aboutsummaryrefslogtreecommitdiff
path: root/sys/contrib/openzfs/module/zfs/dmu_zfetch.c
diff options
context:
space:
mode:
Diffstat (limited to 'sys/contrib/openzfs/module/zfs/dmu_zfetch.c')
-rw-r--r--sys/contrib/openzfs/module/zfs/dmu_zfetch.c799
1 files changed, 799 insertions, 0 deletions
diff --git a/sys/contrib/openzfs/module/zfs/dmu_zfetch.c b/sys/contrib/openzfs/module/zfs/dmu_zfetch.c
new file mode 100644
index 000000000000..51165d0bf723
--- /dev/null
+++ b/sys/contrib/openzfs/module/zfs/dmu_zfetch.c
@@ -0,0 +1,799 @@
+// SPDX-License-Identifier: CDDL-1.0
+/*
+ * CDDL HEADER START
+ *
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License (the "License").
+ * You may not use this file except in compliance with the License.
+ *
+ * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
+ * or https://opensource.org/licenses/CDDL-1.0.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When distributing Covered Code, include this CDDL HEADER in each
+ * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+/*
+ * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
+ * Use is subject to license terms.
+ */
+
+/*
+ * Copyright (c) 2013, 2017 by Delphix. All rights reserved.
+ */
+
+#include <sys/zfs_context.h>
+#include <sys/arc_impl.h>
+#include <sys/dnode.h>
+#include <sys/dmu_objset.h>
+#include <sys/dmu_zfetch.h>
+#include <sys/dmu.h>
+#include <sys/dbuf.h>
+#include <sys/kstat.h>
+#include <sys/wmsum.h>
+
+/*
+ * This tunable disables predictive prefetch. Note that it leaves "prescient"
+ * prefetch (e.g. prefetch for zfs send) intact. Unlike predictive prefetch,
+ * prescient prefetch never issues i/os that end up not being needed,
+ * so it can't hurt performance.
+ */
+
+static int zfs_prefetch_disable = B_FALSE;
+
+/* max # of streams per zfetch */
+static unsigned int zfetch_max_streams = 8;
+/* min time before stream reclaim */
+static unsigned int zfetch_min_sec_reap = 1;
+/* max time before stream delete */
+static unsigned int zfetch_max_sec_reap = 2;
+#ifdef _ILP32
+/* min bytes to prefetch per stream (default 2MB) */
+static unsigned int zfetch_min_distance = 2 * 1024 * 1024;
+/* max bytes to prefetch per stream (default 8MB) */
+unsigned int zfetch_max_distance = 8 * 1024 * 1024;
+#else
+/* min bytes to prefetch per stream (default 4MB) */
+static unsigned int zfetch_min_distance = 4 * 1024 * 1024;
+/* max bytes to prefetch per stream (default 64MB) */
+unsigned int zfetch_max_distance = 64 * 1024 * 1024;
+#endif
+/* max bytes to prefetch indirects for per stream (default 128MB) */
+unsigned int zfetch_max_idistance = 128 * 1024 * 1024;
+/* max request reorder distance within a stream (default 16MB) */
+unsigned int zfetch_max_reorder = 16 * 1024 * 1024;
+/* Max log2 fraction of holes in a stream */
+unsigned int zfetch_hole_shift = 2;
+
+typedef struct zfetch_stats {
+ kstat_named_t zfetchstat_hits;
+ kstat_named_t zfetchstat_future;
+ kstat_named_t zfetchstat_stride;
+ kstat_named_t zfetchstat_past;
+ kstat_named_t zfetchstat_misses;
+ kstat_named_t zfetchstat_max_streams;
+ kstat_named_t zfetchstat_io_issued;
+ kstat_named_t zfetchstat_io_active;
