aboutsummaryrefslogtreecommitdiff
path: root/sys/contrib/openzfs/module/zfs/vdev_mirror.c
diff options
context:
space:
mode:
Diffstat (limited to 'sys/contrib/openzfs/module/zfs/vdev_mirror.c')
-rw-r--r--sys/contrib/openzfs/module/zfs/vdev_mirror.c1063
1 files changed, 1063 insertions, 0 deletions
diff --git a/sys/contrib/openzfs/module/zfs/vdev_mirror.c b/sys/contrib/openzfs/module/zfs/vdev_mirror.c
new file mode 100644
index 000000000000..18efdaac006f
--- /dev/null
+++ b/sys/contrib/openzfs/module/zfs/vdev_mirror.c
@@ -0,0 +1,1063 @@
+// SPDX-License-Identifier: CDDL-1.0
+/*
+ * CDDL HEADER START
+ *
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License (the "License").
+ * You may not use this file except in compliance with the License.
+ *
+ * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
+ * or https://opensource.org/licenses/CDDL-1.0.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When distributing Covered Code, include this CDDL HEADER in each
+ * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+/*
+ * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
+ * Use is subject to license terms.
+ */
+
+/*
+ * Copyright (c) 2012, 2015 by Delphix. All rights reserved.
+ */
+
+#include <sys/zfs_context.h>
+#include <sys/spa.h>
+#include <sys/spa_impl.h>
+#include <sys/dsl_pool.h>
+#include <sys/dsl_scan.h>
+#include <sys/vdev_impl.h>
+#include <sys/vdev_draid.h>
+#include <sys/zio.h>
+#include <sys/zio_checksum.h>
+#include <sys/abd.h>
+#include <sys/fs/zfs.h>
+
+/*
+ * Vdev mirror kstats
+ */
+static kstat_t *mirror_ksp = NULL;
+
+typedef struct mirror_stats {
+ kstat_named_t vdev_mirror_stat_rotating_linear;
+ kstat_named_t vdev_mirror_stat_rotating_offset;
+ kstat_named_t vdev_mirror_stat_rotating_seek;
+ kstat_named_t vdev_mirror_stat_non_rotating_linear;
+ kstat_named_t vdev_mirror_stat_non_rotating_seek;
+
+ kstat_named_t vdev_mirror_stat_preferred_found;
+ kstat_named_t vdev_mirror_stat_preferred_not_found;
+} mirror_stats_t;
+
+static mirror_stats_t mirror_stats = {
+ /* New I/O follows directly the last I/O */
+ { "rotating_linear", KSTAT_DATA_UINT64 },
+ /* New I/O is within zfs_vdev_mirror_rotating_seek_offset of the last */
+ { "rotating_offset", KSTAT_DATA_UINT64 },
+ /* New I/O requires random seek */
+ { "rotating_seek", KSTAT_DATA_UINT64 },
+ /* New I/O follows directly the last I/O (nonrot) */
+ { "non_rotating_linear", KSTAT_DATA_UINT64 },
+ /* New I/O requires random seek (nonrot) */
+ { "non_rotating_seek", KSTAT_DATA_UINT64 },
+ /* Preferred child vdev found */
+ { "preferred_found", KSTAT_DATA_UINT64 },
+ /* Preferred child vdev not found or equal load */
+ { "preferred_not_found", KSTAT_DATA_UINT64 },
+
+};
+
+#define MIRROR_STAT(stat) (mirror_stats.stat.value.ui64)
+#define MIRROR_INCR(stat, val) atomic_add_64(&MIRROR_STAT(stat), val)
+#define MIRROR_BUMP(stat) MIRROR_INCR(stat, 1)
+
+void
+vdev_mirror_stat_init(void)
+{
+ mirror_ksp = kstat_create("zfs", 0, "vdev_mirror_stats",
+ "misc", KSTAT_TYPE_NAMED,
+ sizeof (mirror_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
+ if (mirror_ksp != NULL) {
+ mirror_ksp->ks_data = &mirror_stats;
+ kstat_install(mirror_ksp);
+ }
+}
+
+void
+vdev_mirror_stat_fini(void)
+{
+ if (mirror_ksp != NULL) {
+ kstat_delete(mirror_ksp);
+ mirror_ksp = NULL;
+ }
+}
+
+/*
+ * Virtual device vector for mirroring.
