diff options
Diffstat (limited to 'sys/contrib/openzfs/module/zfs/vdev_mirror.c')
-rw-r--r-- | sys/contrib/openzfs/module/zfs/vdev_mirror.c | 1063 |
1 files changed, 1063 insertions, 0 deletions
diff --git a/sys/contrib/openzfs/module/zfs/vdev_mirror.c b/sys/contrib/openzfs/module/zfs/vdev_mirror.c new file mode 100644 index 000000000000..18efdaac006f --- /dev/null +++ b/sys/contrib/openzfs/module/zfs/vdev_mirror.c @@ -0,0 +1,1063 @@ +// SPDX-License-Identifier: CDDL-1.0 +/* + * CDDL HEADER START + * + * The contents of this file are subject to the terms of the + * Common Development and Distribution License (the "License"). + * You may not use this file except in compliance with the License. + * + * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE + * or https://opensource.org/licenses/CDDL-1.0. + * See the License for the specific language governing permissions + * and limitations under the License. + * + * When distributing Covered Code, include this CDDL HEADER in each + * file and include the License file at usr/src/OPENSOLARIS.LICENSE. + * If applicable, add the following below this CDDL HEADER, with the + * fields enclosed by brackets "[]" replaced with your own identifying + * information: Portions Copyright [yyyy] [name of copyright owner] + * + * CDDL HEADER END + */ +/* + * Copyright 2010 Sun Microsystems, Inc. All rights reserved. + * Use is subject to license terms. + */ + +/* + * Copyright (c) 2012, 2015 by Delphix. All rights reserved. + */ + +#include <sys/zfs_context.h> +#include <sys/spa.h> +#include <sys/spa_impl.h> +#include <sys/dsl_pool.h> +#include <sys/dsl_scan.h> +#include <sys/vdev_impl.h> +#include <sys/vdev_draid.h> +#include <sys/zio.h> +#include <sys/zio_checksum.h> +#include <sys/abd.h> +#include <sys/fs/zfs.h> + +/* + * Vdev mirror kstats + */ +static kstat_t *mirror_ksp = NULL; + +typedef struct mirror_stats { + kstat_named_t vdev_mirror_stat_rotating_linear; + kstat_named_t vdev_mirror_stat_rotating_offset; + kstat_named_t vdev_mirror_stat_rotating_seek; + kstat_named_t vdev_mirror_stat_non_rotating_linear; + kstat_named_t vdev_mirror_stat_non_rotating_seek; + + kstat_named_t vdev_mirror_stat_preferred_found; + kstat_named_t vdev_mirror_stat_preferred_not_found; +} mirror_stats_t; + +static mirror_stats_t mirror_stats = { + /* New I/O follows directly the last I/O */ + { "rotating_linear", KSTAT_DATA_UINT64 }, + /* New I/O is within zfs_vdev_mirror_rotating_seek_offset of the last */ + { "rotating_offset", KSTAT_DATA_UINT64 }, + /* New I/O requires random seek */ + { "rotating_seek", KSTAT_DATA_UINT64 }, + /* New I/O follows directly the last I/O (nonrot) */ + { "non_rotating_linear", KSTAT_DATA_UINT64 }, + /* New I/O requires random seek (nonrot) */ + { "non_rotating_seek", KSTAT_DATA_UINT64 }, + /* Preferred child vdev found */ + { "preferred_found", KSTAT_DATA_UINT64 }, + /* Preferred child vdev not found or equal load */ + { "preferred_not_found", KSTAT_DATA_UINT64 }, + +}; + +#define MIRROR_STAT(stat) (mirror_stats.stat.value.ui64) +#define MIRROR_INCR(stat, val) atomic_add_64(&MIRROR_STAT(stat), val) +#define MIRROR_BUMP(stat) MIRROR_INCR(stat, 1) + +void +vdev_mirror_stat_init(void) +{ + mirror_ksp = kstat_create("zfs", 0, "vdev_mirror_stats", + "misc", KSTAT_TYPE_NAMED, + sizeof (mirror_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); + if (mirror_ksp != NULL) { + mirror_ksp->ks_data = &mirror_stats; + kstat_install(mirror_ksp); + } +} + +void +vdev_mirror_stat_fini(void) +{ + if (mirror_ksp != NULL) { + kstat_delete(mirror_ksp); + mirror_ksp = NULL; + } +} + +/* + * Virtual device vector for mirroring. + */ +typedef struct mirror_child { + vdev_t *mc_vd; + abd_t *mc_abd; + uint64_t mc_offset; + int mc_error; + int mc_load; + uint8_t mc_tried; + uint8_t mc_skipped; + uint8_t mc_speculative; + uint8_t mc_rebuilding; +} mirror_child_t; + +typedef