+} zfetch_stats_t;
+
+static zfetch_stats_t zfetch_stats = {
+ { "hits", KSTAT_DATA_UINT64 },
+ { "future", KSTAT_DATA_UINT64 },
+ { "stride", KSTAT_DATA_UINT64 },
+ { "past", KSTAT_DATA_UINT64 },
+ { "misses", KSTAT_DATA_UINT64 },
+ { "max_streams", KSTAT_DATA_UINT64 },
+ { "io_issued", KSTAT_DATA_UINT64 },
+ { "io_active", KSTAT_DATA_UINT64 },
+};
+
+struct {
+ wmsum_t zfetchstat_hits;
+ wmsum_t zfetchstat_future;
+ wmsum_t zfetchstat_stride;
+ wmsum_t zfetchstat_past;
+ wmsum_t zfetchstat_misses;
+ wmsum_t zfetchstat_max_streams;
+ wmsum_t zfetchstat_io_issued;
+ aggsum_t zfetchstat_io_active;
+} zfetch_sums;
+
+#define ZFETCHSTAT_BUMP(stat) \
+ wmsum_add(&zfetch_sums.stat, 1)
+#define ZFETCHSTAT_ADD(stat, val) \
+ wmsum_add(&zfetch_sums.stat, val)
+
+
+static kstat_t *zfetch_ksp;
+
+static int
+zfetch_kstats_update(kstat_t *ksp, int rw)
+{
+ zfetch_stats_t *zs = ksp->ks_data;
+
+ if (rw == KSTAT_WRITE)
+ return (EACCES);
+ zs->zfetchstat_hits.value.ui64 =
+ wmsum_value(&zfetch_sums.zfetchstat_hits);
+ zs->zfetchstat_future.value.ui64 =
+ wmsum_value(&zfetch_sums.zfetchstat_future);
+ zs->zfetchstat_stride.value.ui64 =
+ wmsum_value(&zfetch_sums.zfetchstat_stride);
+ zs->zfetchstat_past.value.ui64 =
+ wmsum_value(&zfetch_sums.zfetchstat_past);
+ zs->zfetchstat_misses.value.ui64 =
+ wmsum_value(&zfetch_sums.zfetchstat_misses);
+ zs->zfetchstat_max_streams.value.ui64 =
+ wmsum_value(&zfetch_sums.zfetchstat_max_streams);
+ zs->zfetchstat_io_issued.value.ui64 =
+ wmsum_value(&zfetch_sums.zfetchstat_io_issued);
+ zs->zfetchstat_io_active.value.ui64 =
+ aggsum_value(&zfetch_sums.zfetchstat_io_active);
+ return (0);
+}
+
+void
+zfetch_init(void)
+{
+ wmsum_init(&zfetch_sums.zfetchstat_hits, 0);
+ wmsum_init(&zfetch_sums.zfetchstat_future, 0);
+ wmsum_init(&zfetch_sums.zfetchstat_stride, 0);
+ wmsum_init(&zfetch_sums.zfetchstat_past, 0);
+ wmsum_init(&zfetch_sums.zfetchstat_misses, 0);
+ wmsum_init(&zfetch_sums.zfetchstat_max_streams, 0);
+ wmsum_init(&zfetch_sums.zfetchstat_io_issued, 0);
+ aggsum_init(&zfetch_sums.zfetchstat_io_active, 0);
+
+ zfetch_ksp = kstat_create("zfs", 0, "zfetchstats", "misc",
+ KSTAT_TYPE_NAMED, sizeof (zfetch_stats) / sizeof (kstat_named_t),
+ KSTAT_FLAG_VIRTUAL);
+
+ if (zfetch_ksp != NULL) {
+ zfetch_ksp->ks_data = &zfetch_stats;
+ zfetch_ksp->ks_update = zfetch_kstats_update;
+ kstat_install(zfetch_ksp);
+ }
+}
+
+void
+zfetch_fini(void)
+{
+ if (zfetch_ksp != NULL) {
+ kstat_delete(zfetch_ksp);
+ zfetch_ksp = NULL;
+ }
+
+ wmsum_fini(&zfetch_sums.zfetchstat_hits);
+ wmsum_fini(&zfetch_sums.zfetchstat_future);
+ wmsum_fini(&zfetch_sums.zfetchstat_stride);
+ wmsum_fini(&zfetch_sums.zfetchstat_past);
+ wmsum_fini(&zfetch_sums.zfetchstat_misses);
+ wmsum_fini(&zfetch_sums.zfetchstat_max_streams);
+ wmsum_fini(&zfetch_sums.zfetchstat_io_issued);
+ ASSERT0(aggsum_value(&zfetch_sums.zfetchstat_io_active));
+ aggsum_fini(&zfetch_sums.zfetchstat_io_active);
+}
+
+/*
+ * This takes a pointer to a zfetch structure and a dnode. It performs the
+ * necessary setup for the zfetch structure, grokking data from the
+ * associated dnode.