+ */
+typedef struct mirror_child {
+ vdev_t *mc_vd;
+ abd_t *mc_abd;
+ uint64_t mc_offset;
+ int mc_error;
+ int mc_load;
+ uint8_t mc_tried;
+ uint8_t mc_skipped;
+ uint8_t mc_speculative;
+ uint8_t mc_rebuilding;
+} mirror_child_t;
+
+typedef struct mirror_map {
+ int *mm_preferred;
+ int mm_preferred_cnt;
+ int mm_children;
+ boolean_t mm_resilvering;
+ boolean_t mm_rebuilding;
+ boolean_t mm_root;
+ mirror_child_t mm_child[];
+} mirror_map_t;
+
+static const int vdev_mirror_shift = 21;
+
+/*
+ * The load configuration settings below are tuned by default for
+ * the case where all devices are of the same rotational type.
+ *
+ * If there is a mixture of rotating and non-rotating media, setting
+ * zfs_vdev_mirror_non_rotating_seek_inc to 0 may well provide better results
+ * as it will direct more reads to the non-rotating vdevs which are more likely
+ * to have a higher performance.
+ */
+
+/* Rotating media load calculation configuration. */
+static int zfs_vdev_mirror_rotating_inc = 0;
+static int zfs_vdev_mirror_rotating_seek_inc = 5;
+static int zfs_vdev_mirror_rotating_seek_offset = 1 * 1024 * 1024;
+
+/* Non-rotating media load calculation configuration. */
+static int zfs_vdev_mirror_non_rotating_inc = 0;
+static int zfs_vdev_mirror_non_rotating_seek_inc = 1;
+
+static inline size_t
+vdev_mirror_map_size(int children)
+{
+ return (offsetof(mirror_map_t, mm_child[children]) +
+ sizeof (int) * children);
+}
+
+static inline mirror_map_t *
+vdev_mirror_map_alloc(int children, boolean_t resilvering, boolean_t root)
+{
+ mirror_map_t *mm;
+
+ mm = kmem_zalloc(vdev_mirror_map_size(children), KM_SLEEP);
+ mm->mm_children = children;
+ mm->mm_resilvering = resilvering;
+ mm->mm_root = root;
+ mm->mm_preferred = (int *)((uintptr_t)mm +
+ offsetof(mirror_map_t, mm_child[children]));
+
+ return (mm);
+}
+
+static void
+vdev_mirror_map_free(zio_t *zio)
+{
+ mirror_map_t *mm = zio->io_vsd;
+
+ kmem_free(mm, vdev_mirror_map_size(mm->mm_children));
+}
+
+static const zio_vsd_ops_t vdev_mirror_vsd_ops = {
+ .vsd_free = vdev_mirror_map_free,
+};
+
+static int
+vdev_mirror_load(mirror_map_t *mm, vdev_t *vd, uint64_t zio_offset)
+{
+ uint64_t last_offset;
+ int64_t offset_diff;
+ int load;
+
+ /* All DVAs have equal weight at the root. */
+ if (mm->mm_root)
+ return (INT_MAX);
+
+ /*
+ * We don't return INT_MAX if the device is resilvering i.e.
+ * vdev_resilver_txg != 0 as when tested performance was slightly
+ * worse overall when resilvering with compared to without.
+ */
+
+ /* Fix zio_offset for leaf vdevs */
+ if (vd->vdev_ops->vdev_op_leaf)
+ zio_offset += VDEV_LABEL_START_SIZE;
+
+ /* Standard load based on pending queue length. */
+ load = vdev_queue_length(vd);
+ last_offset = vdev_queue_last_offset(vd);
+
+ if (vd->vdev_nonrot) {
+ /* Non-rotating media. */
+ if (last_offset == zio_offset) {
+ MIRROR_BUMP(vdev_mirror_stat_non_rotating_linear);
+ return (load + zfs_vdev_mirror_non_rotating_inc);
+ }
+
+ /*
+ * Apply a seek penalty even for non-rotating devices as
+ * sequential I/O's can be aggregated into fewer operations on
+ * the device, thus avoiding unnecessary per-command overhead
+ * and boosting performance.