struct mirror_map { + int *mm_preferred; + int mm_preferred_cnt; + int mm_children; + boolean_t mm_resilvering; + boolean_t mm_rebuilding; + boolean_t mm_root; + mirror_child_t mm_child[]; +} mirror_map_t; + +static const int vdev_mirror_shift = 21; + +/* + * The load configuration settings below are tuned by default for + * the case where all devices are of the same rotational type. + * + * If there is a mixture of rotating and non-rotating media, setting + * zfs_vdev_mirror_non_rotating_seek_inc to 0 may well provide better results + * as it will direct more reads to the non-rotating vdevs which are more likely + * to have a higher performance. + */ + +/* Rotating media load calculation configuration. */ +static int zfs_vdev_mirror_rotating_inc = 0; +static int zfs_vdev_mirror_rotating_seek_inc = 5; +static int zfs_vdev_mirror_rotating_seek_offset = 1 * 1024 * 1024; + +/* Non-rotating media load calculation configuration. */ +static int zfs_vdev_mirror_non_rotating_inc = 0; +static int zfs_vdev_mirror_non_rotating_seek_inc = 1; + +static inline size_t +vdev_mirror_map_size(int children) +{ + return (offsetof(mirror_map_t, mm_child[children]) + + sizeof (int) * children); +} + +static inline mirror_map_t * +vdev_mirror_map_alloc(int children, boolean_t resilvering, boolean_t root) +{ + mirror_map_t *mm; + + mm = kmem_zalloc(vdev_mirror_map_size(children), KM_SLEEP); + mm->mm_children = children; + mm->mm_resilvering = resilvering; + mm->mm_root = root; + mm->mm_preferred = (int *)((uintptr_t)mm + + offsetof(mirror_map_t, mm_child[children])); + + return (mm); +} + +static void +vdev_mirror_map_free(zio_t *zio) +{ + mirror_map_t *mm = zio->io_vsd; + + kmem_free(mm, vdev_mirror_map_size(mm->mm_children)); +} + +static const zio_vsd_ops_t vdev_mirror_vsd_ops = { + .vsd_free = vdev_mirror_map_free, +}; + +static int +vdev_mirror_load(mirror_map_t *mm, vdev_t *vd, uint64_t zio_offset) +{ + uint64_t last_offset; + int64_t offset_diff; + int load; + + /* All DVAs have equal weight at the root. */ + if (mm->mm_root) + return (INT_MAX); + + /* + * We don't return INT_MAX if the device is resilvering i.e. + * vdev_resilver_txg != 0 as when tested performance was slightly + * worse overall when resilvering with compared to without. + */ + + /* Fix zio_offset for leaf vdevs */ + if (vd->vdev_ops->vdev_op_leaf) + zio_offset += VDEV_LABEL_START_SIZE; + + /* Standard load based on pending queue length. */ + load = vdev_queue_length(vd); + last_offset = vdev_queue_last_offset(vd); + + if (vd->vdev_nonrot) { + /* Non-rotating media. */ + if (last_offset == zio_offset) { + MIRROR_BUMP(vdev_mirror_stat_non_rotating_linear); + return (load + zfs_vdev_mirror_non_rotating_inc); + } + + /* + * Apply a seek penalty even for non-rotating devices as + * sequential I/O's can be aggregated into fewer operations on + * the device, thus avoiding unnecessary per-command overhead + * and boosting performance. + */ + MIRROR_BUMP(vdev_mirror_stat_non_rotating_seek); + return (load + zfs_vdev_mirror_non_rotating_seek_inc); + } + + /* Rotating media I/O's which directly follow the last I/O. */ + if (last_offset == zio_offset) { + MIRROR_BUMP(vdev_mirror_stat_rotating_linear); + return (load + zfs_vdev_mirror_rotating_inc); + } + + /* + * Apply half the seek increment to I/O's within seek offset + * of the last I/O issued to this vdev as they should incur less + * of a seek increment. + */ + offset_diff = (int64_t)(last_offset - zio_offset); + if (ABS(offset_diff) < zfs_vdev_mirror_rotating_seek_offset) { + MIRROR_BUMP(vdev_mirror_stat_rotating_offset); + return (load + (zfs_vdev_mirror_rotating_seek_inc / 2)); + } + + /* Apply the full seek increment to all other I/O's. */ + MIRROR_BUMP(vdev_mirror_stat_rotating_seek); + return (load + zfs_vdev_mirror_rotating_seek_inc); +} + +static boolean_t +vdev_mirror_rebuilding(vdev_t *vd) +{ + if (vd->vdev_ops->vdev_op_leaf && vd->vdev_rebuild_txg) + return (B_TRUE); + + for (int i = 0; i < vd->vdev_children; i++) { + if (vdev_mirror_rebuilding(vd->vdev_child[i])) { + return (B_TRUE); + } + } + + return (B_FALSE); +} + +/* + * Avoid inlining the function to keep vdev_mirror_io_start(), which + * is this functions only caller, as small as possible on the stack. + */ +noinline static mirror_map_t * +vdev_mirror_map_init(zio_t *zio) +{ + mirror_map_t *mm = NULL; + mirror_child_t *mc; + vdev_t *vd = zio->io_vd; + int c; + + if (vd == NULL) { + dva_t *dva = zio->io_bp->blk_dva; + spa_t *spa = zio->io_spa; + dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; + dva_t dva_copy[SPA_DVAS_PER_BP]; + + /* + * The sequential scrub code sorts and issues all DVAs + * of a bp separately. Each of these IOs includes all + * original DVA copies so that repairs can be performed + * in the event of an error, but we only actually want + * to check the first DVA since the others will be + * checked by their respective sorted IOs. Only if we + * hit an error will we try all DVAs upon retrying. + * + * Note: This check is safe even if the user switches + * from a legacy scrub to a sequential one in the middle + * of processing, since scn_is_sorted isn't updated until + * all outstanding IOs from the previous scrub pass + * complete. + */ + if ((zio->io_flags & ZIO_FLAG_SCRUB) && + !(zio->io_flags & ZIO_FLAG_IO_RETRY) && + dsl_scan_scrubbing(spa->spa_dsl_pool) && + scn->scn_is_sorted) { + c = 1; + } else { + c = BP_GET_NDVAS(zio->io_bp); + } + + /* + * If the pool cannot be written to, then infer that some + * DVAs might be invalid or point to vdevs that do not exist. + * We skip them. + */ + if (!spa_writeable(spa)) { + ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ); + int j = 0; + for (int i = 0; i < c; i++) { + if (zfs_dva_valid(spa, &dva[i], zio->io_bp)) + dva_copy[j++] = dva[i]; + } + if (j == 0) { + zio->io_vsd = NULL; + zio->io_error = ENXIO; + return (NULL); + } + if (j < c) { + dva = dva_copy; + c = j; + } + } + + mm = vdev_mirror_map_alloc(c, B_FALSE, B_TRUE); + for (c = 0; c < mm->mm_children; c++) { + mc = &mm->mm_child[c]; + + mc->mc_vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[c])); + mc->mc_offset = DVA_GET_OFFSET(&dva[c]); + if (mc->mc_vd == NULL) { + kmem_free(mm, vdev_mirror_map_size( + mm->mm_children)); + zio->io_vsd = NULL; + zio->io_error = ENXIO; + return (NULL); + } + } + } else { + /* + * If we are resilvering, then we should handle scrub reads + * differently; we shouldn't issue them to the resilvering + * device because it might not have those blocks. + * + * We are resilvering iff: + * 1) We are a replacing vdev (ie our name is "replacing-1" or + * "spare-1" or something like that), and + * 2) The pool is currently being resilvered. + * + * We cannot simply check vd->vdev_resilver_txg, because it's + * not set in this path. + * + * Nor can we just check our vdev_ops; there are cases (such as + * when a user types "zpool replace pool odev spare_dev" and + * spare_dev is in the spare list, or when a spare device is + * automatically used to replace a DEGRADED device) when + * resilvering is complete but both the original vdev and the + * spare vdev remain in the pool. That behavior is intentional. + * It helps implement the policy that a spare should be + * automatically removed from the pool after the user replaces + * the device that originally failed. + * + * If a spa load is in progress, then spa_dsl_pool may be + * uninitialized. But we shouldn't be resilvering during a spa + * load anyway. + */ + boolean_t replacing = (vd->vdev_ops == &vdev_replacing_ops || + vd->vdev_ops == &vdev_spare_ops) && + spa_load_state(vd->vdev_spa) == SPA_LOAD_NONE && + dsl_scan_resilvering(vd->vdev_spa->spa_dsl_pool); + mm = vdev_mirror_map_alloc(vd->vdev_children, replacing, + B_FALSE); + for (c = 0; c < mm->mm_children; c++) { + mc = &mm->mm_child[c]; + mc->mc_vd = vd->vdev_child[c]; + mc->mc_offset = zio->io_offset; + + if (vdev_mirror_rebuilding(mc->mc_vd)) + mm->mm_rebuilding = mc->mc_rebuilding = B_TRUE; + } + } + + return (mm); +} + +static int +vdev_mirror_open(vdev_t *vd, uint64_t *asize, uint64_t *max_asize, + uint64_t *logical_ashift, uint64_t *physical_ashift) +{ + int numerrors = 0; + int lasterror = 0; + + if (vd->vdev_children == 0) { + vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL; + return (SET_ERROR(EINVAL)); + } + + vdev_open_children(vd); + + for (int c = 0; c < vd->vdev_children; c++) { + vdev_t *cvd = vd->vdev_child[c]; + + if (cvd->vdev_open_error) { + lasterror = cvd->vdev_open_error; + numerrors++; + continue; + } + + *asize = MIN(*asize - 1, cvd->vdev_asize - 1) + 1; + *max_asize = MIN(*max_asize - 1, cvd->vdev_max_asize - 1) + 1; + *logical_ashift = MAX(*logical_ashift, cvd->vdev_ashift); + } + for (int c = 0; c < vd->vdev_children; c++) { + vdev_t *cvd = vd->vdev_child[c]; + + if (cvd->vdev_open_error) + continue; + *physical_ashift = vdev_best_ashift(*logical_ashift, + *physical_ashift, cvd->vdev_physical_ashift); + } + + if (numerrors == vd->vdev_children) { + if (vdev_children_are_offline(vd)) + vd->vdev_stat.vs_aux = VDEV_AUX_CHILDREN_OFFLINE; + else + vd->vdev_stat.vs_aux = VDEV_AUX_NO_REPLICAS; + return (lasterror); + } + + return (0); +} + +static void +vdev_mirror_close(vdev_t *vd) +{ + for (int c = 0; c < vd->vdev_children; c++) + vdev_close(vd->vdev_child[c]); +} + +static void +vdev_mirror_child_done(zio_t *zio) +{ + mirror_child_t *mc = zio->io_private; + + mc->mc_error = zio->io_error; + mc->mc_tried = 1; + mc->mc_skipped = 0; +} + +/* + * Check the other, lower-index DVAs to see if they're on the same + * vdev as the child we picked. If they are, use them since they + * are likely to have been allocated from the primary metaslab in + * use at the time, and hence are more likely to have locality with + * single-copy data. + */ +static int +vdev_mirror_dva_select(zio_t *zio, int p) +{ + dva_t *dva = zio->io_bp->blk_dva; + mirror_map_t *mm = zio->io_vsd; + int preferred; + int c; + + preferred = mm->mm_preferred[p]; + for (p--; p >= 0; p--) { + c = mm->mm_preferred[p]; + if (DVA_GET_VDEV(&dva[c]) == DVA_GET_VDEV(&dva[preferred])) + preferred = c; + } + return (preferred); +} + +static int +vdev_mirror_preferred_child_randomize(zio_t *zio) +{ + mirror_map_t *mm = zio->io_vsd; + int p; + + if (mm->mm_root) { + p = random_in_range(mm->mm_preferred_cnt); + return (vdev_mirror_dva_select(zio, p)); + } + + /* + * To ensure we don't always favour the first matching vdev, + * which could lead to wear leveling issues on SSD's, we + * use the I/O offset as a pseudo random seed into the vdevs + * which have the lowest load. + */ + p = (zio->io_offset >> vdev_mirror_shift) % mm->mm_preferred_cnt; + return (mm->mm_preferred[p]); +} + +static boolean_t +vdev_mirror_child_readable(mirror_child_t *mc) +{ + vdev_t *vd = mc->mc_vd; + + if (vd->vdev_top != NULL && vd->vdev_top->vdev_ops == &vdev_draid_ops) + return (vdev_draid_readable(vd, mc->mc_offset)); + else + return (vdev_readable(vd)); +} + +static boolean_t +vdev_mirror_child_missing(mirror_child_t *mc, uint64_t txg, uint64_t size) +{ + vdev_t *vd = mc->mc_vd; + + if (vd->vdev_top != NULL && vd->vdev_top->vdev_ops == &vdev_draid_ops) + return (vdev_draid_missing(vd, mc->mc_offset, txg, size)); + else + return (vdev_dtl_contains(vd, DTL_MISSING, txg, size)); +} + +/* + * Try to find a vdev whose DTL doesn't contain the block we want to read + * preferring vdevs based on determined load. If we can't, try the read on + * any vdev we haven't already tried. + * + * Distributed spares are an exception to the above load