+ */
+void
+dmu_zfetch_init(zfetch_t *zf, dnode_t *dno)
+{
+ if (zf == NULL)
+ return;
+ zf->zf_dnode = dno;
+ zf->zf_numstreams = 0;
+
+ list_create(&zf->zf_stream, sizeof (zstream_t),
+ offsetof(zstream_t, zs_node));
+
+ mutex_init(&zf->zf_lock, NULL, MUTEX_DEFAULT, NULL);
+}
+
+static void
+dmu_zfetch_stream_fini(zstream_t *zs)
+{
+ ASSERT(!list_link_active(&zs->zs_node));
+ zfs_refcount_destroy(&zs->zs_callers);
+ zfs_refcount_destroy(&zs->zs_refs);
+ kmem_free(zs, sizeof (*zs));
+}
+
+static void
+dmu_zfetch_stream_remove(zfetch_t *zf, zstream_t *zs)
+{
+ ASSERT(MUTEX_HELD(&zf->zf_lock));
+ list_remove(&zf->zf_stream, zs);
+ zf->zf_numstreams--;
+ membar_producer();
+ if (zfs_refcount_remove(&zs->zs_refs, NULL) == 0)
+ dmu_zfetch_stream_fini(zs);
+}
+
+/*
+ * Clean-up state associated with a zfetch structure (e.g. destroy the
+ * streams). This doesn't free the zfetch_t itself, that's left to the caller.
+ */
+void
+dmu_zfetch_fini(zfetch_t *zf)
+{
+ zstream_t *zs;
+
+ mutex_enter(&zf->zf_lock);
+ while ((zs = list_head(&zf->zf_stream)) != NULL)
+ dmu_zfetch_stream_remove(zf, zs);
+ mutex_exit(&zf->zf_lock);
+ list_destroy(&zf->zf_stream);
+ mutex_destroy(&zf->zf_lock);
+
+ zf->zf_dnode = NULL;
+}
+
+/*
+ * If there aren't too many active streams already, create one more.
+ * In process delete/reuse all streams without hits for zfetch_max_sec_reap.
+ * If needed, reuse oldest stream without hits for zfetch_min_sec_reap or ever.
+ * The "blkid" argument is the next block that we expect this stream to access.
+ */
+static void
+dmu_zfetch_stream_create(zfetch_t *zf, uint64_t blkid)
+{
+ zstream_t *zs, *zs_next, *zs_old = NULL;
+ uint_t now = gethrestime_sec(), t;
+
+ ASSERT(MUTEX_HELD(&zf->zf_lock));
+
+ /*
+ * Delete too old streams, reusing the first found one.
+ */
+ t = now - zfetch_max_sec_reap;
+ for (zs = list_head(&zf->zf_stream); zs != NULL; zs = zs_next) {
+ zs_next = list_next(&zf->zf_stream, zs);
+ /*
+ * Skip if still active. 1 -- zf_stream reference.
+ */
+ if ((int)(zs->zs_atime - t) >= 0)
+ continue;
+ if (zfs_refcount_count(&zs->zs_refs) != 1)
+ continue;
+ if (zs_old)
+ dmu_zfetch_stream_remove(zf, zs);
+ else
+ zs_old = zs;
+ }
+ if (zs_old) {
+ zs = zs_old;
+ list_remove(&zf->zf_stream, zs);
+ goto reuse;
+ }
+
+ /*
+ * The maximum number of streams is normally zfetch_max_streams,
+ * but for small files we lower it such that it's at least possible
+ * for all the streams to be non-overlapping.
