aboutsummaryrefslogtreecommitdiff
path: root/sys/contrib/openzfs/module/zfs/dbuf.c
diff options
context:
space:
mode:
Diffstat (limited to 'sys/contrib/openzfs/module/zfs/dbuf.c')
-rw-r--r--sys/contrib/openzfs/module/zfs/dbuf.c5491
1 files changed, 5491 insertions, 0 deletions
diff --git a/sys/contrib/openzfs/module/zfs/dbuf.c b/sys/contrib/openzfs/module/zfs/dbuf.c
new file mode 100644
index 000000000000..fccc4c5b5b94
--- /dev/null
+++ b/sys/contrib/openzfs/module/zfs/dbuf.c
@@ -0,0 +1,5491 @@
+// SPDX-License-Identifier: CDDL-1.0
+/*
+ * CDDL HEADER START
+ *
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License (the "License").
+ * You may not use this file except in compliance with the License.
+ *
+ * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
+ * or https://opensource.org/licenses/CDDL-1.0.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When distributing Covered Code, include this CDDL HEADER in each
+ * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+/*
+ * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
+ * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
+ * Copyright (c) 2012, 2020 by Delphix. All rights reserved.
+ * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
+ * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
+ * Copyright (c) 2019, Klara Inc.
+ * Copyright (c) 2019, Allan Jude
+ * Copyright (c) 2021, 2022 by Pawel Jakub Dawidek
+ */
+
+#include <sys/zfs_context.h>
+#include <sys/arc.h>
+#include <sys/dmu.h>
+#include <sys/dmu_send.h>
+#include <sys/dmu_impl.h>
+#include <sys/dbuf.h>
+#include <sys/dmu_objset.h>
+#include <sys/dsl_dataset.h>
+#include <sys/dsl_dir.h>
+#include <sys/dmu_tx.h>
+#include <sys/spa.h>
+#include <sys/zio.h>
+#include <sys/dmu_zfetch.h>
+#include <sys/sa.h>
+#include <sys/sa_impl.h>
+#include <sys/zfeature.h>
+#include <sys/blkptr.h>
+#include <sys/range_tree.h>
+#include <sys/trace_zfs.h>
+#include <sys/callb.h>
+#include <sys/abd.h>
+#include <sys/brt.h>
+#include <sys/vdev.h>
+#include <cityhash.h>
+#include <sys/spa_impl.h>
+#include <sys/wmsum.h>
+#include <sys/vdev_impl.h>
+
+static kstat_t *dbuf_ksp;
+
+typedef struct dbuf_stats {
+ /*
+ * Various statistics about the size of the dbuf cache.
+ */
+ kstat_named_t cache_count;
+ kstat_named_t cache_size_bytes;
+ kstat_named_t cache_size_bytes_max;
+ /*
+ * Statistics regarding the bounds on the dbuf cache size.
+ */
+ kstat_named_t cache_target_bytes;
+ kstat_named_t cache_lowater_bytes;
+ kstat_named_t cache_hiwater_bytes;
+ /*
+ * Total number of dbuf cache evictions that have occurred.
+ */
+ kstat_named_t cache_total_evicts;
+ /*
+ * The distribution of dbuf levels in the dbuf cache and
+ * the total size of all dbufs at each level.
+ */
+ kstat_named_t cache_levels[DN_MAX_LEVELS];
+ kstat_named_t cache_levels_bytes[DN_MAX_LEVELS];
+ /*
+ * Statistics about the dbuf hash table.
+ */
+ kstat_named_t hash_hits;
+ kstat_named_t hash_misses;
+ kstat_named_t hash_collisions;
+ kstat_named_t hash_elements;
+ /*
+ * Number of sublists containing more than one dbuf in the dbuf
+ * hash table. Keep track of the longest hash chain.
+ */
+ kstat_named_t hash_chains;
+ kstat_named_t hash_chain_max;
+ /*
+ * Number of times a dbuf_create() discovers that a dbuf was
+ * already created and in the dbuf hash table.
+ */
+ kstat_named_t hash_insert_race;
+ /*
+ * Number of entries in the hash table dbuf and mutex arrays.
+ */
+ kstat_named_t hash_table_count;
+ kstat_named_t hash_mutex_count;
+ /*
+ * Statistics about the size of the metadata dbuf cache.
+ */
+ kstat_named_t metadata_cache_count;
+ kstat_named_t metadata_cache_size_bytes;
+ kstat_named_t metadata_cache_size_bytes_max;
+ /*
+ * For diagnostic purposes, this is incremented whenever we can't add
+ * something to the metadata cache because it's full, and instead put
+ * the data in the regular dbuf cache.
+ */
+ kstat_named_t metadata_cache_overflow;
+} dbuf_stats_t;
+
+dbuf_stats_t dbuf_stats = {
+ { "cache_count", KSTAT_DATA_UINT64 },
+ { "cache_size_bytes", KSTAT_DATA_UINT64 },
+ { "cache_size_bytes_max", KSTAT_DATA_UINT64 },
+ { "cache_target_bytes", KSTAT_DATA_UINT64 },
+ { "cache_lowater_bytes", KSTAT_DATA_UINT64 },
+ { "cache_hiwater_bytes", KSTAT_DATA_UINT64 },
+ { "cache_total_evicts", KSTAT_DATA_UINT64 },
+ { { "cache_levels_N", KSTAT_DATA_UINT64 } },
+ { { "cache_levels_bytes_N", KSTAT_DATA_UINT64 } },
+ { "hash_hits", KSTAT_DATA_UINT64 },
+ { "hash_misses", KSTAT_DATA_UINT64 },
+ { "hash_collisions", KSTAT_DATA_UINT64 },
+ { "hash_elements", KSTAT_DATA_UINT64 },
+ { "hash_chains", KSTAT_DATA_UINT64 },
+ { "hash_chain_max", KSTAT_DATA_UINT64 },
+ { "hash_insert_race", KSTAT_DATA_UINT64 },
+ { "hash_table_count", KSTAT_DATA_UINT64 },
+ { "hash_mutex_count", KSTAT_DATA_UINT64 },
+ { "metadata_cache_count", KSTAT_DATA_UINT64 },
+ { "metadata_cache_size_bytes", KSTAT_DATA_UINT64 },
+ { "metadata_cache_size_bytes_max", KSTAT_DATA_UINT64 },
+ { "metadata_cache_overflow", KSTAT_DATA_UINT64 }
+};
+
+struct {
+ wmsum_t cache_count;
+ wmsum_t cache_total_evicts;
+ wmsum_t cache_levels[DN_MAX_LEVELS];
+ wmsum_t cache_levels_bytes[DN_MAX_LEVELS];
+ wmsum_t hash_hits;
+ wmsum_t hash_misses;
+ wmsum_t hash_collisions;
+ wmsum_t hash_elements;
+ wmsum_t hash_chains;
+ wmsum_t hash_insert_race;
+ wmsum_t metadata_cache_count;
+ wmsum_t metadata_cache_overflow;
+} dbuf_sums;
+
+#define DBUF_STAT_INCR(stat, val) \
+ wmsum_add(&dbuf_sums.stat, val)
+#define DBUF_STAT_DECR(stat, val) \
+ DBUF_STAT_INCR(stat, -(val))
+#define DBUF_STAT_BUMP(stat) \
+ DBUF_STAT_INCR(stat, 1)
+#define DBUF_STAT_BUMPDOWN(stat) \
+ DBUF_STAT_INCR(stat, -1)
+#define DBUF_STAT_MAX(stat, v) { \
+ uint64_t _m; \
+ while ((v) > (_m = dbuf_stats.stat.value.ui64) && \
+ (_m != atomic_cas_64(&dbuf_stats.stat.value.ui64, _m, (v))))\
+ continue; \
+}
+
+static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx);
+static void dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr);
+
+/*
+ * Global data structures and functions for the dbuf cache.
+ */
+static kmem_cache_t *dbuf_kmem_cache;
+kmem_cache_t *dbuf_dirty_kmem_cache;
+static taskq_t *dbu_evict_taskq;
+
+static kthread_t *dbuf_cache_evict_thread;
+static kmutex_t dbuf_evict_lock;
+static kcondvar_t dbuf_evict_cv;
+static boolean_t dbuf_evict_thread_exit;
+
+/*
+ * There are two dbuf caches; each dbuf can only be in one of them at a time.
+ *
+ * 1. Cache of metadata dbufs, to help make read-heavy administrative commands
+ * from /sbin/zfs run faster. The "metadata cache" specifically stores dbufs
+ * that represent the metadata that describes filesystems/snapshots/
+ * bookmarks/properties/etc. We only evict from this cache when we export a
+ * pool, to short-circuit as much I/O as possible for all administrative
+ * commands that need the metadata. There is no eviction policy for this
+ * cache, because we try to only include types in it which would occupy a
+ * very small amount of space per object but create a large impact on the
+ * performance of these commands. Instead, after it reaches a maximum size
+ * (which should only happen on very small memory systems with a very large
+ * number of filesystem objects), we stop taking new dbufs into the
+ * metadata cache, instead putting them in the normal dbuf cache.
+ *
+ * 2. LRU cache of dbufs. The dbuf cache maintains a list of dbufs that
+ * are not currently held but have been recently released. These dbufs
+ * are not eligible for arc eviction until they are aged out of the cache.
+ * Dbufs that are aged out of the cache will be immediately destroyed and
+ * become eligible for arc eviction.
+ *
+ * Dbufs are added to these caches once the last hold is released. If a dbuf is
+ * later accessed and still exists in the dbuf cache, then it will be removed
+ * from the cache and later re-added to the head of the cache.
+ *
+ * If a given dbuf meets the requirements for the metadata cache, it will go
+ * there, otherwise it will be considered for the generic LRU dbuf cache. The
+ * caches and the refcounts tracking their sizes are stored in an array indexed
+ * by those caches' matching enum values (from dbuf_cached_state_t).
+ */
+typedef struct dbuf_cache {
+ multilist_t cache;
+ zfs_refcount_t size ____cacheline_aligned;
+} dbuf_cache_t;
+dbuf_cache_t dbuf_caches[DB_CACHE_MAX];
+
+/* Size limits for the caches */
+static uint64_t dbuf_cache_max_bytes = UINT64_MAX;
+static uint64_t dbuf_metadata_cache_max_bytes = UINT64_MAX;
+
+/* Set the default sizes of the caches to log2 fraction of arc size */
+static uint_t dbuf_cache_shift = 5;
+static uint_t dbuf_metadata_cache_shift = 6;
+
+/* Set the dbuf hash mutex count as log2 shift (dynamic by default) */
+static uint_t dbuf_mutex_cache_shift = 0;
+
+static unsigned long dbuf_cache_target_bytes(void);
+static unsigned long dbuf_metadata_cache_target_bytes(void);
+
+/*
+ * The LRU dbuf cache uses a three-stage eviction policy:
+ * - A low water marker designates when the dbuf eviction thread
+ * should stop evicting from the dbuf cache.
+ * - When we reach the maximum size (aka mid water mark), we
+ * signal the eviction thread to run.
+ * - The high water mark indicates when the eviction thread
+ * is unable to keep up with the incoming load and eviction must
+ * happen in the context of the calling thread.
+ *
+ * The dbuf cache:
+ * (max size)
+ * low water mid water hi water
+ * +----------------------------------------+----------+----------+
+ * | | | |
+ * | | | |
+ * | | | |
+ * | | | |
+ * +----------------------------------------+----------+----------+
+ * stop signal evict
+ * evicting eviction directly
+ * thread
+ *
+ * The high and low water marks indicate the operating range for the eviction
+ * thread. The low water mark is, by default, 90% of the total size of the
+ * cache and the high water mark is at 110% (both of these percentages can be
+ * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct,
+ * respectively). The eviction thread will try to ensure that the cache remains
+ * within this range by waking up every second and checking if the cache is
+ * above the low water mark. The thread can also be woken up by callers adding
+ * elements into the cache if the cache is larger than the mid water (i.e max
+ * cache size). Once the eviction thread is woken up and eviction is required,
+ * it will continue evicting buffers until it's able to reduce the cache size
+ * to the low water mark. If the cache size continues to grow and hits the high
+ * water mark, then callers adding elements to the cache will begin to evict
+ * directly from the cache until the cache is no longer above the high water
+ * mark.
+ */
+
+/*
+ * The percentage above and below the maximum cache size.
+ */
+static uint_t dbuf_cache_hiwater_pct = 10;
+static uint_t dbuf_cache_lowater_pct = 10;
+
+static int
+dbuf_cons(void *vdb, void *unused, int kmflag)
+{
+ (void) unused, (void) kmflag;
+ dmu_buf_impl_t *db = vdb;
+ memset(db, 0, sizeof (dmu_buf_impl_t));
+
+ mutex_init(&db->db_mtx, NULL, MUTEX_NOLOCKDEP, NULL);
+ rw_init(&db->db_rwlock, NULL, RW_NOLOCKDEP, NULL);
+ cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL);
+ multilist_link_init(&db->db_cache_link);
+ zfs_refcount_create(&db->db_holds);
+
+ return (0);
+}
+
+static void
+dbuf_dest(void *vdb, void *unused)
+{
+ (void) unused;
+ dmu_buf_impl_t *db = vdb;
+ mutex_destroy(&db->db_mtx);
+ rw_destroy(&db->db_rwlock);
+ cv_destroy(&db->db_changed);
+ ASSERT(!multilist_link_active(&db->db_cache_link));
+ zfs_refcount_destroy(&db->db_holds);
+}
+
+/*
+ * dbuf hash table routines
+ */
+static dbuf_hash_table_t dbuf_hash_table;
+
+/*
+ * We use Cityhash for this. It's fast, and has good hash properties without
+ * requiring any large static buffers.
+ */
+static uint64_t
+dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid)
+{
+ return (cityhash4((uintptr_t)os, obj, (uint64_t)lvl, blkid));
+}
+
+#define DTRACE_SET_STATE(db, why) \
+ DTRACE_PROBE2(dbuf__state_change, dmu_buf_impl_t *, db, \
+ const char *, why)
+
+#define DBUF_EQUAL(dbuf, os, obj, level, blkid) \
+ ((dbuf)->db.db_object == (obj) && \
+ (dbuf)->db_objset == (os) && \
+ (dbuf)->db_level == (level) && \
+ (dbuf)->db_blkid == (blkid))
+
+dmu_buf_impl_t *
+dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid,
+ uint64_t *hash_out)
+{
+ dbuf_hash_table_t *h = &dbuf_hash_table;
+ uint64_t hv;
+ uint64_t idx;
+ dmu_buf_impl_t *db;
+
+ hv = dbuf_hash(os, obj, level, blkid);
+ idx = hv & h->hash_table_mask;
+
+ mutex_enter(DBUF_HASH_MUTEX(h, idx));
+ for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) {
+ if (DBUF_EQUAL(db, os, obj, level, blkid)) {
+ mutex_enter(&db->db_mtx);
+ if (db->db_state != DB_EVICTING) {
+ mutex_exit(DBUF_HASH_MUTEX(h, idx));
+ return (db);
+ }
+ mutex_exit(&db->db_mtx);
+ }
+ }
+ mutex_exit(DBUF_HASH_MUTEX(h, idx));
+ if (hash_out != NULL)
+ *hash_out = hv;
+ return (NULL);
+}
+
+static dmu_buf_impl_t *
+dbuf_find_bonus(objset_t *os, uint64_t object)
+{
+ dnode_t *dn;
+ dmu_buf_impl_t *db = NULL;
+
+ if (dnode_hold(os, object, FTAG, &dn) == 0) {
+ rw_enter(&dn->dn_struct_rwlock, RW_READER);
+ if (dn->dn_bonus != NULL) {
+ db = dn->dn_bonus;
+ mutex_enter(&db->db_mtx);
+ }
+ rw_exit(&dn->dn_struct_rwlock);
+ dnode_rele(dn, FTAG);
+ }
+ return (db);
+}
+
+/*
+ * Insert an entry into the hash table. If there is already an element
+ * equal to elem in the hash table, then the already existing element
+ * will be returned and the new element will not be inserted.
+ * Otherwise returns NULL.
+ */
+static dmu_buf_impl_t *
+dbuf_hash_insert(dmu_buf_impl_t *db)
+{
+ dbuf_hash_table_t *h = &dbuf_hash_table;
+ objset_t *os = db->db_objset;
+ uint64_t obj = db->db.db_object;
+ int level = db->db_level;
+ uint64_t blkid, idx;
+ dmu_buf_impl_t *dbf;
+ uint32_t i;
+
+ blkid = db->db_blkid;
+ ASSERT3U(dbuf_hash(os, obj, level, blkid), ==, db->db_hash);
+ idx = db->db_hash & h->hash_table_mask;
+
+ mutex_enter(DBUF_HASH_MUTEX(h, idx));
+ for (dbf = h->hash_table[idx], i = 0; dbf != NULL;
+ dbf = dbf->db_hash_next, i++) {
+ if (DBUF_EQUAL(dbf, os, obj, level, blkid)) {
+ mutex_enter(&dbf->db_mtx);
+ if (dbf->db_state != DB_EVICTING) {
+ mutex_exit(DBUF_HASH_MUTEX(h, idx));
+ return (dbf);
+ }
+ mutex_exit(&dbf->db_mtx);
+ }
+ }
+
+ if (i > 0) {
+ DBUF_STAT_BUMP(hash_collisions);
+ if (i == 1)
+ DBUF_STAT_BUMP(hash_chains);
+
+ DBUF_STAT_MAX(hash_chain_max, i);
+ }
+
+ mutex_enter(&db->db_mtx);
+ db->db_hash_next = h->hash_table[idx];
+ h->hash_table[idx] = db;
+ mutex_exit(DBUF_HASH_MUTEX(h, idx));
+ DBUF_STAT_BUMP(hash_elements);
+
+ return (NULL);
+}
+
+/*
+ * This returns whether this dbuf should be stored in the metadata cache, which
+ * is based on whether it's from one of the dnode types that store data related
+ * to traversing dataset hierarchies.
+ */
+static boolean_t
+dbuf_include_in_metadata_cache(dmu_buf_impl_t *db)
+{
+ DB_DNODE_ENTER(db);
+ dmu_object_type_t type = DB_DNODE(db)->dn_type;
+ DB_DNODE_EXIT(db);
+
+ /* Check if this dbuf is one of the types we care about */
+ if (DMU_OT_IS_METADATA_CACHED(type)) {
+ /* If we hit this, then we set something up wrong in dmu_ot */
+ ASSERT(DMU_OT_IS_METADATA(type));
+
+ /*
+ * Sanity check for small-memory systems: don't allocate too
+ * much memory for this purpose.
+ */
+ if (zfs_refcount_count(
+ &dbuf_caches[DB_DBUF_METADATA_CACHE].size) >
+ dbuf_metadata_cache_target_bytes()) {
+ DBUF_STAT_BUMP(metadata_cache_overflow);
+ return (B_FALSE);
+ }
+
+ return (B_TRUE);
+ }
+
+ return (B_FALSE);
+}
+
+/*
+ * Remove an entry from the hash table. It must be in the EVICTING state.
+ */
+static void
+dbuf_hash_remove(dmu_buf_impl_t *db)
+{
+ dbuf_hash_table_t *h = &dbuf_hash_table;
+ uint64_t idx;
+ dmu_buf_impl_t *dbf, **dbp;
+
+ ASSERT3U(dbuf_hash(db->db_objset, db->db.db_object, db->db_level,
+ db->db_blkid), ==, db->db_hash);
+ idx = db->db_hash & h->hash_table_mask;
+
+ /*
+ * We mustn't hold db_mtx to maintain lock ordering:
+ * DBUF_HASH_MUTEX > db_mtx.
+ */
+ ASSERT(zfs_refcount_is_zero(&db->db_holds));
+ ASSERT(db->db_state == DB_EVICTING);
+ ASSERT(!MUTEX_HELD(&db->db_mtx));
+
+ mutex_enter(DBUF_HASH_MUTEX(h, idx));
+ dbp = &h->hash_table[idx];
+ while ((dbf = *dbp) != db) {
+ dbp = &dbf->db_hash_next;
+ ASSERT(dbf != NULL);
+ }
+ *dbp = db->db_hash_next;
+ db->db_hash_next = NULL;
+ if (h->hash_table[idx] &&
+ h->hash_table[idx]->db_hash_next == NULL)
+ DBUF_STAT_BUMPDOWN(hash_chains);
+ mutex_exit(DBUF_HASH_MUTEX(h, idx));
+ DBUF_STAT_BUMPDOWN(hash_elements);
+}
+
+typedef enum {
+ DBVU_EVICTING,
+ DBVU_NOT_EVICTING
+} dbvu_verify_type_t;
+
+static void
+dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type)
+{
+#ifdef ZFS_DEBUG
+ int64_t holds;
+
+ if (db->db_user == NULL)
+ return;
+
+ /* Only data blocks support the attachment of user data. */
+ ASSERT0(db->db_level);
+
+ /* Clients must resolve a dbuf before attaching user data. */
+ ASSERT(db->db.db_data != NULL);
+ ASSERT3U(db->db_state, ==, DB_CACHED);
+
+ holds = zfs_refcount_count(&db->db_holds);
+ if (verify_type == DBVU_EVICTING) {
+ /*
+ * Immediate eviction occurs when holds == dirtycnt.
+ * For normal eviction buffers, holds is zero on
+ * eviction, except when dbuf_fix_old_data() calls
+ * dbuf_clear_data(). However, the hold count can grow
+ * during eviction even though db_mtx is held (see
+ * dmu_bonus_hold() for an example), so we can only
+ * test the generic invariant that holds >= dirtycnt.
+ */
+ ASSERT3U(holds, >=, db->db_dirtycnt);
+ } else {
+ if (db->db_user_immediate_evict == TRUE)
+ ASSERT3U(holds, >=, db->db_dirtycnt);
+ else
+ ASSERT3U(holds, >, 0);
+ }
+#endif
+}
+
+static void
+dbuf_evict_user(dmu_buf_impl_t *db)
+{
+ dmu_buf_user_t *dbu = db->db_user;
+
+ ASSERT(MUTEX_HELD(&db->db_mtx));
+
+ if (dbu == NULL)
+ return;
+
+ dbuf_verify_user(db, DBVU_EVICTING);
+ db->db_user = NULL;
+
+#ifdef ZFS_DEBUG
+ if (dbu->dbu_clear_on_evict_dbufp != NULL)
+ *dbu->dbu_clear_on_evict_dbufp = NULL;
+#endif
+
+ if (db->db_caching_status != DB_NO_CACHE) {
+ /*
+ * This is a cached dbuf, so the size of the user data is
+ * included in its cached amount. We adjust it here because the
+ * user data has already been detached from the dbuf, and the
+ * sync functions are not supposed to touch it (the dbuf might
+ * not exist anymore by the time the sync functions run.
+ */
+ uint64_t size = dbu->dbu_size;
+ (void) zfs_refcount_remove_many(
+ &dbuf_caches[db->db_caching_status].size, size, dbu);
+ if (db->db_caching_status == DB_DBUF_CACHE)
+ DBUF_STAT_DECR(cache_levels_bytes[db->db_level], size);
+ }
+
+ /*
+ * There are two eviction callbacks - one that we call synchronously
+ * and one that we invoke via a taskq. The async one is useful for
+ * avoiding lock order reversals and limiting stack depth.
+ *
+ * Note that if we have a sync callback but no async callback,
+ * it's likely that the sync callback will free the structure
+ * containing the dbu. In that case we need to take care to not
+ * dereference dbu after calling the sync evict func.
+ */
+ boolean_t has_async = (dbu->dbu_evict_func_async != NULL);
+
+ if (dbu->dbu_evict_func_sync != NULL)
+ dbu->dbu_evict_func_sync(dbu);
+
+ if (has_async) {
+ taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async,
+ dbu, 0, &dbu->dbu_tqent);
+ }
+}
+
+boolean_t
+dbuf_is_metadata(dmu_buf_impl_t *db)
+{
+ /*
+ * Consider indirect blocks and spill blocks to be meta data.
+ */
+ if (db->db_level > 0 || db->db_blkid == DMU_SPILL_BLKID) {
+ return (B_TRUE);
+ } else {
+ boolean_t is_metadata;
+
+ DB_DNODE_ENTER(db);
+ is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type);
+ DB_DNODE_EXIT(db);
+
+ return (is_metadata);
+ }
+}
+
+/*
+ * We want to exclude buffers that are on a special allocation class from
+ * L2ARC.
+ */
+boolean_t
+dbuf_is_l2cacheable(dmu_buf_impl_t *db, blkptr_t *bp)
+{
+ if (db->db_objset->os_secondary_cache == ZFS_CACHE_ALL ||
+ (db->db_objset->os_secondary_cache ==
+ ZFS_CACHE_METADATA && dbuf_is_metadata(db))) {
+ if (l2arc_exclude_special == 0)
+ return (B_TRUE);
+
+ /*
+ * bp must be checked in the event it was passed from
+ * dbuf_read_impl() as the result of a the BP being set from
+ * a Direct I/O write in dbuf_read(). See comments in
+ * dbuf_read().
