+ vd = v->vdev_tsd;
+ if (vd) {
+ char disk_name[BDEVNAME_SIZE + 6] = "/dev/";
+ boolean_t reread_part = B_FALSE;
+
+ rw_enter(&vd->vd_lock, RW_WRITER);
+ bdh = vd->vd_bdh;
+ vd->vd_bdh = NULL;
+
+ if (bdh) {
+ struct block_device *bdev = BDH_BDEV(bdh);
+ if (v->vdev_expanding && bdev != bdev_whole(bdev)) {
+ vdev_bdevname(bdev_whole(bdev), disk_name + 5);
+ /*
+ * If userland has BLKPG_RESIZE_PARTITION,
+ * then it should have updated the partition
+ * table already. We can detect this by
+ * comparing our current physical size
+ * with that of the device. If they are
+ * the same, then we must not have
+ * BLKPG_RESIZE_PARTITION or it failed to
+ * update the partition table online. We
+ * fallback to rescanning the partition
+ * table from the kernel below. However,
+ * if the capacity already reflects the
+ * updated partition, then we skip
+ * rescanning the partition table here.
+ */
+ if (v->vdev_psize == bdev_capacity(bdev))
+ reread_part = B_TRUE;
+ }
+
+ vdev_blkdev_put(bdh, smode, zfs_vdev_holder);
+ }
+
+ if (reread_part) {
+ bdh = vdev_blkdev_get_by_path(disk_name, smode,
+ zfs_vdev_holder);
+ if (!BDH_IS_ERR(bdh)) {
+ int error =
+ vdev_bdev_reread_part(BDH_BDEV(bdh));
+ vdev_blkdev_put(bdh, smode, zfs_vdev_holder);
+ if (error == 0) {
+ timeout = MSEC2NSEC(
+ zfs_vdev_open_timeout_ms * 2);
+ }
+ }
+ }
+ } else {
+ vd = kmem_zalloc(sizeof (vdev_disk_t), KM_SLEEP);
+
+ rw_init(&vd->vd_lock, NULL, RW_DEFAULT, NULL);
+ rw_enter(&vd->vd_lock, RW_WRITER);
+ }
+
+ /*
+ * Devices are always opened by the path provided at configuration
+ * time. This means that if the provided path is a udev by-id path
+ * then drives may be re-cabled without an issue. If the provided
+ * path is a udev by-path path, then the physical location information
+ * will be preserved. This can be critical for more complicated
+ * configurations where drives are located in specific physical
+ * locations to maximize the systems tolerance to component failure.
+ *
+ * Alternatively, you can provide your own udev rule to flexibly map
+ * the drives as you see fit. It is not advised that you use the
+ * /dev/[hd]d devices which may be reordered due to probing order.
+ * Devices in the wrong locations will be detected by the higher
+ * level vdev validation.
+ *
+ * The specified paths may be briefly removed and recreated in
+ * response to udev events. This should be exceptionally unlikely
+ * because the zpool command makes every effort to verify these paths
+ * have already settled prior to reaching this point. Therefore,
+ * a ENOENT failure at this point is highly likely to be transient
+ * and it is reasonable to sleep and retry before giving up. In
+ * practice delays have been observed to be on the order of 100ms.
+ *
+ * When ERESTARTSYS is returned it indicates the block device is
+ * a zvol which could not be opened due to the deadlock detection
+ * logic in zvol_open(). Extend the timeout and retry the open
+ * subsequent attempts are expected to eventually succeed.
+ */
+ hrtime_t start = gethrtime();
+ bdh = BDH_ERR_PTR(-ENXIO);
+ while (BDH_IS_ERR(bdh) && ((gethrtime() - start) < timeout)) {
+ bdh = vdev_blkdev_get_by_path(v->vdev_path, smode,
+ zfs_vdev_holder);
+ if (unlikely(BDH_PTR_ERR(bdh) == -ENOENT)) {
+ /*
+ * There is no point of waiting since device is removed
+ * explicitly
+ */
+ if (v->vdev_removed)
+ break;
+
+ schedule_timeout_interruptible(MSEC_TO_TICK(10));
+ } else if (unlikely(BDH_PTR_ERR(bdh) == -ERESTARTSYS)) {
+ timeout = MSEC2NSEC(zfs_vdev_open_timeout_ms * 10);
+ continue;
+ } else if (BDH_IS_ERR(bdh)) {
+ break;
+ }
+ }
+
+ if (BDH_IS_ERR(bdh)) {
+ int error = -BDH_PTR_ERR(bdh);
+ vdev_dbgmsg(v, "open error=%d timeout=%llu/%llu", error,
+ (u_longlong_t)(gethrtime() - start),
+ (u_longlong_t)timeout);
+ vd->vd_bdh = NULL;
+ v->vdev_tsd = vd;
+ rw_exit(&vd->vd_lock);
+ return (SET_ERROR(error));
+ } else {
+ vd->vd_bdh = bdh;
+ v->vdev_tsd = vd;
+ rw_exit(&vd->vd_lock);
+ }
+
+ struct block_device *bdev = BDH_BDEV(vd->vd_bdh);
+
+ /* Determine the physical block size */
+ int physical_block_size = bdev_physical_block_size(bdev);
+
+ /* Determine the logical block size */
+ int logical_block_size = bdev_logical_block_size(bdev);
+
+ /*
+ * If the device has a write cache, clear the nowritecache flag,
+ * so that we start issuing flush requests again.