+ */
+ uint32_t max_streams = MAX(1, MIN(zfetch_max_streams,
+ (zf->zf_dnode->dn_maxblkid << zf->zf_dnode->dn_datablkshift) /
+ zfetch_max_distance));
+ if (zf->zf_numstreams >= max_streams) {
+ t = now - zfetch_min_sec_reap;
+ for (zs = list_head(&zf->zf_stream); zs != NULL;
+ zs = list_next(&zf->zf_stream, zs)) {
+ if ((int)(zs->zs_atime - t) >= 0)
+ continue;
+ if (zfs_refcount_count(&zs->zs_refs) != 1)
+ continue;
+ if (zs_old == NULL ||
+ (int)(zs_old->zs_atime - zs->zs_atime) >= 0)
+ zs_old = zs;
+ }
+ if (zs_old) {
+ zs = zs_old;
+ list_remove(&zf->zf_stream, zs);
+ goto reuse;
+ }
+ ZFETCHSTAT_BUMP(zfetchstat_max_streams);
+ return;
+ }
+
+ zs = kmem_zalloc(sizeof (*zs), KM_SLEEP);
+ zfs_refcount_create(&zs->zs_callers);
+ zfs_refcount_create(&zs->zs_refs);
+ /* One reference for zf_stream. */
+ zfs_refcount_add(&zs->zs_refs, NULL);
+ zf->zf_numstreams++;
+
+reuse:
+ list_insert_head(&zf->zf_stream, zs);
+ zs->zs_blkid = blkid;
+ /* Allow immediate stream reuse until first hit. */
+ zs->zs_atime = now - zfetch_min_sec_reap;
+ memset(zs->zs_ranges, 0, sizeof (zs->zs_ranges));
+ zs->zs_pf_dist = 0;
+ zs->zs_ipf_dist = 0;
+ zs->zs_pf_start = blkid;
+ zs->zs_pf_end = blkid;
+ zs->zs_ipf_start = blkid;
+ zs->zs_ipf_end = blkid;
+ zs->zs_missed = B_FALSE;
+ zs->zs_more = B_FALSE;
+}
+
+static void
+dmu_zfetch_done(void *arg, uint64_t level, uint64_t blkid, boolean_t io_issued)
+{
+ zstream_t *zs = arg;
+
+ if (io_issued && level == 0 && blkid < zs->zs_blkid)
+ zs->zs_more = B_TRUE;
+ if (zfs_refcount_remove(&zs->zs_refs, NULL) == 0)
+ dmu_zfetch_stream_fini(zs);
+ aggsum_add(&zfetch_sums.zfetchstat_io_active, -1);
+}
+
+/*
+ * Process stream hit access for nblks blocks starting at zs_blkid. Return
+ * number of blocks to proceed for after aggregation with future ranges.
+ */
+static uint64_t
+dmu_zfetch_hit(zstream_t *zs, uint64_t nblks)
+{
+ uint_t i, j;
+
+ /* Optimize sequential accesses (no future ranges). */
+ if (zs->zs_ranges[0].start == 0)
+ goto done;
+
+ /* Look for intersections with further ranges. */
+ for (i = 0; i < ZFETCH_RANGES; i++) {
+ zsrange_t *r = &zs->zs_ranges[i];
+ if (r->start == 0 || r->start > nblks)
+ break;
+ if (r->end >= nblks) {
+ nblks = r->end;
+ i++;
+ break;
+ }
+ }
+
+ /* Delete all found intersecting ranges, updates remaining. */
+ for (j = 0; i < ZFETCH_RANGES; i++, j++) {
+ if (zs->zs_ranges[i].start == 0)
+ break;
+ ASSERT3U(zs->zs_ranges[i].start, >, nblks);
+ ASSERT3U(zs->zs_ranges[i].end, >, nblks);
+ zs->zs_ranges[j].start = zs->zs_ranges[i].start - nblks;
+ zs->zs_ranges[j].end = zs->zs_ranges[i].end - nblks;
+ }
+ if (j < ZFETCH_RANGES) {
+ zs->zs_ranges[j].start = 0;
+ zs->zs_ranges[j].end = 0;
+ }
+
+done:
+ zs->zs_blkid += nblks;
+ return (nblks);
+}
+
+/*
+ * Process future stream access for nblks blocks starting at blkid. Return
+ * number of blocks to proceed for if future ranges reach fill threshold.