+ */
+ blkptr_t *db_bp = bp == NULL ? db->db_blkptr : bp;
+
+ if (db_bp == NULL || BP_IS_HOLE(db_bp))
+ return (B_FALSE);
+ uint64_t vdev = DVA_GET_VDEV(db_bp->blk_dva);
+ vdev_t *rvd = db->db_objset->os_spa->spa_root_vdev;
+ vdev_t *vd = NULL;
+
+ if (vdev < rvd->vdev_children)
+ vd = rvd->vdev_child[vdev];
+
+ if (vd == NULL)
+ return (B_TRUE);
+
+ if (vd->vdev_alloc_bias != VDEV_BIAS_SPECIAL &&
+ vd->vdev_alloc_bias != VDEV_BIAS_DEDUP)
+ return (B_TRUE);
+ }
+ return (B_FALSE);
+}
+
+static inline boolean_t
+dnode_level_is_l2cacheable(blkptr_t *bp, dnode_t *dn, int64_t level)
+{
+ if (dn->dn_objset->os_secondary_cache == ZFS_CACHE_ALL ||
+ (dn->dn_objset->os_secondary_cache == ZFS_CACHE_METADATA &&
+ (level > 0 ||
+ DMU_OT_IS_METADATA(dn->dn_handle->dnh_dnode->dn_type)))) {
+ if (l2arc_exclude_special == 0)
+ return (B_TRUE);
+
+ if (bp == NULL || BP_IS_HOLE(bp))
+ return (B_FALSE);
+ uint64_t vdev = DVA_GET_VDEV(bp->blk_dva);
+ vdev_t *rvd = dn->dn_objset->os_spa->spa_root_vdev;
+ vdev_t *vd = NULL;
+
+ if (vdev < rvd->vdev_children)
+ vd = rvd->vdev_child[vdev];
+
+ if (vd == NULL)
+ return (B_TRUE);
+
+ if (vd->vdev_alloc_bias != VDEV_BIAS_SPECIAL &&
+ vd->vdev_alloc_bias != VDEV_BIAS_DEDUP)
+ return (B_TRUE);
+ }
+ return (B_FALSE);
+}
+
+
+/*
+ * This function *must* return indices evenly distributed between all
+ * sublists of the multilist. This is needed due to how the dbuf eviction
+ * code is laid out; dbuf_evict_thread() assumes dbufs are evenly
+ * distributed between all sublists and uses this assumption when
+ * deciding which sublist to evict from and how much to evict from it.
+ */
+static unsigned int
+dbuf_cache_multilist_index_func(multilist_t *ml, void *obj)
+{
+ dmu_buf_impl_t *db = obj;
+
+ /*
+ * The assumption here, is the hash value for a given
+ * dmu_buf_impl_t will remain constant throughout it's lifetime
+ * (i.e. it's objset, object, level and blkid fields don't change).
+ * Thus, we don't need to store the dbuf's sublist index
+ * on insertion, as this index can be recalculated on removal.
+ *
+ * Also, the low order bits of the hash value are thought to be
+ * distributed evenly. Otherwise, in the case that the multilist
+ * has a power of two number of sublists, each sublists' usage
+ * would not be evenly distributed. In this context full 64bit
+ * division would be a waste of time, so limit it to 32 bits.
+ */
+ return ((unsigned int)dbuf_hash(db->db_objset, db->db.db_object,
+ db->db_level, db->db_blkid) %
+ multilist_get_num_sublists(ml));
+}
+
+/*
+ * The target size of the dbuf cache can grow with the ARC target,
+ * unless limited by the tunable dbuf_cache_max_bytes.
+ */
+static inline unsigned long
+dbuf_cache_target_bytes(void)
+{
+ return (MIN(dbuf_cache_max_bytes,
+ arc_target_bytes() >> dbuf_cache_shift));
+}
+
+/*
+ * The target size of the dbuf metadata cache can grow with the ARC target,
+ * unless limited by the tunable dbuf_metadata_cache_max_bytes.
+ */
+static inline unsigned long
+dbuf_metadata_cache_target_bytes(void)
+{
+ return (MIN(dbuf_metadata_cache_max_bytes,
+ arc_target_bytes() >> dbuf_metadata_cache_shift));
+}
+
+static inline uint64_t
+dbuf_cache_hiwater_bytes(void)
+{
+ uint64_t dbuf_cache_target = dbuf_cache_target_bytes();
+ return (dbuf_cache_target +
+ (dbuf_cache_target * dbuf_cache_hiwater_pct) / 100);
+}
+
+static inline uint64_t
+dbuf_cache_lowater_bytes(void)
+{
+ uint64_t dbuf_cache_target = dbuf_cache_target_bytes();
+ return (dbuf_cache_target -
+ (dbuf_cache_target * dbuf_cache_lowater_pct) / 100);
+}
+
+static inline boolean_t
+dbuf_cache_above_lowater(void)
+{
+ return (zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) >
+ dbuf_cache_lowater_bytes());
+}
+
+/*
+ * Evict the oldest eligible dbuf from the dbuf cache.
+ */
+static void
+dbuf_evict_one(void)
+{
+ int idx = multilist_get_random_index(&dbuf_caches[DB_DBUF_CACHE].cache);
+ multilist_sublist_t *mls = multilist_sublist_lock_idx(
+ &dbuf_caches[DB_DBUF_CACHE].cache, idx);
+
+ ASSERT(!MUTEX_HELD(&dbuf_evict_lock));
+
+ dmu_buf_impl_t *db = multilist_sublist_tail(mls);
+ while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) {
+ db = multilist_sublist_prev(mls, db);
+ }
+
+ DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db,
+ multilist_sublist_t *, mls);
+
+ if (db != NULL) {
+ multilist_sublist_remove(mls, db);
+ multilist_sublist_unlock(mls);
+ uint64_t size = db->db.db_size;
+ uint64_t usize = dmu_buf_user_size(&db->db);
+ (void) zfs_refcount_remove_many(
+ &dbuf_caches[DB_DBUF_CACHE].size, size, db);
+ (void) zfs_refcount_remove_many(
+ &dbuf_caches[DB_DBUF_CACHE].size, usize, db->db_user);
+ DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
+ DBUF_STAT_BUMPDOWN(cache_count);
+ DBUF_STAT_DECR(cache_levels_bytes[db->db_level], size + usize);
+ ASSERT3U(db->db_caching_status, ==, DB_DBUF_CACHE);
+ db->db_caching_status = DB_NO_CACHE;
+ dbuf_destroy(db);
+ DBUF_STAT_BUMP(cache_total_evicts);
+ } else {
+ multilist_sublist_unlock(mls);
+ }
+}
+
+/*
+ * The dbuf evict thread is responsible for aging out dbufs from the
+ * cache. Once the cache has reached it's maximum size, dbufs are removed
+ * and destroyed. The eviction thread will continue running until the size
+ * of the dbuf cache is at or below the maximum size. Once the dbuf is aged
+ * out of the cache it is destroyed and becomes eligible for arc eviction.
+ */
+static __attribute__((noreturn)) void
+dbuf_evict_thread(void *unused)
+{
+ (void) unused;
+ callb_cpr_t cpr;
+
+ CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG);
+
+ mutex_enter(&dbuf_evict_lock);
+ while (!dbuf_evict_thread_exit) {
+ while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
+ CALLB_CPR_SAFE_BEGIN(&cpr);
+ (void) cv_timedwait_idle_hires(&dbuf_evict_cv,
+ &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
+ CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock);
+ }
+ mutex_exit(&dbuf_evict_lock);
+
+ /*
+ * Keep evicting as long as we're above the low water mark
+ * for the cache. We do this without holding the locks to
+ * minimize lock contention.
+ */
+ while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
+ dbuf_evict_one();
+ }
+
+ mutex_enter(&dbuf_evict_lock);
+ }
+
+ dbuf_evict_thread_exit = B_FALSE;
+ cv_broadcast(&dbuf_evict_cv);
+ CALLB_CPR_EXIT(&cpr); /* drops dbuf_evict_lock */
+ thread_exit();
+}
+
+/*
+ * Wake up the dbuf eviction thread if the dbuf cache is at its max size.
+ * If the dbuf cache is at its high water mark, then evict a dbuf from the
+ * dbuf cache using the caller's context.
+ */
+static void
+dbuf_evict_notify(uint64_t size)
+{
+ /*
+ * We check if we should evict without holding the dbuf_evict_lock,
+ * because it's OK to occasionally make the wrong decision here,
+ * and grabbing the lock results in massive lock contention.
+ */
+ if (size > dbuf_cache_target_bytes()) {
+ /*
+ * Avoid calling dbuf_evict_one() from memory reclaim context
+ * (e.g. Linux kswapd, FreeBSD pagedaemon) to prevent deadlocks.
+ * Memory reclaim threads can get stuck waiting for the dbuf
+ * hash lock.
+ */
+ if (size > dbuf_cache_hiwater_bytes() &&
+ !current_is_reclaim_thread()) {
+ dbuf_evict_one();
+ }
+ cv_signal(&dbuf_evict_cv);
+ }
+}
+
+/*
+ * Since dbuf cache size is a fraction of target ARC size, ARC calls this when
+ * its target size is reduced due to memory pressure.
+ */
+void
+dbuf_cache_reduce_target_size(void)
+{
+ uint64_t size = zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size);
+
+ if (size > dbuf_cache_target_bytes())
+ cv_signal(&dbuf_evict_cv);
+}
+
+static int
+dbuf_kstat_update(kstat_t *ksp, int rw)
+{
+ dbuf_stats_t *ds = ksp->ks_data;
+ dbuf_hash_table_t *h = &dbuf_hash_table;
+
+ if (rw == KSTAT_WRITE)
+ return (SET_ERROR(EACCES));
+
+ ds->cache_count.value.ui64 =
+ wmsum_value(&dbuf_sums.cache_count);
+ ds->cache_size_bytes.value.ui64 =
+ zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size);
+ ds->cache_target_bytes.value.ui64 = dbuf_cache_target_bytes();
+ ds->cache_hiwater_bytes.value.ui64 = dbuf_cache_hiwater_bytes();
+ ds->cache_lowater_bytes.value.ui64 = dbuf_cache_lowater_bytes();
+ ds->cache_total_evicts.value.ui64 =
+ wmsum_value(&dbuf_sums.cache_total_evicts);
+ for (int i = 0; i < DN_MAX_LEVELS; i++) {
+ ds->cache_levels[i].value.ui64 =
+ wmsum_value(&dbuf_sums.cache_levels[i]);
+ ds->cache_levels_bytes[i].value.ui64 =
+ wmsum_value(&dbuf_sums.cache_levels_bytes[i]);
+ }
+ ds->hash_hits.value.ui64 =
+ wmsum_value(&dbuf_sums.hash_hits);
+ ds->hash_misses.value.ui64 =
+ wmsum_value(&dbuf_sums.hash_misses);
+ ds->hash_collisions.value.ui64 =
+ wmsum_value(&dbuf_sums.hash_collisions);
+ ds->hash_elements.value.ui64 =
+ wmsum_value(&dbuf_sums.hash_elements);
+ ds->hash_chains.value.ui64 =
+ wmsum_value(&dbuf_sums.hash_chains);
+ ds->hash_insert_race.value.ui64 =
+ wmsum_value(&dbuf_sums.hash_insert_race);
+ ds->hash_table_count.value.ui64 = h->hash_table_mask + 1;
+ ds->hash_mutex_count.value.ui64 = h->hash_mutex_mask + 1;
+ ds->metadata_cache_count.value.ui64 =
+ wmsum_value(&dbuf_sums.metadata_cache_count);
+ ds->metadata_cache_size_bytes.value.ui64 = zfs_refcount_count(
+ &dbuf_caches[DB_DBUF_METADATA_CACHE].size);
+ ds->metadata_cache_overflow.value.ui64 =
+ wmsum_value(&dbuf_sums.metadata_cache_overflow);
+ return (0);
+}
+
+void
+dbuf_init(void)
+{
+ uint64_t hmsize, hsize = 1ULL << 16;
+ dbuf_hash_table_t *h = &dbuf_hash_table;
+
+ /*
+ * The hash table is big enough to fill one eighth of physical memory
+ * with an average block size of zfs_arc_average_blocksize (default 8K).
+ * By default, the table will take up
+ * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
+ */
+ while (hsize * zfs_arc_average_blocksize < arc_all_memory() / 8)
+ hsize <<= 1;
+
+ h->hash_table = NULL;
+ while (h->hash_table == NULL) {
+ h->hash_table_mask = hsize - 1;
+
+ h->hash_table = vmem_zalloc(hsize * sizeof (void *), KM_SLEEP);
+ if (h->hash_table == NULL)
+ hsize >>= 1;
+
+ ASSERT3U(hsize, >=, 1ULL << 10);
+ }
+
+ /*
+ * The hash table buckets are protected by an array of mutexes where
+ * each mutex is reponsible for protecting 128 buckets. A minimum
+ * array size of 8192 is targeted to avoid contention.
+ */
+ if (dbuf_mutex_cache_shift == 0)
+ hmsize = MAX(hsize >> 7, 1ULL << 13);
+ else
+ hmsize = 1ULL << MIN(dbuf_mutex_cache_shift, 24);
+
+ h->hash_mutexes = NULL;
+ while (h->hash_mutexes == NULL) {
+ h->hash_mutex_mask = hmsize - 1;
+
+ h->hash_mutexes = vmem_zalloc(hmsize * sizeof (kmutex_t),
+ KM_SLEEP);
+ if (h->hash_mutexes == NULL)
+ hmsize >>= 1;
+ }
+
+ dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t",
+ sizeof (dmu_buf_impl_t),
+ 0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0);
+ dbuf_dirty_kmem_cache = kmem_cache_create("dbuf_dirty_record_t",
+ sizeof (dbuf_dirty_record_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
+
+ for (int i = 0; i < hmsize; i++)
+ mutex_init(&h->hash_mutexes[i], NULL, MUTEX_NOLOCKDEP, NULL);
+
+ dbuf_stats_init(h);
+
+ /*
+ * All entries are queued via taskq_dispatch_ent(), so min/maxalloc
+ * configuration is not required.
+ */
+ dbu_evict_taskq = taskq_create("dbu_evict", 1, defclsyspri, 0, 0, 0);
+
+ for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) {
+ multilist_create(&dbuf_caches[dcs].cache,
+ sizeof (dmu_buf_impl_t),
+ offsetof(dmu_buf_impl_t, db_cache_link),
+ dbuf_cache_multilist_index_func);
+ zfs_refcount_create(&dbuf_caches[dcs].size);
+ }
+
+ dbuf_evict_thread_exit = B_FALSE;
+ mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL);
+ cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL);
+ dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread,
+ NULL, 0, &p0, TS_RUN, minclsyspri);
+
+ wmsum_init(&dbuf_sums.cache_count, 0);
+ wmsum_init(&dbuf_sums.cache_total_evicts, 0);
+ for (int i = 0; i < DN_MAX_LEVELS; i++) {
+ wmsum_init(&dbuf_sums.cache_levels[i], 0);
+ wmsum_init(&dbuf_sums.cache_levels_bytes[i], 0);
+ }
+ wmsum_init(&dbuf_sums.hash_hits, 0);
+ wmsum_init(&dbuf_sums.hash_misses, 0);
+ wmsum_init(&dbuf_sums.hash_collisions, 0);
+ wmsum_init(&dbuf_sums.hash_elements, 0);
+ wmsum_init(&dbuf_sums.hash_chains, 0);
+ wmsum_init(&dbuf_sums.hash_insert_race, 0);
+ wmsum_init(&dbuf_sums.metadata_cache_count, 0);
+ wmsum_init(&dbuf_sums.metadata_cache_overflow, 0);
+
+ dbuf_ksp = kstat_create("zfs", 0, "dbufstats", "misc",
+ KSTAT_TYPE_NAMED, sizeof (dbuf_stats) / sizeof (kstat_named_t),
+ KSTAT_FLAG_VIRTUAL);
+ if (dbuf_ksp != NULL) {
+ for (int i = 0; i < DN_MAX_LEVELS; i++) {
+ snprintf(dbuf_stats.cache_levels[i].name,
+ KSTAT_STRLEN, "cache_level_%d", i);
+ dbuf_stats.cache_levels[i].data_type =
+ KSTAT_DATA_UINT64;
+ snprintf(dbuf_stats.cache_levels_bytes[i].name,
+ KSTAT_STRLEN, "cache_level_%d_bytes", i);
+ dbuf_stats.cache_levels_bytes[i].data_type =
+ KSTAT_DATA_UINT64;
+ }
+ dbuf_ksp->ks_data = &dbuf_stats;
+ dbuf_ksp->ks_update = dbuf_kstat_update;
+ kstat_install(dbuf_ksp);
+ }
+}
+
+void
+dbuf_fini(void)
+{
+ dbuf_hash_table_t *h = &dbuf_hash_table;
+
+ dbuf_stats_destroy();
+
+ for (int i = 0; i < (h->hash_mutex_mask + 1); i++)
+ mutex_destroy(&h->hash_mutexes[i]);
+
+ vmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
+ vmem_free(h->hash_mutexes, (h->hash_mutex_mask + 1) *
+ sizeof (kmutex_t));
+
+ kmem_cache_destroy(dbuf_kmem_cache);
+ kmem_cache_destroy(dbuf_dirty_kmem_cache);
+ taskq_destroy(dbu_evict_taskq);
+
+ mutex_enter(&dbuf_evict_lock);
+ dbuf_evict_thread_exit = B_TRUE;
+ while (dbuf_evict_thread_exit) {
+ cv_signal(&dbuf_evict_cv);
+ cv_wait(&dbuf_evict_cv, &dbuf_evict_lock);
+ }
+ mutex_exit(&dbuf_evict_lock);
+
+ mutex_destroy(&dbuf_evict_lock);
+ cv_destroy(&dbuf_evict_cv);
+
+ for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) {
+ zfs_refcount_destroy(&dbuf_caches[dcs].size);
+ multilist_destroy(&dbuf_caches[dcs].cache);
+ }
+
+ if (dbuf_ksp != NULL) {
+ kstat_delete(dbuf_ksp);
+ dbuf_ksp = NULL;
+ }
+
+ wmsum_fini(&dbuf_sums.cache_count);
+ wmsum_fini(&dbuf_sums.cache_total_evicts);
+ for (int i = 0; i < DN_MAX_LEVELS; i++) {
+ wmsum_fini(&dbuf_sums.cache_levels[i]);
+ wmsum_fini(&dbuf_sums.cache_levels_bytes[i]);
+ }
+ wmsum_fini(&dbuf_sums.hash_hits);
+ wmsum_fini(&dbuf_sums.hash_misses);
+ wmsum_fini(&dbuf_sums.hash_collisions);
+ wmsum_fini(&dbuf_sums.hash_elements);
+ wmsum_fini(&dbuf_sums.hash_chains);
+ wmsum_fini(&dbuf_sums.hash_insert_race);
+ wmsum_fini(&dbuf_sums.metadata_cache_count);
+ wmsum_fini(&dbuf_sums.metadata_cache_overflow);
+}
+
+/*
+ * Other stuff.
+ */
+
+#ifdef ZFS_DEBUG
+static void
+dbuf_verify(dmu_buf_impl_t *db)
+{
+ dnode_t *dn;
+ dbuf_dirty_record_t *dr;
+ uint32_t txg_prev;
+
+ ASSERT(MUTEX_HELD(&db->db_mtx));
+
+ if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY))
+ return;
+
+ ASSERT(db->db_objset != NULL);
+ DB_DNODE_ENTER(db);
+ dn = DB_DNODE(db);
+ if (dn == NULL) {
+ ASSERT0P(db->db_parent);
+ ASSERT0P(db->db_blkptr);
+ } else {
+ ASSERT3U(db->db.db_object, ==, dn->dn_object);
+ ASSERT3P(db->db_objset, ==, dn->dn_objset);
+ ASSERT3U(db->db_level, <, dn->dn_nlevels);
+ ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
+ db->db_blkid == DMU_SPILL_BLKID ||
+ !avl_is_empty(&dn->dn_dbufs));
+ }
+ if (db->db_blkid == DMU_BONUS_BLKID) {
+ ASSERT(dn != NULL);
+ ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
+ ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID);
+ } else if (db->db_blkid == DMU_SPILL_BLKID) {
+ ASSERT(dn != NULL);
+ ASSERT0(db->db.db_offset);
+ } else {
+ ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size);
+ }
+
+ if ((dr = list_head(&db->db_dirty_records)) != NULL) {
+ ASSERT(dr->dr_dbuf == db);
+ txg_prev = dr->dr_txg;
+ for (dr = list_next(&db->db_dirty_records, dr); dr != NULL;
+ dr = list_next(&db->db_dirty_records, dr)) {
+ ASSERT(dr->dr_dbuf == db);
+ ASSERT(txg_prev > dr->dr_txg);
+ txg_prev = dr->dr_txg;
+ }
+ }
+
+ /*
+ * We can't assert that db_size matches dn_datablksz because it
+ * can be momentarily different when another thread is doing
+ * dnode_set_blksz().
+ */
+ if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) {
+ dr = db->db_data_pending;
+ /*
+ * It should only be modified in syncing context, so
+ * make sure we only have one copy of the data.
+ */
+ ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf);
+ }
+
+ /* verify db->db_blkptr */
+ if (db->db_blkptr) {
+ if (db->db_parent == dn->dn_dbuf) {
+ /* db is pointed to by the dnode */
+ /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */
+ if (DMU_OBJECT_IS_SPECIAL(db->db.db_object))
+ ASSERT0P(db->db_parent);
+ else
+ ASSERT(db->db_parent != NULL);
+ if (db->db_blkid != DMU_SPILL_BLKID)
+ ASSERT3P(db->db_blkptr, ==,
+ &dn->dn_phys->dn_blkptr[db->db_blkid]);
+ } else {
+ /* db is pointed to by an indirect block */
+ int epb __maybe_unused = db->db_parent->db.db_size >>
+ SPA_BLKPTRSHIFT;
+ ASSERT3U(db->db_parent->db_level, ==, db->db_level+1);
+ ASSERT3U(db->db_parent->db.db_object, ==,
+ db->db.db_object);
+ ASSERT3P(db->db_blkptr, ==,
+ ((blkptr_t *)db->db_parent->db.db_data +
+ db->db_blkid % epb));
+ }
+ }
+ if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) &&
+ (db->db_buf == NULL || db->db_buf->b_data) &&
+ db->db.db_data && db->db_blkid != DMU_BONUS_BLKID &&
+ db->db_state != DB_FILL && (dn == NULL || !dn->dn_free_txg)) {
+ /*
+ * If the blkptr isn't set but they have nonzero data,
+ * it had better be dirty, otherwise we'll lose that
+ * data when we evict this buffer.
+ *
+ * There is an exception to this rule for indirect blocks; in
+ * this case, if the indirect block is a hole, we fill in a few
+ * fields on each of the child blocks (importantly, birth time)
+ * to prevent hole birth times from being lost when you
+ * partially fill in a hole.
+ */
+ if (db->db_dirtycnt == 0) {
+ if (db->db_level == 0) {
+ uint64_t *buf = db->db.db_data;
+ int i;
+
+ for (i = 0; i < db->db.db_size >> 3; i++) {
+ ASSERT0(buf[i]);
+ }
+ } else {
+ blkptr_t *bps = db->db.db_data;
+ ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==,
+ db->db.db_size);
+ /*
+ * We want to verify that all the blkptrs in the
+ * indirect block are holes, but we may have
+ * automatically set up a few fields for them.
+ * We iterate through each blkptr and verify
+ * they only have those fields set.
+ */
+ for (int i = 0;
+ i < db->db.db_size / sizeof (blkptr_t);
+ i++) {
+ blkptr_t *bp = &bps[i];
+ ASSERT(ZIO_CHECKSUM_IS_ZERO(
+ &bp->blk_cksum));
+ ASSERT(
+ DVA_IS_EMPTY(&bp->blk_dva[0]) &&
+ DVA_IS_EMPTY(&bp->blk_dva[1]) &&
+ DVA_IS_EMPTY(&bp->blk_dva[2]));
+ ASSERT0(bp->blk_fill);
+ ASSERT(!BP_IS_EMBEDDED(bp));
+ ASSERT(BP_IS_HOLE(bp));
+ ASSERT0(BP_GET_RAW_PHYSICAL_BIRTH(bp));
+ }
+ }
+ }
+ }
+ DB_DNODE_EXIT(db);
+}
+#endif
+
+static void
+dbuf_clear_data(dmu_buf_impl_t *db)
+{
+ ASSERT(MUTEX_HELD(&db->db_mtx));
+ dbuf_evict_user(db);
+ ASSERT0P(db->db_buf);
+ db->db.db_data = NULL;
+ if (db->db_state != DB_NOFILL) {
+ db->db_state = DB_UNCACHED;
+ DTRACE_SET_STATE(db, "clear data");
+ }
+}
+
+static void
+dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf)
+{
+ ASSERT(MUTEX_HELD(&db->db_mtx));
+ ASSERT(buf != NULL);
+
+ db->db_buf = buf;
+ ASSERT(buf->b_data != NULL);
+ db->db.db_data = buf->b_data;
+}
+
+static arc_buf_t *
+dbuf_alloc_arcbuf(dmu_buf_impl_t *db)
+{
+ spa_t *spa = db->db_objset->os_spa;
+
+ return (arc_alloc_buf(spa, db, DBUF_GET_BUFC_TYPE(db), db->db.db_size));
+}
+
+/*
+ * Calculate which level n block references the data at the level 0 offset
+ * provided.
+ */
+uint64_t
+dbuf_whichblock(const dnode_t *dn, const int64_t level, const uint64_t offset)
+{
+ if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) {
+ /*
+ * The level n blkid is equal to the level 0 blkid divided by
+ * the number of level 0s in a level n block.
+ *
+ * The level 0 blkid is offset >> datablkshift =
+ * offset / 2^datablkshift.
+ *
+ * The number of level 0s in a level n is the number of block
+ * pointers in an indirect block, raised to the power of level.
+ * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level =
+ * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)).
+ *
+ * Thus, the level n blkid is: offset /
+ * ((2^datablkshift)*(2^(level*(indblkshift-SPA_BLKPTRSHIFT))))
+ * = offset / 2^(datablkshift + level *
+ * (indblkshift - SPA_BLKPTRSHIFT))
+ * = offset >> (datablkshift + level *
+ * (indblkshift - SPA_BLKPTRSHIFT))
+ */
+
+ const unsigned exp = dn->dn_datablkshift +
+ level * (dn->dn_indblkshift - SPA_BLKPTRSHIFT);
+
+ if (exp >= 8 * sizeof (offset)) {
+ /* This only happens on the highest indirection level */
+ ASSERT3U(level, ==, dn->dn_nlevels - 1);
+ return (0);
+ }
+
+ ASSERT3U(exp, <, 8 * sizeof (offset));
+
+ return (offset >> exp);
+ } else {
+ ASSERT3U(offset, <, dn->dn_datablksz);
+ return (0);
+ }
+}
+
+/*
+ * This function is used to lock the parent of the provided dbuf. This should be
+ * used when modifying or reading db_blkptr.