rule. They are + * always preferred in order to detect gaps in the distributed spare which + * are created when another disk in the dRAID fails. In order to restore + * redundancy those gaps must be read to trigger the required repair IO. + */ +static int +vdev_mirror_child_select(zio_t *zio) +{ + mirror_map_t *mm = zio->io_vsd; + uint64_t txg = zio->io_txg; + int c, lowest_load; + + ASSERT(zio->io_bp == NULL || BP_GET_PHYSICAL_BIRTH(zio->io_bp) == txg); + + lowest_load = INT_MAX; + mm->mm_preferred_cnt = 0; + for (c = 0; c < mm->mm_children; c++) { + mirror_child_t *mc; + + mc = &mm->mm_child[c]; + if (mc->mc_tried || mc->mc_skipped) + continue; + + if (mc->mc_vd == NULL || + !vdev_mirror_child_readable(mc)) { + mc->mc_error = SET_ERROR(ENXIO); + mc->mc_tried = 1; /* don't even try */ + mc->mc_skipped = 1; + continue; + } + + if (vdev_mirror_child_missing(mc, txg, 1)) { + mc->mc_error = SET_ERROR(ESTALE); + mc->mc_skipped = 1; + mc->mc_speculative = 1; + continue; + } + + if (mc->mc_vd->vdev_ops == &vdev_draid_spare_ops) { + mm->mm_preferred[0] = c; + mm->mm_preferred_cnt = 1; + break; + } + + mc->mc_load = vdev_mirror_load(mm, mc->mc_vd, mc->mc_offset); + if (mc->mc_load > lowest_load) + continue; + + if (mc->mc_load < lowest_load) { + lowest_load = mc->mc_load; + mm->mm_preferred_cnt = 0; + } + mm->mm_preferred[mm->mm_preferred_cnt] = c; + mm->mm_preferred_cnt++; + } + + if (mm->mm_preferred_cnt == 1) { + MIRROR_BUMP(vdev_mirror_stat_preferred_found); + return (mm->mm_preferred[0]); + } + + if (mm->mm_preferred_cnt > 1) { + MIRROR_BUMP(vdev_mirror_stat_preferred_not_found); + return (vdev_mirror_preferred_child_randomize(zio)); + } + + /* + * Every device is either missing or has this txg in its DTL. + * Look for any child we haven't already tried before giving up. + */ + for (c = 0; c < mm->mm_children; c++) { + if (!mm->mm_child[c].mc_tried) + return (c); + } + + /* + * Every child failed. There's no place left to look. + */ + return (-1); +} + +static void +vdev_mirror_io_start(zio_t *zio) +{ + mirror_map_t *mm; + mirror_child_t *mc; + int c, children; + + mm = vdev_mirror_map_init(zio); + zio->io_vsd = mm; + zio->io_vsd_ops = &vdev_mirror_vsd_ops; + + if (mm == NULL) { + ASSERT(!spa_trust_config(zio->io_spa)); + ASSERT(zio->io_type == ZIO_TYPE_READ); + zio_execute(zio); + return; + } + + if (zio->io_type == ZIO_TYPE_READ) { + if ((zio->io_flags & ZIO_FLAG_SCRUB) && !mm->mm_resilvering) { + /* + * For scrubbing reads we need to issue reads to all + * children. One child can reuse parent buffer, but + * for others we have to allocate separate ones to + * verify checksums if io_bp is non-NULL, or compare + * them in vdev_mirror_io_done() otherwise. + */ + boolean_t first = B_TRUE; + for (c = 0; c < mm->mm_children; c++) { + mc = &mm->mm_child[c]; + + /* Don't issue ZIOs to offline children */ + if (!vdev_mirror_child_readable(mc)) { + mc->mc_error = SET_ERROR(ENXIO); + mc->mc_tried = 1; + mc->mc_skipped = 1; + continue; + } + + mc->mc_abd = first ? zio->io_abd : + abd_alloc_sametype(zio->io_abd, + zio->io_size); + zio_nowait(zio_vdev_child_io(zio, zio->io_bp, + mc->mc_vd, mc->mc_offset, mc->mc_abd, + zio->io_size, zio->io_type, + zio->io_priority, 0, + vdev_mirror_child_done, mc)); + first = B_FALSE; + } + zio_execute(zio); + return; + } + /* + * For normal reads just pick one child. + */ + c = vdev_mirror_child_select(zio); + children = (c >= 0); + } else { + ASSERT(zio->io_type == ZIO_TYPE_WRITE); + + /* + * Writes go to all children. + */ + c = 0; + children = mm->mm_children; + } + + while (children--) { + mc = &mm->mm_child[c]; + c++; + + /* + * When sequentially resilvering only issue write repair + * IOs to the vdev which is being rebuilt since performance + * is limited by the slowest child. This is an issue for + * faster replacement devices such as distributed spares. + */ + if ((zio->io_priority == ZIO_PRIORITY_REBUILD) && + (zio->io_flags & ZIO_FLAG_IO_REPAIR) && + !