+ */
+static uint64_t
+dmu_zfetch_future(zstream_t *zs, uint64_t blkid, uint64_t nblks)
+{
+ ASSERT3U(blkid, >, zs->zs_blkid);
+ blkid -= zs->zs_blkid;
+ ASSERT3U(blkid + nblks, <=, UINT16_MAX);
+
+ /* Search for first and last intersection or insert point. */
+ uint_t f = ZFETCH_RANGES, l = 0, i;
+ for (i = 0; i < ZFETCH_RANGES; i++) {
+ zsrange_t *r = &zs->zs_ranges[i];
+ if (r->start == 0 || r->start > blkid + nblks)
+ break;
+ if (r->end < blkid)
+ continue;
+ if (f > i)
+ f = i;
+ if (l < i)
+ l = i;
+ }
+ if (f <= l) {
+ /* Got some intersecting range, expand it if needed. */
+ if (zs->zs_ranges[f].start > blkid)
+ zs->zs_ranges[f].start = blkid;
+ zs->zs_ranges[f].end = MAX(zs->zs_ranges[l].end, blkid + nblks);
+ if (f < l) {
+ /* Got more than one intersection, remove others. */
+ for (f++, l++; l < ZFETCH_RANGES; f++, l++) {
+ zs->zs_ranges[f].start = zs->zs_ranges[l].start;
+ zs->zs_ranges[f].end = zs->zs_ranges[l].end;
+ }
+ zs->zs_ranges[f].start = 0;
+ zs->zs_ranges[f].end = 0;
+ }
+ } else if (i < ZFETCH_RANGES) {
+ /* Got no intersecting ranges, insert new one. */
+ for (l = ZFETCH_RANGES - 1; l > i; l--) {
+ zs->zs_ranges[l].start = zs->zs_ranges[l - 1].start;
+ zs->zs_ranges[l].end = zs->zs_ranges[l - 1].end;
+ }
+ zs->zs_ranges[i].start = blkid;
+ zs->zs_ranges[i].end = blkid + nblks;
+ } else {
+ /* No space left to insert. Drop the range. */
+ return (0);
+ }
+
+ /* Check if with the new access addition we reached fill threshold. */
+ if (zfetch_hole_shift >= 16)
+ return (0);
+ uint_t hole = 0;
+ for (i = f = l = 0; i < ZFETCH_RANGES; i++) {
+ zsrange_t *r = &zs->zs_ranges[i];
+ if (r->start == 0)
+ break;
+ hole += r->start - f;
+ f = r->end;
+ if (hole <= r->end >> zfetch_hole_shift)
+ l = r->end;
+ }
+ if (l > 0)
+ return (dmu_zfetch_hit(zs, l));
+
+ return (0);
+}
+
+/*
+ * This is the predictive prefetch entry point. dmu_zfetch_prepare()
+ * associates dnode access specified with blkid and nblks arguments with
+ * prefetch stream, predicts further accesses based on that stats and returns
+ * the stream pointer on success. That pointer must later be passed to
+ * dmu_zfetch_run() to initiate the speculative prefetch for the stream and
+ * release it. dmu_zfetch() is a wrapper for simple cases when window between
+ * prediction and prefetch initiation is not needed.
+ * fetch_data argument specifies whether actual data blocks should be fetched:
+ * FALSE -- prefetch only indirect blocks for predicted data blocks;
+ * TRUE -- prefetch predicted data blocks plus following indirect blocks.
+ */
+zstream_t *
+dmu_zfetch_prepare(zfetch_t *zf, uint64_t blkid, uint64_t nblks,
+ boolean_t fetch_data, boolean_t have_lock)
+{
+ zstream_t *zs;
+ spa_t *spa = zf->zf_dnode->dn_objset->os_spa;
+ zfs_prefetch_type_t os_prefetch = zf->zf_dnode->dn_objset->os_prefetch;
+ int64_t ipf_start, ipf_end;
+
+ if (zfs_prefetch_disable || os_prefetch == ZFS_PREFETCH_NONE)
+ return (NULL);
+
+ if (os_prefetch == ZFS_PREFETCH_METADATA)
+ fetch_data = B_FALSE;
+
+ /*
+ * If we haven't yet loaded the indirect vdevs' mappings, we
+ * can only read from blocks that we carefully ensure are on
+ * concrete vdevs (or previously-loaded indirect vdevs). So we
+ * can't allow the predictive prefetcher to attempt reads of other
+ * blocks (e.g. of the MOS's dnode object).
+ */
+ if (!spa_indirect_vdevs_loaded(spa))
+ return (NULL);
+
+ /*
+ * As a fast path for small (single-block) files, ignore access
+ * to the first block.
+ */
+ if (!have_lock && blkid == 0)
+ return (NULL);
+
+ if (!have_lock)
+ rw_enter(&zf->zf_dnode->dn_struct_rwlock, RW_READER);
+
+ /*
+ * A fast path for small files for which no prefetch will
+ * happen.