+ */
+ v->vdev_nowritecache = !zfs_bdev_has_write_cache(bdev);
+
+ /* Set when device reports it supports TRIM. */
+ v->vdev_has_trim = bdev_discard_supported(bdev);
+
+ /* Set when device reports it supports secure TRIM. */
+ v->vdev_has_securetrim = bdev_secure_discard_supported(bdev);
+
+ /* Inform the ZIO pipeline that we are non-rotational */
+ v->vdev_nonrot = blk_queue_nonrot(bdev_get_queue(bdev));
+
+ /* Physical volume size in bytes for the partition */
+ *psize = bdev_capacity(bdev);
+
+ /* Physical volume size in bytes including possible expansion space */
+ *max_psize = bdev_max_capacity(bdev, v->vdev_wholedisk);
+
+ /* Based on the minimum sector size set the block size */
+ *physical_ashift = highbit64(MAX(physical_block_size,
+ SPA_MINBLOCKSIZE)) - 1;
+
+ *logical_ashift = highbit64(MAX(logical_block_size,
+ SPA_MINBLOCKSIZE)) - 1;
+
+ return (0);
+}
+
+static void
+vdev_disk_close(vdev_t *v)
+{
+ vdev_disk_t *vd = v->vdev_tsd;
+
+ if (v->vdev_reopening || vd == NULL)
+ return;
+
+ rw_enter(&vd->vd_lock, RW_WRITER);
+
+ if (vd->vd_bdh != NULL)
+ vdev_blkdev_put(vd->vd_bdh, spa_mode(v->vdev_spa),
+ zfs_vdev_holder);
+
+ v->vdev_tsd = NULL;
+
+ rw_exit(&vd->vd_lock);
+ rw_destroy(&vd->vd_lock);
+ kmem_free(vd, sizeof (vdev_disk_t));
+}
+
+/*
+ * preempt_schedule_notrace is GPL-only which breaks the ZFS build, so
+ * replace it with preempt_schedule under the following condition:
+ */
+#if defined(CONFIG_ARM64) && \
+ defined(CONFIG_PREEMPTION) && \
+ defined(CONFIG_BLK_CGROUP)
+#define preempt_schedule_notrace(x) preempt_schedule(x)
+#endif
+
+/*
+ * As for the Linux 5.18 kernel bio_alloc() expects a block_device struct
+ * as an argument removing the need to set it with bio_set_dev(). This
+ * removes the need for all of the following compatibility code.
+ */
+#if !defined(HAVE_BIO_ALLOC_4ARG)
+
+#if defined(CONFIG_BLK_CGROUP) && defined(HAVE_BIO_SET_DEV_GPL_ONLY)
+/*
+ * The Linux 5.5 kernel updated percpu_ref_tryget() which is inlined by
+ * blkg_tryget() to use rcu_read_lock() instead of rcu_read_lock_sched().
+ * As a side effect the function was converted to GPL-only. Define our
+ * own version when needed which uses rcu_read_lock_sched().
+ *
+ * The Linux 5.17 kernel split linux/blk-cgroup.h into a private and a public
+ * part, moving blkg_tryget into the private one. Define our own version.
+ */
+#if defined(HAVE_BLKG_TRYGET_GPL_ONLY) || !defined(HAVE_BLKG_TRYGET)
+static inline bool
+vdev_blkg_tryget(struct blkcg_gq *blkg)
+{
+ struct percpu_ref *ref = &blkg->refcnt;
+ unsigned long __percpu *count;
+ bool rc;
+
+ rcu_read_lock_sched();
+
+ if (__ref_is_percpu(ref, &count)) {
+ this_cpu_inc(*count);
+ rc = true;
+ } else {
+#ifdef ZFS_PERCPU_REF_COUNT_IN_DATA
+ rc = atomic_long_inc_not_zero(&ref->data->count);
+#else
+ rc = atomic_long_inc_not_zero(&ref->count);
+#endif
+ }
+
+ rcu_read_unlock_sched();
+
+ return (rc);
+}
+#else
+#define vdev_blkg_tryget(bg) blkg_tryget(bg)
+#endif
+#ifdef HAVE_BIO_SET_DEV_MACRO
+/*
+ * The Linux 5.0 kernel updated the bio_set_dev() macro so it calls the
+ * GPL-only bio_associate_blkg() symbol thus inadvertently converting
+ * the entire macro. Provide a minimal version which always assigns the
+ * request queue's root_blkg to the bio.