(zio->io_flags & ZIO_FLAG_SCRUB) && + mm->mm_rebuilding && !mc->mc_rebuilding) { + continue; + } + + zio_nowait(zio_vdev_child_io(zio, zio->io_bp, + mc->mc_vd, mc->mc_offset, zio->io_abd, zio->io_size, + zio->io_type, zio->io_priority, 0, + vdev_mirror_child_done, mc)); + } + + zio_execute(zio); +} + +static int +vdev_mirror_worst_error(mirror_map_t *mm) +{ + int error[2] = { 0, 0 }; + + for (int c = 0; c < mm->mm_children; c++) { + mirror_child_t *mc = &mm->mm_child[c]; + int s = mc->mc_speculative; + error[s] = zio_worst_error(error[s], mc->mc_error); + } + + return (error[0] ? error[0] : error[1]); +} + +static void +vdev_mirror_io_done(zio_t *zio) +{ + mirror_map_t *mm = zio->io_vsd; + mirror_child_t *mc; + int c; + int good_copies = 0; + int unexpected_errors = 0; + int last_good_copy = -1; + + if (mm == NULL) + return; + + for (c = 0; c < mm->mm_children; c++) { + mc = &mm->mm_child[c]; + + if (mc->mc_error) { + if (!mc->mc_skipped) + unexpected_errors++; + } else if (mc->mc_tried) { + last_good_copy = c; + good_copies++; + } + } + + if (zio->io_type == ZIO_TYPE_WRITE) { + /* + * XXX -- for now, treat partial writes as success. + * + * Now that we support write reallocation, it would be better + * to treat partial failure as real failure unless there are + * no non-degraded top-level vdevs left, and not update DTLs + * if we intend to reallocate. + */ + if (good_copies != mm->mm_children) { + /* + * Always require at least one good copy. + * + * For ditto blocks (io_vd == NULL), require + * all copies to be good. + * + * XXX -- for replacing vdevs, there's no great answer. + * If the old device is really dead, we may not even + * be able to access it -- so we only want to + * require good writes to the new device. But if + * the new device turns out to be flaky, we want + * to be able to detach it -- which requires all + * writes to the old device to have succeeded. + */ + if (good_copies == 0 || zio->io_vd == NULL) + zio->io_error = vdev_mirror_worst_error(mm); + } + return; + } + + ASSERT(zio->io_type == ZIO_TYPE_READ); + + /* + * Any Direct I/O read that has a checksum error must be treated as + * suspicious as the contents of the buffer could be getting + * manipulated while the I/O is taking place. The checksum verify error + * will be reported to the top-level Mirror VDEV. + * + * There will be no attampt at reading any additional data copies. If + * the buffer is still being manipulated while attempting to read from + * another child, there exists a possibly that the checksum could be + * verified as valid. However, the buffer contents could again get + * manipulated after verifying the checksum. This would lead to bad data + * being written out during self healing. + */ + if ((zio->io_flags & ZIO_FLAG_DIO_READ) && + (zio->io_post & ZIO_POST_DIO_CHKSUM_ERR)) { + zio_dio_chksum_verify_error_report(zio); + zio->io_error = vdev_mirror_worst_error(mm); + ASSERT3U(zio->io_error, ==, ECKSUM); + return; + } + + /* + * If we don't have a good copy yet, keep trying other children. + */ + if (good_copies == 0 && (c = vdev_mirror_child_select(zio)) != -1) { + ASSERT(c >= 0 && c < mm->mm_children); + mc = &mm->mm_child[c]; + zio_vdev_io_redone(zio); + zio_nowait(zio_vdev_child_io(zio, zio->io_bp, + mc->mc_vd, mc->mc_offset, zio->io_abd, zio->io_size, + ZIO_TYPE_READ, zio->io_priority, 0, + vdev_mirror_child_done, mc)); + return; + } + + if (zio->io_flags & ZIO_FLAG_SCRUB && !mm->mm_resilvering) { + abd_t *best_abd = NULL; + if (last_good_copy >= 0) + best_abd = mm->mm_child[last_good_copy].mc_abd; + + /* + * If we're scrubbing but don't have a BP available (because + * this vdev is under a raidz or draid vdev) then the best we + * can do is compare all of the copies read. If they're