+ */
+ uint64_t maxblkid = zf->zf_dnode->dn_maxblkid;
+ if (maxblkid < 2) {
+ if (!have_lock)
+ rw_exit(&zf->zf_dnode->dn_struct_rwlock);
+ return (NULL);
+ }
+ mutex_enter(&zf->zf_lock);
+
+ /*
+ * Find perfect prefetch stream. Depending on whether the accesses
+ * are block-aligned, first block of the new access may either follow
+ * the last block of the previous access, or be equal to it.
+ */
+ unsigned int dbs = zf->zf_dnode->dn_datablkshift;
+ uint64_t end_blkid = blkid + nblks;
+ for (zs = list_head(&zf->zf_stream); zs != NULL;
+ zs = list_next(&zf->zf_stream, zs)) {
+ if (blkid == zs->zs_blkid) {
+ goto hit;
+ } else if (blkid + 1 == zs->zs_blkid) {
+ blkid++;
+ nblks--;
+ goto hit;
+ }
+ }
+
+ /*
+ * Find close enough prefetch stream. Access crossing stream position
+ * is a hit in its new part. Access ahead of stream position considered
+ * a hit for metadata prefetch, since we do not care about fill percent,
+ * or stored for future otherwise. Access behind stream position is
+ * silently ignored, since we already skipped it reaching fill percent.
+ */
+ uint_t max_reorder = MIN((zfetch_max_reorder >> dbs) + 1, UINT16_MAX);
+ uint_t t = gethrestime_sec() - zfetch_max_sec_reap;
+ for (zs = list_head(&zf->zf_stream); zs != NULL;
+ zs = list_next(&zf->zf_stream, zs)) {
+ if (blkid > zs->zs_blkid) {
+ if (end_blkid <= zs->zs_blkid + max_reorder) {
+ if (!fetch_data) {
+ nblks = dmu_zfetch_hit(zs,
+ end_blkid - zs->zs_blkid);
+ ZFETCHSTAT_BUMP(zfetchstat_stride);
+ goto future;
+ }
+ nblks = dmu_zfetch_future(zs, blkid, nblks);
+ if (nblks > 0)
+ ZFETCHSTAT_BUMP(zfetchstat_stride);
+ else
+ ZFETCHSTAT_BUMP(zfetchstat_future);
+ goto future;
+ }
+ } else if (end_blkid >= zs->zs_blkid) {
+ nblks -= zs->zs_blkid - blkid;
+ blkid += zs->zs_blkid - blkid;
+ goto hit;
+ } else if (end_blkid + max_reorder > zs->zs_blkid &&
+ (int)(zs->zs_atime - t) >= 0) {
+ ZFETCHSTAT_BUMP(zfetchstat_past);
+ zs->zs_atime = gethrestime_sec();
+ goto out;
+ }
+ }
+
+ /*
+ * This access is not part of any existing stream. Create a new
+ * stream for it unless we are at the end of file.
+ */
+ ASSERT0P(zs);
+ if (end_blkid < maxblkid)
+ dmu_zfetch_stream_create(zf, end_blkid);
+ mutex_exit(&zf->zf_lock);
+ ZFETCHSTAT_BUMP(zfetchstat_misses);
+ ipf_start = 0;
+ goto prescient;
+
+hit:
+ nblks = dmu_zfetch_hit(zs, nblks);
+ ZFETCHSTAT_BUMP(zfetchstat_hits);
+
+future:
+ zs->zs_atime = gethrestime_sec();
+
+ /* Exit if we already prefetched for this position before. */
+ if (nblks == 0)
+ goto out;
+
+ /* If the file is ending, remove the stream. */
+ end_blkid = zs->zs_blkid;
+ if (end_blkid >= maxblkid) {
+ dmu_zfetch_stream_remove(zf, zs);
+out:
+ mutex_exit(&zf->zf_lock);
+ if (!have_lock)
+ rw_exit(&zf->zf_dnode->dn_struct_rwlock);
+ return (NULL);
+ }
+
+ /*
+ * This access was to a block that we issued a prefetch for on
+ * behalf of this stream. Calculate further prefetch distances.
+ *
+ * Start prefetch from the demand access size (nblks). Double the
+ * distance every access up to zfetch_min_distance. After that only
+ * if needed increase the distance by 1/8 up to zfetch_max_distance.
+ *
+ * Don't double the distance beyond single block if we have more
+ * than ~6% of ARC held by active prefetches. It should help with
+ * getting out of RAM on some badly mispredicted read patterns.