+ */
+static inline void
+vdev_bio_associate_blkg(struct bio *bio)
+{
+#if defined(HAVE_BIO_BDEV_DISK)
+ struct request_queue *q = bio->bi_bdev->bd_disk->queue;
+#else
+ struct request_queue *q = bio->bi_disk->queue;
+#endif
+
+ ASSERT3P(q, !=, NULL);
+ ASSERT0P(bio->bi_blkg);
+
+ if (q->root_blkg && vdev_blkg_tryget(q->root_blkg))
+ bio->bi_blkg = q->root_blkg;
+}
+
+#define bio_associate_blkg vdev_bio_associate_blkg
+#else
+static inline void
+vdev_bio_set_dev(struct bio *bio, struct block_device *bdev)
+{
+#if defined(HAVE_BIO_BDEV_DISK)
+ struct request_queue *q = bdev->bd_disk->queue;
+#else
+ struct request_queue *q = bio->bi_disk->queue;
+#endif
+ bio_clear_flag(bio, BIO_REMAPPED);
+ if (bio->bi_bdev != bdev)
+ bio_clear_flag(bio, BIO_THROTTLED);
+ bio->bi_bdev = bdev;
+
+ ASSERT3P(q, !=, NULL);
+ ASSERT0P(bio->bi_blkg);
+
+ if (q->root_blkg && vdev_blkg_tryget(q->root_blkg))
+ bio->bi_blkg = q->root_blkg;
+}
+#define bio_set_dev vdev_bio_set_dev
+#endif
+#endif
+#endif /* !HAVE_BIO_ALLOC_4ARG */
+
+static inline void
+vdev_submit_bio(struct bio *bio)
+{
+ struct bio_list *bio_list = current->bio_list;
+ current->bio_list = NULL;
+ (void) submit_bio(bio);
+ current->bio_list = bio_list;
+}
+
+static inline struct bio *
+vdev_bio_alloc(struct block_device *bdev, gfp_t gfp_mask,
+ unsigned short nr_vecs)
+{
+ struct bio *bio;
+
+#ifdef HAVE_BIO_ALLOC_4ARG
+ bio = bio_alloc(bdev, nr_vecs, 0, gfp_mask);
+#else
+ bio = bio_alloc(gfp_mask, nr_vecs);
+ if (likely(bio != NULL))
+ bio_set_dev(bio, bdev);
+#endif
+
+ return (bio);
+}
+
+static inline uint_t
+vdev_bio_max_segs(struct block_device *bdev)
+{
+ /*
+ * Smallest of the device max segs and the tunable max segs. Minimum
+ * 4, so there's room to finish split pages if they come up.
+ */
+ const uint_t dev_max_segs = queue_max_segments(bdev_get_queue(bdev));
+ const uint_t tune_max_segs = (zfs_vdev_disk_max_segs > 0) ?
+ MAX(4, zfs_vdev_disk_max_segs) : dev_max_segs;
+ const uint_t max_segs = MIN(tune_max_segs, dev_max_segs);
+
+#ifdef HAVE_BIO_MAX_SEGS
+ return (bio_max_segs(max_segs));
+#else
+ return (MIN(max_segs, BIO_MAX_PAGES));
+#endif
+}
+
+static inline uint_t
+vdev_bio_max_bytes(struct block_device *bdev)
+{
+ return (queue_max_sectors(bdev_get_queue(bdev)) << 9);
+}
+
+
+/*
+ * Virtual block IO object (VBIO)
+ *
+ * Linux block IO (BIO) objects have a limit on how many data segments (pages)
+ * they can hold. Depending on how they're allocated and structured, a large
+ * ZIO can require more than one BIO to be submitted to the kernel, which then
+ * all have to complete before we can return the completed ZIO back to ZFS.
+ *
+ * A VBIO is a wrapper around multiple BIOs, carrying everything needed to
+ * translate a ZIO down into the kernel block layer and back again.
+ *
+ * Note that these are only used for data ZIOs (read/write). Meta-operations
+ * (flush/trim) don't need multiple BIOs and so can just make the call
+ * directly.