not + * identical then return a checksum error and the most likely + * correct data. The raidz code will issue a repair I/O if + * possible. + */ + if (zio->io_bp == NULL) { + ASSERT(zio->io_vd->vdev_ops == &vdev_replacing_ops || + zio->io_vd->vdev_ops == &vdev_spare_ops); + + abd_t *pref_abd = NULL; + for (c = 0; c < last_good_copy; c++) { + mc = &mm->mm_child[c]; + if (mc->mc_error || !mc->mc_tried) + continue; + + if (abd_cmp(mc->mc_abd, best_abd) != 0) + zio->io_error = SET_ERROR(ECKSUM); + + /* + * The distributed spare is always prefered + * by vdev_mirror_child_select() so it's + * considered to be the best candidate. + */ + if (pref_abd == NULL && + mc->mc_vd->vdev_ops == + &vdev_draid_spare_ops) + pref_abd = mc->mc_abd; + + /* + * In the absence of a preferred copy, use + * the parent pointer to avoid a memory copy. + */ + if (mc->mc_abd == zio->io_abd) + best_abd = mc->mc_abd; + } + if (pref_abd) + best_abd = pref_abd; + } else { + + /* + * If we have a BP available, then checksums are + * already verified and we just need a buffer + * with valid data, preferring parent one to + * avoid a memory copy. + */ + for (c = 0; c < last_good_copy; c++) { + mc = &mm->mm_child[c]; + if (mc->mc_error || !mc->mc_tried) + continue; + if (mc->mc_abd == zio->io_abd) { + best_abd = mc->mc_abd; + break; + } + } + } + + if (best_abd && best_abd != zio->io_abd) + abd_copy(zio->io_abd, best_abd, zio->io_size); + for (c = 0; c < mm->mm_children; c++) { + mc = &mm->mm_child[c]; + if (mc->mc_abd != zio->io_abd) + abd_free(mc->mc_abd); + mc->mc_abd = NULL; + } + } + + if (good_copies == 0) { + zio->io_error = vdev_mirror_worst_error(mm); + ASSERT(zio->io_error != 0); + } + + if (good_copies && spa_writeable(zio->io_spa) && + (unexpected_errors || + (zio->io_flags & ZIO_FLAG_RESILVER) || + ((zio->io_flags & ZIO_FLAG_SCRUB) && mm->mm_resilvering))) { + /* + * Use the good data we have in hand to repair damaged children. + */ + for (c = 0; c < mm->mm_children; c++) { + /* + * Don't rewrite known good children. + * Not only is it unnecessary, it could + * actually be harmful: if the system lost + * power while rewriting the only good copy, + * there would be no good copies left! + */ + mc = &mm->mm_child[c]; + + if (mc->mc_error == 0) { + vdev_ops_t *ops = mc->mc_vd->vdev_ops; + + if (mc->mc_tried) + continue; + /* + * We didn't try this child. We need to + * repair it if: + * 1. it's a scrub (in which case we have + * tried everything that was healthy) + * - or - + * 2. it's an indirect or distributed spare + * vdev (in which case it could point to any + * other vdev, which might have a bad DTL) + * - or - + * 3. the DTL indicates that this data is + * missing from this vdev + */ + if (!(zio->io_flags & ZIO_FLAG_SCRUB) && + ops != &vdev_indirect_ops && + ops != &vdev_draid_spare_ops && + !vdev_dtl_contains(mc->mc_vd, DTL_PARTIAL, + zio->io_txg, 1)) + continue; + mc->mc_error = SET_ERROR(ESTALE); + } + + zio_nowait(zio_vdev_child_io(zio, zio->io_bp, + mc->mc_vd, mc->mc_offset, + zio->io_abd, zio->io_size, ZIO_TYPE_WRITE, + zio->io_priority == ZIO_PRIORITY_REBUILD ? + ZIO_PRIORITY_REBUILD : ZIO_PRIORITY_ASYNC_WRITE, + ZIO_FLAG_IO_REPAIR | (unexpected_errors ? + ZIO_FLAG_SELF_HEAL : 0), NULL, NULL)); + } + } +} + +static void +vdev_mirror_state_change(vdev_t *vd, int faulted, int degraded) +{ + if (faulted == vd->vdev_children) { + if (vdev_children_are_offline(vd)) { + vdev_set_state(vd, B_FALSE, VDEV_STATE_OFFLINE, + VDEV_AUX_CHILDREN_OFFLINE); + } else { + vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, + VDEV_AUX_NO_REPLICAS); + } + } else if (degraded + faulted != 0) { + vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, VDEV_AUX_NONE); + } else { + vdev_set_state(vd, B_FALSE, VDEV_STATE_HEALTHY, VDEV_AUX_NONE); + } +} + +/* + * Return the maximum asize for a rebuild zio in the