+ */
+ unsigned int nbytes = nblks << dbs;
+ unsigned int pf_nblks;
+ if (fetch_data) {
+ if (unlikely(zs->zs_pf_dist < nbytes))
+ zs->zs_pf_dist = nbytes;
+ else if (zs->zs_pf_dist < zfetch_min_distance &&
+ (zs->zs_pf_dist < (1 << dbs) ||
+ aggsum_compare(&zfetch_sums.zfetchstat_io_active,
+ arc_c_max >> (4 + dbs)) < 0))
+ zs->zs_pf_dist *= 2;
+ else if (zs->zs_more)
+ zs->zs_pf_dist += zs->zs_pf_dist / 8;
+ zs->zs_more = B_FALSE;
+ if (zs->zs_pf_dist > zfetch_max_distance)
+ zs->zs_pf_dist = zfetch_max_distance;
+ pf_nblks = zs->zs_pf_dist >> dbs;
+ } else {
+ pf_nblks = 0;
+ }
+ if (zs->zs_pf_start < end_blkid)
+ zs->zs_pf_start = end_blkid;
+ if (zs->zs_pf_end < end_blkid + pf_nblks)
+ zs->zs_pf_end = end_blkid + pf_nblks;
+
+ /*
+ * Do the same for indirects, starting where we will stop reading
+ * data blocks (and the indirects that point to them).
+ */
+ if (unlikely(zs->zs_ipf_dist < nbytes))
+ zs->zs_ipf_dist = nbytes;
+ else
+ zs->zs_ipf_dist *= 2;
+ if (zs->zs_ipf_dist > zfetch_max_idistance)
+ zs->zs_ipf_dist = zfetch_max_idistance;
+ pf_nblks = zs->zs_ipf_dist >> dbs;
+ if (zs->zs_ipf_start < zs->zs_pf_end)
+ zs->zs_ipf_start = zs->zs_pf_end;
+ ipf_start = zs->zs_ipf_end;
+ if (zs->zs_ipf_end < zs->zs_pf_end + pf_nblks)
+ zs->zs_ipf_end = zs->zs_pf_end + pf_nblks;
+
+ zfs_refcount_add(&zs->zs_refs, NULL);
+ /* Count concurrent callers. */
+ zfs_refcount_add(&zs->zs_callers, NULL);
+ mutex_exit(&zf->zf_lock);
+
+prescient:
+ /*
+ * Prefetch the following indirect blocks for this access to reduce
+ * dbuf_hold() sync read delays in dmu_buf_hold_array_by_dnode().
+ * This covers the gap during the first couple accesses when we can
+ * not predict the future yet, but know what is needed right now.
+ * This should be very rare for reads/writes to need more than one
+ * indirect, but more useful for cloning due to much bigger accesses.
+ */
+ ipf_start = MAX(ipf_start, blkid + 1);
+ int epbs = zf->zf_dnode->dn_indblkshift - SPA_BLKPTRSHIFT;
+ ipf_start = P2ROUNDUP(ipf_start, 1 << epbs) >> epbs;
+ ipf_end = P2ROUNDUP(end_blkid, 1 << epbs) >> epbs;
+
+ int issued = 0;
+ for (int64_t iblk = ipf_start; iblk < ipf_end; iblk++) {
+ issued += dbuf_prefetch(zf->zf_dnode, 1, iblk,
+ ZIO_PRIORITY_SYNC_READ, ARC_FLAG_PRESCIENT_PREFETCH);
+ }
+
+ if (!have_lock)
+ rw_exit(&zf->zf_dnode->dn_struct_rwlock);
+ if (issued)
+ ZFETCHSTAT_ADD(zfetchstat_io_issued, issued);
+ return (zs);
+}
+
+void
+dmu_zfetch_run(zfetch_t *zf, zstream_t *zs, boolean_t missed,
+ boolean_t have_lock, boolean_t uncached)
+{
+ int64_t pf_start, pf_end, ipf_start, ipf_end;
+ int epbs, issued;
+
+ if (missed)
+ zs->zs_missed = missed;
+
+ /*
+ * Postpone the prefetch if there are more concurrent callers.
+ * It happens when multiple requests are waiting for the same
+ * indirect block. The last one will run the prefetch for all.