+ */
+typedef struct {
+ zio_t *vbio_zio; /* parent zio */
+
+ struct block_device *vbio_bdev; /* blockdev to submit bios to */
+
+ abd_t *vbio_abd; /* abd carrying borrowed linear buf */
+
+ uint_t vbio_max_segs; /* max segs per bio */
+
+ uint_t vbio_max_bytes; /* max bytes per bio */
+ uint_t vbio_lbs_mask; /* logical block size mask */
+
+ uint64_t vbio_offset; /* start offset of next bio */
+
+ struct bio *vbio_bio; /* pointer to the current bio */
+ int vbio_flags; /* bio flags */
+} vbio_t;
+
+static vbio_t *
+vbio_alloc(zio_t *zio, struct block_device *bdev, int flags)
+{
+ vbio_t *vbio = kmem_zalloc(sizeof (vbio_t), KM_SLEEP);
+
+ vbio->vbio_zio = zio;
+ vbio->vbio_bdev = bdev;
+ vbio->vbio_abd = NULL;
+ vbio->vbio_max_segs = vdev_bio_max_segs(bdev);
+ vbio->vbio_max_bytes = vdev_bio_max_bytes(bdev);
+ vbio->vbio_lbs_mask = ~(bdev_logical_block_size(bdev)-1);
+ vbio->vbio_offset = zio->io_offset;
+ vbio->vbio_bio = NULL;
+ vbio->vbio_flags = flags;
+
+ return (vbio);
+}
+
+static void vbio_completion(struct bio *bio);
+
+static int
+vbio_add_page(vbio_t *vbio, struct page *page, uint_t size, uint_t offset)
+{
+ struct bio *bio = vbio->vbio_bio;
+ uint_t ssize;
+
+ while (size > 0) {
+ if (bio == NULL) {
+ /* New BIO, allocate and set up */
+ bio = vdev_bio_alloc(vbio->vbio_bdev, GFP_NOIO,
+ vbio->vbio_max_segs);
+ VERIFY(bio);
+
+ BIO_BI_SECTOR(bio) = vbio->vbio_offset >> 9;
+ bio_set_op_attrs(bio,
+ vbio->vbio_zio->io_type == ZIO_TYPE_WRITE ?
+ WRITE : READ, vbio->vbio_flags);
+
+ if (vbio->vbio_bio) {
+ bio_chain(vbio->vbio_bio, bio);
+ vdev_submit_bio(vbio->vbio_bio);
+ }
+ vbio->vbio_bio = bio;
+ }
+
+ /*
+ * Only load as much of the current page data as will fit in
+ * the space left in the BIO, respecting lbs alignment. Older
+ * kernels will error if we try to overfill the BIO, while
+ * newer ones will accept it and split the BIO. This ensures
+ * everything works on older kernels, and avoids an additional
+ * overhead on the new.
+ */
+ ssize = MIN(size, (vbio->vbio_max_bytes - BIO_BI_SIZE(bio)) &
+ vbio->vbio_lbs_mask);
+ if (ssize > 0 &&
+ bio_add_page(bio, page, ssize, offset) == ssize) {
+ /* Accepted, adjust and load any remaining. */
+ size -= ssize;
+ offset += ssize;
+ continue;
+ }
+
+ /* No room, set up for a new BIO and loop */
+ vbio->vbio_offset += BIO_BI_SIZE(bio);
+
+ /* Signal new BIO allocation wanted */
+ bio = NULL;
+ }
+
+ return (0);
+}
+
+/* Iterator callback to submit ABD pages to the vbio. */
+static int
+vbio_fill_cb(struct page *page, size_t off, size_t len, void *priv)
+{
+ vbio_t *vbio = priv;
+ return (vbio_add_page(vbio, page, len, off));
+}
+
+/* Create some BIOs, fill them with data and submit them */
+static void
+vbio_submit(vbio_t *vbio, abd_t *abd, uint64_t size)
+{
+ /*
+ * We plug so we can submit the BIOs as we go and only unplug them when
+ * they are fully created and submitted. This is important; if we don't
+ * plug, then the kernel may start executing earlier BIOs while we're
+ * still creating and executing later ones, and if the device goes
+ * away while that's happening, older kernels can get confused and
+ * trample memory.
+ */
+ struct blk_plug plug;
+ blk_start_plug(&plug);
+
+ (void) abd_iterate_page_func(abd, 0, size, vbio_fill_cb, vbio);
+ ASSERT(vbio->vbio_bio);
+
+ vbio->vbio_bio->bi_end_io = vbio_completion;
+ vbio->vbio_bio->bi_private = vbio;
+
+ /*
+ * Once submitted, vbio_bio now owns vbio (through bi_private) and we
+ * can't touch it again. The bio may complete and vbio_completion() be
+ * called and free the vbio before this task is run again, so we must
+ * consider it invalid from this point.
+ */
+ vdev_submit_bio(vbio->vbio_bio);
+
+ blk_finish_plug(&plug);
+}
+
+/* IO completion callback */
+static void
+vbio_completion(struct bio *bio)
+{
+ vbio_t *vbio = bio->bi_private;
+ zio_t *zio = vbio->vbio_zio;
+
+ ASSERT(zio);
+
+ /* Capture and log any errors */
+ zio->io_error = bi_status_to_errno(bio->bi_status);
+ ASSERT3U(zio->io_error, >=, 0);
+
+ if (zio->io_error)
+ vdev_disk_error(zio);
+
+ /* Return the BIO to the kernel */
+ bio_put(bio);
+
+ /*
+ * We're likely in an interrupt context so we can't do ABD/memory work
+ * here; instead we stash vbio on the zio and take care of it in the
+ * done callback.