+ */
+db_lock_type_t
+dmu_buf_lock_parent(dmu_buf_impl_t *db, krw_t rw, const void *tag)
+{
+ enum db_lock_type ret = DLT_NONE;
+ if (db->db_parent != NULL) {
+ rw_enter(&db->db_parent->db_rwlock, rw);
+ ret = DLT_PARENT;
+ } else if (dmu_objset_ds(db->db_objset) != NULL) {
+ rrw_enter(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, rw,
+ tag);
+ ret = DLT_OBJSET;
+ }
+ /*
+ * We only return a DLT_NONE lock when it's the top-most indirect block
+ * of the meta-dnode of the MOS.
+ */
+ return (ret);
+}
+
+/*
+ * We need to pass the lock type in because it's possible that the block will
+ * move from being the topmost indirect block in a dnode (and thus, have no
+ * parent) to not the top-most via an indirection increase. This would cause a
+ * panic if we didn't pass the lock type in.
+ */
+void
+dmu_buf_unlock_parent(dmu_buf_impl_t *db, db_lock_type_t type, const void *tag)
+{
+ if (type == DLT_PARENT)
+ rw_exit(&db->db_parent->db_rwlock);
+ else if (type == DLT_OBJSET)
+ rrw_exit(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, tag);
+}
+
+static void
+dbuf_read_done(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
+ arc_buf_t *buf, void *vdb)
+{
+ (void) zb, (void) bp;
+ dmu_buf_impl_t *db = vdb;
+
+ mutex_enter(&db->db_mtx);
+ ASSERT3U(db->db_state, ==, DB_READ);
+
+ /*
+ * All reads are synchronous, so we must have a hold on the dbuf
+ */
+ ASSERT(zfs_refcount_count(&db->db_holds) > 0);
+ ASSERT0P(db->db_buf);
+ ASSERT0P(db->db.db_data);
+ if (buf == NULL) {
+ /* i/o error */
+ ASSERT(zio == NULL || zio->io_error != 0);
+ ASSERT(db->db_blkid != DMU_BONUS_BLKID);
+ ASSERT0P(db->db_buf);
+ db->db_state = DB_UNCACHED;
+ DTRACE_SET_STATE(db, "i/o error");
+ } else if (db->db_level == 0 && db->db_freed_in_flight) {
+ /* freed in flight */
+ ASSERT(zio == NULL || zio->io_error == 0);
+ arc_release(buf, db);
+ memset(buf->b_data, 0, db->db.db_size);
+ arc_buf_freeze(buf);
+ db->db_freed_in_flight = FALSE;
+ dbuf_set_data(db, buf);
+ db->db_state = DB_CACHED;
+ DTRACE_SET_STATE(db, "freed in flight");
+ } else {
+ /* success */
+ ASSERT(zio == NULL || zio->io_error == 0);
+ dbuf_set_data(db, buf);
+ db->db_state = DB_CACHED;
+ DTRACE_SET_STATE(db, "successful read");
+ }
+ cv_broadcast(&db->db_changed);
+ dbuf_rele_and_unlock(db, NULL, B_FALSE);
+}
+
+/*
+ * Shortcut for performing reads on bonus dbufs. Returns
+ * an error if we fail to verify the dnode associated with
+ * a decrypted block. Otherwise success.
+ */
+static int
+dbuf_read_bonus(dmu_buf_impl_t *db, dnode_t *dn)
+{
+ void* db_data;
+ int bonuslen, max_bonuslen;
+
+ bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen);
+ max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
+ ASSERT(MUTEX_HELD(&db->db_mtx));
+ ASSERT(DB_DNODE_HELD(db));
+ ASSERT3U(bonuslen, <=, db->db.db_size);
+ db_data = kmem_alloc(max_bonuslen, KM_SLEEP);
+ arc_space_consume(max_bonuslen, ARC_SPACE_BONUS);
+ if (bonuslen < max_bonuslen)
+ memset(db_data, 0, max_bonuslen);
+ if (bonuslen)
+ memcpy(db_data, DN_BONUS(dn->dn_phys), bonuslen);
+ db->db.db_data = db_data;
+ db->db_state = DB_CACHED;
+ DTRACE_SET_STATE(db, "bonus buffer filled");
+ return (0);
+}
+
+static void
+dbuf_handle_indirect_hole(void *data, dnode_t *dn, blkptr_t *dbbp)
+{
+ blkptr_t *bps = data;
+ uint32_t indbs = 1ULL << dn->dn_indblkshift;
+ int n_bps = indbs >> SPA_BLKPTRSHIFT;
+
+ for (int i = 0; i < n_bps; i++) {
+ blkptr_t *bp = &bps[i];
+
+ ASSERT3U(BP_GET_LSIZE(dbbp), ==, indbs);
+ BP_SET_LSIZE(bp, BP_GET_LEVEL(dbbp) == 1 ?
+ dn->dn_datablksz : BP_GET_LSIZE(dbbp));
+ BP_SET_TYPE(bp, BP_GET_TYPE(dbbp));
+ BP_SET_LEVEL(bp, BP_GET_LEVEL(dbbp) - 1);
+ BP_SET_BIRTH(bp, BP_GET_LOGICAL_BIRTH(dbbp), 0);
+ }
+}
+
+/*
+ * Handle reads on dbufs that are holes, if necessary. This function
+ * requires that the dbuf's mutex is held. Returns success (0) if action
+ * was taken, ENOENT if no action was taken.
+ */
+static int
+dbuf_read_hole(dmu_buf_impl_t *db, dnode_t *dn, blkptr_t *bp)
+{
+ ASSERT(MUTEX_HELD(&db->db_mtx));
+ arc_buf_t *db_data;
+
+ int is_hole = bp == NULL || BP_IS_HOLE(bp);
+ /*
+ * For level 0 blocks only, if the above check fails:
+ * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync()
+ * processes the delete record and clears the bp while we are waiting
+ * for the dn_mtx (resulting in a "no" from block_freed).
+ */
+ if (!is_hole && db->db_level == 0)
+ is_hole = dnode_block_freed(dn, db->db_blkid) || BP_IS_HOLE(bp);
+
+ if (is_hole) {
+ db_data = dbuf_alloc_arcbuf(db);
+ memset(db_data->b_data, 0, db->db.db_size);
+
+ if (bp != NULL && db->db_level > 0 && BP_IS_HOLE(bp) &&
+ BP_GET_LOGICAL_BIRTH(bp) != 0) {
+ dbuf_handle_indirect_hole(db_data->b_data, dn, bp);
+ }
+ dbuf_set_data(db, db_data);
+ db->db_state = DB_CACHED;
+ DTRACE_SET_STATE(db, "hole read satisfied");
+ return (0);
+ }
+ return (ENOENT);
+}
+
+/*
+ * This function ensures that, when doing a decrypting read of a block,
+ * we make sure we have decrypted the dnode associated with it. We must do
+ * this so that we ensure we are fully authenticating the checksum-of-MACs
+ * tree from the root of the objset down to this block. Indirect blocks are
+ * always verified against their secure checksum-of-MACs assuming that the
+ * dnode containing them is correct. Now that we are doing a decrypting read,
+ * we can be sure that the key is loaded and verify that assumption. This is
+ * especially important considering that we always read encrypted dnode
+ * blocks as raw data (without verifying their MACs) to start, and
+ * decrypt / authenticate them when we need to read an encrypted bonus buffer.
+ */
+static int
+dbuf_read_verify_dnode_crypt(dmu_buf_impl_t *db, dnode_t *dn,
+ dmu_flags_t flags)
+{
+ objset_t *os = db->db_objset;
+ dmu_buf_impl_t *dndb;
+ arc_buf_t *dnbuf;
+ zbookmark_phys_t zb;
+ int err;
+
+ if ((flags & DMU_READ_NO_DECRYPT) != 0 ||
+ !os->os_encrypted || os->os_raw_receive ||
+ (dndb = dn->dn_dbuf) == NULL)
+ return (0);
+
+ dnbuf = dndb->db_buf;
+ if (!arc_is_encrypted(dnbuf))
+ return (0);
+
+ mutex_enter(&dndb->db_mtx);
+
+ /*
+ * Since dnode buffer is modified by sync process, there can be only
+ * one copy of it. It means we can not modify (decrypt) it while it
+ * is being written. I don't see how this may happen now, since
+ * encrypted dnode writes by receive should be completed before any
+ * plain-text reads due to txg wait, but better be safe than sorry.
+ */
+ while (1) {
+ if (!arc_is_encrypted(dnbuf)) {
+ mutex_exit(&dndb->db_mtx);
+ return (0);
+ }
+ dbuf_dirty_record_t *dr = dndb->db_data_pending;
+ if (dr == NULL || dr->dt.dl.dr_data != dnbuf)
+ break;
+ cv_wait(&dndb->db_changed, &dndb->db_mtx);
+ };
+
+ SET_BOOKMARK(&zb, dmu_objset_id(os),
+ DMU_META_DNODE_OBJECT, 0, dndb->db_blkid);
+ err = arc_untransform(dnbuf, os->os_spa, &zb, B_TRUE);
+
+ /*
+ * An error code of EACCES tells us that the key is still not
+ * available. This is ok if we are only reading authenticated
+ * (and therefore non-encrypted) blocks.
+ */
+ if (err == EACCES && ((db->db_blkid != DMU_BONUS_BLKID &&
+ !DMU_OT_IS_ENCRYPTED(dn->dn_type)) ||
+ (db->db_blkid == DMU_BONUS_BLKID &&
+ !DMU_OT_IS_ENCRYPTED(dn->dn_bonustype))))
+ err = 0;
+
+ mutex_exit(&dndb->db_mtx);
+
+ return (err);
+}
+
+/*
+ * Drops db_mtx and the parent lock specified by dblt and tag before
+ * returning.
+ */
+static int
+dbuf_read_impl(dmu_buf_impl_t *db, dnode_t *dn, zio_t *zio, dmu_flags_t flags,
+ db_lock_type_t dblt, blkptr_t *bp, const void *tag)
+{
+ zbookmark_phys_t zb;
+ uint32_t aflags = ARC_FLAG_NOWAIT;
+ int err, zio_flags;
+
+ ASSERT(!zfs_refcount_is_zero(&db->db_holds));
+ ASSERT(MUTEX_HELD(&db->db_mtx));
+ ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
+ ASSERT0P(db->db_buf);
+ ASSERT(db->db_parent == NULL ||
+ RW_LOCK_HELD(&db->db_parent->db_rwlock));
+
+ if (db->db_blkid == DMU_BONUS_BLKID) {
+ err = dbuf_read_bonus(db, dn);
+ goto early_unlock;
+ }
+
+ err = dbuf_read_hole(db, dn, bp);
+ if (err == 0)
+ goto early_unlock;
+
+ ASSERT(bp != NULL);
+
+ /*
+ * Any attempt to read a redacted block should result in an error. This
+ * will never happen under normal conditions, but can be useful for
+ * debugging purposes.
+ */
+ if (BP_IS_REDACTED(bp)) {
+ ASSERT(dsl_dataset_feature_is_active(
+ db->db_objset->os_dsl_dataset,
+ SPA_FEATURE_REDACTED_DATASETS));
+ err = SET_ERROR(EIO);
+ goto early_unlock;
+ }
+
+ SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
+ db->db.db_object, db->db_level, db->db_blkid);
+
+ /*
+ * All bps of an encrypted os should have the encryption bit set.
+ * If this is not true it indicates tampering and we report an error.
+ */
+ if (db->db_objset->os_encrypted && !BP_USES_CRYPT(bp)) {
+ spa_log_error(db->db_objset->os_spa, &zb,
+ BP_GET_PHYSICAL_BIRTH(bp));
+ err = SET_ERROR(EIO);
+ goto early_unlock;
+ }
+
+ db->db_state = DB_READ;
+ DTRACE_SET_STATE(db, "read issued");
+ mutex_exit(&db->db_mtx);
+
+ if (!DBUF_IS_CACHEABLE(db))
+ aflags |= ARC_FLAG_UNCACHED;
+ else if (dbuf_is_l2cacheable(db, bp))
+ aflags |= ARC_FLAG_L2CACHE;
+
+ dbuf_add_ref(db, NULL);
+
+ zio_flags = (flags & DB_RF_CANFAIL) ?
+ ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED;
+
+ if ((flags & DMU_READ_NO_DECRYPT) && BP_IS_PROTECTED(bp))
+ zio_flags |= ZIO_FLAG_RAW;
+
+ /*
+ * The zio layer will copy the provided blkptr later, but we need to
+ * do this now so that we can release the parent's rwlock. We have to
+ * do that now so that if dbuf_read_done is called synchronously (on
+ * an l1 cache hit) we don't acquire the db_mtx while holding the
+ * parent's rwlock, which would be a lock ordering violation.
+ */
+ blkptr_t copy = *bp;
+ dmu_buf_unlock_parent(db, dblt, tag);
+ return (arc_read(zio, db->db_objset->os_spa, &copy,
+ dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, zio_flags,
+ &aflags, &zb));
+
+early_unlock:
+ mutex_exit(&db->db_mtx);
+ dmu_buf_unlock_parent(db, dblt, tag);
+ return (err);
+}
+
+/*
+ * This is our just-in-time copy function. It makes a copy of buffers that
+ * have been modified in a previous transaction group before we access them in
+ * the current active group.
+ *
+ * This function is used in three places: when we are dirtying a buffer for the
+ * first time in a txg, when we are freeing a range in a dnode that includes
+ * this buffer, and when we are accessing a buffer which was received compressed
+ * and later referenced in a WRITE_BYREF record.
+ *
+ * Note that when we are called from dbuf_free_range() we do not put a hold on
+ * the buffer, we just traverse the active dbuf list for the dnode.
+ */
+static void
+dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg)
+{
+ dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records);
+
+ ASSERT(MUTEX_HELD(&db->db_mtx));
+ ASSERT(db->db.db_data != NULL);
+ ASSERT0(db->db_level);
+ ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT);
+
+ if (dr == NULL ||
+ (dr->dt.dl.dr_data !=
+ ((db->db_blkid == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf)))
+ return;
+
+ /*
+ * If the last dirty record for this dbuf has not yet synced
+ * and its referencing the dbuf data, either:
+ * reset the reference to point to a new copy,
+ * or (if there a no active holders)
+ * just null out the current db_data pointer.
+ */
+ ASSERT3U(dr->dr_txg, >=, txg - 2);
+ if (db->db_blkid == DMU_BONUS_BLKID) {
+ dnode_t *dn = DB_DNODE(db);
+ int bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
+ dr->dt.dl.dr_data = kmem_alloc(bonuslen, KM_SLEEP);
+ arc_space_consume(bonuslen, ARC_SPACE_BONUS);
+ memcpy(dr->dt.dl.dr_data, db->db.db_data, bonuslen);
+ } else if (zfs_refcount_count(&db->db_holds) > db->db_dirtycnt) {
+ dnode_t *dn = DB_DNODE(db);
+ int size = arc_buf_size(db->db_buf);
+ arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
+ spa_t *spa = db->db_objset->os_spa;
+ enum zio_compress compress_type =
+ arc_get_compression(db->db_buf);
+ uint8_t complevel = arc_get_complevel(db->db_buf);
+
+ if (arc_is_encrypted(db->db_buf)) {
+ boolean_t byteorder;
+ uint8_t salt[ZIO_DATA_SALT_LEN];
+ uint8_t iv[ZIO_DATA_IV_LEN];
+ uint8_t mac[ZIO_DATA_MAC_LEN];
+
+ arc_get_raw_params(db->db_buf, &byteorder, salt,
+ iv, mac);
+ dr->dt.dl.dr_data = arc_alloc_raw_buf(spa, db,
+ dmu_objset_id(dn->dn_objset), byteorder, salt, iv,
+ mac, dn->dn_type, size, arc_buf_lsize(db->db_buf),
+ compress_type, complevel);
+ } else if (compress_type != ZIO_COMPRESS_OFF) {
+ ASSERT3U(type, ==, ARC_BUFC_DATA);
+ dr->dt.dl.dr_data = arc_alloc_compressed_buf(spa, db,
+ size, arc_buf_lsize(db->db_buf), compress_type,
+ complevel);
+ } else {
+ dr->dt.dl.dr_data = arc_alloc_buf(spa, db, type, size);
+ }
+ memcpy(dr->dt.dl.dr_data->b_data, db->db.db_data, size);
+ } else {
+ db->db_buf = NULL;
+ dbuf_clear_data(db);
+ }
+}
+
+int
+dbuf_read(dmu_buf_impl_t *db, zio_t *pio, dmu_flags_t flags)
+{
+ dnode_t *dn;
+ boolean_t miss = B_TRUE, need_wait = B_FALSE, prefetch;
+ int err;
+
+ ASSERT(!zfs_refcount_is_zero(&db->db_holds));
+
+ DB_DNODE_ENTER(db);
+ dn = DB_DNODE(db);
+
+ /*
+ * Ensure that this block's dnode has been decrypted if the caller
+ * has requested decrypted data.
+ */
+ err = dbuf_read_verify_dnode_crypt(db, dn, flags);
+ if (err != 0)
+ goto done;
+
+ prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
+ (flags & DMU_READ_NO_PREFETCH) == 0;
+
+ mutex_enter(&db->db_mtx);
+ if (!(flags & (DMU_UNCACHEDIO | DMU_KEEP_CACHING)))
+ db->db_pending_evict = B_FALSE;
+ if (flags & DMU_PARTIAL_FIRST)
+ db->db_partial_read = B_TRUE;
+ else if (!(flags & (DMU_PARTIAL_MORE | DMU_KEEP_CACHING)))
+ db->db_partial_read = B_FALSE;
+ miss = (db->db_state != DB_CACHED);
+
+ if (db->db_state == DB_READ || db->db_state == DB_FILL) {
+ /*
+ * Another reader came in while the dbuf was in flight between
+ * UNCACHED and CACHED. Either a writer will finish filling
+ * the buffer, sending the dbuf to CACHED, or the first reader's
+ * request will reach the read_done callback and send the dbuf
+ * to CACHED. Otherwise, a failure occurred and the dbuf will
+ * be sent to UNCACHED.
+ */
+ if (flags & DB_RF_NEVERWAIT) {
+ mutex_exit(&db->db_mtx);
+ DB_DNODE_EXIT(db);
+ goto done;
+ }
+ do {
+ ASSERT(db->db_state == DB_READ ||
+ (flags & DB_RF_HAVESTRUCT) == 0);
+ DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *, db,
+ zio_t *, pio);
+ cv_wait(&db->db_changed, &db->db_mtx);
+ } while (db->db_state == DB_READ || db->db_state == DB_FILL);
+ if (db->db_state == DB_UNCACHED) {
+ err = SET_ERROR(EIO);
+ mutex_exit(&db->db_mtx);
+ DB_DNODE_EXIT(db);
+ goto done;
+ }
+ }
+
+ if (db->db_state == DB_CACHED) {
+ /*
+ * If the arc buf is compressed or encrypted and the caller
+ * requested uncompressed data, we need to untransform it
+ * before returning. We also call arc_untransform() on any
+ * unauthenticated blocks, which will verify their MAC if
+ * the key is now available.
+ */
+ if ((flags & DMU_READ_NO_DECRYPT) == 0 && db->db_buf != NULL &&
+ (arc_is_encrypted(db->db_buf) ||
+ arc_is_unauthenticated(db->db_buf) ||
+ arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF)) {
+ spa_t *spa = dn->dn_objset->os_spa;
+ zbookmark_phys_t zb;
+
+ SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
+ db->db.db_object, db->db_level, db->db_blkid);
+ dbuf_fix_old_data(db, spa_syncing_txg(spa));
+ err = arc_untransform(db->db_buf, spa, &zb, B_FALSE);
+ dbuf_set_data(db, db->db_buf);
+ }
+ mutex_exit(&db->db_mtx);
+ } else {
+ ASSERT(db->db_state == DB_UNCACHED ||
+ db->db_state == DB_NOFILL);
+ db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG);
+ blkptr_t *bp;
+
+ /*
+ * If a block clone or Direct I/O write has occurred we will
+ * get the dirty records overridden BP so we get the most
+ * recent data.
+ */
+ err = dmu_buf_get_bp_from_dbuf(db, &bp);
+
+ if (!err) {
+ if (pio == NULL && (db->db_state == DB_NOFILL ||
+ (bp != NULL && !BP_IS_HOLE(bp)))) {
+ spa_t *spa = dn->dn_objset->os_spa;
+ pio =
+ zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
+ need_wait = B_TRUE;
+ }
+
+ err =
+ dbuf_read_impl(db, dn, pio, flags, dblt, bp, FTAG);
+ } else {
+ mutex_exit(&db->db_mtx);
+ dmu_buf_unlock_parent(db, dblt, FTAG);
+ }
+ /* dbuf_read_impl drops db_mtx and parent's rwlock. */
+ miss = (db->db_state != DB_CACHED);
+ }
+
+ if (err == 0 && prefetch) {
+ dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE, miss,
+ flags & DB_RF_HAVESTRUCT, (flags & DMU_UNCACHEDIO) ||
+ db->db_pending_evict);
+ }
+ DB_DNODE_EXIT(db);
+
+ /*
+ * If we created a zio we must execute it to avoid leaking it, even if
+ * it isn't attached to any work due to an error in dbuf_read_impl().
+ */
+ if (need_wait) {
+ if (err == 0)
+ err = zio_wait(pio);
+ else
+ (void) zio_wait(pio);
+ pio = NULL;
+ }
+
+done:
+ if (miss)
+ DBUF_STAT_BUMP(hash_misses);
+ else
+ DBUF_STAT_BUMP(hash_hits);
+ if (pio && err != 0) {
+ zio_t *zio = zio_null(pio, pio->io_spa, NULL, NULL, NULL,
+ ZIO_FLAG_CANFAIL);
+ zio->io_error = err;
+ zio_nowait(zio);
+ }
+
+ return (err);
+}
+
+static void
+dbuf_noread(dmu_buf_impl_t *db, dmu_flags_t flags)
+{
+ ASSERT(!zfs_refcount_is_zero(&db->db_holds));
+ ASSERT(db->db_blkid != DMU_BONUS_BLKID);
+ mutex_enter(&db->db_mtx);
+ if (!(flags & (DMU_UNCACHEDIO | DMU_KEEP_CACHING)))
+ db->db_pending_evict = B_FALSE;
+ db->db_partial_read = B_FALSE;
+ while (db->db_state == DB_READ || db->db_state == DB_FILL)
+ cv_wait(&db->db_changed, &db->db_mtx);
+ if (db->db_state == DB_UNCACHED) {
+ ASSERT0P(db->db_buf);
+ ASSERT0P(db->db.db_data);
+ dbuf_set_data(db, dbuf_alloc_arcbuf(db));
+ db->db_state = DB_FILL;
+ DTRACE_SET_STATE(db, "assigning filled buffer");
+ } else if (db->db_state == DB_NOFILL) {
+ dbuf_clear_data(db);
+ } else {
+ ASSERT3U(db->db_state, ==, DB_CACHED);
+ }
+ mutex_exit(&db->db_mtx);
+}
+
+void
+dbuf_unoverride(dbuf_dirty_record_t *dr)
+{
+ dmu_buf_impl_t *db = dr->dr_dbuf;
+ blkptr_t *bp = &dr->dt.dl.dr_overridden_by;
+ uint64_t txg = dr->dr_txg;
+
+ ASSERT(MUTEX_HELD(&db->db_mtx));
+
+ /*
+ * This assert is valid because dmu_sync() expects to be called by
+ * a zilog's get_data while holding a range lock. This call only
+ * comes from dbuf_dirty() callers who must also hold a range lock.
+ */
+ ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC);
+ ASSERT0(db->db_level);
+
+ if (db->db_blkid == DMU_BONUS_BLKID ||
+ dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN)
+ return;
+
+ ASSERT(db->db_data_pending != dr);
+
+ /* free this block */
+ if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite)
+ zio_free(db->db_objset->os_spa, txg, bp);
+
+ if (dr->dt.dl.dr_brtwrite || dr->dt.dl.dr_diowrite) {
+ ASSERT0P(dr->dt.dl.dr_data);
+ dr->dt.dl.dr_data = db->db_buf;
+ }
+ dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
+ dr->dt.dl.dr_nopwrite = B_FALSE;
+ dr->dt.dl.dr_brtwrite = B_FALSE;
+ dr->dt.dl.dr_diowrite = B_FALSE;
+ dr->dt.dl.dr_has_raw_params = B_FALSE;
+
+ /*
+ * In the event that Direct I/O was used, we do not
+ * need to release the buffer from the ARC.
+ *
+ * Release the already-written buffer, so we leave it in
+ * a consistent dirty state. Note that all callers are
+ * modifying the buffer, so they will immediately do
+ * another (redundant) arc_release(). Therefore, leave
+ * the buf thawed to save the effort of freezing &
+ * immediately re-thawing it.
+ */
+ if (dr->dt.dl.dr_data)
+ arc_release(dr->dt.dl.dr_data, db);
+}
+
+/*
+ * Evict (if its unreferenced) or clear (if its referenced) any level-0
+ * data blocks in the free range, so that any future readers will find
+ * empty blocks.