+ */
+ if (zfs_refcount_remove(&zs->zs_callers, NULL) != 0) {
+ /* Drop reference taken in dmu_zfetch_prepare(). */
+ if (zfs_refcount_remove(&zs->zs_refs, NULL) == 0)
+ dmu_zfetch_stream_fini(zs);
+ return;
+ }
+
+ mutex_enter(&zf->zf_lock);
+ if (zs->zs_missed) {
+ pf_start = zs->zs_pf_start;
+ pf_end = zs->zs_pf_start = zs->zs_pf_end;
+ } else {
+ pf_start = pf_end = 0;
+ }
+ ipf_start = zs->zs_ipf_start;
+ ipf_end = zs->zs_ipf_start = zs->zs_ipf_end;
+ mutex_exit(&zf->zf_lock);
+ ASSERT3S(pf_start, <=, pf_end);
+ ASSERT3S(ipf_start, <=, ipf_end);
+
+ epbs = zf->zf_dnode->dn_indblkshift - SPA_BLKPTRSHIFT;
+ ipf_start = P2ROUNDUP(ipf_start, 1 << epbs) >> epbs;
+ ipf_end = P2ROUNDUP(ipf_end, 1 << epbs) >> epbs;
+ ASSERT3S(ipf_start, <=, ipf_end);
+ issued = pf_end - pf_start + ipf_end - ipf_start;
+ if (issued > 1) {
+ /* More references on top of taken in dmu_zfetch_prepare(). */
+ zfs_refcount_add_few(&zs->zs_refs, issued - 1, NULL);
+ } else if (issued == 0) {
+ /* Some other thread has done our work, so drop the ref. */
+ if (zfs_refcount_remove(&zs->zs_refs, NULL) == 0)
+ dmu_zfetch_stream_fini(zs);
+ return;
+ }
+ aggsum_add(&zfetch_sums.zfetchstat_io_active, issued);
+
+ if (!have_lock)
+ rw_enter(&zf->zf_dnode->dn_struct_rwlock, RW_READER);
+
+ issued = 0;
+ for (int64_t blk = pf_start; blk < pf_end; blk++) {
+ issued += dbuf_prefetch_impl(zf->zf_dnode, 0, blk,
+ ZIO_PRIORITY_ASYNC_READ, uncached ?
+ ARC_FLAG_UNCACHED : 0, dmu_zfetch_done, zs);
+ }
+ for (int64_t iblk = ipf_start; iblk < ipf_end; iblk++) {
+ issued += dbuf_prefetch_impl(zf->zf_dnode, 1, iblk,
+ ZIO_PRIORITY_ASYNC_READ, 0, dmu_zfetch_done, zs);
+ }
+
+ if (!have_lock)
+ rw_exit(&zf->zf_dnode->dn_struct_rwlock);
+
+ if (issued)
+ ZFETCHSTAT_ADD(zfetchstat_io_issued, issued);
+}
+
+void
+dmu_zfetch(zfetch_t *zf, uint64_t blkid, uint64_t nblks, boolean_t fetch_data,
+ boolean_t missed, boolean_t have_lock, boolean_t uncached)
+{
+ zstream_t *zs;
+
+ zs = dmu_zfetch_prepare(zf, blkid, nblks, fetch_data, have_lock);
+ if (zs)
+ dmu_zfetch_run(zf, zs, missed, have_lock, uncached);
+}
+
+ZFS_MODULE_PARAM(zfs_prefetch, zfs_prefetch_, disable, INT, ZMOD_RW,
+ "Disable all ZFS prefetching");
+
+ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, max_streams, UINT, ZMOD_RW,
+ "Max number of streams per zfetch");
+
+ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, min_sec_reap, UINT, ZMOD_RW,
+ "Min time before stream reclaim");
+
+ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, max_sec_reap, UINT, ZMOD_RW,
+ "Max time before stream delete");
+
+ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, min_distance, UINT, ZMOD_RW,
+ "Min bytes to prefetch per stream");
+
+ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, max_distance, UINT, ZMOD_RW,
+ "Max bytes to prefetch per stream");
+
+ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, max_idistance, UINT, ZMOD_RW,
+ "Max bytes to prefetch indirects for per stream");
+
+ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, max_reorder, UINT, ZMOD_RW,
+ "Max request reorder distance within a stream");
+
+ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, hole_shift, UINT, ZMOD_RW,
+ "Max log2 fraction of holes in a stream");