+ */
+ ASSERT0P(zio->io_bio);
+ zio->io_bio = vbio;
+
+ zio_delay_interrupt(zio);
+}
+
+/*
+ * Iterator callback to count ABD pages and check their size & alignment.
+ *
+ * On Linux, each BIO segment can take a page pointer, and an offset+length of
+ * the data within that page. A page can be arbitrarily large ("compound"
+ * pages) but we still have to ensure the data portion is correctly sized and
+ * aligned to the logical block size, to ensure that if the kernel wants to
+ * split the BIO, the two halves will still be properly aligned.
+ *
+ * NOTE: if you change this function, change the copy in
+ * tests/zfs-tests/tests/functional/vdev_disk/page_alignment.c, and add test
+ * data there to validate the change you're making.
+ */
+typedef struct {
+ size_t blocksize;
+ int seen_first;
+ int seen_last;
+} vdev_disk_check_alignment_t;
+
+static int
+vdev_disk_check_alignment_cb(struct page *page, size_t off, size_t len,
+ void *priv)
+{
+ (void) page;
+ vdev_disk_check_alignment_t *s = priv;
+
+ /*
+ * The cardinal rule: a single on-disk block must never cross an
+ * physical (order-0) page boundary, as the kernel expects to be able
+ * to split at both LBS and page boundaries.
+ *
+ * This implies various alignment rules for the blocks in this
+ * (possibly compound) page, which we can check for.
+ */
+
+ /*
+ * If the previous page did not end on a page boundary, then we
+ * can't proceed without creating a hole.
+ */
+ if (s->seen_last)
+ return (1);
+
+ /* This page must contain only whole LBS-sized blocks. */
+ if (!IS_P2ALIGNED(len, s->blocksize))
+ return (1);
+
+ /*
+ * If this is not the first page in the ABD, then the data must start
+ * on a page-aligned boundary (so the kernel can split on page
+ * boundaries without having to deal with a hole). If it is, then
+ * it can start on LBS-alignment.
+ */
+ if (s->seen_first) {
+ if (!IS_P2ALIGNED(off, PAGESIZE))
+ return (1);
+ } else {
+ if (!IS_P2ALIGNED(off, s->blocksize))
+ return (1);
+ s->seen_first = 1;
+ }
+
+ /*
+ * If this data does not end on a page-aligned boundary, then this
+ * must be the last page in the ABD, for the same reason.
+ */
+ s->seen_last = !IS_P2ALIGNED(off+len, PAGESIZE);
+
+ return (0);
+}
+
+/*
+ * Check if we can submit the pages in this ABD to the kernel as-is. Returns
+ * the number of pages, or 0 if it can't be submitted like this.
+ */
+static boolean_t
+vdev_disk_check_alignment(abd_t *abd, uint64_t size, struct block_device *bdev)
+{
+ vdev_disk_check_alignment_t s = {
+ .blocksize = bdev_logical_block_size(bdev),
+ };
+
+ if (abd_iterate_page_func(abd, 0, size,
+ vdev_disk_check_alignment_cb, &s))
+ return (B_FALSE);
+
+ return (B_TRUE);
+}
+
+static int
+vdev_disk_io_rw(zio_t *zio)
+{
+ vdev_t *v = zio->io_vd;
+ vdev_disk_t *vd = v->vdev_tsd;
+ struct block_device *bdev = BDH_BDEV(vd->vd_bdh);
+ int flags = 0;
+
+ /*
+ * Accessing outside the block device is never allowed.
+ */
+ if (zio->io_offset + zio->io_size > bdev_capacity(bdev)) {
+ vdev_dbgmsg(zio->io_vd,
+ "Illegal access %llu size %llu, device size %llu",
+ (u_longlong_t)zio->io_offset,
+ (u_longlong_t)zio->io_size,
+ (u_longlong_t)bdev_capacity(bdev));
+ return (SET_ERROR(EIO));
+ }
+
+ if (!(zio->io_flags & (ZIO_FLAG_IO_RETRY | ZIO_FLAG_TRYHARD)) &&
+ v->vdev_failfast == B_TRUE) {
+ bio_set_flags_failfast(bdev, &flags, zfs_vdev_failfast_mask & 1,
+ zfs_vdev_failfast_mask & 2, zfs_vdev_failfast_mask & 4);
+ }
+
+ /*
+ * Check alignment of the incoming ABD. If any part of it would require
+ * submitting a page that is not aligned to both the logical block size
+ * and the page size, then we take a copy into a new memory region with
+ * correct alignment. This should be impossible on a 512b LBS. On
+ * larger blocks, this can happen at least when a small number of
+ * blocks (usually 1) are allocated from a shared slab, or when
+ * abnormally-small data regions (eg gang headers) are mixed into the
+ * same ABD as larger allocations (eg aggregations).