+ */
+void
+dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid,
+ dmu_tx_t *tx)
+{
+ dmu_buf_impl_t *db_search;
+ dmu_buf_impl_t *db, *db_next;
+ uint64_t txg = tx->tx_txg;
+ avl_index_t where;
+ dbuf_dirty_record_t *dr;
+
+ if (end_blkid > dn->dn_maxblkid &&
+ !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID))
+ end_blkid = dn->dn_maxblkid;
+ dprintf_dnode(dn, "start=%llu end=%llu\n", (u_longlong_t)start_blkid,
+ (u_longlong_t)end_blkid);
+
+ db_search = kmem_alloc(sizeof (dmu_buf_impl_t), KM_SLEEP);
+ db_search->db_level = 0;
+ db_search->db_blkid = start_blkid;
+ db_search->db_state = DB_SEARCH;
+
+ mutex_enter(&dn->dn_dbufs_mtx);
+ db = avl_find(&dn->dn_dbufs, db_search, &where);
+ ASSERT0P(db);
+
+ db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
+
+ for (; db != NULL; db = db_next) {
+ db_next = AVL_NEXT(&dn->dn_dbufs, db);
+ ASSERT(db->db_blkid != DMU_BONUS_BLKID);
+
+ if (db->db_level != 0 || db->db_blkid > end_blkid) {
+ break;
+ }
+ ASSERT3U(db->db_blkid, >=, start_blkid);
+
+ /* found a level 0 buffer in the range */
+ mutex_enter(&db->db_mtx);
+ if (dbuf_undirty(db, tx)) {
+ /* mutex has been dropped and dbuf destroyed */
+ continue;
+ }
+
+ if (db->db_state == DB_UNCACHED ||
+ db->db_state == DB_NOFILL ||
+ db->db_state == DB_EVICTING) {
+ ASSERT0P(db->db.db_data);
+ mutex_exit(&db->db_mtx);
+ continue;
+ }
+ if (db->db_state == DB_READ || db->db_state == DB_FILL) {
+ /* will be handled in dbuf_read_done or dbuf_rele */
+ db->db_freed_in_flight = TRUE;
+ mutex_exit(&db->db_mtx);
+ continue;
+ }
+ if (zfs_refcount_count(&db->db_holds) == 0) {
+ ASSERT(db->db_buf);
+ dbuf_destroy(db);
+ continue;
+ }
+ /* The dbuf is referenced */
+
+ dr = list_head(&db->db_dirty_records);
+ if (dr != NULL) {
+ if (dr->dr_txg == txg) {
+ /*
+ * This buffer is "in-use", re-adjust the file
+ * size to reflect that this buffer may
+ * contain new data when we sync.
+ */
+ if (db->db_blkid != DMU_SPILL_BLKID &&
+ db->db_blkid > dn->dn_maxblkid)
+ dn->dn_maxblkid = db->db_blkid;
+ dbuf_unoverride(dr);
+ } else {
+ /*
+ * This dbuf is not dirty in the open context.
+ * Either uncache it (if its not referenced in
+ * the open context) or reset its contents to
+ * empty.
+ */
+ dbuf_fix_old_data(db, txg);
+ }
+ }
+ /* clear the contents if its cached */
+ if (db->db_state == DB_CACHED) {
+ ASSERT(db->db.db_data != NULL);
+ arc_release(db->db_buf, db);
+ rw_enter(&db->db_rwlock, RW_WRITER);
+ memset(db->db.db_data, 0, db->db.db_size);
+ rw_exit(&db->db_rwlock);
+ arc_buf_freeze(db->db_buf);
+ }
+
+ mutex_exit(&db->db_mtx);
+ }
+
+ mutex_exit(&dn->dn_dbufs_mtx);
+ kmem_free(db_search, sizeof (dmu_buf_impl_t));
+}
+
+void
+dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx)
+{
+ arc_buf_t *buf, *old_buf;
+ dbuf_dirty_record_t *dr;
+ int osize = db->db.db_size;
+ arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
+ dnode_t *dn;
+
+ ASSERT(db->db_blkid != DMU_BONUS_BLKID);
+
+ DB_DNODE_ENTER(db);
+ dn = DB_DNODE(db);
+
+ /*
+ * XXX we should be doing a dbuf_read, checking the return
+ * value and returning that up to our callers
+ */
+ dmu_buf_will_dirty(&db->db, tx);
+
+ VERIFY3P(db->db_buf, !=, NULL);
+
+ /* create the data buffer for the new block */
+ buf = arc_alloc_buf(dn->dn_objset->os_spa, db, type, size);
+
+ /* copy old block data to the new block */
+ old_buf = db->db_buf;
+ memcpy(buf->b_data, old_buf->b_data, MIN(osize, size));
+ /* zero the remainder */
+ if (size > osize)
+ memset((uint8_t *)buf->b_data + osize, 0, size - osize);
+
+ mutex_enter(&db->db_mtx);
+ dbuf_set_data(db, buf);
+ arc_buf_destroy(old_buf, db);
+ db->db.db_size = size;
+
+ dr = list_head(&db->db_dirty_records);
+ /* dirty record added by dmu_buf_will_dirty() */
+ VERIFY(dr != NULL);
+ if (db->db_level == 0)
+ dr->dt.dl.dr_data = buf;
+ ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
+ ASSERT3U(dr->dr_accounted, ==, osize);
+ dr->dr_accounted = size;
+ mutex_exit(&db->db_mtx);
+
+ dmu_objset_willuse_space(dn->dn_objset, size - osize, tx);
+ DB_DNODE_EXIT(db);
+}
+
+void
+dbuf_release_bp(dmu_buf_impl_t *db)
+{
+ objset_t *os __maybe_unused = db->db_objset;
+
+ ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
+ ASSERT(arc_released(os->os_phys_buf) ||
+ list_link_active(&os->os_dsl_dataset->ds_synced_link));
+ ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf));
+
+ (void) arc_release(db->db_buf, db);
+}
+
+/*
+ * We already have a dirty record for this TXG, and we are being
+ * dirtied again.
+ */
+static void
+dbuf_redirty(dbuf_dirty_record_t *dr)
+{
+ dmu_buf_impl_t *db = dr->dr_dbuf;
+
+ ASSERT(MUTEX_HELD(&db->db_mtx));
+
+ if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) {
+ /*
+ * If this buffer has already been written out,
+ * we now need to reset its state.
+ */
+ dbuf_unoverride(dr);
+ if (db->db.db_object != DMU_META_DNODE_OBJECT &&
+ db->db_state != DB_NOFILL) {
+ /* Already released on initial dirty, so just thaw. */
+ ASSERT(arc_released(db->db_buf));
+ arc_buf_thaw(db->db_buf);
+ }
+
+ /*
+ * Clear the rewrite flag since this is now a logical
+ * modification.
+ */
+ dr->dt.dl.dr_rewrite = B_FALSE;
+ }
+}
+
+dbuf_dirty_record_t *
+dbuf_dirty_lightweight(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx)
+{
+ rw_enter(&dn->dn_struct_rwlock, RW_READER);
+ IMPLY(dn->dn_objset->os_raw_receive, dn->dn_maxblkid >= blkid);
+ dnode_new_blkid(dn, blkid, tx, B_TRUE, B_FALSE);
+ ASSERT(dn->dn_maxblkid >= blkid);
+
+ dbuf_dirty_record_t *dr = kmem_zalloc(sizeof (*dr), KM_SLEEP);
+ list_link_init(&dr->dr_dirty_node);
+ list_link_init(&dr->dr_dbuf_node);
+ dr->dr_dnode = dn;
+ dr->dr_txg = tx->tx_txg;
+ dr->dt.dll.dr_blkid = blkid;
+ dr->dr_accounted = dn->dn_datablksz;
+
+ /*
+ * There should not be any dbuf for the block that we're dirtying.
+ * Otherwise the buffer contents could be inconsistent between the
+ * dbuf and the lightweight dirty record.
+ */
+ ASSERT3P(NULL, ==, dbuf_find(dn->dn_objset, dn->dn_object, 0, blkid,
+ NULL));
+
+ mutex_enter(&dn->dn_mtx);
+ int txgoff = tx->tx_txg & TXG_MASK;
+ if (dn->dn_free_ranges[txgoff] != NULL) {
+ zfs_range_tree_clear(dn->dn_free_ranges[txgoff], blkid, 1);
+ }
+
+ if (dn->dn_nlevels == 1) {
+ ASSERT3U(blkid, <, dn->dn_nblkptr);
+ list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
+ mutex_exit(&dn->dn_mtx);
+ rw_exit(&dn->dn_struct_rwlock);
+ dnode_setdirty(dn, tx);
+ } else {
+ mutex_exit(&dn->dn_mtx);
+
+ int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
+ dmu_buf_impl_t *parent_db = dbuf_hold_level(dn,
+ 1, blkid >> epbs, FTAG);
+ rw_exit(&dn->dn_struct_rwlock);
+ if (parent_db == NULL) {
+ kmem_free(dr, sizeof (*dr));
+ return (NULL);
+ }
+ int err = dbuf_read(parent_db, NULL, DB_RF_CANFAIL |
+ DMU_READ_NO_PREFETCH);
+ if (err != 0) {
+ dbuf_rele(parent_db, FTAG);
+ kmem_free(dr, sizeof (*dr));
+ return (NULL);
+ }
+
+ dbuf_dirty_record_t *parent_dr = dbuf_dirty(parent_db, tx);
+ dbuf_rele(parent_db, FTAG);
+ mutex_enter(&parent_dr->dt.di.dr_mtx);
+ ASSERT3U(parent_dr->dr_txg, ==, tx->tx_txg);
+ list_insert_tail(&parent_dr->dt.di.dr_children, dr);
+ mutex_exit(&parent_dr->dt.di.dr_mtx);
+ dr->dr_parent = parent_dr;
+ }
+
+ dmu_objset_willuse_space(dn->dn_objset, dr->dr_accounted, tx);
+
+ return (dr);
+}
+
+dbuf_dirty_record_t *
+dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
+{
+ dnode_t *dn;
+ objset_t *os;
+ dbuf_dirty_record_t *dr, *dr_next, *dr_head;
+ int txgoff = tx->tx_txg & TXG_MASK;
+ boolean_t drop_struct_rwlock = B_FALSE;
+
+ ASSERT(tx->tx_txg != 0);
+ ASSERT(!zfs_refcount_is_zero(&db->db_holds));
+ DMU_TX_DIRTY_BUF(tx, db);
+
+ DB_DNODE_ENTER(db);
+ dn = DB_DNODE(db);
+ /*
+ * Shouldn't dirty a regular buffer in syncing context. Private
+ * objects may be dirtied in syncing context, but only if they
+ * were already pre-dirtied in open context.
+ */
+#ifdef ZFS_DEBUG
+ if (dn->dn_objset->os_dsl_dataset != NULL) {
+ rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
+ RW_READER, FTAG);
+ }
+ ASSERT(!dmu_tx_is_syncing(tx) ||
+ BP_IS_HOLE(dn->dn_objset->os_rootbp) ||
+ DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
+ dn->dn_objset->os_dsl_dataset == NULL);
+ if (dn->dn_objset->os_dsl_dataset != NULL)
+ rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG);
+#endif
+
+ mutex_enter(&db->db_mtx);
+ /*
+ * XXX make this true for indirects too? The problem is that
+ * transactions created with dmu_tx_create_assigned() from
+ * syncing context don't bother holding ahead.
+ */
+ ASSERT(db->db_level != 0 ||
+ db->db_state == DB_CACHED || db->db_state == DB_FILL ||
+ db->db_state == DB_NOFILL);
+
+ if (db->db_blkid == DMU_SPILL_BLKID)
+ dn->dn_have_spill = B_TRUE;
+
+ /*
+ * If this buffer is already dirty, we're done.
+ */
+ dr_head = list_head(&db->db_dirty_records);
+ ASSERT(dr_head == NULL || dr_head->dr_txg <= tx->tx_txg ||
+ db->db.db_object == DMU_META_DNODE_OBJECT);
+ dr_next = dbuf_find_dirty_lte(db, tx->tx_txg);
+ if (dr_next && dr_next->dr_txg == tx->tx_txg) {
+ DB_DNODE_EXIT(db);
+
+ dbuf_redirty(dr_next);
+ mutex_exit(&db->db_mtx);
+ return (dr_next);
+ }
+
+ ASSERT3U(dn->dn_nlevels, >, db->db_level);
+
+ /*
+ * We should only be dirtying in syncing context if it's the
+ * mos or we're initializing the os or it's a special object.
+ * However, we are allowed to dirty in syncing context provided
+ * we already dirtied it in open context. Hence we must make
+ * this assertion only if we're not already dirty.
+ */
+ os = dn->dn_objset;
+ VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(os->os_spa));
+#ifdef ZFS_DEBUG
+ if (dn->dn_objset->os_dsl_dataset != NULL)
+ rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG);
+ ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
+ os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp));
+ if (dn->dn_objset->os_dsl_dataset != NULL)
+ rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG);
+#endif
+ ASSERT(db->db.db_size != 0);
+
+ dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
+
+ if (db->db_blkid != DMU_BONUS_BLKID && db->db_state != DB_NOFILL) {
+ dmu_objset_willuse_space(os, db->db.db_size, tx);
+ }
+
+ /*
+ * If this buffer is dirty in an old transaction group we need
+ * to make a copy of it so that the changes we make in this
+ * transaction group won't leak out when we sync the older txg.
+ */
+ dr = kmem_cache_alloc(dbuf_dirty_kmem_cache, KM_SLEEP);
+ memset(dr, 0, sizeof (*dr));
+ list_link_init(&dr->dr_dirty_node);
+ list_link_init(&dr->dr_dbuf_node);
+ dr->dr_dnode = dn;
+ if (db->db_level == 0) {
+ void *data_old = db->db_buf;
+
+ if (db->db_state != DB_NOFILL) {
+ if (db->db_blkid == DMU_BONUS_BLKID) {
+ dbuf_fix_old_data(db, tx->tx_txg);
+ data_old = db->db.db_data;
+ } else if (db->db.db_object != DMU_META_DNODE_OBJECT) {
+ /*
+ * Release the data buffer from the cache so
+ * that we can modify it without impacting
+ * possible other users of this cached data
+ * block. Note that indirect blocks and
+ * private objects are not released until the
+ * syncing state (since they are only modified
+ * then).
+ */
+ arc_release(db->db_buf, db);
+ dbuf_fix_old_data(db, tx->tx_txg);
+ data_old = db->db_buf;
+ }
+ ASSERT(data_old != NULL);
+ }
+ dr->dt.dl.dr_data = data_old;
+ } else {
+ mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_NOLOCKDEP, NULL);
+ list_create(&dr->dt.di.dr_children,
+ sizeof (dbuf_dirty_record_t),
+ offsetof(dbuf_dirty_record_t, dr_dirty_node));
+ }
+ if (db->db_blkid != DMU_BONUS_BLKID && db->db_state != DB_NOFILL) {
+ dr->dr_accounted = db->db.db_size;
+ }
+ dr->dr_dbuf = db;
+ dr->dr_txg = tx->tx_txg;
+ list_insert_before(&db->db_dirty_records, dr_next, dr);
+
+ /*
+ * We could have been freed_in_flight between the dbuf_noread
+ * and dbuf_dirty. We win, as though the dbuf_noread() had
+ * happened after the free.
+ */
+ if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
+ db->db_blkid != DMU_SPILL_BLKID) {
+ mutex_enter(&dn->dn_mtx);
+ if (dn->dn_free_ranges[txgoff] != NULL) {
+ zfs_range_tree_clear(dn->dn_free_ranges[txgoff],
+ db->db_blkid, 1);
+ }
+ mutex_exit(&dn->dn_mtx);
+ db->db_freed_in_flight = FALSE;
+ }
+
+ /*
+ * This buffer is now part of this txg
+ */
+ dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg);
+ db->db_dirtycnt += 1;
+ ASSERT3U(db->db_dirtycnt, <=, 3);
+
+ mutex_exit(&db->db_mtx);
+
+ if (db->db_blkid == DMU_BONUS_BLKID ||
+ db->db_blkid == DMU_SPILL_BLKID) {
+ mutex_enter(&dn->dn_mtx);
+ ASSERT(!list_link_active(&dr->dr_dirty_node));
+ list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
+ mutex_exit(&dn->dn_mtx);
+ dnode_setdirty(dn, tx);
+ DB_DNODE_EXIT(db);
+ return (dr);
+ }
+
+ if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
+ rw_enter(&dn->dn_struct_rwlock, RW_READER);
+ drop_struct_rwlock = B_TRUE;
+ }
+
+ /*
+ * If we are overwriting a dedup BP, then unless it is snapshotted,
+ * when we get to syncing context we will need to decrement its
+ * refcount in the DDT. Prefetch the relevant DDT block so that
+ * syncing context won't have to wait for the i/o.
+ */
+ if (db->db_blkptr != NULL) {
+ db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG);
+ ddt_prefetch(os->os_spa, db->db_blkptr);
+ dmu_buf_unlock_parent(db, dblt, FTAG);
+ }
+
+ /*
+ * We need to hold the dn_struct_rwlock to make this assertion,
+ * because it protects dn_phys / dn_next_nlevels from changing.
+ */
+ ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) ||
+ dn->dn_phys->dn_nlevels > db->db_level ||
+ dn->dn_next_nlevels[txgoff] > db->db_level ||
+ dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level ||
+ dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level);
+
+
+ if (db->db_level == 0) {
+ ASSERT(!db->db_objset->os_raw_receive ||
+ dn->dn_maxblkid >= db->db_blkid);
+ dnode_new_blkid(dn, db->db_blkid, tx,
+ drop_struct_rwlock, B_FALSE);
+ ASSERT(dn->dn_maxblkid >= db->db_blkid);
+ }
+
+ if (db->db_level+1 < dn->dn_nlevels) {
+ dmu_buf_impl_t *parent = db->db_parent;
+ dbuf_dirty_record_t *di;
+ int parent_held = FALSE;
+
+ if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) {
+ int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
+ parent = dbuf_hold_level(dn, db->db_level + 1,
+ db->db_blkid >> epbs, FTAG);
+ ASSERT(parent != NULL);
+ parent_held = TRUE;
+ }
+ if (drop_struct_rwlock)
+ rw_exit(&dn->dn_struct_rwlock);
+ ASSERT3U(db->db_level + 1, ==, parent->db_level);
+ di = dbuf_dirty(parent, tx);
+ if (parent_held)
+ dbuf_rele(parent, FTAG);
+
+ mutex_enter(&db->db_mtx);
+ /*
+ * Since we've dropped the mutex, it's possible that
+ * dbuf_undirty() might have changed this out from under us.
+ */
+ if (list_head(&db->db_dirty_records) == dr ||
+ dn->dn_object == DMU_META_DNODE_OBJECT) {
+ mutex_enter(&di->dt.di.dr_mtx);
+ ASSERT3U(di->dr_txg, ==, tx->tx_txg);
+ ASSERT(!list_link_active(&dr->dr_dirty_node));
+ list_insert_tail(&di->dt.di.dr_children, dr);
+ mutex_exit(&di->dt.di.dr_mtx);
+ dr->dr_parent = di;
+ }
+ mutex_exit(&db->db_mtx);
+ } else {
+ ASSERT(db->db_level + 1 == dn->dn_nlevels);
+ ASSERT(db->db_blkid < dn->dn_nblkptr);
+ ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf);
+ mutex_enter(&dn->dn_mtx);
+ ASSERT(!list_link_active(&dr->dr_dirty_node));
+ list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
+ mutex_exit(&dn->dn_mtx);
+ if (drop_struct_rwlock)
+ rw_exit(&dn->dn_struct_rwlock);
+ }
+
+ dnode_setdirty(dn, tx);
+ DB_DNODE_EXIT(db);
+ return (dr);
+}
+
+static void
+dbuf_undirty_bonus(dbuf_dirty_record_t *dr)
+{
+ dmu_buf_impl_t *db = dr->dr_dbuf;
+
+ ASSERT(MUTEX_HELD(&db->db_mtx));
+ if (dr->dt.dl.dr_data != db->db.db_data) {
+ struct dnode *dn = dr->dr_dnode;
+ int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
+
+ kmem_free(dr->dt.dl.dr_data, max_bonuslen);
+ arc_space_return(max_bonuslen, ARC_SPACE_BONUS);
+ }
+ db->db_data_pending = NULL;
+ ASSERT(list_next(&db->db_dirty_records, dr) == NULL);
+ list_remove(&db->db_dirty_records, dr);
+ if (dr->dr_dbuf->db_level != 0) {
+ mutex_destroy(&dr->dt.di.dr_mtx);
+ list_destroy(&dr->dt.di.dr_children);
+ }
+ kmem_cache_free(dbuf_dirty_kmem_cache, dr);
+ ASSERT3U(db->db_dirtycnt, >, 0);
+ db->db_dirtycnt -= 1;
+}
+
+/*
+ * Undirty a buffer in the transaction group referenced by the given
+ * transaction. Return whether this evicted the dbuf.
+ */
+boolean_t
+dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
+{
+ uint64_t txg = tx->tx_txg;
+ boolean_t brtwrite;
+ boolean_t diowrite;
+
+ ASSERT(txg != 0);
+
+ /*
+ * Due to our use of dn_nlevels below, this can only be called
+ * in open context, unless we are operating on the MOS or it's
+ * a special object. From syncing context, dn_nlevels may be
+ * different from the dn_nlevels used when dbuf was dirtied.
+ */
+ ASSERT(db->db_objset ==
+ dmu_objset_pool(db->db_objset)->dp_meta_objset ||
+ DMU_OBJECT_IS_SPECIAL(db->db.db_object) ||
+ txg != spa_syncing_txg(dmu_objset_spa(db->db_objset)));
+ ASSERT(db->db_blkid != DMU_BONUS_BLKID);
+ ASSERT0(db->db_level);
+ ASSERT(MUTEX_HELD(&db->db_mtx));
+
+ /*
+ * If this buffer is not dirty, we're done.
+ */
+ dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, txg);
+ if (dr == NULL)
+ return (B_FALSE);
+ ASSERT(dr->dr_dbuf == db);
+
+ brtwrite = dr->dt.dl.dr_brtwrite;
+ diowrite = dr->dt.dl.dr_diowrite;
+ if (brtwrite) {
+ ASSERT3B(diowrite, ==, B_FALSE);
+ /*
+ * We are freeing a block that we cloned in the same
+ * transaction group.
+ */
+ blkptr_t *bp = &dr->dt.dl.dr_overridden_by;
+ if (!BP_IS_HOLE(bp) && !BP_IS_EMBEDDED(bp)) {
+ brt_pending_remove(dmu_objset_spa(db->db_objset),
+ bp, tx);
+ }
+ }
+
+ dnode_t *dn = dr->dr_dnode;
+
+ dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
+
+ ASSERT(db->db.db_size != 0);
+
+ dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset),
+ dr->dr_accounted, txg);
+
+ list_remove(&db->db_dirty_records, dr);
+
+ /*
+ * Note that there are three places in dbuf_dirty()
+ * where this dirty record may be put on a list.
+ * Make sure to do a list_remove corresponding to
+ * every one of those list_insert calls.
+ */
+ if (dr->dr_parent) {
+ mutex_enter(&dr->dr_parent->dt.di.dr_mtx);
+ list_remove(&dr->dr_parent->dt.di.dr_children, dr);
+ mutex_exit(&dr->dr_parent->dt.di.dr_mtx);
+ } else if (db->db_blkid == DMU_SPILL_BLKID ||
+ db->db_level + 1 == dn->dn_nlevels) {
+ ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf);
+ mutex_enter(&dn->dn_mtx);
+ list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr);
+ mutex_exit(&dn->dn_mtx);
+ }
+
+ if (db->db_state != DB_NOFILL && !brtwrite) {
+ dbuf_unoverride(dr);
+
+ if (dr->dt.dl.dr_data != db->db_buf) {
+ ASSERT(db->db_buf != NULL);
+ ASSERT(dr->dt.dl.dr_data != NULL);
+ arc_buf_destroy(dr->dt.dl.dr_data, db);
+ }
+ }
+
+ kmem_cache_free(dbuf_dirty_kmem_cache, dr);
+
+ ASSERT(db->db_dirtycnt > 0);
+ db->db_dirtycnt -= 1;
+
+ if (zfs_refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) {
+ ASSERT(db->db_state == DB_NOFILL || brtwrite || diowrite ||
+ arc_released(db->db_buf));
+ dbuf_destroy(db);
+ return (B_TRUE);
+ }
+
+ return (B_FALSE);
+}
+
+void
+dmu_buf_will_dirty_flags(dmu_buf_t *db_fake, dmu_tx_t *tx, dmu_flags_t flags)
+{
+ dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
+ boolean_t undirty = B_FALSE;
+
+ ASSERT(tx->tx_txg != 0);
+ ASSERT(!zfs_refcount_is_zero(&db->db_holds));
+
+ /*
+ * Quick check for dirtiness to improve performance for some workloads
+ * (e.g. file deletion with indirect blocks cached).
+ */
+ mutex_enter(&db->db_mtx);
+ if (db->db_state == DB_CACHED || db->db_state == DB_NOFILL) {
+ /*
+ * It's possible that the dbuf is already dirty but not cached,
+ * because there are some calls to dbuf_dirty() that don't
+ * go through dmu_buf_will_dirty().
+ */
+ dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, tx->tx_txg);
+ if (dr != NULL) {
+ if (db->db_level == 0 &&
+ dr->dt.dl.dr_brtwrite) {
+ /*
+ * Block cloning: If we are dirtying a cloned
+ * level 0 block, we cannot simply redirty it,
+ * because this dr has no associated data.
+ * We will go through a full undirtying below,
+ * before dirtying it again.
+ */
+ undirty = B_TRUE;
+ } else {
+ /* This dbuf is already dirty and cached. */
+ dbuf_redirty(dr);
+ mutex_exit(&db->db_mtx);
+ return;
+ }
+ }
+ }
+ mutex_exit(&db->db_mtx);
+
+ DB_DNODE_ENTER(db);
+ if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock))
+ flags |= DB_RF_HAVESTRUCT;
+ DB_DNODE_EXIT(db);
+
+ /*
+ * Block cloning: Do the dbuf_read() before undirtying the dbuf, as we
+ * want to make sure dbuf_read() will read the pending cloned block and
+ * not the uderlying block that is being replaced. dbuf_undirty() will
+ * do brt_pending_remove() before removing the dirty record.