+ */
+ MIRROR_BUMP(vdev_mirror_stat_non_rotating_seek);
+ return (load + zfs_vdev_mirror_non_rotating_seek_inc);
+ }
+
+ /* Rotating media I/O's which directly follow the last I/O. */
+ if (last_offset == zio_offset) {
+ MIRROR_BUMP(vdev_mirror_stat_rotating_linear);
+ return (load + zfs_vdev_mirror_rotating_inc);
+ }
+
+ /*
+ * Apply half the seek increment to I/O's within seek offset
+ * of the last I/O issued to this vdev as they should incur less
+ * of a seek increment.
+ */
+ offset_diff = (int64_t)(last_offset - zio_offset);
+ if (ABS(offset_diff) < zfs_vdev_mirror_rotating_seek_offset) {
+ MIRROR_BUMP(vdev_mirror_stat_rotating_offset);
+ return (load + (zfs_vdev_mirror_rotating_seek_inc / 2));
+ }
+
+ /* Apply the full seek increment to all other I/O's. */
+ MIRROR_BUMP(vdev_mirror_stat_rotating_seek);
+ return (load + zfs_vdev_mirror_rotating_seek_inc);
+}
+
+static boolean_t
+vdev_mirror_rebuilding(vdev_t *vd)
+{
+ if (vd->vdev_ops->vdev_op_leaf && vd->vdev_rebuild_txg)
+ return (B_TRUE);
+
+ for (int i = 0; i < vd->vdev_children; i++) {
+ if (vdev_mirror_rebuilding(vd->vdev_child[i])) {
+ return (B_TRUE);
+ }
+ }
+
+ return (B_FALSE);
+}
+
+/*
+ * Avoid inlining the function to keep vdev_mirror_io_start(), which
+ * is this functions only caller, as small as possible on the stack.
+ */
+noinline static mirror_map_t *
+vdev_mirror_map_init(zio_t *zio)
+{
+ mirror_map_t *mm = NULL;
+ mirror_child_t *mc;
+ vdev_t *vd = zio->io_vd;
+ int c;
+
+ if (vd == NULL) {
+ dva_t *dva = zio->io_bp->blk_dva;
+ spa_t *spa = zio->io_spa;
+ dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
+ dva_t dva_copy[SPA_DVAS_PER_BP];
+
+ /*
+ * The sequential scrub code sorts and issues all DVAs
+ * of a bp separately. Each of these IOs includes all
+ * original DVA copies so that repairs can be performed
+ * in the event of an error, but we only actually want
+ * to check the first DVA since the others will be
+ * checked by their respective sorted IOs. Only if we
+ * hit an error will we try all DVAs upon retrying.
+ *
+ * Note: This check is safe even if the user switches
+ * from a legacy scrub to a sequential one in the middle
+ * of processing, since scn_is_sorted isn't updated until
+ * all outstanding IOs from the previous scrub pass
+ * complete.
+ */
+ if ((zio->io_flags & ZIO_FLAG_SCRUB) &&
+ !(zio->io_flags & ZIO_FLAG_IO_RETRY) &&
+ dsl_scan_scrubbing(spa->spa_dsl_pool) &&
+ scn->scn_is_sorted) {
+ c = 1;
+ } else {
+ c = BP_GET_NDVAS(zio->io_bp);
+ }
+
+ /*
+ * If the pool cannot be written to, then infer that some
+ * DVAs might be invalid or point to vdevs that do not exist.
+ * We skip them.
+ */
+ if (!spa_writeable(spa)) {
+ ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);
+ int j = 0;
+ for (int i = 0; i < c; i++) {
+ if (zfs_dva_valid(spa, &dva[i], zio->io_bp))
+ dva_copy[j++] = dva[i];
+ }
+ if (j == 0) {
+ zio->io_vsd = NULL;
+ zio->io_error = ENXIO;
+ return (NULL);
+ }
+ if (j < c) {
+ dva = dva_copy;
+ c = j;
+ }
+ }
+
+ mm = vdev_mirror_map_alloc(c, B_FALSE, B_TRUE);
+ for (c = 0; c < mm->mm_children; c++) {
+ mc = &mm->mm_child[c];
+
+ mc->mc_vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[c]));
+ mc->mc_offset = DVA_GET_OFFSET(&dva[c]);
+ if (mc->mc_vd == NULL) {
+ kmem_free(mm, vdev_mirror_map_size(
+ mm->mm_children));
+ zio->io_vsd = NULL;
+ zio->io_error = ENXIO;
+ return (NULL);
+ }
+ }
+ } else {
+ /*
+ * If we are resilvering, then we should handle scrub reads
+ * differently; we shouldn't issue them to the resilvering
+ * device because it might not have those blocks.