+ */
+ abd_t *abd = zio->io_abd;
+ if (!vdev_disk_check_alignment(abd, zio->io_size, bdev)) {
+ /* Allocate a new memory region with guaranteed alignment */
+ abd = abd_alloc_for_io(zio->io_size,
+ zio->io_abd->abd_flags & ABD_FLAG_META);
+
+ /* If we're writing copy our data into it */
+ if (zio->io_type == ZIO_TYPE_WRITE)
+ abd_copy(abd, zio->io_abd, zio->io_size);
+
+ /*
+ * False here would mean the new allocation has an invalid
+ * alignment too, which would mean that abd_alloc() is not
+ * guaranteeing this, or our logic in
+ * vdev_disk_check_alignment() is wrong. In either case,
+ * something in seriously wrong and its not safe to continue.
+ */
+ VERIFY(vdev_disk_check_alignment(abd, zio->io_size, bdev));
+ }
+
+ /* Allocate vbio, with a pointer to the borrowed ABD if necessary */
+ vbio_t *vbio = vbio_alloc(zio, bdev, flags);
+ if (abd != zio->io_abd)
+ vbio->vbio_abd = abd;
+
+ /* Fill it with data pages and submit it to the kernel */
+ vbio_submit(vbio, abd, zio->io_size);
+ return (0);
+}
+
+static void
+vdev_disk_io_flush_completion(struct bio *bio)
+{
+ zio_t *zio = bio->bi_private;
+ zio->io_error = bi_status_to_errno(bio->bi_status);
+ if (zio->io_error == EOPNOTSUPP || zio->io_error == ENOTTY)
+ zio->io_error = SET_ERROR(ENOTSUP);
+
+ bio_put(bio);
+ ASSERT3S(zio->io_error, >=, 0);
+ if (zio->io_error)
+ vdev_disk_error(zio);
+ zio_interrupt(zio);
+}
+
+static int
+vdev_disk_io_flush(struct block_device *bdev, zio_t *zio)
+{
+ struct request_queue *q;
+ struct bio *bio;
+
+ q = bdev_get_queue(bdev);
+ if (!q)
+ return (SET_ERROR(ENXIO));
+
+ bio = vdev_bio_alloc(bdev, GFP_NOIO, 0);
+ if (unlikely(bio == NULL))
+ return (SET_ERROR(ENOMEM));
+
+ bio->bi_end_io = vdev_disk_io_flush_completion;
+ bio->bi_private = zio;
+ bio_set_flush(bio);
+ vdev_submit_bio(bio);
+ invalidate_bdev(bdev);
+
+ return (0);
+}
+
+static void
+vdev_disk_discard_end_io(struct bio *bio)
+{
+ zio_t *zio = bio->bi_private;
+ zio->io_error = bi_status_to_errno(bio->bi_status);
+
+ bio_put(bio);
+ if (zio->io_error)
+ vdev_disk_error(zio);
+ zio_interrupt(zio);
+}
+
+/*
+ * Wrappers for the different secure erase and discard APIs. We use async
+ * when available; in this case, *biop is set to the last bio in the chain.
+ */
+static int
+vdev_bdev_issue_secure_erase(zfs_bdev_handle_t *bdh, sector_t sector,
+ sector_t nsect, struct bio **biop)
+{
+ *biop = NULL;
+ int error;
+
+#if defined(HAVE_BLKDEV_ISSUE_SECURE_ERASE)
+ error = blkdev_issue_secure_erase(BDH_BDEV(bdh),
+ sector, nsect, GFP_NOFS);
+#elif defined(HAVE_BLKDEV_ISSUE_DISCARD_ASYNC_FLAGS)
+ error = __blkdev_issue_discard(BDH_BDEV(bdh),
+ sector, nsect, GFP_NOFS, BLKDEV_DISCARD_SECURE, biop);
+#elif defined(HAVE_BLKDEV_ISSUE_DISCARD_FLAGS)
+ error = blkdev_issue_discard(BDH_BDEV(bdh),
+ sector, nsect, GFP_NOFS, BLKDEV_DISCARD_SECURE);
+#else
+#error "unsupported kernel"
+#endif
+
+ return (error);
+}
+
+static int
+vdev_bdev_issue_discard(zfs_bdev_handle_t *bdh, sector_t sector,
+ sector_t nsect, struct bio **biop)
+{
+ *biop = NULL;
+ int error;
+
+#if defined(HAVE_BLKDEV_ISSUE_DISCARD_ASYNC_FLAGS)
+ error = __blkdev_issue_discard(BDH_BDEV(bdh),
+ sector, nsect, GFP_NOFS, 0, biop);
+#elif defined(HAVE_BLKDEV_ISSUE_DISCARD_ASYNC_NOFLAGS)
+ error = __blkdev_issue_discard(BDH_BDEV(bdh),
+ sector, nsect, GFP_NOFS, biop);
+#elif defined(HAVE_BLKDEV_ISSUE_DISCARD_FLAGS)
+ error = blkdev_issue_discard(BDH_BDEV(bdh),
+ sector, nsect, GFP_NOFS, 0);
+#elif defined(HAVE_BLKDEV_ISSUE_DISCARD_NOFLAGS)
+ error = blkdev_issue_discard(BDH_BDEV(bdh),
+ sector, nsect, GFP_NOFS);
+#else
+#error "unsupported kernel"
+#endif
+
+ return (error);
+}
+
+/*
+ * Entry point for TRIM ops. This calls the right wrapper for secure erase or
+ * discard, and then does the appropriate finishing work for error vs success
+ * and async vs sync.