+ */
+ (void) dbuf_read(db, NULL, flags | DB_RF_MUST_SUCCEED);
+ if (undirty) {
+ mutex_enter(&db->db_mtx);
+ VERIFY(!dbuf_undirty(db, tx));
+ mutex_exit(&db->db_mtx);
+ }
+ (void) dbuf_dirty(db, tx);
+}
+
+void
+dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
+{
+ dmu_buf_will_dirty_flags(db_fake, tx, DMU_READ_NO_PREFETCH);
+}
+
+void
+dmu_buf_will_rewrite(dmu_buf_t *db_fake, dmu_tx_t *tx)
+{
+ dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
+
+ ASSERT(tx->tx_txg != 0);
+ ASSERT(!zfs_refcount_is_zero(&db->db_holds));
+
+ /*
+ * If the dbuf is already dirty in this txg, it will be written
+ * anyway, so there's nothing to do.
+ */
+ mutex_enter(&db->db_mtx);
+ if (dbuf_find_dirty_eq(db, tx->tx_txg) != NULL) {
+ mutex_exit(&db->db_mtx);
+ return;
+ }
+ mutex_exit(&db->db_mtx);
+
+ /*
+ * The dbuf is not dirty, so we need to make it dirty and
+ * mark it for rewrite (preserve logical birth time).
+ */
+ dmu_buf_will_dirty_flags(db_fake, tx, DMU_READ_NO_PREFETCH);
+
+ mutex_enter(&db->db_mtx);
+ dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, tx->tx_txg);
+ if (dr != NULL && db->db_level == 0)
+ dr->dt.dl.dr_rewrite = B_TRUE;
+ mutex_exit(&db->db_mtx);
+}
+
+boolean_t
+dmu_buf_is_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
+{
+ dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
+ dbuf_dirty_record_t *dr;
+
+ mutex_enter(&db->db_mtx);
+ dr = dbuf_find_dirty_eq(db, tx->tx_txg);
+ mutex_exit(&db->db_mtx);
+ return (dr != NULL);
+}
+
+/*
+ * Normally the db_blkptr points to the most recent on-disk content for the
+ * dbuf (and anything newer will be cached in the dbuf). However, a pending
+ * block clone or not yet synced Direct I/O write will have a dirty record BP
+ * pointing to the most recent data.
+ */
+int
+dmu_buf_get_bp_from_dbuf(dmu_buf_impl_t *db, blkptr_t **bp)
+{
+ ASSERT(MUTEX_HELD(&db->db_mtx));
+ int error = 0;
+
+ if (db->db_level != 0) {
+ *bp = db->db_blkptr;
+ return (0);
+ }
+
+ *bp = db->db_blkptr;
+ dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records);
+ if (dr && db->db_state == DB_NOFILL) {
+ /* Block clone */
+ if (!dr->dt.dl.dr_brtwrite)
+ error = EIO;
+ else
+ *bp = &dr->dt.dl.dr_overridden_by;
+ } else if (dr && db->db_state == DB_UNCACHED) {
+ /* Direct I/O write */
+ if (dr->dt.dl.dr_diowrite)
+ *bp = &dr->dt.dl.dr_overridden_by;
+ }
+
+ return (error);
+}
+
+/*
+ * Direct I/O reads can read directly from the ARC, but the data has
+ * to be untransformed in order to copy it over into user pages.
+ */
+int
+dmu_buf_untransform_direct(dmu_buf_impl_t *db, spa_t *spa)
+{
+ int err = 0;
+ DB_DNODE_ENTER(db);
+ dnode_t *dn = DB_DNODE(db);
+
+ ASSERT3S(db->db_state, ==, DB_CACHED);
+ ASSERT(MUTEX_HELD(&db->db_mtx));
+
+ /*
+ * Ensure that this block's dnode has been decrypted if
+ * the caller has requested decrypted data.
+ */
+ err = dbuf_read_verify_dnode_crypt(db, dn, 0);
+
+ /*
+ * If the arc buf is compressed or encrypted and the caller
+ * requested uncompressed data, we need to untransform it
+ * before returning. We also call arc_untransform() on any
+ * unauthenticated blocks, which will verify their MAC if
+ * the key is now available.
+ */
+ if (err == 0 && db->db_buf != NULL &&
+ (arc_is_encrypted(db->db_buf) ||
+ arc_is_unauthenticated(db->db_buf) ||
+ arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF)) {
+ zbookmark_phys_t zb;
+
+ SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
+ db->db.db_object, db->db_level, db->db_blkid);
+ dbuf_fix_old_data(db, spa_syncing_txg(spa));
+ err = arc_untransform(db->db_buf, spa, &zb, B_FALSE);
+ dbuf_set_data(db, db->db_buf);
+ }
+ DB_DNODE_EXIT(db);
+ DBUF_STAT_BUMP(hash_hits);
+
+ return (err);
+}
+
+void
+dmu_buf_will_clone_or_dio(dmu_buf_t *db_fake, dmu_tx_t *tx)
+{
+ /*
+ * Block clones and Direct I/O writes always happen in open-context.
+ */
+ dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
+ ASSERT0(db->db_level);
+ ASSERT(!dmu_tx_is_syncing(tx));
+ ASSERT0(db->db_level);
+ ASSERT(db->db_blkid != DMU_BONUS_BLKID);
+ ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT);
+
+ mutex_enter(&db->db_mtx);
+ DBUF_VERIFY(db);
+
+ /*
+ * We are going to clone or issue a Direct I/O write on this block, so
+ * undirty modifications done to this block so far in this txg. This
+ * includes writes and clones into this block.
+ *
+ * If there dirty record associated with this txg from a previous Direct
+ * I/O write then space accounting cleanup takes place. It is important
+ * to go ahead free up the space accounting through dbuf_undirty() ->
+ * dbuf_unoverride() -> zio_free(). Space accountiung for determining
+ * if a write can occur in zfs_write() happens through dmu_tx_assign().
+ * This can cause an issue with Direct I/O writes in the case of
+ * overwriting the same block, because all DVA allocations are being
+ * done in open-context. Constantly allowing Direct I/O overwrites to
+ * the same block can exhaust the pools available space leading to
+ * ENOSPC errors at the DVA allocation part of the ZIO pipeline, which
+ * will eventually suspend the pool. By cleaning up sapce acccounting
+ * now, the ENOSPC error can be avoided.
+ *
+ * Since we are undirtying the record in open-context, we must have a
+ * hold on the db, so it should never be evicted after calling
+ * dbuf_undirty().
+ */
+ VERIFY3B(dbuf_undirty(db, tx), ==, B_FALSE);
+ ASSERT0P(dbuf_find_dirty_eq(db, tx->tx_txg));
+
+ if (db->db_buf != NULL) {
+ /*
+ * If there is an associated ARC buffer with this dbuf we can
+ * only destroy it if the previous dirty record does not
+ * reference it.
+ */
+ dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records);
+ if (dr == NULL || dr->dt.dl.dr_data != db->db_buf)
+ arc_buf_destroy(db->db_buf, db);
+
+ /*
+ * Setting the dbuf's data pointers to NULL will force all
+ * future reads down to the devices to get the most up to date
+ * version of the data after a Direct I/O write has completed.
+ */
+ db->db_buf = NULL;
+ dbuf_clear_data(db);
+ }
+
+ ASSERT0P(db->db_buf);
+ ASSERT0P(db->db.db_data);
+
+ db->db_state = DB_NOFILL;
+ DTRACE_SET_STATE(db,
+ "allocating NOFILL buffer for clone or direct I/O write");
+
+ DBUF_VERIFY(db);
+ mutex_exit(&db->db_mtx);
+
+ dbuf_noread(db, DMU_KEEP_CACHING);
+ (void) dbuf_dirty(db, tx);
+}
+
+void
+dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
+{
+ dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
+
+ mutex_enter(&db->db_mtx);
+ db->db_state = DB_NOFILL;
+ DTRACE_SET_STATE(db, "allocating NOFILL buffer");
+ mutex_exit(&db->db_mtx);
+
+ dbuf_noread(db, DMU_KEEP_CACHING);
+ (void) dbuf_dirty(db, tx);
+}
+
+void
+dmu_buf_will_fill_flags(dmu_buf_t *db_fake, dmu_tx_t *tx, boolean_t canfail,
+ dmu_flags_t flags)
+{
+ dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
+
+ ASSERT(db->db_blkid != DMU_BONUS_BLKID);
+ ASSERT(tx->tx_txg != 0);
+ ASSERT0(db->db_level);
+ ASSERT(!zfs_refcount_is_zero(&db->db_holds));
+
+ ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT ||
+ dmu_tx_private_ok(tx));
+
+ mutex_enter(&db->db_mtx);
+ dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, tx->tx_txg);
+ if (db->db_state == DB_NOFILL ||
+ (db->db_state == DB_UNCACHED && dr && dr->dt.dl.dr_diowrite)) {
+ /*
+ * If the fill can fail we should have a way to return back to
+ * the cloned or Direct I/O write data.
+ */
+ if (canfail && dr) {
+ mutex_exit(&db->db_mtx);
+ dmu_buf_will_dirty_flags(db_fake, tx, flags);
+ return;
+ }
+ /*
+ * Block cloning: We will be completely overwriting a block
+ * cloned in this transaction group, so let's undirty the
+ * pending clone and mark the block as uncached. This will be
+ * as if the clone was never done.
+ */
+ if (db->db_state == DB_NOFILL) {
+ VERIFY(!dbuf_undirty(db, tx));
+ db->db_state = DB_UNCACHED;
+ }
+ }
+ mutex_exit(&db->db_mtx);
+
+ dbuf_noread(db, flags);
+ (void) dbuf_dirty(db, tx);
+}
+
+void
+dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx, boolean_t canfail)
+{
+ dmu_buf_will_fill_flags(db_fake, tx, canfail, DMU_READ_NO_PREFETCH);
+}
+
+/*
+ * This function is effectively the same as dmu_buf_will_dirty(), but
+ * indicates the caller expects raw encrypted data in the db, and provides
+ * the crypt params (byteorder, salt, iv, mac) which should be stored in the
+ * blkptr_t when this dbuf is written. This is only used for blocks of
+ * dnodes, during raw receive.
+ */
+void
+dmu_buf_set_crypt_params(dmu_buf_t *db_fake, boolean_t byteorder,
+ const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, dmu_tx_t *tx)
+{
+ dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
+ dbuf_dirty_record_t *dr;
+
+ /*
+ * dr_has_raw_params is only processed for blocks of dnodes
+ * (see dbuf_sync_dnode_leaf_crypt()).
+ */
+ ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT);
+ ASSERT0(db->db_level);
+ ASSERT(db->db_objset->os_raw_receive);
+
+ dmu_buf_will_dirty_flags(db_fake, tx,
+ DMU_READ_NO_PREFETCH | DMU_READ_NO_DECRYPT);
+
+ dr = dbuf_find_dirty_eq(db, tx->tx_txg);
+
+ ASSERT3P(dr, !=, NULL);
+ ASSERT3U(dr->dt.dl.dr_override_state, ==, DR_NOT_OVERRIDDEN);
+
+ dr->dt.dl.dr_has_raw_params = B_TRUE;
+ dr->dt.dl.dr_byteorder = byteorder;
+ memcpy(dr->dt.dl.dr_salt, salt, ZIO_DATA_SALT_LEN);
+ memcpy(dr->dt.dl.dr_iv, iv, ZIO_DATA_IV_LEN);
+ memcpy(dr->dt.dl.dr_mac, mac, ZIO_DATA_MAC_LEN);
+}
+
+static void
+dbuf_override_impl(dmu_buf_impl_t *db, const blkptr_t *bp, dmu_tx_t *tx)
+{
+ struct dirty_leaf *dl;
+ dbuf_dirty_record_t *dr;
+
+ ASSERT3U(db->db.db_object, !=, DMU_META_DNODE_OBJECT);
+ ASSERT0(db->db_level);
+
+ dr = list_head(&db->db_dirty_records);
+ ASSERT3P(dr, !=, NULL);
+ ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
+ dl = &dr->dt.dl;
+ ASSERT0(dl->dr_has_raw_params);
+ dl->dr_overridden_by = *bp;
+ dl->dr_override_state = DR_OVERRIDDEN;
+ BP_SET_LOGICAL_BIRTH(&dl->dr_overridden_by, dr->dr_txg);
+}
+
+boolean_t
+dmu_buf_fill_done(dmu_buf_t *dbuf, dmu_tx_t *tx, boolean_t failed)
+{
+ (void) tx;
+ dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
+ mutex_enter(&db->db_mtx);
+ DBUF_VERIFY(db);
+
+ if (db->db_state == DB_FILL) {
+ if (db->db_level == 0 && db->db_freed_in_flight) {
+ ASSERT(db->db_blkid != DMU_BONUS_BLKID);
+ /* we were freed while filling */
+ /* XXX dbuf_undirty? */
+ memset(db->db.db_data, 0, db->db.db_size);
+ db->db_freed_in_flight = FALSE;
+ db->db_state = DB_CACHED;
+ DTRACE_SET_STATE(db,
+ "fill done handling freed in flight");
+ failed = B_FALSE;
+ } else if (failed) {
+ VERIFY(!dbuf_undirty(db, tx));
+ arc_buf_destroy(db->db_buf, db);
+ db->db_buf = NULL;
+ dbuf_clear_data(db);
+ DTRACE_SET_STATE(db, "fill failed");
+ } else {
+ db->db_state = DB_CACHED;
+ DTRACE_SET_STATE(db, "fill done");
+ }
+ cv_broadcast(&db->db_changed);
+ } else {
+ db->db_state = DB_CACHED;
+ failed = B_FALSE;
+ }
+ mutex_exit(&db->db_mtx);
+ return (failed);
+}
+
+void
+dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data,
+ bp_embedded_type_t etype, enum zio_compress comp,
+ int uncompressed_size, int compressed_size, int byteorder,
+ dmu_tx_t *tx)
+{
+ dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
+ struct dirty_leaf *dl;
+ dmu_object_type_t type;
+ dbuf_dirty_record_t *dr;
+
+ if (etype == BP_EMBEDDED_TYPE_DATA) {
+ ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset),
+ SPA_FEATURE_EMBEDDED_DATA));
+ }
+
+ DB_DNODE_ENTER(db);
+ type = DB_DNODE(db)->dn_type;
+ DB_DNODE_EXIT(db);
+
+ ASSERT0(db->db_level);
+ ASSERT(db->db_blkid != DMU_BONUS_BLKID);
+
+ dmu_buf_will_not_fill(dbuf, tx);
+
+ dr = list_head(&db->db_dirty_records);
+ ASSERT3P(dr, !=, NULL);
+ ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
+ dl = &dr->dt.dl;
+ ASSERT0(dl->dr_has_raw_params);
+ encode_embedded_bp_compressed(&dl->dr_overridden_by,
+ data, comp, uncompressed_size, compressed_size);
+ BPE_SET_ETYPE(&dl->dr_overridden_by, etype);
+ BP_SET_TYPE(&dl->dr_overridden_by, type);
+ BP_SET_LEVEL(&dl->dr_overridden_by, 0);
+ BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder);
+
+ dl->dr_override_state = DR_OVERRIDDEN;
+ BP_SET_LOGICAL_BIRTH(&dl->dr_overridden_by, dr->dr_txg);
+}
+
+void
+dmu_buf_redact(dmu_buf_t *dbuf, dmu_tx_t *tx)
+{
+ dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
+ dmu_object_type_t type;
+ ASSERT(dsl_dataset_feature_is_active(db->db_objset->os_dsl_dataset,
+ SPA_FEATURE_REDACTED_DATASETS));
+
+ DB_DNODE_ENTER(db);
+ type = DB_DNODE(db)->dn_type;
+ DB_DNODE_EXIT(db);
+
+ ASSERT0(db->db_level);
+ dmu_buf_will_not_fill(dbuf, tx);
+
+ blkptr_t bp = { { { {0} } } };
+ BP_SET_TYPE(&bp, type);
+ BP_SET_LEVEL(&bp, 0);
+ BP_SET_BIRTH(&bp, tx->tx_txg, 0);
+ BP_SET_REDACTED(&bp);
+ BPE_SET_LSIZE(&bp, dbuf->db_size);
+
+ dbuf_override_impl(db, &bp, tx);
+}
+
+/*
+ * Directly assign a provided arc buf to a given dbuf if it's not referenced
+ * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf.
+ */
+void
+dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx,
+ dmu_flags_t flags)
+{
+ ASSERT(!zfs_refcount_is_zero(&db->db_holds));
+ ASSERT(db->db_blkid != DMU_BONUS_BLKID);
+ ASSERT0(db->db_level);
+ ASSERT3U(dbuf_is_metadata(db), ==, arc_is_metadata(buf));
+ ASSERT(buf != NULL);
+ ASSERT3U(arc_buf_lsize(buf), ==, db->db.db_size);
+ ASSERT(tx->tx_txg != 0);
+
+ arc_return_buf(buf, db);
+ ASSERT(arc_released(buf));
+
+ mutex_enter(&db->db_mtx);
+ if (!(flags & (DMU_UNCACHEDIO | DMU_KEEP_CACHING)))
+ db->db_pending_evict = B_FALSE;
+ db->db_partial_read = B_FALSE;
+
+ while (db->db_state == DB_READ || db->db_state == DB_FILL)
+ cv_wait(&db->db_changed, &db->db_mtx);
+
+ ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED ||
+ db->db_state == DB_NOFILL);
+
+ if (db->db_state == DB_CACHED &&
+ zfs_refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) {
+ /*
+ * In practice, we will never have a case where we have an
+ * encrypted arc buffer while additional holds exist on the
+ * dbuf. We don't handle this here so we simply assert that
+ * fact instead.
+ */
+ ASSERT(!arc_is_encrypted(buf));
+ mutex_exit(&db->db_mtx);
+ (void) dbuf_dirty(db, tx);
+ memcpy(db->db.db_data, buf->b_data, db->db.db_size);
+ arc_buf_destroy(buf, db);
+ return;
+ }
+
+ if (db->db_state == DB_CACHED) {
+ dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records);
+
+ ASSERT(db->db_buf != NULL);
+ if (dr != NULL && dr->dr_txg == tx->tx_txg) {
+ ASSERT(dr->dt.dl.dr_data == db->db_buf);
+
+ if (!arc_released(db->db_buf)) {
+ ASSERT(dr->dt.dl.dr_override_state ==
+ DR_OVERRIDDEN);
+ arc_release(db->db_buf, db);
+ }
+ dr->dt.dl.dr_data = buf;
+ arc_buf_destroy(db->db_buf, db);
+ } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) {
+ arc_release(db->db_buf, db);
+ arc_buf_destroy(db->db_buf, db);
+ }
+ db->db_buf = NULL;
+ } else if (db->db_state == DB_NOFILL) {
+ /*
+ * We will be completely replacing the cloned block. In case
+ * it was cloned in this transaction group, let's undirty the
+ * pending clone and mark the block as uncached. This will be
+ * as if the clone was never done.
+ */
+ VERIFY(!dbuf_undirty(db, tx));
+ db->db_state = DB_UNCACHED;
+ }
+ ASSERT0P(db->db_buf);
+ dbuf_set_data(db, buf);
+ db->db_state = DB_FILL;
+ DTRACE_SET_STATE(db, "filling assigned arcbuf");
+ mutex_exit(&db->db_mtx);
+ (void) dbuf_dirty(db, tx);
+ dmu_buf_fill_done(&db->db, tx, B_FALSE);
+}
+
+void
+dbuf_destroy(dmu_buf_impl_t *db)
+{
+ dnode_t *dn;
+ dmu_buf_impl_t *parent = db->db_parent;
+ dmu_buf_impl_t *dndb;
+
+ ASSERT(MUTEX_HELD(&db->db_mtx));
+ ASSERT(zfs_refcount_is_zero(&db->db_holds));
+
+ if (db->db_buf != NULL) {
+ arc_buf_destroy(db->db_buf, db);
+ db->db_buf = NULL;
+ }
+
+ if (db->db_blkid == DMU_BONUS_BLKID) {
+ int slots = DB_DNODE(db)->dn_num_slots;
+ int bonuslen = DN_SLOTS_TO_BONUSLEN(slots);
+ if (db->db.db_data != NULL) {
+ kmem_free(db->db.db_data, bonuslen);
+ arc_space_return(bonuslen, ARC_SPACE_BONUS);
+ db->db_state = DB_UNCACHED;
+ DTRACE_SET_STATE(db, "buffer cleared");
+ }
+ }
+
+ dbuf_clear_data(db);
+
+ if (multilist_link_active(&db->db_cache_link)) {
+ ASSERT(db->db_caching_status == DB_DBUF_CACHE ||
+ db->db_caching_status == DB_DBUF_METADATA_CACHE);
+
+ multilist_remove(&dbuf_caches[db->db_caching_status].cache, db);
+
+ ASSERT0(dmu_buf_user_size(&db->db));
+ (void) zfs_refcount_remove_many(
+ &dbuf_caches[db->db_caching_status].size,
+ db->db.db_size, db);
+
+ if (db->db_caching_status == DB_DBUF_METADATA_CACHE) {
+ DBUF_STAT_BUMPDOWN(metadata_cache_count);
+ } else {
+ DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
+ DBUF_STAT_BUMPDOWN(cache_count);
+ DBUF_STAT_DECR(cache_levels_bytes[db->db_level],
+ db->db.db_size);
+ }
+ db->db_caching_status = DB_NO_CACHE;
+ }
+
+ ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
+ ASSERT0P(db->db_data_pending);
+ ASSERT(list_is_empty(&db->db_dirty_records));
+
+ db->db_state = DB_EVICTING;
+ DTRACE_SET_STATE(db, "buffer eviction started");
+ db->db_blkptr = NULL;
+
+ /*
+ * Now that db_state is DB_EVICTING, nobody else can find this via
+ * the hash table. We can now drop db_mtx, which allows us to
+ * acquire the dn_dbufs_mtx.
+ */
+ mutex_exit(&db->db_mtx);
+
+ DB_DNODE_ENTER(db);
+ dn = DB_DNODE(db);
+ dndb = dn->dn_dbuf;
+ if (db->db_blkid != DMU_BONUS_BLKID) {
+ boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx);
+ if (needlock)
+ mutex_enter_nested(&dn->dn_dbufs_mtx,
+ NESTED_SINGLE);
+ avl_remove(&dn->dn_dbufs, db);
+ membar_producer();
+ DB_DNODE_EXIT(db);
+ if (needlock)
+ mutex_exit(&dn->dn_dbufs_mtx);
+ /*
+ * Decrementing the dbuf count means that the hold corresponding
+ * to the removed dbuf is no longer discounted in dnode_move(),
+ * so the dnode cannot be moved until after we release the hold.
+ * The membar_producer() ensures visibility of the decremented
+ * value in dnode_move(), since DB_DNODE_EXIT doesn't actually
+ * release any lock.
+ */
+ mutex_enter(&dn->dn_mtx);
+ dnode_rele_and_unlock(dn, db, B_TRUE);
+#ifdef USE_DNODE_HANDLE
+ db->db_dnode_handle = NULL;
+#else
+ db->db_dnode = NULL;
+#endif
+
+ dbuf_hash_remove(db);
+ } else {
+ DB_DNODE_EXIT(db);
+ }
+
+ ASSERT(zfs_refcount_is_zero(&db->db_holds));
+
+ db->db_parent = NULL;
+
+ ASSERT0P(db->db_buf);
+ ASSERT0P(db->db.db_data);
+ ASSERT0P(db->db_hash_next);
+ ASSERT0P(db->db_blkptr);
+ ASSERT0P(db->db_data_pending);
+ ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE);
+ ASSERT(!multilist_link_active(&db->db_cache_link));
+
+ /*
+ * If this dbuf is referenced from an indirect dbuf,
+ * decrement the ref count on the indirect dbuf.
+ */
+ if (parent && parent != dndb) {
+ mutex_enter(&parent->db_mtx);
+ dbuf_rele_and_unlock(parent, db, B_TRUE);
+ }
+
+ kmem_cache_free(dbuf_kmem_cache, db);
+ arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
+}
+
+/*
+ * Note: While bpp will always be updated if the function returns success,
+ * parentp will not be updated if the dnode does not have dn_dbuf filled in;
+ * this happens when the dnode is the meta-dnode, or {user|group|project}used
+ * object.
+ */
+__attribute__((always_inline))
+static inline int
+dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse,
+ dmu_buf_impl_t **parentp, blkptr_t **bpp)
+{
+ *parentp = NULL;
+ *bpp = NULL;
+
+ ASSERT(blkid != DMU_BONUS_BLKID);
+
+ if (blkid == DMU_SPILL_BLKID) {
+ mutex_enter(&dn->dn_mtx);
+ if (dn->dn_have_spill &&
+ (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
+ *bpp = DN_SPILL_BLKPTR(dn->dn_phys);
+ else
+ *bpp = NULL;
+ dbuf_add_ref(dn->dn_dbuf, NULL);
+ *parentp = dn->dn_dbuf;
+ mutex_exit(&dn->dn_mtx);
+ return (0);
+ }
+
+ int nlevels =
+ (dn->dn_phys->dn_nlevels == 0) ? 1 : dn->dn_phys->dn_nlevels;
+ int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
+
+ ASSERT3U(level * epbs, <, 64);
+ ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
+ /*
+ * This assertion shouldn't trip as long as the max indirect block size
+ * is less than 1M. The reason for this is that up to that point,
+ * the number of levels required to address an entire object with blocks
+ * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64. In
+ * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55
+ * (i.e. we can address the entire object), objects will all use at most
+ * N-1 levels and the assertion won't overflow. However, once epbs is
+ * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66. Then, 4 levels will not be
+ * enough to address an entire object, so objects will have 5 levels,
+ * but then this assertion will overflow.
+ *
+ * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we
+ * need to redo this logic to handle overflows.