provided range. + */ +static uint64_t +vdev_mirror_rebuild_asize(vdev_t *vd, uint64_t start, uint64_t asize, + uint64_t max_segment) +{ + (void) start; + + uint64_t psize = MIN(P2ROUNDUP(max_segment, 1 << vd->vdev_ashift), + SPA_MAXBLOCKSIZE); + + return (MIN(asize, vdev_psize_to_asize(vd, psize))); +} + +vdev_ops_t vdev_mirror_ops = { + .vdev_op_init = NULL, + .vdev_op_fini = NULL, + .vdev_op_open = vdev_mirror_open, + .vdev_op_close = vdev_mirror_close, + .vdev_op_psize_to_asize = vdev_default_asize, + .vdev_op_asize_to_psize = vdev_default_psize, + .vdev_op_min_asize = vdev_default_min_asize, + .vdev_op_min_alloc = NULL, + .vdev_op_io_start = vdev_mirror_io_start, + .vdev_op_io_done = vdev_mirror_io_done, + .vdev_op_state_change = vdev_mirror_state_change, + .vdev_op_need_resilver = vdev_default_need_resilver, + .vdev_op_hold = NULL, + .vdev_op_rele = NULL, + .vdev_op_remap = NULL, + .vdev_op_xlate = vdev_default_xlate, + .vdev_op_rebuild_asize = vdev_mirror_rebuild_asize, + .vdev_op_metaslab_init = NULL, + .vdev_op_config_generate = NULL, + .vdev_op_nparity = NULL, + .vdev_op_ndisks = NULL, + .vdev_op_type = VDEV_TYPE_MIRROR, /* name of this vdev type */ + .vdev_op_leaf = B_FALSE /* not a leaf vdev */ +}; + +vdev_ops_t vdev_replacing_ops = { + .vdev_op_init = NULL, + .vdev_op_fini = NULL, + .vdev_op_open = vdev_mirror_open, + .vdev_op_close = vdev_mirror_close, + .vdev_op_psize_to_asize = vdev_default_asize, + .vdev_op_asize_to_psize = vdev_default_psize, + .vdev_op_min_asize = vdev_default_min_asize, + .vdev_op_min_alloc = NULL, + .vdev_op_io_start = vdev_mirror_io_start, + .vdev_op_io_done = vdev_mirror_io_done, + .vdev_op_state_change = vdev_mirror_state_change, + .vdev_op_need_resilver = vdev_default_need_resilver, + .vdev_op_hold = NULL, + .vdev_op_rele = NULL, + .vdev_op_remap = NULL, + .vdev_op_xlate = vdev_default_xlate, + .vdev_op_rebuild_asize = vdev_mirror_rebuild_asize, + .vdev_op_metaslab_init = NULL, + .vdev_op_config_generate = NULL, + .vdev_op_nparity = NULL, + .vdev_op_ndisks = NULL, + .vdev_op_type = VDEV_TYPE_REPLACING, /* name of this vdev type */ + .vdev_op_leaf = B_FALSE /* not a leaf vdev */ +}; + +vdev_ops_t vdev_spare_ops = { + .vdev_op_init = NULL, + .vdev_op_fini = NULL, + .vdev_op_open = vdev_mirror_open, + .vdev_op_close = vdev_mirror_close, + .vdev_op_psize_to_asize = vdev_default_asize, + .vdev_op_asize_to_psize = vdev_default_psize, + .vdev_op_min_asize = vdev_default_min_asize, + .vdev_op_min_alloc = NULL, + .vdev_op_io_start = vdev_mirror_io_start, + .vdev_op_io_done = vdev_mirror_io_done, + .vdev_op_state_change = vdev_mirror_state_change, + .vdev_op_need_resilver = vdev_default_need_resilver, + .vdev_op_hold = NULL, + .vdev_op_rele = NULL, + .vdev_op_remap = NULL, + .vdev_op_xlate = vdev_default_xlate, + .vdev_op_rebuild_asize = vdev_mirror_rebuild_asize, + .vdev_op_metaslab_init = NULL, + .vdev_op_config_generate = NULL, + .vdev_op_nparity = NULL, + .vdev_op_ndisks = NULL, + .vdev_op_type = VDEV_TYPE_SPARE, /* name of this vdev type */ + .vdev_op_leaf = B_FALSE /* not a leaf vdev */ +}; + +ZFS_MODULE_PARAM(zfs_vdev_mirror, zfs_vdev_mirror_, rotating_inc, INT, ZMOD_RW, + "Rotating media load increment for non-seeking I/Os"); + +ZFS_MODULE_PARAM(zfs_vdev_mirror, zfs_vdev_mirror_, rotating_seek_inc, INT, + ZMOD_RW, "Rotating media load increment for seeking I/Os"); + +ZFS_MODULE_PARAM(zfs_vdev_mirror, zfs_vdev_mirror_, rotating_seek_offset, INT, + ZMOD_RW, + "Offset in bytes from the last I/O which triggers " + "a reduced rotating media seek increment"); + +ZFS_MODULE_PARAM(zfs_vdev_mirror, zfs_vdev_mirror_, non_rotating_inc, INT, + ZMOD_RW, "Non-rotating media load increment for non-seeking I/Os"); + +ZFS_MODULE_PARAM(zfs_vdev_mirror, zfs_vdev_mirror_, non_rotating_seek_inc, INT, + ZMOD_RW, "Non-rotating media load increment for seeking I/Os"); |