+ */
+static int
+vdev_disk_io_trim(zio_t *zio)
+{
+ int error;
+ struct bio *bio;
+
+ zfs_bdev_handle_t *bdh = ((vdev_disk_t *)zio->io_vd->vdev_tsd)->vd_bdh;
+ sector_t sector = zio->io_offset >> 9;
+ sector_t nsects = zio->io_size >> 9;
+
+ if (zio->io_trim_flags & ZIO_TRIM_SECURE)
+ error = vdev_bdev_issue_secure_erase(bdh, sector, nsects, &bio);
+ else
+ error = vdev_bdev_issue_discard(bdh, sector, nsects, &bio);
+
+ if (error != 0)
+ return (SET_ERROR(-error));
+
+ if (bio == NULL) {
+ /*
+ * This was a synchronous op that completed successfully, so
+ * return it to ZFS immediately.
+ */
+ zio_interrupt(zio);
+ } else {
+ /*
+ * This was an asynchronous op; set up completion callback and
+ * issue it.
+ */
+ bio->bi_private = zio;
+ bio->bi_end_io = vdev_disk_discard_end_io;
+ vdev_submit_bio(bio);
+ }
+
+ return (0);
+}
+
+static void
+vdev_disk_io_start(zio_t *zio)
+{
+ vdev_t *v = zio->io_vd;
+ vdev_disk_t *vd = v->vdev_tsd;
+ int error;
+
+ /*
+ * If the vdev is closed, it's likely in the REMOVED or FAULTED state.
+ * Nothing to be done here but return failure.
+ */
+ if (vd == NULL) {
+ zio->io_error = ENXIO;
+ zio_interrupt(zio);
+ return;
+ }
+
+ rw_enter(&vd->vd_lock, RW_READER);
+
+ /*
+ * If the vdev is closed, it's likely due to a failed reopen and is
+ * in the UNAVAIL state. Nothing to be done here but return failure.
+ */
+ if (vd->vd_bdh == NULL) {
+ rw_exit(&vd->vd_lock);
+ zio->io_error = ENXIO;
+ zio_interrupt(zio);
+ return;
+ }
+
+ switch (zio->io_type) {
+ case ZIO_TYPE_FLUSH:
+
+ if (!vdev_readable(v)) {
+ /* Drive not there, can't flush */
+ error = SET_ERROR(ENXIO);
+ } else if (zfs_nocacheflush) {
+ /* Flushing disabled by operator, declare success */
+ error = 0;
+ } else if (v->vdev_nowritecache) {
+ /* This vdev not capable of flushing */
+ error = SET_ERROR(ENOTSUP);
+ } else {
+ /*
+ * Issue the flush. If successful, the response will
+ * be handled in the completion callback, so we're done.
+ */
+ error = vdev_disk_io_flush(BDH_BDEV(vd->vd_bdh), zio);
+ if (error == 0) {
+ rw_exit(&vd->vd_lock);
+ return;
+ }
+ }
+
+ /* Couldn't issue the flush, so set the error and return it */
+ rw_exit(&vd->vd_lock);
+ zio->io_error = error;
+ zio_execute(zio);
+ return;
+
+ case ZIO_TYPE_TRIM:
+ error = vdev_disk_io_trim(zio);
+ rw_exit(&vd->vd_lock);
+ if (error) {
+ zio->io_error = error;
+ zio_execute(zio);
+ }
+ return;
+
+ case ZIO_TYPE_READ:
+ case ZIO_TYPE_WRITE:
+ zio->io_target_timestamp = zio_handle_io_delay(zio);
+ error = vdev_disk_io_rw(zio);
+ rw_exit(&vd->vd_lock);
+ if (error) {
+ zio->io_error = error;
+ zio_interrupt(zio);
+ }
+ return;
+
+ default:
+ /*
+ * Getting here means our parent vdev has made a very strange
+ * request of us, and shouldn't happen. Assert here to force a
+ * crash in dev builds, but in production return the IO
+ * unhandled. The pool will likely suspend anyway but that's
+ * nicer than crashing the kernel.
+ */
+ ASSERT3S(zio->io_type, ==, -1);
+
+ rw_exit(&vd->vd_lock);
+ zio->io_error = SET_ERROR(ENOTSUP);
+ zio_interrupt(zio);
+ return;
+ }
+
+ __builtin_unreachable();
+}
+
+static void
+vdev_disk_io_done(zio_t *zio)
+{
+ /* If this was a read or write, we need to clean up the vbio */
+ if (zio->io_bio != NULL) {
+ vbio_t *vbio = zio->io_bio;
+ zio->io_bio = NULL;
+
+ /*
+ * If we copied the ABD before issuing it, clean up and return
+ * the copy to the ADB, with changes if appropriate.