+ *
+ * We are resilvering iff:
+ * 1) We are a replacing vdev (ie our name is "replacing-1" or
+ * "spare-1" or something like that), and
+ * 2) The pool is currently being resilvered.
+ *
+ * We cannot simply check vd->vdev_resilver_txg, because it's
+ * not set in this path.
+ *
+ * Nor can we just check our vdev_ops; there are cases (such as
+ * when a user types "zpool replace pool odev spare_dev" and
+ * spare_dev is in the spare list, or when a spare device is
+ * automatically used to replace a DEGRADED device) when
+ * resilvering is complete but both the original vdev and the
+ * spare vdev remain in the pool. That behavior is intentional.
+ * It helps implement the policy that a spare should be
+ * automatically removed from the pool after the user replaces
+ * the device that originally failed.
+ *
+ * If a spa load is in progress, then spa_dsl_pool may be
+ * uninitialized. But we shouldn't be resilvering during a spa
+ * load anyway.
+ */
+ boolean_t replacing = (vd->vdev_ops == &vdev_replacing_ops ||
+ vd->vdev_ops == &vdev_spare_ops) &&
+ spa_load_state(vd->vdev_spa) == SPA_LOAD_NONE &&
+ dsl_scan_resilvering(vd->vdev_spa->spa_dsl_pool);
+ mm = vdev_mirror_map_alloc(vd->vdev_children, replacing,
+ B_FALSE);
+ for (c = 0; c < mm->mm_children; c++) {
+ mc = &mm->mm_child[c];
+ mc->mc_vd = vd->vdev_child[c];
+ mc->mc_offset = zio->io_offset;
+
+ if (vdev_mirror_rebuilding(mc->mc_vd))
+ mm->mm_rebuilding = mc->mc_rebuilding = B_TRUE;
+ }
+ }
+
+ return (mm);
+}
+
+static int
+vdev_mirror_open(vdev_t *vd, uint64_t *asize, uint64_t *max_asize,
+ uint64_t *logical_ashift, uint64_t *physical_ashift)
+{
+ int numerrors = 0;
+ int lasterror = 0;
+
+ if (vd->vdev_children == 0) {
+ vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
+ return (SET_ERROR(EINVAL));
+ }
+
+ vdev_open_children(vd);
+
+ for (int c = 0; c < vd->vdev_children; c++) {
+ vdev_t *cvd = vd->vdev_child[c];
+
+ if (cvd->vdev_open_error) {
+ lasterror = cvd->vdev_open_error;
+ numerrors++;
+ continue;
+ }
+
+ *asize = MIN(*asize - 1, cvd->vdev_asize - 1) + 1;
+ *max_asize = MIN(*max_asize - 1, cvd->vdev_max_asize - 1) + 1;
+ *logical_ashift = MAX(*logical_ashift, cvd->vdev_ashift);
+ }
+ for (int c = 0; c < vd->vdev_children; c++) {
+ vdev_t *cvd = vd->vdev_child[c];
+
+ if (cvd->vdev_open_error)
+ continue;
+ *physical_ashift = vdev_best_ashift(*logical_ashift,
+ *physical_ashift, cvd->vdev_physical_ashift);
+ }
+
+ if (numerrors == vd->vdev_children) {
+ if (vdev_children_are_offline(vd))
+ vd->vdev_stat.vs_aux = VDEV_AUX_CHILDREN_OFFLINE;
+ else
+ vd->vdev_stat.vs_aux = VDEV_AUX_NO_REPLICAS;
+ return (lasterror);
+ }
+
+ return (0);
+}
+
+static void
+vdev_mirror_close(vdev_t *vd)
+{
+ for (int c = 0; c < vd->vdev_children; c++)
+ vdev_close(vd->vdev_child[c]);
+}
+
+static void
+vdev_mirror_child_done(zio_t *zio)
+{
+ mirror_child_t *mc = zio->io_private;
+
+ mc->mc_error = zio->io_error;
+ mc->mc_tried = 1;
+ mc->mc_skipped = 0;
+}
+
+/*
+ * Check the other, lower-index DVAs to see if they're on the same
+ * vdev as the child we picked. If they are, use them since they
+ * are likely to have been allocated from the primary metaslab in
+ * use at the time, and hence are more likely to have locality with
+ * single-copy data.