+ */
+ ASSERT(level >= nlevels ||
+ ((nlevels - level - 1) * epbs) +
+ highbit64(dn->dn_phys->dn_nblkptr) <= 64);
+ if (level >= nlevels ||
+ blkid >= ((uint64_t)dn->dn_phys->dn_nblkptr <<
+ ((nlevels - level - 1) * epbs)) ||
+ (fail_sparse &&
+ blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) {
+ /* the buffer has no parent yet */
+ return (SET_ERROR(ENOENT));
+ } else if (level < nlevels-1) {
+ /* this block is referenced from an indirect block */
+ int err;
+
+ err = dbuf_hold_impl(dn, level + 1,
+ blkid >> epbs, fail_sparse, FALSE, NULL, parentp);
+
+ if (err)
+ return (err);
+ err = dbuf_read(*parentp, NULL, DB_RF_CANFAIL |
+ DB_RF_HAVESTRUCT | DMU_READ_NO_PREFETCH);
+ if (err) {
+ dbuf_rele(*parentp, NULL);
+ *parentp = NULL;
+ return (err);
+ }
+ *bpp = ((blkptr_t *)(*parentp)->db.db_data) +
+ (blkid & ((1ULL << epbs) - 1));
+ return (0);
+ } else {
+ /* the block is referenced from the dnode */
+ ASSERT3U(level, ==, nlevels-1);
+ ASSERT(dn->dn_phys->dn_nblkptr == 0 ||
+ blkid < dn->dn_phys->dn_nblkptr);
+ if (dn->dn_dbuf) {
+ dbuf_add_ref(dn->dn_dbuf, NULL);
+ *parentp = dn->dn_dbuf;
+ }
+ *bpp = &dn->dn_phys->dn_blkptr[blkid];
+ return (0);
+ }
+}
+
+static dmu_buf_impl_t *
+dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid,
+ dmu_buf_impl_t *parent, blkptr_t *blkptr, uint64_t hash)
+{
+ objset_t *os = dn->dn_objset;
+ dmu_buf_impl_t *db, *odb;
+
+ ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
+ ASSERT(dn->dn_type != DMU_OT_NONE);
+
+ db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP);
+
+ list_create(&db->db_dirty_records, sizeof (dbuf_dirty_record_t),
+ offsetof(dbuf_dirty_record_t, dr_dbuf_node));
+
+ db->db_objset = os;
+ db->db.db_object = dn->dn_object;
+ db->db_level = level;
+ db->db_blkid = blkid;
+ db->db_dirtycnt = 0;
+#ifdef USE_DNODE_HANDLE
+ db->db_dnode_handle = dn->dn_handle;
+#else
+ db->db_dnode = dn;
+#endif
+ db->db_parent = parent;
+ db->db_blkptr = blkptr;
+ db->db_hash = hash;
+
+ db->db_user = NULL;
+ db->db_user_immediate_evict = FALSE;
+ db->db_freed_in_flight = FALSE;
+ db->db_pending_evict = TRUE;
+ db->db_partial_read = FALSE;
+
+ if (blkid == DMU_BONUS_BLKID) {
+ ASSERT3P(parent, ==, dn->dn_dbuf);
+ db->db.db_size = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) -
+ (dn->dn_nblkptr-1) * sizeof (blkptr_t);
+ ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
+ db->db.db_offset = DMU_BONUS_BLKID;
+ db->db_state = DB_UNCACHED;
+ DTRACE_SET_STATE(db, "bonus buffer created");
+ db->db_caching_status = DB_NO_CACHE;
+ /* the bonus dbuf is not placed in the hash table */
+ arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
+ return (db);
+ } else if (blkid == DMU_SPILL_BLKID) {
+ db->db.db_size = (blkptr != NULL) ?
+ BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE;
+ db->db.db_offset = 0;
+ } else {
+ int blocksize =
+ db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz;
+ db->db.db_size = blocksize;
+ db->db.db_offset = db->db_blkid * blocksize;
+ }
+
+ /*
+ * Hold the dn_dbufs_mtx while we get the new dbuf
+ * in the hash table *and* added to the dbufs list.
+ * This prevents a possible deadlock with someone
+ * trying to look up this dbuf before it's added to the
+ * dn_dbufs list.
+ */
+ mutex_enter(&dn->dn_dbufs_mtx);
+ db->db_state = DB_EVICTING; /* not worth logging this state change */
+ if ((odb = dbuf_hash_insert(db)) != NULL) {
+ /* someone else inserted it first */
+ mutex_exit(&dn->dn_dbufs_mtx);
+ kmem_cache_free(dbuf_kmem_cache, db);
+ DBUF_STAT_BUMP(hash_insert_race);
+ return (odb);
+ }
+ avl_add(&dn->dn_dbufs, db);
+
+ db->db_state = DB_UNCACHED;
+ DTRACE_SET_STATE(db, "regular buffer created");
+ db->db_caching_status = DB_NO_CACHE;
+ mutex_exit(&dn->dn_dbufs_mtx);
+ arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
+
+ if (parent && parent != dn->dn_dbuf)
+ dbuf_add_ref(parent, db);
+
+ ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
+ zfs_refcount_count(&dn->dn_holds) > 0);
+ (void) zfs_refcount_add(&dn->dn_holds, db);
+
+ dprintf_dbuf(db, "db=%p\n", db);
+
+ return (db);
+}
+
+/*
+ * This function returns a block pointer and information about the object,
+ * given a dnode and a block. This is a publicly accessible version of
+ * dbuf_findbp that only returns some information, rather than the
+ * dbuf. Note that the dnode passed in must be held, and the dn_struct_rwlock
+ * should be locked as (at least) a reader.
+ */
+int
+dbuf_dnode_findbp(dnode_t *dn, uint64_t level, uint64_t blkid,
+ blkptr_t *bp, uint16_t *datablkszsec, uint8_t *indblkshift)
+{
+ dmu_buf_impl_t *dbp = NULL;
+ blkptr_t *bp2;
+ int err = 0;
+ ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
+
+ err = dbuf_findbp(dn, level, blkid, B_FALSE, &dbp, &bp2);
+ if (err == 0) {
+ ASSERT3P(bp2, !=, NULL);
+ *bp = *bp2;
+ if (dbp != NULL)
+ dbuf_rele(dbp, NULL);
+ if (datablkszsec != NULL)
+ *datablkszsec = dn->dn_phys->dn_datablkszsec;
+ if (indblkshift != NULL)
+ *indblkshift = dn->dn_phys->dn_indblkshift;
+ }
+
+ return (err);
+}
+
+typedef struct dbuf_prefetch_arg {
+ spa_t *dpa_spa; /* The spa to issue the prefetch in. */
+ zbookmark_phys_t dpa_zb; /* The target block to prefetch. */
+ int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */
+ int dpa_curlevel; /* The current level that we're reading */
+ dnode_t *dpa_dnode; /* The dnode associated with the prefetch */
+ zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */
+ zio_t *dpa_zio; /* The parent zio_t for all prefetches. */
+ arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */
+ dbuf_prefetch_fn dpa_cb; /* prefetch completion callback */
+ void *dpa_arg; /* prefetch completion arg */
+} dbuf_prefetch_arg_t;
+
+static void
+dbuf_prefetch_fini(dbuf_prefetch_arg_t *dpa, boolean_t io_done)
+{
+ if (dpa->dpa_cb != NULL) {
+ dpa->dpa_cb(dpa->dpa_arg, dpa->dpa_zb.zb_level,
+ dpa->dpa_zb.zb_blkid, io_done);
+ }
+ kmem_free(dpa, sizeof (*dpa));
+}
+
+static void
+dbuf_issue_final_prefetch_done(zio_t *zio, const zbookmark_phys_t *zb,
+ const blkptr_t *iobp, arc_buf_t *abuf, void *private)
+{
+ (void) zio, (void) zb, (void) iobp;
+ dbuf_prefetch_arg_t *dpa = private;
+
+ if (abuf != NULL)
+ arc_buf_destroy(abuf, private);
+
+ dbuf_prefetch_fini(dpa, B_TRUE);
+}
+
+/*
+ * Actually issue the prefetch read for the block given.
+ */
+static void
+dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp)
+{
+ ASSERT(!BP_IS_HOLE(bp));
+ ASSERT(!BP_IS_REDACTED(bp));
+ if (BP_IS_EMBEDDED(bp))
+ return (dbuf_prefetch_fini(dpa, B_FALSE));
+
+ int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE;
+ arc_flags_t aflags =
+ dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH |
+ ARC_FLAG_NO_BUF;
+
+ /* dnodes are always read as raw and then converted later */
+ if (BP_GET_TYPE(bp) == DMU_OT_DNODE && BP_IS_PROTECTED(bp) &&
+ dpa->dpa_curlevel == 0)
+ zio_flags |= ZIO_FLAG_RAW;
+
+ ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
+ ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level);
+ ASSERT(dpa->dpa_zio != NULL);
+ (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp,
+ dbuf_issue_final_prefetch_done, dpa,
+ dpa->dpa_prio, zio_flags, &aflags, &dpa->dpa_zb);
+}
+
+/*
+ * Called when an indirect block above our prefetch target is read in. This
+ * will either read in the next indirect block down the tree or issue the actual
+ * prefetch if the next block down is our target.
+ */
+static void
+dbuf_prefetch_indirect_done(zio_t *zio, const zbookmark_phys_t *zb,
+ const blkptr_t *iobp, arc_buf_t *abuf, void *private)
+{
+ (void) zb, (void) iobp;
+ dbuf_prefetch_arg_t *dpa = private;
+
+ ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel);
+ ASSERT3S(dpa->dpa_curlevel, >, 0);
+
+ if (abuf == NULL) {
+ ASSERT(zio == NULL || zio->io_error != 0);
+ dbuf_prefetch_fini(dpa, B_TRUE);
+ return;
+ }
+ ASSERT(zio == NULL || zio->io_error == 0);
+
+ /*
+ * The dpa_dnode is only valid if we are called with a NULL
+ * zio. This indicates that the arc_read() returned without
+ * first calling zio_read() to issue a physical read. Once
+ * a physical read is made the dpa_dnode must be invalidated
+ * as the locks guarding it may have been dropped. If the
+ * dpa_dnode is still valid, then we want to add it to the dbuf
+ * cache. To do so, we must hold the dbuf associated with the block
+ * we just prefetched, read its contents so that we associate it
+ * with an arc_buf_t, and then release it.
+ */
+ if (zio != NULL) {
+ ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel);
+ if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS) {
+ ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size);
+ } else {
+ ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size);
+ }
+ ASSERT3P(zio->io_spa, ==, dpa->dpa_spa);
+
+ dpa->dpa_dnode = NULL;
+ } else if (dpa->dpa_dnode != NULL) {
+ uint64_t curblkid = dpa->dpa_zb.zb_blkid >>
+ (dpa->dpa_epbs * (dpa->dpa_curlevel -
+ dpa->dpa_zb.zb_level));
+ dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode,
+ dpa->dpa_curlevel, curblkid, FTAG);
+ if (db == NULL) {
+ arc_buf_destroy(abuf, private);
+ dbuf_prefetch_fini(dpa, B_TRUE);
+ return;
+ }
+ (void) dbuf_read(db, NULL, DB_RF_CANFAIL | DB_RF_HAVESTRUCT |
+ DMU_READ_NO_PREFETCH);
+ dbuf_rele(db, FTAG);
+ }
+
+ dpa->dpa_curlevel--;
+ uint64_t nextblkid = dpa->dpa_zb.zb_blkid >>
+ (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level));
+ blkptr_t *bp = ((blkptr_t *)abuf->b_data) +
+ P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs);
+
+ ASSERT(!BP_IS_REDACTED(bp) || dpa->dpa_dnode == NULL ||
+ dsl_dataset_feature_is_active(
+ dpa->dpa_dnode->dn_objset->os_dsl_dataset,
+ SPA_FEATURE_REDACTED_DATASETS));
+ if (BP_IS_HOLE(bp) || BP_IS_REDACTED(bp)) {
+ arc_buf_destroy(abuf, private);
+ dbuf_prefetch_fini(dpa, B_TRUE);
+ return;
+ } else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) {
+ ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid);
+ dbuf_issue_final_prefetch(dpa, bp);
+ } else {
+ arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
+ zbookmark_phys_t zb;
+
+ /* flag if L2ARC eligible, l2arc_noprefetch then decides */
+ if (dpa->dpa_dnode) {
+ if (dnode_level_is_l2cacheable(bp, dpa->dpa_dnode,
+ dpa->dpa_curlevel))
+ iter_aflags |= ARC_FLAG_L2CACHE;
+ } else {
+ if (dpa->dpa_aflags & ARC_FLAG_L2CACHE)
+ iter_aflags |= ARC_FLAG_L2CACHE;
+ }
+
+ ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
+
+ SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset,
+ dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid);
+
+ (void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
+ bp, dbuf_prefetch_indirect_done, dpa,
+ ZIO_PRIORITY_SYNC_READ,
+ ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
+ &iter_aflags, &zb);
+ }
+
+ arc_buf_destroy(abuf, private);
+}
+
+/*
+ * Issue prefetch reads for the given block on the given level. If the indirect
+ * blocks above that block are not in memory, we will read them in
+ * asynchronously. As a result, this call never blocks waiting for a read to
+ * complete. Note that the prefetch might fail if the dataset is encrypted and
+ * the encryption key is unmapped before the IO completes.
+ */
+int
+dbuf_prefetch_impl(dnode_t *dn, int64_t level, uint64_t blkid,
+ zio_priority_t prio, arc_flags_t aflags, dbuf_prefetch_fn cb,
+ void *arg)
+{
+ blkptr_t bp;
+ int epbs, nlevels, curlevel;
+ uint64_t curblkid;
+
+ ASSERT(blkid != DMU_BONUS_BLKID);
+ ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
+
+ if (blkid > dn->dn_maxblkid)
+ goto no_issue;
+
+ if (level == 0 && dnode_block_freed(dn, blkid))
+ goto no_issue;
+
+ /*
+ * This dnode hasn't been written to disk yet, so there's nothing to
+ * prefetch.
+ */
+ nlevels = dn->dn_phys->dn_nlevels;
+ if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0)
+ goto no_issue;
+
+ epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
+ if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level))
+ goto no_issue;
+
+ dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object,
+ level, blkid, NULL);
+ if (db != NULL) {
+ mutex_exit(&db->db_mtx);
+ /*
+ * This dbuf already exists. It is either CACHED, or
+ * (we assume) about to be read or filled.
+ */
+ goto no_issue;
+ }
+
+ /*
+ * Find the closest ancestor (indirect block) of the target block
+ * that is present in the cache. In this indirect block, we will
+ * find the bp that is at curlevel, curblkid.
+ */
+ curlevel = level;
+ curblkid = blkid;
+ while (curlevel < nlevels - 1) {
+ int parent_level = curlevel + 1;
+ uint64_t parent_blkid = curblkid >> epbs;
+ dmu_buf_impl_t *db;
+
+ if (dbuf_hold_impl(dn, parent_level, parent_blkid,
+ FALSE, TRUE, FTAG, &db) == 0) {
+ blkptr_t *bpp = db->db_buf->b_data;
+ bp = bpp[P2PHASE(curblkid, 1 << epbs)];
+ dbuf_rele(db, FTAG);
+ break;
+ }
+
+ curlevel = parent_level;
+ curblkid = parent_blkid;
+ }
+
+ if (curlevel == nlevels - 1) {
+ /* No cached indirect blocks found. */
+ ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr);
+ bp = dn->dn_phys->dn_blkptr[curblkid];
+ }
+ ASSERT(!BP_IS_REDACTED(&bp) ||
+ dsl_dataset_feature_is_active(dn->dn_objset->os_dsl_dataset,
+ SPA_FEATURE_REDACTED_DATASETS));
+ if (BP_IS_HOLE(&bp) || BP_IS_REDACTED(&bp))
+ goto no_issue;
+
+ ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp));
+
+ zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL,
+ ZIO_FLAG_CANFAIL);
+
+ dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP);
+ dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
+ SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
+ dn->dn_object, level, blkid);
+ dpa->dpa_curlevel = curlevel;
+ dpa->dpa_prio = prio;
+ dpa->dpa_aflags = aflags;
+ dpa->dpa_spa = dn->dn_objset->os_spa;
+ dpa->dpa_dnode = dn;
+ dpa->dpa_epbs = epbs;
+ dpa->dpa_zio = pio;
+ dpa->dpa_cb = cb;
+ dpa->dpa_arg = arg;
+
+ if (!DNODE_LEVEL_IS_CACHEABLE(dn, level))
+ dpa->dpa_aflags |= ARC_FLAG_UNCACHED;
+ else if (dnode_level_is_l2cacheable(&bp, dn, level))
+ dpa->dpa_aflags |= ARC_FLAG_L2CACHE;
+
+ /*
+ * If we have the indirect just above us, no need to do the asynchronous
+ * prefetch chain; we'll just run the last step ourselves. If we're at
+ * a higher level, though, we want to issue the prefetches for all the
+ * indirect blocks asynchronously, so we can go on with whatever we were
+ * doing.
+ */
+ if (curlevel == level) {
+ ASSERT3U(curblkid, ==, blkid);
+ dbuf_issue_final_prefetch(dpa, &bp);
+ } else {
+ arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
+ zbookmark_phys_t zb;
+
+ /* flag if L2ARC eligible, l2arc_noprefetch then decides */
+ if (dnode_level_is_l2cacheable(&bp, dn, curlevel))
+ iter_aflags |= ARC_FLAG_L2CACHE;
+
+ SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
+ dn->dn_object, curlevel, curblkid);
+ (void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
+ &bp, dbuf_prefetch_indirect_done, dpa,
+ ZIO_PRIORITY_SYNC_READ,
+ ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
+ &iter_aflags, &zb);
+ }
+ /*
+ * We use pio here instead of dpa_zio since it's possible that
+ * dpa may have already been freed.
+ */
+ zio_nowait(pio);
+ return (1);
+no_issue:
+ if (cb != NULL)
+ cb(arg, level, blkid, B_FALSE);
+ return (0);
+}
+
+int
+dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio,
+ arc_flags_t aflags)
+{
+
+ return (dbuf_prefetch_impl(dn, level, blkid, prio, aflags, NULL, NULL));
+}
+
+/*
+ * Helper function for dbuf_hold_impl() to copy a buffer. Handles
+ * the case of encrypted, compressed and uncompressed buffers by
+ * allocating the new buffer, respectively, with arc_alloc_raw_buf(),
+ * arc_alloc_compressed_buf() or arc_alloc_buf().*
+ *
+ * NOTE: Declared noinline to avoid stack bloat in dbuf_hold_impl().
+ */
+noinline static void
+dbuf_hold_copy(dnode_t *dn, dmu_buf_impl_t *db)
+{
+ dbuf_dirty_record_t *dr = db->db_data_pending;
+ arc_buf_t *data = dr->dt.dl.dr_data;
+ arc_buf_t *db_data;
+ enum zio_compress compress_type = arc_get_compression(data);
+ uint8_t complevel = arc_get_complevel(data);
+
+ if (arc_is_encrypted(data)) {
+ boolean_t byteorder;
+ uint8_t salt[ZIO_DATA_SALT_LEN];
+ uint8_t iv[ZIO_DATA_IV_LEN];
+ uint8_t mac[ZIO_DATA_MAC_LEN];
+
+ arc_get_raw_params(data, &byteorder, salt, iv, mac);
+ db_data = arc_alloc_raw_buf(dn->dn_objset->os_spa, db,
+ dmu_objset_id(dn->dn_objset), byteorder, salt, iv, mac,
+ dn->dn_type, arc_buf_size(data), arc_buf_lsize(data),
+ compress_type, complevel);
+ } else if (compress_type != ZIO_COMPRESS_OFF) {
+ db_data = arc_alloc_compressed_buf(
+ dn->dn_objset->os_spa, db, arc_buf_size(data),
+ arc_buf_lsize(data), compress_type, complevel);
+ } else {
+ db_data = arc_alloc_buf(dn->dn_objset->os_spa, db,
+ DBUF_GET_BUFC_TYPE(db), db->db.db_size);
+ }
+ memcpy(db_data->b_data, data->b_data, arc_buf_size(data));
+
+ dbuf_set_data(db, db_data);
+}
+
+/*
+ * Returns with db_holds incremented, and db_mtx not held.
+ * Note: dn_struct_rwlock must be held.
+ */
+int
+dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid,
+ boolean_t fail_sparse, boolean_t fail_uncached,
+ const void *tag, dmu_buf_impl_t **dbp)
+{
+ dmu_buf_impl_t *db, *parent = NULL;
+ uint64_t hv;
+
+ /* If the pool has been created, verify the tx_sync_lock is not held */
+ spa_t *spa = dn->dn_objset->os_spa;
+ dsl_pool_t *dp = spa->spa_dsl_pool;
+ if (dp != NULL) {
+ ASSERT(!MUTEX_HELD(&dp->dp_tx.tx_sync_lock));
+ }
+
+ ASSERT(blkid != DMU_BONUS_BLKID);
+ ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
+ if (!fail_sparse)
+ ASSERT3U(dn->dn_nlevels, >, level);
+
+ *dbp = NULL;
+
+ /* dbuf_find() returns with db_mtx held */
+ db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid, &hv);
+
+ if (db == NULL) {
+ blkptr_t *bp = NULL;
+ int err;
+
+ if (fail_uncached)
+ return (SET_ERROR(ENOENT));
+
+ ASSERT0P(parent);
+ err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp);
+ if (fail_sparse) {
+ if (err == 0 && bp && BP_IS_HOLE(bp))
+ err = SET_ERROR(ENOENT);
+ if (err) {
+ if (parent)
+ dbuf_rele(parent, NULL);
+ return (err);
+ }
+ }
+ if (err && err != ENOENT)
+ return (err);
+ db = dbuf_create(dn, level, blkid, parent, bp, hv);
+ }
+
+ if (fail_uncached && db->db_state != DB_CACHED) {
+ mutex_exit(&db->db_mtx);
+ return (SET_ERROR(ENOENT));
+ }
+
+ if (db->db_buf != NULL) {
+ arc_buf_access(db->db_buf);
+ ASSERT(MUTEX_HELD(&db->db_mtx));
+ ASSERT3P(db->db.db_data, ==, db->db_buf->b_data);
+ }
+
+ ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf));
+
+ /*
+ * If this buffer is currently syncing out, and we are
+ * still referencing it from db_data, we need to make a copy
+ * of it in case we decide we want to dirty it again in this txg.
+ */
+ if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
+ dn->dn_object != DMU_META_DNODE_OBJECT &&
+ db->db_state == DB_CACHED && db->db_data_pending) {
+ dbuf_dirty_record_t *dr = db->db_data_pending;
+ if (dr->dt.dl.dr_data == db->db_buf) {
+ ASSERT3P(db->db_buf, !=, NULL);
+ dbuf_hold_copy(dn, db);
+ }
+ }
+
+ if (multilist_link_active(&db->db_cache_link)) {
+ ASSERT(zfs_refcount_is_zero(&db->db_holds));
+ ASSERT(db->db_caching_status == DB_DBUF_CACHE ||
+ db->db_caching_status == DB_DBUF_METADATA_CACHE);
+
+ multilist_remove(&dbuf_caches[db->db_caching_status].cache, db);
+
+ uint64_t size = db->db.db_size;
+ uint64_t usize = dmu_buf_user_size(&db->db);
+ (void) zfs_refcount_remove_many(
+ &dbuf_caches[db->db_caching_status].size, size, db);
+ (void) zfs_refcount_remove_many(
+ &dbuf_caches[db->db_caching_status].size, usize,
+ db->db_user);
+
+ if (db->db_caching_status == DB_DBUF_METADATA_CACHE) {
+ DBUF_STAT_BUMPDOWN(metadata_cache_count);
+ } else {
+ DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
+ DBUF_STAT_BUMPDOWN(cache_count);
+ DBUF_STAT_DECR(cache_levels_bytes[db->db_level],
+ size + usize);
+ }
+ db->db_caching_status = DB_NO_CACHE;
+ }
+ (void) zfs_refcount_add(&db->db_holds, tag);
+ DBUF_VERIFY(db);
+ mutex_exit(&db->db_mtx);
+
+ /* NOTE: we can't rele the parent until after we drop the db_mtx */
+ if (parent)
+ dbuf_rele(parent, NULL);
+
+ ASSERT3P(DB_DNODE(db), ==, dn);
+ ASSERT3U(db->db_blkid, ==, blkid);
+ ASSERT3U(db->db_level, ==, level);
+ *dbp = db;
+
+ return (0);
+}
+
+dmu_buf_impl_t *
+dbuf_hold(dnode_t *dn, uint64_t blkid, const void *tag)
+{
+ return (dbuf_hold_level(dn, 0, blkid, tag));
+}
+
+dmu_buf_impl_t *
+dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, const void *tag)
+{
+ dmu_buf_impl_t *db;
+ int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db);
+ return (err ? NULL : db);
+}
+
+void
+dbuf_create_bonus(dnode_t *dn)
+{
+ ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
+
+ ASSERT0P(dn->dn_bonus);
+ dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL,
+ dbuf_hash(dn->dn_objset, dn->dn_object, 0, DMU_BONUS_BLKID));
+ dn->dn_bonus->db_pending_evict = FALSE;
+}
+
+int
+dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx)
+{
+ dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
+
+ if (db->db_blkid != DMU_SPILL_BLKID)
+ return (SET_ERROR(ENOTSUP));
+ if (blksz == 0)
+ blksz = SPA_MINBLOCKSIZE;
+ ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset)));
+ blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE);
+
+ dbuf_new_size(db, blksz, tx);
+
+ return (0);
+}
+
+void
+dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx)
+{
+ dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx);
+}
+
+#pragma weak dmu_buf_add_ref = dbuf_add_ref
+void
+dbuf_add_ref(dmu_buf_impl_t *db, const void *tag)
+{
+ int64_t holds = zfs_refcount_add(&db->db_holds, tag);
+ VERIFY3S(holds, >, 1);
+}
+
+#pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref
+boolean_t
+dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid,
+ const void *tag)
+{
+ dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
+ dmu_buf_impl_t *found_db;
+ boolean_t result = B_FALSE;
+
+ if (blkid == DMU_BONUS_BLKID)
+ found_db = dbuf_find_bonus(os, obj);
+ else
+ found_db = dbuf_find(os, obj, 0, blkid, NULL);
+
+ if (found_db != NULL) {
+ if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) {
+ (void) zfs_refcount_add(&db->db_holds, tag);
+ result = B_TRUE;
+ }
+ mutex_exit(&found_db->db_mtx);
+ }
+ return (result);
+}
+
+/*
+ * If you call dbuf_rele() you had better not be referencing the dnode handle
+ * unless you have some other direct or indirect hold on the dnode. (An indirect
+ * hold is a hold on one of the dnode's dbufs, including the bonus buffer.)
+ * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the
+ * dnode's parent dbuf evicting its dnode handles.
+ */
+void
+dbuf_rele(dmu_buf_impl_t *db, const void *tag)
+{
+ mutex_enter(&db->db_mtx);
+ dbuf_rele_and_unlock(db, tag, B_FALSE);
+}
+
+void
+dmu_buf_rele(dmu_buf_t *db, const void *tag)
+{
+ dbuf_rele((dmu_buf_impl_t *)db, tag);
+}
+
+/*
+ * dbuf_rele() for an already-locked dbuf. This is necessary to allow
+ * db_dirtycnt and db_holds to be updated atomically. The 'evicting'
+ * argument should be set if we are already in the dbuf-evicting code
+ * path, in which case we don't want to recursively evict. This allows us to
+ * avoid deeply nested stacks that would have a call flow similar to this:
+ *
+ * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify()
+ * ^ |
+ * | |
+ * +-----dbuf_destroy()<--dbuf_evict_one()<--------+
+ *
+ */
+void
+dbuf_rele_and_unlock(dmu_buf_impl_t *db, const void *tag, boolean_t evicting)
+{
+ int64_t holds;
+ uint64_t size;
+
+ ASSERT(MUTEX_HELD(&db->db_mtx));
+ DBUF_VERIFY(db);
+
+ /*
+ * Remove the reference to the dbuf before removing its hold on the
+ * dnode so we can guarantee in dnode_move() that a referenced bonus
+ * buffer has a corresponding dnode hold.
+ */
+ holds = zfs_refcount_remove(&db->db_holds, tag);
+ ASSERT(holds >= 0);
+
+ /*
+ * We can't freeze indirects if there is a possibility that they
+ * may be modified in the current syncing context.
+ */
+ if (db->db_buf != NULL &&
+ holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) {
+ arc_buf_freeze(db->db_buf);
+ }
+
+ if (holds == db->db_dirtycnt &&
+ db->db_level == 0 && db->db_user_immediate_evict)
+ dbuf_evict_user(db);
+
+ if (holds == 0) {
+ if (db->db_blkid == DMU_BONUS_BLKID) {
+ dnode_t *dn;
+ boolean_t evict_dbuf = db->db_pending_evict;
+
+ /*
+ * If the dnode moves here, we cannot cross this
+ * barrier until the move completes.
+ */
+ DB_DNODE_ENTER(db);
+
+ dn = DB_DNODE(db);
+ atomic_dec_32(&dn->dn_dbufs_count);
+
+ /*
+ * Decrementing the dbuf count means that the bonus
+ * buffer's dnode hold is no longer discounted in
+ * dnode_move(). The dnode cannot move until after
+ * the dnode_rele() below.
+ */
+ DB_DNODE_EXIT(db);
+
+ /*
+ * Do not reference db after its lock is dropped.
+ * Another thread may evict it.
+ */
+ mutex_exit(&db->db_mtx);
+
+ if (evict_dbuf)
+ dnode_evict_bonus(dn);
+
+ dnode_rele(dn, db);
+ } else if (db->db_buf == NULL) {
+ /*
+ * This is a special case: we never associated this
+ * dbuf with any data allocated from the ARC.
+ */
+ ASSERT(db->db_state == DB_UNCACHED ||
+ db->db_state == DB_NOFILL);
+ dbuf_destroy(db);
+ } else if (arc_released(db->db_buf)) {
+ /*
+ * This dbuf has anonymous data associated with it.
+ */
+ dbuf_destroy(db);
+ } else if (!db->db_partial_read && !DBUF_IS_CACHEABLE(db)) {
+ /*
+ * We don't expect more accesses to the dbuf, and it
+ * is either not cacheable or was marked for eviction.
+ */
+ dbuf_destroy(db);
+ } else if (!multilist_link_active(&db->db_cache_link)) {
+ ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE);
+
+ dbuf_cached_state_t dcs =
+ dbuf_include_in_metadata_cache(db) ?
+ DB_DBUF_METADATA_CACHE : DB_DBUF_CACHE;
+ db->db_caching_status = dcs;
+
+ multilist_insert(&dbuf_caches[dcs].cache, db);
+ uint64_t db_size = db->db.db_size;
+ uint64_t dbu_size = dmu_buf_user_size(&db->db);
+ (void) zfs_refcount_add_many(
+ &dbuf_caches[dcs].size, db_size, db);
+ size = zfs_refcount_add_many(
+ &dbuf_caches[dcs].size, dbu_size, db->db_user);
+ uint8_t db_level = db->db_level;
+ mutex_exit(&db->db_mtx);
+
+ if (dcs == DB_DBUF_METADATA_CACHE) {
+ DBUF_STAT_BUMP(metadata_cache_count);
+ DBUF_STAT_MAX(metadata_cache_size_bytes_max,
+ size);
+ } else {
+ DBUF_STAT_BUMP(cache_count);
+ DBUF_STAT_MAX(cache_size_bytes_max, size);
+ DBUF_STAT_BUMP(cache_levels[db_level]);
+ DBUF_STAT_INCR(cache_levels_bytes[db_level],
+ db_size + dbu_size);
+ }
+
+ if (dcs == DB_DBUF_CACHE && !evicting)
+ dbuf_evict_notify(size);
+ }
+ } else {
+ mutex_exit(&db->db_mtx);
+ }
+}
+
+#pragma weak dmu_buf_refcount = dbuf_refcount
+uint64_t
+dbuf_refcount(dmu_buf_impl_t *db)
+{
+ return (zfs_refcount_count(&db->db_holds));
+}
+
+uint64_t
+dmu_buf_user_refcount(dmu_buf_t *db_fake)
+{
+ uint64_t holds;
+ dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
+
+ mutex_enter(&db->db_mtx);
+ ASSERT3U(zfs_refcount_count(&db->db_holds), >=, db->db_dirtycnt);
+ holds = zfs_refcount_count(&db->db_holds) - db->db_dirtycnt;
+ mutex_exit(&db->db_mtx);
+
+ return (holds);
+}
+
+void *
+dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user,
+ dmu_buf_user_t *new_user)
+{
+ dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
+
+ mutex_enter(&db->db_mtx);
+ dbuf_verify_user(db, DBVU_NOT_EVICTING);
+ if (db->db_user == old_user)
+ db->db_user = new_user;
+ else
+ old_user = db->db_user;
+ dbuf_verify_user(db, DBVU_NOT_EVICTING);
+ mutex_exit(&db->db_mtx);
+
+ return (old_user);
+}
+
+void *
+dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
+{
+ return (dmu_buf_replace_user(db_fake, NULL, user));
+}
+
+void *
+dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user)
+{
+ dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
+
+ db->db_user_immediate_evict = TRUE;
+ return (dmu_buf_set_user(db_fake, user));
+}
+
+void *
+dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
+{
+ return (dmu_buf_replace_user(db_fake, user, NULL));
+}
+
+void *
+dmu_buf_get_user(dmu_buf_t *db_fake)
+{
+ dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
+
+ dbuf_verify_user(db, DBVU_NOT_EVICTING);
+ return (db->db_user);
+}
+
+uint64_t
+dmu_buf_user_size(dmu_buf_t *db_fake)
+{
+ dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
+ if (db->db_user == NULL)
+ return (0);
+ return (atomic_load_64(&db->db_user->dbu_size));
+}
+
+void
+dmu_buf_add_user_size(dmu_buf_t *db_fake, uint64_t nadd)
+{
+ dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
+ ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE);
+ ASSERT3P(db->db_user, !=, NULL);
+ ASSERT3U(atomic_load_64(&db->db_user->dbu_size), <, UINT64_MAX - nadd);
+ atomic_add_64(&db->db_user->dbu_size, nadd);
+}
+
+void
+dmu_buf_sub_user_size(dmu_buf_t *db_fake, uint64_t nsub)
+{
+ dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
+ ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE);
+ ASSERT3P(db->db_user, !=, NULL);
+ ASSERT3U(atomic_load_64(&db->db_user->dbu_size), >=, nsub);
+ atomic_sub_64(&db->db_user->dbu_size, nsub);
+}
+
+void
+dmu_buf_user_evict_wait(void)
+{
+ taskq_wait(dbu_evict_taskq);
+}
+
+blkptr_t *
+dmu_buf_get_blkptr(dmu_buf_t *db)
+{
+ dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
+ return (dbi->db_blkptr);
+}
+
+objset_t *
+dmu_buf_get_objset(dmu_buf_t *db)
+{
+ dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
+ return (dbi->db_objset);
+}
+
+static void
+dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db)
+{
+ /* ASSERT(dmu_tx_is_syncing(tx) */
+ ASSERT(MUTEX_HELD(&db->db_mtx));
+
+ if (db->db_blkptr != NULL)
+ return;
+
+ if (db->db_blkid == DMU_SPILL_BLKID) {
+ db->db_blkptr = DN_SPILL_BLKPTR(dn->dn_phys);
+ BP_ZERO(db->db_blkptr);
+ return;
+ }
+ if (db->db_level == dn->dn_phys->dn_nlevels-1) {
+ /*
+ * This buffer was allocated at a time when there was
+ * no available blkptrs from the dnode, or it was
+ * inappropriate to hook it in (i.e., nlevels mismatch).
+ */
+ ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr);
+ ASSERT0P(db->db_parent);
+ db->db_parent = dn->dn_dbuf;
+ db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid];
+ DBUF_VERIFY(db);
+ } else {
+ dmu_buf_impl_t *parent = db->db_parent;
+ int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
+
+ ASSERT(dn->dn_phys->dn_nlevels > 1);
+ if (parent == NULL) {
+ mutex_exit(&db->db_mtx);
+ rw_enter(&dn->dn_struct_rwlock, RW_READER);
+ parent = dbuf_hold_level(dn, db->db_level + 1,
+ db->db_blkid >> epbs, db);
+ rw_exit(&dn->dn_struct_rwlock);
+ mutex_enter(&db->db_mtx);
+ db->db_parent = parent;
+ }
+ db->db_blkptr = (blkptr_t *)parent->db.db_data +
+ (db->db_blkid & ((1ULL << epbs) - 1));
+ DBUF_VERIFY(db);
+ }
+}
+
+static void
+dbuf_sync_bonus(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
+{
+ dmu_buf_impl_t *db = dr->dr_dbuf;
+ void *data = dr->dt.dl.dr_data;
+
+ ASSERT0(db->db_level);
+ ASSERT(MUTEX_HELD(&db->db_mtx));
+ ASSERT(db->db_blkid == DMU_BONUS_BLKID);
+ ASSERT(data != NULL);
+
+ dnode_t *dn = dr->dr_dnode;
+ ASSERT3U(DN_MAX_BONUS_LEN(dn->dn_phys), <=,
+ DN_SLOTS_TO_BONUSLEN(dn->dn_phys->dn_extra_slots + 1));
+ memcpy(DN_BONUS(dn->dn_phys), data, DN_MAX_BONUS_LEN(dn->dn_phys));
+
+ dbuf_sync_leaf_verify_bonus_dnode(dr);
+
+ dbuf_undirty_bonus(dr);
+ dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE);
+}
+
+/*
+ * When syncing out a blocks of dnodes, adjust the block to deal with
+ * encryption. Normally, we make sure the block is decrypted before writing
+ * it. If we have crypt params, then we are writing a raw (encrypted) block,
+ * from a raw receive. In this case, set the ARC buf's crypt params so
+ * that the BP will be filled with the correct byteorder, salt, iv, and mac.
+ */
+static void
+dbuf_prepare_encrypted_dnode_leaf(dbuf_dirty_record_t *dr)
+{
+ int err;
+ dmu_buf_impl_t *db = dr->dr_dbuf;
+
+ ASSERT(MUTEX_HELD(&db->db_mtx));
+ ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT);
+ ASSERT0(db->db_level);
+
+ if (!db->db_objset->os_raw_receive && arc_is_encrypted(db->db_buf)) {
+ zbookmark_phys_t zb;
+
+ /*
+ * Unfortunately, there is currently no mechanism for
+ * syncing context to handle decryption errors. An error
+ * here is only possible if an attacker maliciously
+ * changed a dnode block and updated the associated
+ * checksums going up the block tree.
+ */
+ SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
+ db->db.db_object, db->db_level, db->db_blkid);
+ err = arc_untransform(db->db_buf, db->db_objset->os_spa,
+ &zb, B_TRUE);
+ if (err)
+ panic("Invalid dnode block MAC");
+ } else if (dr->dt.dl.dr_has_raw_params) {
+ (void) arc_release(dr->dt.dl.dr_data, db);
+ arc_convert_to_raw(dr->dt.dl.dr_data,
+ dmu_objset_id(db->db_objset),
+ dr->dt.dl.dr_byteorder, DMU_OT_DNODE,
+ dr->dt.dl.dr_salt, dr->dt.dl.dr_iv, dr->dt.dl.dr_mac);
+ }
+}
+
+/*
+ * dbuf_sync_indirect() is called recursively from dbuf_sync_list() so it
+ * is critical the we not allow the compiler to inline this function in to
+ * dbuf_sync_list() thereby drastically bloating the stack usage.
+ */
+noinline static void
+dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
+{
+ dmu_buf_impl_t *db = dr->dr_dbuf;
+ dnode_t *dn = dr->dr_dnode;
+
+ ASSERT(dmu_tx_is_syncing(tx));
+
+ dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
+
+ mutex_enter(&db->db_mtx);
+
+ ASSERT(db->db_level > 0);
+ DBUF_VERIFY(db);
+
+ /* Read the block if it hasn't been read yet. */
+ if (db->db_buf == NULL) {
+ mutex_exit(&db->db_mtx);
+ (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
+ mutex_enter(&db->db_mtx);
+ }
+ ASSERT3U(db->db_state, ==, DB_CACHED);
+ ASSERT(db->db_buf != NULL);
+
+ /* Indirect block size must match what the dnode thinks it is. */
+ ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
+ dbuf_check_blkptr(dn, db);
+
+ /* Provide the pending dirty record to child dbufs */
+ db->db_data_pending = dr;
+
+ mutex_exit(&db->db_mtx);
+
+ dbuf_write(dr, db->db_buf, tx);
+
+ zio_t *zio = dr->dr_zio;
+ mutex_enter(&dr->dt.di.dr_mtx);
+ dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx);
+ ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
+ mutex_exit(&dr->dt.di.dr_mtx);
+ zio_nowait(zio);
+}
+
+/*
+ * Verify that the size of the data in our bonus buffer does not exceed
+ * its recorded size.
+ *
+ * The purpose of this verification is to catch any cases in development
+ * where the size of a phys structure (i.e space_map_phys_t) grows and,
+ * due to incorrect feature management, older pools expect to read more
+ * data even though they didn't actually write it to begin with.
+ *
+ * For a example, this would catch an error in the feature logic where we
+ * open an older pool and we expect to write the space map histogram of
+ * a space map with size SPACE_MAP_SIZE_V0.
+ */
+static void
+dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr)
+{
+#ifdef ZFS_DEBUG
+ dnode_t *dn = dr->dr_dnode;
+
+ /*
+ * Encrypted bonus buffers can have data past their bonuslen.
+ * Skip the verification of these blocks.
+ */
+ if (DMU_OT_IS_ENCRYPTED(dn->dn_bonustype))
+ return;
+
+ uint16_t bonuslen = dn->dn_phys->dn_bonuslen;
+ uint16_t maxbonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
+ ASSERT3U(bonuslen, <=, maxbonuslen);
+
+ arc_buf_t *datap = dr->dt.dl.dr_data;
+ char *datap_end = ((char *)datap) + bonuslen;
+ char *datap_max = ((char *)datap) + maxbonuslen;
+
+ /* ensure that everything is zero after our data */
+ for (; datap_end < datap_max; datap_end++)
+ ASSERT0(*datap_end);
+#endif
+}
+
+static blkptr_t *
+dbuf_lightweight_bp(dbuf_dirty_record_t *dr)
+{
+ /* This must be a lightweight dirty record. */
+ ASSERT0P(dr->dr_dbuf);
+ dnode_t *dn = dr->dr_dnode;
+
+ if (dn->dn_phys->dn_nlevels == 1) {
+ VERIFY3U(dr->dt.dll.dr_blkid, <, dn->dn_phys->dn_nblkptr);
+ return (&dn->dn_phys->dn_blkptr[dr->dt.dll.dr_blkid]);
+ } else {
+ dmu_buf_impl_t *parent_db = dr->dr_parent->dr_dbuf;
+ int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
+ VERIFY3U(parent_db->db_level, ==, 1);
+ VERIFY3P(DB_DNODE(parent_db), ==, dn);
+ VERIFY3U(dr->dt.dll.dr_blkid >> epbs, ==, parent_db->db_blkid);
+ blkptr_t *bp = parent_db->db.db_data;
+ return (&bp[dr->dt.dll.dr_blkid & ((1 << epbs) - 1)]);
+ }
+}
+
+static void
+dbuf_lightweight_ready(zio_t *zio)
+{
+ dbuf_dirty_record_t *dr = zio->io_private;
+ blkptr_t *bp = zio->io_bp;
+
+ if (zio->io_error != 0)
+ return;
+
+ dnode_t *dn = dr->dr_dnode;
+
+ blkptr_t *bp_orig = dbuf_lightweight_bp(dr);
+ spa_t *spa = dmu_objset_spa(dn->dn_objset);
+ int64_t delta = bp_get_dsize_sync(spa, bp) -
+ bp_get_dsize_sync(spa, bp_orig);
+ dnode_diduse_space(dn, delta);
+
+ uint64_t blkid = dr->dt.dll.dr_blkid;
+ mutex_enter(&dn->dn_mtx);
+ if (blkid > dn->dn_phys->dn_maxblkid) {
+ ASSERT0(dn->dn_objset->os_raw_receive);
+ dn->dn_phys->dn_maxblkid = blkid;
+ }
+ mutex_exit(&dn->dn_mtx);
+
+ if (!BP_IS_EMBEDDED(bp)) {
+ uint64_t fill = BP_IS_HOLE(bp) ? 0 : 1;
+ BP_SET_FILL(bp, fill);
+ }
+
+ dmu_buf_impl_t *parent_db;
+ EQUIV(dr->dr_parent == NULL, dn->dn_phys->dn_nlevels == 1);
+ if (dr->dr_parent == NULL) {
+ parent_db = dn->dn_dbuf;
+ } else {
+ parent_db = dr->dr_parent->dr_dbuf;
+ }
+ rw_enter(&parent_db->db_rwlock, RW_WRITER);
+ *bp_orig = *bp;
+ rw_exit(&parent_db->db_rwlock);
+}
+
+static void
+dbuf_lightweight_done(zio_t *zio)
+{
+ dbuf_dirty_record_t *dr = zio->io_private;
+
+ VERIFY0(zio->io_error);
+
+ objset_t *os = dr->dr_dnode->dn_objset;
+ dmu_tx_t *tx = os->os_synctx;
+
+ if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
+ ASSERT(BP_EQUAL(zio->io_bp, &zio->io_bp_orig));
+ } else {
+ dsl_dataset_t *ds = os->os_dsl_dataset;
+ (void) dsl_dataset_block_kill(ds, &zio->io_bp_orig, tx, B_TRUE);
+ dsl_dataset_block_born(ds, zio->io_bp, tx);
+ }
+
+ dsl_pool_undirty_space(dmu_objset_pool(os), dr->dr_accounted,
+ zio->io_txg);
+
+ abd_free(dr->dt.dll.dr_abd);
+ kmem_free(dr, sizeof (*dr));
+}
+
+noinline static void
+dbuf_sync_lightweight(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
+{
+ dnode_t *dn = dr->dr_dnode;
+ zio_t *pio;
+ if (dn->dn_phys->dn_nlevels == 1) {
+ pio = dn->dn_zio;
+ } else {
+ pio = dr->dr_parent->dr_zio;
+ }
+
+ zbookmark_phys_t zb = {
+ .zb_objset = dmu_objset_id(dn->dn_objset),
+ .zb_object = dn->dn_object,
+ .zb_level = 0,
+ .zb_blkid = dr->dt.dll.dr_blkid,
+ };
+
+ /*
+ * See comment in dbuf_write(). This is so that zio->io_bp_orig
+ * will have the old BP in dbuf_lightweight_done().
+ */
+ dr->dr_bp_copy = *dbuf_lightweight_bp(dr);
+
+ dr->dr_zio = zio_write(pio, dmu_objset_spa(dn->dn_objset),
+ dmu_tx_get_txg(tx), &dr->dr_bp_copy, dr->dt.dll.dr_abd,
+ dn->dn_datablksz, abd_get_size(dr->dt.dll.dr_abd),
+ &dr->dt.dll.dr_props, dbuf_lightweight_ready, NULL,
+ dbuf_lightweight_done, dr, ZIO_PRIORITY_ASYNC_WRITE,
+ ZIO_FLAG_MUSTSUCCEED | dr->dt.dll.dr_flags, &zb);
+
+ zio_nowait(dr->dr_zio);
+}
+
+/*
+ * dbuf_sync_leaf() is called recursively from dbuf_sync_list() so it is
+ * critical the we not allow the compiler to inline this function in to
+ * dbuf_sync_list() thereby drastically bloating the stack usage.
+ */
+noinline static void
+dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
+{
+ arc_buf_t **datap = &dr->dt.dl.dr_data;
+ dmu_buf_impl_t *db = dr->dr_dbuf;
+ dnode_t *dn = dr->dr_dnode;
+ objset_t *os;
+ uint64_t txg = tx->tx_txg;
+
+ ASSERT(dmu_tx_is_syncing(tx));
+
+ dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
+
+ mutex_enter(&db->db_mtx);
+ /*
+ * To be synced, we must be dirtied. But we might have been freed
+ * after the dirty.
+ */
+ if (db->db_state == DB_UNCACHED) {
+ /* This buffer has been freed since it was dirtied */
+ ASSERT0P(db->db.db_data);
+ } else if (db->db_state == DB_FILL) {
+ /* This buffer was freed and is now being re-filled */
+ ASSERT(db->db.db_data != dr->dt.dl.dr_data);
+ } else if (db->db_state == DB_READ) {
+ /*
+ * This buffer was either cloned or had a Direct I/O write
+ * occur and has an in-flgiht read on the BP. It is safe to
+ * issue the write here, because the read has already been
+ * issued and the contents won't change.
+ *
+ * We can verify the case of both the clone and Direct I/O
+ * write by making sure the first dirty record for the dbuf
+ * has no ARC buffer associated with it.
+ */
+ dbuf_dirty_record_t *dr_head =
+ list_head(&db->db_dirty_records);
+ ASSERT0P(db->db_buf);
+ ASSERT0P(db->db.db_data);
+ ASSERT0P(dr_head->dt.dl.dr_data);
+ ASSERT3U(dr_head->dt.dl.dr_override_state, ==, DR_OVERRIDDEN);
+ } else {
+ ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL);
+ }
+ DBUF_VERIFY(db);
+
+ if (db->db_blkid == DMU_SPILL_BLKID) {
+ mutex_enter(&dn->dn_mtx);
+ if (!(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) {
+ /*
+ * In the previous transaction group, the bonus buffer
+ * was entirely used to store the attributes for the
+ * dnode which overrode the dn_spill field. However,
+ * when adding more attributes to the file a spill
+ * block was required to hold the extra attributes.
+ *
+ * Make sure to clear the garbage left in the dn_spill
+ * field from the previous attributes in the bonus
+ * buffer. Otherwise, after writing out the spill
+ * block to the new allocated dva, it will free
+ * the old block pointed to by the invalid dn_spill.
+ */
+ db->db_blkptr = NULL;
+ }
+ dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR;
+ mutex_exit(&dn->dn_mtx);
+ }
+
+ /*
+ * If this is a bonus buffer, simply copy the bonus data into the
+ * dnode. It will be written out when the dnode is synced (and it
+ * will be synced, since it must have been dirty for dbuf_sync to
+ * be called).
+ */
+ if (db->db_blkid == DMU_BONUS_BLKID) {
+ ASSERT(dr->dr_dbuf == db);
+ dbuf_sync_bonus(dr, tx);
+ return;
+ }
+
+ os = dn->dn_objset;
+
+ /*
+ * This function may have dropped the db_mtx lock allowing a dmu_sync
+ * operation to sneak in. As a result, we need to ensure that we
+ * don't check the dr_override_state until we have returned from
+ * dbuf_check_blkptr.
+ */
+ dbuf_check_blkptr(dn, db);
+
+ /*
+ * If this buffer is in the middle of an immediate write, wait for the
+ * synchronous IO to complete.
+ *
+ * This is also valid even with Direct I/O writes setting a dirty
+ * records override state into DR_IN_DMU_SYNC, because all
+ * Direct I/O writes happen in open-context.
+ */
+ while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) {
+ ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
+ cv_wait(&db->db_changed, &db->db_mtx);
+ }
+
+ /*
+ * If this is a dnode block, ensure it is appropriately encrypted
+ * or decrypted, depending on what we are writing to it this txg.
+ */
+ if (os->os_encrypted && dn->dn_object == DMU_META_DNODE_OBJECT)
+ dbuf_prepare_encrypted_dnode_leaf(dr);
+
+ if (*datap != NULL && *datap == db->db_buf &&
+ dn->dn_object != DMU_META_DNODE_OBJECT &&
+ zfs_refcount_count(&db->db_holds) > 1) {
+ /*
+ * If this buffer is currently "in use" (i.e., there
+ * are active holds and db_data still references it),
+ * then make a copy before we start the write so that
+ * any modifications from the open txg will not leak
+ * into this write.