+ */
+ if (vbio->vbio_abd != NULL) {
+ if (zio->io_type == ZIO_TYPE_READ)
+ abd_copy(zio->io_abd, vbio->vbio_abd,
+ zio->io_size);
+
+ abd_free(vbio->vbio_abd);
+ vbio->vbio_abd = NULL;
+ }
+
+ /* Final cleanup */
+ kmem_free(vbio, sizeof (vbio_t));
+ }
+
+ /*
+ * If the device returned EIO, we revalidate the media. If it is
+ * determined the media has changed this triggers the asynchronous
+ * removal of the device from the configuration.
+ */
+ if (zio->io_error == EIO) {
+ vdev_t *v = zio->io_vd;
+ vdev_disk_t *vd = v->vdev_tsd;
+
+ if (!zfs_check_disk_status(BDH_BDEV(vd->vd_bdh))) {
+ invalidate_bdev(BDH_BDEV(vd->vd_bdh));
+ v->vdev_remove_wanted = B_TRUE;
+ spa_async_request(zio->io_spa, SPA_ASYNC_REMOVE);
+ }
+ }
+}
+
+static void
+vdev_disk_hold(vdev_t *vd)
+{
+ ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER));
+
+ /* We must have a pathname, and it must be absolute. */
+ if (vd->vdev_path == NULL || vd->vdev_path[0] != '/')
+ return;
+
+ /*
+ * Only prefetch path and devid info if the device has
+ * never been opened.
+ */
+ if (vd->vdev_tsd != NULL)
+ return;
+
+}
+
+static void
+vdev_disk_rele(vdev_t *vd)
+{
+ ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER));
+
+ /* XXX: Implement me as a vnode rele for the device */
+}
+
+vdev_ops_t vdev_disk_ops = {
+ .vdev_op_init = NULL,
+ .vdev_op_fini = NULL,
+ .vdev_op_open = vdev_disk_open,
+ .vdev_op_close = vdev_disk_close,
+ .vdev_op_asize_to_psize = vdev_default_psize,
+ .vdev_op_psize_to_asize = vdev_default_asize,
+ .vdev_op_min_asize = vdev_default_min_asize,
+ .vdev_op_min_alloc = NULL,
+ .vdev_op_io_start = vdev_disk_io_start,
+ .vdev_op_io_done = vdev_disk_io_done,
+ .vdev_op_state_change = NULL,
+ .vdev_op_need_resilver = NULL,
+ .vdev_op_hold = vdev_disk_hold,
+ .vdev_op_rele = vdev_disk_rele,
+ .vdev_op_remap = NULL,
+ .vdev_op_xlate = vdev_default_xlate,
+ .vdev_op_rebuild_asize = NULL,
+ .vdev_op_metaslab_init = NULL,
+ .vdev_op_config_generate = NULL,
+ .vdev_op_nparity = NULL,
+ .vdev_op_ndisks = NULL,
+ .vdev_op_type = VDEV_TYPE_DISK, /* name of this vdev type */
+ .vdev_op_leaf = B_TRUE, /* leaf vdev */
+ .vdev_op_kobj_evt_post = vdev_disk_kobj_evt_post
+};
+
+int
+param_set_min_auto_ashift(const char *buf, zfs_kernel_param_t *kp)
+{
+ uint_t val;
+ int error;
+
+ error = kstrtouint(buf, 0, &val);
+ if (error < 0)
+ return (SET_ERROR(error));
+
+ if (val < ASHIFT_MIN || val > zfs_vdev_max_auto_ashift)
+ return (SET_ERROR(-EINVAL));
+
+ error = param_set_uint(buf, kp);
+ if (error < 0)
+ return (SET_ERROR(error));
+
+ return (0);
+}
+
+int
+param_set_max_auto_ashift(const char *buf, zfs_kernel_param_t *kp)
+{
+ uint_t val;
+ int error;
+
+ error = kstrtouint(buf, 0, &val);
+ if (error < 0)
+ return (SET_ERROR(error));
+
+ if (val > ASHIFT_MAX || val < zfs_vdev_min_auto_ashift)
+ return (SET_ERROR(-EINVAL));
+
+ error = param_set_uint(buf, kp);
+ if (error < 0)
+ return (SET_ERROR(error));
+
+ return (0);
+}
+
+ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, open_timeout_ms, UINT, ZMOD_RW,
+ "Timeout before determining that a device is missing");
+
+ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, failfast_mask, UINT, ZMOD_RW,
+ "Defines failfast mask: 1 - device, 2 - transport, 4 - driver");
+
+ZFS_MODULE_PARAM(zfs_vdev_disk, zfs_vdev_disk_, max_segs, UINT, ZMOD_RW,
+ "Maximum number of data segments to add to an IO request (min 4)");