+ *
+ * NOTE: this copy does not need to be made for
+ * objects only modified in the syncing context (e.g.
+ * DNONE_DNODE blocks).
+ */
+ int psize = arc_buf_size(*datap);
+ int lsize = arc_buf_lsize(*datap);
+ arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
+ enum zio_compress compress_type = arc_get_compression(*datap);
+ uint8_t complevel = arc_get_complevel(*datap);
+
+ if (arc_is_encrypted(*datap)) {
+ boolean_t byteorder;
+ uint8_t salt[ZIO_DATA_SALT_LEN];
+ uint8_t iv[ZIO_DATA_IV_LEN];
+ uint8_t mac[ZIO_DATA_MAC_LEN];
+
+ arc_get_raw_params(*datap, &byteorder, salt, iv, mac);
+ *datap = arc_alloc_raw_buf(os->os_spa, db,
+ dmu_objset_id(os), byteorder, salt, iv, mac,
+ dn->dn_type, psize, lsize, compress_type,
+ complevel);
+ } else if (compress_type != ZIO_COMPRESS_OFF) {
+ ASSERT3U(type, ==, ARC_BUFC_DATA);
+ *datap = arc_alloc_compressed_buf(os->os_spa, db,
+ psize, lsize, compress_type, complevel);
+ } else {
+ *datap = arc_alloc_buf(os->os_spa, db, type, psize);
+ }
+ memcpy((*datap)->b_data, db->db.db_data, psize);
+ }
+ db->db_data_pending = dr;
+
+ mutex_exit(&db->db_mtx);
+
+ dbuf_write(dr, *datap, tx);
+
+ ASSERT(!list_link_active(&dr->dr_dirty_node));
+ if (dn->dn_object == DMU_META_DNODE_OBJECT) {
+ list_insert_tail(&dn->dn_dirty_records[txg & TXG_MASK], dr);
+ } else {
+ zio_nowait(dr->dr_zio);
+ }
+}
+
+/*
+ * Syncs out a range of dirty records for indirect or leaf dbufs. May be
+ * called recursively from dbuf_sync_indirect().
+ */
+void
+dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx)
+{
+ dbuf_dirty_record_t *dr;
+
+ while ((dr = list_head(list))) {
+ if (dr->dr_zio != NULL) {
+ /*
+ * If we find an already initialized zio then we
+ * are processing the meta-dnode, and we have finished.
+ * The dbufs for all dnodes are put back on the list
+ * during processing, so that we can zio_wait()
+ * these IOs after initiating all child IOs.
+ */
+ ASSERT3U(dr->dr_dbuf->db.db_object, ==,
+ DMU_META_DNODE_OBJECT);
+ break;
+ }
+ list_remove(list, dr);
+ if (dr->dr_dbuf == NULL) {
+ dbuf_sync_lightweight(dr, tx);
+ } else {
+ if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
+ dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
+ VERIFY3U(dr->dr_dbuf->db_level, ==, level);
+ }
+ if (dr->dr_dbuf->db_level > 0)
+ dbuf_sync_indirect(dr, tx);
+ else
+ dbuf_sync_leaf(dr, tx);
+ }
+ }
+}
+
+static void
+dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
+{
+ (void) buf;
+ dmu_buf_impl_t *db = vdb;
+ dnode_t *dn;
+ blkptr_t *bp = zio->io_bp;
+ blkptr_t *bp_orig = &zio->io_bp_orig;
+ spa_t *spa = zio->io_spa;
+ int64_t delta;
+ uint64_t fill = 0;
+ int i;
+
+ ASSERT3P(db->db_blkptr, !=, NULL);
+ ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp);
+
+ DB_DNODE_ENTER(db);
+ dn = DB_DNODE(db);
+ delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig);
+ dnode_diduse_space(dn, delta - zio->io_prev_space_delta);
+ zio->io_prev_space_delta = delta;
+
+ if (BP_GET_BIRTH(bp) != 0) {
+ ASSERT((db->db_blkid != DMU_SPILL_BLKID &&
+ BP_GET_TYPE(bp) == dn->dn_type) ||
+ (db->db_blkid == DMU_SPILL_BLKID &&
+ BP_GET_TYPE(bp) == dn->dn_bonustype) ||
+ BP_IS_EMBEDDED(bp));
+ ASSERT(BP_GET_LEVEL(bp) == db->db_level);
+ }
+
+ mutex_enter(&db->db_mtx);
+
+#ifdef ZFS_DEBUG
+ if (db->db_blkid == DMU_SPILL_BLKID) {
+ ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
+ ASSERT(!(BP_IS_HOLE(bp)) &&
+ db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
+ }
+#endif
+
+ if (db->db_level == 0) {
+ mutex_enter(&dn->dn_mtx);
+ if (db->db_blkid > dn->dn_phys->dn_maxblkid &&
+ db->db_blkid != DMU_SPILL_BLKID) {
+ ASSERT0(db->db_objset->os_raw_receive);
+ dn->dn_phys->dn_maxblkid = db->db_blkid;
+ }
+ mutex_exit(&dn->dn_mtx);
+
+ if (dn->dn_type == DMU_OT_DNODE) {
+ i = 0;
+ while (i < db->db.db_size) {
+ dnode_phys_t *dnp =
+ (void *)(((char *)db->db.db_data) + i);
+
+ i += DNODE_MIN_SIZE;
+ if (dnp->dn_type != DMU_OT_NONE) {
+ fill++;
+ for (int j = 0; j < dnp->dn_nblkptr;
+ j++) {
+ (void) zfs_blkptr_verify(spa,
+ &dnp->dn_blkptr[j],
+ BLK_CONFIG_SKIP,
+ BLK_VERIFY_HALT);
+ }
+ if (dnp->dn_flags &
+ DNODE_FLAG_SPILL_BLKPTR) {
+ (void) zfs_blkptr_verify(spa,
+ DN_SPILL_BLKPTR(dnp),
+ BLK_CONFIG_SKIP,
+ BLK_VERIFY_HALT);
+ }
+ i += dnp->dn_extra_slots *
+ DNODE_MIN_SIZE;
+ }
+ }
+ } else {
+ if (BP_IS_HOLE(bp)) {
+ fill = 0;
+ } else {
+ fill = 1;
+ }
+ }
+ } else {
+ blkptr_t *ibp = db->db.db_data;
+ ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
+ for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) {
+ if (BP_IS_HOLE(ibp))
+ continue;
+ (void) zfs_blkptr_verify(spa, ibp,
+ BLK_CONFIG_SKIP, BLK_VERIFY_HALT);
+ fill += BP_GET_FILL(ibp);
+ }
+ }
+ DB_DNODE_EXIT(db);
+
+ if (!BP_IS_EMBEDDED(bp))
+ BP_SET_FILL(bp, fill);
+
+ mutex_exit(&db->db_mtx);
+
+ db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_WRITER, FTAG);
+ *db->db_blkptr = *bp;
+ dmu_buf_unlock_parent(db, dblt, FTAG);
+}
+
+/*
+ * This function gets called just prior to running through the compression
+ * stage of the zio pipeline. If we're an indirect block comprised of only
+ * holes, then we want this indirect to be compressed away to a hole. In
+ * order to do that we must zero out any information about the holes that
+ * this indirect points to prior to before we try to compress it.
+ */
+static void
+dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
+{
+ (void) zio, (void) buf;
+ dmu_buf_impl_t *db = vdb;
+ blkptr_t *bp;
+ unsigned int epbs, i;
+
+ ASSERT3U(db->db_level, >, 0);
+ DB_DNODE_ENTER(db);
+ epbs = DB_DNODE(db)->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
+ DB_DNODE_EXIT(db);
+ ASSERT3U(epbs, <, 31);
+
+ /* Determine if all our children are holes */
+ for (i = 0, bp = db->db.db_data; i < 1ULL << epbs; i++, bp++) {
+ if (!BP_IS_HOLE(bp))
+ break;
+ }
+
+ /*
+ * If all the children are holes, then zero them all out so that
+ * we may get compressed away.
+ */
+ if (i == 1ULL << epbs) {
+ /*
+ * We only found holes. Grab the rwlock to prevent
+ * anybody from reading the blocks we're about to
+ * zero out.
+ */
+ rw_enter(&db->db_rwlock, RW_WRITER);
+ memset(db->db.db_data, 0, db->db.db_size);
+ rw_exit(&db->db_rwlock);
+ }
+}
+
+static void
+dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb)
+{
+ (void) buf;
+ dmu_buf_impl_t *db = vdb;
+ blkptr_t *bp_orig = &zio->io_bp_orig;
+ blkptr_t *bp = db->db_blkptr;
+ objset_t *os = db->db_objset;
+ dmu_tx_t *tx = os->os_synctx;
+
+ ASSERT0(zio->io_error);
+ ASSERT(db->db_blkptr == bp);
+
+ /*
+ * For nopwrites and rewrites we ensure that the bp matches our
+ * original and bypass all the accounting.
+ */
+ if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
+ ASSERT(BP_EQUAL(bp, bp_orig));
+ } else {
+ dsl_dataset_t *ds = os->os_dsl_dataset;
+ (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE);
+ dsl_dataset_block_born(ds, bp, tx);
+ }
+
+ mutex_enter(&db->db_mtx);
+
+ DBUF_VERIFY(db);
+
+ dbuf_dirty_record_t *dr = db->db_data_pending;
+ dnode_t *dn = dr->dr_dnode;
+ ASSERT(!list_link_active(&dr->dr_dirty_node));
+ ASSERT(dr->dr_dbuf == db);
+ ASSERT(list_next(&db->db_dirty_records, dr) == NULL);
+ list_remove(&db->db_dirty_records, dr);
+
+#ifdef ZFS_DEBUG
+ if (db->db_blkid == DMU_SPILL_BLKID) {
+ ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
+ ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
+ db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
+ }
+#endif
+
+ if (db->db_level == 0) {
+ ASSERT(db->db_blkid != DMU_BONUS_BLKID);
+ ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
+
+ /* no dr_data if this is a NO_FILL or Direct I/O */
+ if (dr->dt.dl.dr_data != NULL &&
+ dr->dt.dl.dr_data != db->db_buf) {
+ ASSERT3B(dr->dt.dl.dr_brtwrite, ==, B_FALSE);
+ ASSERT3B(dr->dt.dl.dr_diowrite, ==, B_FALSE);
+ arc_buf_destroy(dr->dt.dl.dr_data, db);
+ }
+ } else {
+ ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
+ ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift);
+ if (!BP_IS_HOLE(db->db_blkptr)) {
+ int epbs __maybe_unused = dn->dn_phys->dn_indblkshift -
+ SPA_BLKPTRSHIFT;
+ ASSERT3U(db->db_blkid, <=,
+ dn->dn_phys->dn_maxblkid >> (db->db_level * epbs));
+ ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
+ db->db.db_size);
+ }
+ mutex_destroy(&dr->dt.di.dr_mtx);
+ list_destroy(&dr->dt.di.dr_children);
+ }
+
+ cv_broadcast(&db->db_changed);
+ ASSERT(db->db_dirtycnt > 0);
+ db->db_dirtycnt -= 1;
+ db->db_data_pending = NULL;
+ dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE);
+
+ dsl_pool_undirty_space(dmu_objset_pool(os), dr->dr_accounted,
+ zio->io_txg);
+
+ kmem_cache_free(dbuf_dirty_kmem_cache, dr);
+}
+
+static void
+dbuf_write_nofill_ready(zio_t *zio)
+{
+ dbuf_write_ready(zio, NULL, zio->io_private);
+}
+
+static void
+dbuf_write_nofill_done(zio_t *zio)
+{
+ dbuf_write_done(zio, NULL, zio->io_private);
+}
+
+static void
+dbuf_write_override_ready(zio_t *zio)
+{
+ dbuf_dirty_record_t *dr = zio->io_private;
+ dmu_buf_impl_t *db = dr->dr_dbuf;
+
+ dbuf_write_ready(zio, NULL, db);
+}
+
+static void
+dbuf_write_override_done(zio_t *zio)
+{
+ dbuf_dirty_record_t *dr = zio->io_private;
+ dmu_buf_impl_t *db = dr->dr_dbuf;
+ blkptr_t *obp = &dr->dt.dl.dr_overridden_by;
+
+ mutex_enter(&db->db_mtx);
+ if (!BP_EQUAL(zio->io_bp, obp)) {
+ if (!BP_IS_HOLE(obp))
+ dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp);
+ arc_release(dr->dt.dl.dr_data, db);
+ }
+ mutex_exit(&db->db_mtx);
+
+ dbuf_write_done(zio, NULL, db);
+
+ if (zio->io_abd != NULL)
+ abd_free(zio->io_abd);
+}
+
+typedef struct dbuf_remap_impl_callback_arg {
+ objset_t *drica_os;
+ uint64_t drica_blk_birth;
+ dmu_tx_t *drica_tx;
+} dbuf_remap_impl_callback_arg_t;
+
+static void
+dbuf_remap_impl_callback(uint64_t vdev, uint64_t offset, uint64_t size,
+ void *arg)
+{
+ dbuf_remap_impl_callback_arg_t *drica = arg;
+ objset_t *os = drica->drica_os;
+ spa_t *spa = dmu_objset_spa(os);
+ dmu_tx_t *tx = drica->drica_tx;
+
+ ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
+
+ if (os == spa_meta_objset(spa)) {
+ spa_vdev_indirect_mark_obsolete(spa, vdev, offset, size, tx);
+ } else {
+ dsl_dataset_block_remapped(dmu_objset_ds(os), vdev, offset,
+ size, drica->drica_blk_birth, tx);
+ }
+}
+
+static void
+dbuf_remap_impl(dnode_t *dn, blkptr_t *bp, krwlock_t *rw, dmu_tx_t *tx)
+{
+ blkptr_t bp_copy = *bp;
+ spa_t *spa = dmu_objset_spa(dn->dn_objset);
+ dbuf_remap_impl_callback_arg_t drica;
+
+ ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
+
+ drica.drica_os = dn->dn_objset;
+ drica.drica_blk_birth = BP_GET_BIRTH(bp);
+ drica.drica_tx = tx;
+ if (spa_remap_blkptr(spa, &bp_copy, dbuf_remap_impl_callback,
+ &drica)) {
+ /*
+ * If the blkptr being remapped is tracked by a livelist,
+ * then we need to make sure the livelist reflects the update.
+ * First, cancel out the old blkptr by appending a 'FREE'
+ * entry. Next, add an 'ALLOC' to track the new version. This
+ * way we avoid trying to free an inaccurate blkptr at delete.
+ * Note that embedded blkptrs are not tracked in livelists.
+ */
+ if (dn->dn_objset != spa_meta_objset(spa)) {
+ dsl_dataset_t *ds = dmu_objset_ds(dn->dn_objset);
+ if (dsl_deadlist_is_open(&ds->ds_dir->dd_livelist) &&
+ BP_GET_BIRTH(bp) > ds->ds_dir->dd_origin_txg) {
+ ASSERT(!BP_IS_EMBEDDED(bp));
+ ASSERT(dsl_dir_is_clone(ds->ds_dir));
+ ASSERT(spa_feature_is_enabled(spa,
+ SPA_FEATURE_LIVELIST));
+ bplist_append(&ds->ds_dir->dd_pending_frees,
+ bp);
+ bplist_append(&ds->ds_dir->dd_pending_allocs,
+ &bp_copy);
+ }
+ }
+
+ /*
+ * The db_rwlock prevents dbuf_read_impl() from
+ * dereferencing the BP while we are changing it. To
+ * avoid lock contention, only grab it when we are actually
+ * changing the BP.
+ */
+ if (rw != NULL)
+ rw_enter(rw, RW_WRITER);
+ *bp = bp_copy;
+ if (rw != NULL)
+ rw_exit(rw);
+ }
+}
+
+/*
+ * Remap any existing BP's to concrete vdevs, if possible.
+ */
+static void
+dbuf_remap(dnode_t *dn, dmu_buf_impl_t *db, dmu_tx_t *tx)
+{
+ spa_t *spa = dmu_objset_spa(db->db_objset);
+ ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
+
+ if (!spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL))
+ return;
+
+ if (db->db_level > 0) {
+ blkptr_t *bp = db->db.db_data;
+ for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) {
+ dbuf_remap_impl(dn, &bp[i], &db->db_rwlock, tx);
+ }
+ } else if (db->db.db_object == DMU_META_DNODE_OBJECT) {
+ dnode_phys_t *dnp = db->db.db_data;
+ ASSERT3U(dn->dn_type, ==, DMU_OT_DNODE);
+ for (int i = 0; i < db->db.db_size >> DNODE_SHIFT;
+ i += dnp[i].dn_extra_slots + 1) {
+ for (int j = 0; j < dnp[i].dn_nblkptr; j++) {
+ krwlock_t *lock = (dn->dn_dbuf == NULL ? NULL :
+ &dn->dn_dbuf->db_rwlock);
+ dbuf_remap_impl(dn, &dnp[i].dn_blkptr[j], lock,
+ tx);
+ }
+ }
+ }
+}
+
+
+/*
+ * Populate dr->dr_zio with a zio to commit a dirty buffer to disk.
+ * Caller is responsible for issuing the zio_[no]wait(dr->dr_zio).
+ */
+static void
+dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx)
+{
+ dmu_buf_impl_t *db = dr->dr_dbuf;
+ dnode_t *dn = dr->dr_dnode;
+ objset_t *os;
+ dmu_buf_impl_t *parent = db->db_parent;
+ uint64_t txg = tx->tx_txg;
+ zbookmark_phys_t zb;
+ zio_prop_t zp;
+ zio_t *pio; /* parent I/O */
+ int wp_flag = 0;
+
+ ASSERT(dmu_tx_is_syncing(tx));
+
+ os = dn->dn_objset;
+
+ if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) {
+ /*
+ * Private object buffers are released here rather than in
+ * dbuf_dirty() since they are only modified in the syncing
+ * context and we don't want the overhead of making multiple
+ * copies of the data.
+ */
+ if (BP_IS_HOLE(db->db_blkptr))
+ arc_buf_thaw(data);
+ else
+ dbuf_release_bp(db);
+ dbuf_remap(dn, db, tx);
+ }
+
+ if (parent != dn->dn_dbuf) {
+ /* Our parent is an indirect block. */
+ /* We have a dirty parent that has been scheduled for write. */
+ ASSERT(parent && parent->db_data_pending);
+ /* Our parent's buffer is one level closer to the dnode. */
+ ASSERT(db->db_level == parent->db_level-1);
+ /*
+ * We're about to modify our parent's db_data by modifying
+ * our block pointer, so the parent must be released.
+ */
+ ASSERT(arc_released(parent->db_buf));
+ pio = parent->db_data_pending->dr_zio;
+ } else {
+ /* Our parent is the dnode itself. */
+ ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 &&
+ db->db_blkid != DMU_SPILL_BLKID) ||
+ (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0));
+ if (db->db_blkid != DMU_SPILL_BLKID)
+ ASSERT3P(db->db_blkptr, ==,
+ &dn->dn_phys->dn_blkptr[db->db_blkid]);
+ pio = dn->dn_zio;
+ }
+
+ ASSERT(db->db_level == 0 || data == db->db_buf);
+ ASSERT3U(BP_GET_BIRTH(db->db_blkptr), <=, txg);
+ ASSERT(pio);
+
+ SET_BOOKMARK(&zb, os->os_dsl_dataset ?
+ os->os_dsl_dataset->ds_object : DMU_META_OBJSET,
+ db->db.db_object, db->db_level, db->db_blkid);
+
+ if (db->db_blkid == DMU_SPILL_BLKID)
+ wp_flag = WP_SPILL;
+ wp_flag |= (data == NULL) ? WP_NOFILL : 0;
+
+ dmu_write_policy(os, dn, db->db_level, wp_flag, &zp);
+
+ /*
+ * Set rewrite properties for zfs_rewrite() operations.
+ */
+ if (db->db_level == 0 && dr->dt.dl.dr_rewrite) {
+ zp.zp_rewrite = B_TRUE;
+
+ /*
+ * Mark physical rewrite feature for activation.
+ * This will be activated automatically during dataset sync.
+ */
+ dsl_dataset_t *ds = os->os_dsl_dataset;
+ if (!dsl_dataset_feature_is_active(ds,
+ SPA_FEATURE_PHYSICAL_REWRITE)) {
+ ds->ds_feature_activation[
+ SPA_FEATURE_PHYSICAL_REWRITE] = (void *)B_TRUE;
+ }
+ }
+
+ /*
+ * We copy the blkptr now (rather than when we instantiate the dirty
+ * record), because its value can change between open context and
+ * syncing context. We do not need to hold dn_struct_rwlock to read
+ * db_blkptr because we are in syncing context.
+ */
+ dr->dr_bp_copy = *db->db_blkptr;
+
+ if (db->db_level == 0 &&
+ dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
+ /*
+ * The BP for this block has been provided by open context
+ * (by dmu_sync(), dmu_write_direct(),
+ * or dmu_buf_write_embedded()).
+ */
+ abd_t *contents = (data != NULL) ?
+ abd_get_from_buf(data->b_data, arc_buf_size(data)) : NULL;
+
+ dr->dr_zio = zio_write(pio, os->os_spa, txg, &dr->dr_bp_copy,
+ contents, db->db.db_size, db->db.db_size, &zp,
+ dbuf_write_override_ready, NULL,
+ dbuf_write_override_done,
+ dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
+ mutex_enter(&db->db_mtx);
+ dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
+ zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by,
+ dr->dt.dl.dr_copies, dr->dt.dl.dr_gang_copies,
+ dr->dt.dl.dr_nopwrite, dr->dt.dl.dr_brtwrite);
+ mutex_exit(&db->db_mtx);
+ } else if (data == NULL) {
+ ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF ||
+ zp.zp_checksum == ZIO_CHECKSUM_NOPARITY);
+ dr->dr_zio = zio_write(pio, os->os_spa, txg,
+ &dr->dr_bp_copy, NULL, db->db.db_size, db->db.db_size, &zp,
+ dbuf_write_nofill_ready, NULL,
+ dbuf_write_nofill_done, db,
+ ZIO_PRIORITY_ASYNC_WRITE,
+ ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb);
+ } else {
+ ASSERT(arc_released(data));
+
+ /*
+ * For indirect blocks, we want to setup the children
+ * ready callback so that we can properly handle an indirect
+ * block that only contains holes.
+ */
+ arc_write_done_func_t *children_ready_cb = NULL;
+ if (db->db_level != 0)
+ children_ready_cb = dbuf_write_children_ready;
+
+ dr->dr_zio = arc_write(pio, os->os_spa, txg,
+ &dr->dr_bp_copy, data, !DBUF_IS_CACHEABLE(db),
+ dbuf_is_l2cacheable(db, NULL), &zp, dbuf_write_ready,
+ children_ready_cb, dbuf_write_done, db,
+ ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
+ }
+}
+
+EXPORT_SYMBOL(dbuf_find);
+EXPORT_SYMBOL(dbuf_is_metadata);
+EXPORT_SYMBOL(dbuf_destroy);
+EXPORT_SYMBOL(dbuf_whichblock);
+EXPORT_SYMBOL(dbuf_read);
+EXPORT_SYMBOL(dbuf_unoverride);
+EXPORT_SYMBOL(dbuf_free_range);
+EXPORT_SYMBOL(dbuf_new_size);
+EXPORT_SYMBOL(dbuf_release_bp);
+EXPORT_SYMBOL(dbuf_dirty);
+EXPORT_SYMBOL(dmu_buf_set_crypt_params);
+EXPORT_SYMBOL(dmu_buf_will_dirty);
+EXPORT_SYMBOL(dmu_buf_will_rewrite);
+EXPORT_SYMBOL(dmu_buf_is_dirty);
+EXPORT_SYMBOL(dmu_buf_will_clone_or_dio);
+EXPORT_SYMBOL(dmu_buf_will_not_fill);
+EXPORT_SYMBOL(dmu_buf_will_fill);
+EXPORT_SYMBOL(dmu_buf_fill_done);
+EXPORT_SYMBOL(dmu_buf_rele);
+EXPORT_SYMBOL(dbuf_assign_arcbuf);
+EXPORT_SYMBOL(dbuf_prefetch);
+EXPORT_SYMBOL(dbuf_hold_impl);
+EXPORT_SYMBOL(dbuf_hold);
+EXPORT_SYMBOL(dbuf_hold_level);
+EXPORT_SYMBOL(dbuf_create_bonus);
+EXPORT_SYMBOL(dbuf_spill_set_blksz);
+EXPORT_SYMBOL(dbuf_rm_spill);
+EXPORT_SYMBOL(dbuf_add_ref);
+EXPORT_SYMBOL(dbuf_rele);
+EXPORT_SYMBOL(dbuf_rele_and_unlock);
+EXPORT_SYMBOL(dbuf_refcount);
+EXPORT_SYMBOL(dbuf_sync_list);
+EXPORT_SYMBOL(dmu_buf_set_user);
+EXPORT_SYMBOL(dmu_buf_set_user_ie);
+EXPORT_SYMBOL(dmu_buf_get_user);
+EXPORT_SYMBOL(dmu_buf_get_blkptr);
+
+ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, max_bytes, U64, ZMOD_RW,
+ "Maximum size in bytes of the dbuf cache.");
+
+ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, hiwater_pct, UINT, ZMOD_RW,
+ "Percentage over dbuf_cache_max_bytes for direct dbuf eviction.");
+
+ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, lowater_pct, UINT, ZMOD_RW,
+ "Percentage below dbuf_cache_max_bytes when dbuf eviction stops.");
+
+ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_max_bytes, U64, ZMOD_RW,
+ "Maximum size in bytes of dbuf metadata cache.");
+
+ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, cache_shift, UINT, ZMOD_RW,
+ "Set size of dbuf cache to log2 fraction of arc size.");
+
+ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_shift, UINT, ZMOD_RW,
+ "Set size of dbuf metadata cache to log2 fraction of arc size.");
+
+ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, mutex_cache_shift, UINT, ZMOD_RD,
+ "Set size of dbuf cache mutex array as log2 shift.");