+ */
+static int
+vdev_mirror_dva_select(zio_t *zio, int p)
+{
+ dva_t *dva = zio->io_bp->blk_dva;
+ mirror_map_t *mm = zio->io_vsd;
+ int preferred;
+ int c;
+
+ preferred = mm->mm_preferred[p];
+ for (p--; p >= 0; p--) {
+ c = mm->mm_preferred[p];
+ if (DVA_GET_VDEV(&dva[c]) == DVA_GET_VDEV(&dva[preferred]))
+ preferred = c;
+ }
+ return (preferred);
+}
+
+static int
+vdev_mirror_preferred_child_randomize(zio_t *zio)
+{
+ mirror_map_t *mm = zio->io_vsd;
+ int p;
+
+ if (mm->mm_root) {
+ p = random_in_range(mm->mm_preferred_cnt);
+ return (vdev_mirror_dva_select(zio, p));
+ }
+
+ /*
+ * To ensure we don't always favour the first matching vdev,
+ * which could lead to wear leveling issues on SSD's, we
+ * use the I/O offset as a pseudo random seed into the vdevs
+ * which have the lowest load.
+ */
+ p = (zio->io_offset >> vdev_mirror_shift) % mm->mm_preferred_cnt;
+ return (mm->mm_preferred[p]);
+}
+
+static boolean_t
+vdev_mirror_child_readable(mirror_child_t *mc)
+{
+ vdev_t *vd = mc->mc_vd;
+
+ if (vd->vdev_top != NULL && vd->vdev_top->vdev_ops == &vdev_draid_ops)
+ return (vdev_draid_readable(vd, mc->mc_offset));
+ else
+ return (vdev_readable(vd));
+}
+
+static boolean_t
+vdev_mirror_child_missing(mirror_child_t *mc, uint64_t txg, uint64_t size)
+{
+ vdev_t *vd = mc->mc_vd;
+
+ if (vd->vdev_top != NULL && vd->vdev_top->vdev_ops == &vdev_draid_ops)
+ return (vdev_draid_missing(vd, mc->mc_offset, txg, size));
+ else
+ return (vdev_dtl_contains(vd, DTL_MISSING, txg, size));
+}
+
+/*
+ * Try to find a vdev whose DTL doesn't contain the block we want to read
+ * preferring vdevs based on determined load. If we can't, try the read on
+ * any vdev we haven't already tried.
+ *
+ * Distributed spares are an exception to the above load rule. They are
+ * always preferred in order to detect gaps in the distributed spare which
+ * are created when another disk in the dRAID fails. In order to restore
+ * redundancy those gaps must be read to trigger the required repair IO.
+ */
+static int
+vdev_mirror_child_select(zio_t *zio)
+{
+ mirror_map_t *mm = zio->io_vsd;
+ uint64_t txg = zio->io_txg;
+ int c, lowest_load;
+
+ ASSERT(zio->io_bp == NULL || BP_GET_PHYSICAL_BIRTH(zio->io_bp) == txg);
+
+ lowest_load = INT_MAX;
+ mm->mm_preferred_cnt = 0;
+ for (c = 0; c < mm->mm_children; c++) {
+ mirror_child_t *mc;
+
+ mc = &mm->mm_child[c];
+ if (mc->mc_tried || mc->mc_skipped)
+ continue;
+
+ if (mc->mc_vd == NULL ||
+ !vdev_mirror_child_readable(mc)) {
+ mc->mc_error = SET_ERROR(ENXIO);
+ mc->mc_tried = 1; /* don't even try */
+ mc->mc_skipped = 1;
+ continue;
+ }
+
+ if (vdev_mirror_child_missing(mc, txg, 1)) {
+ mc->mc_error = SET_ERROR(ESTALE);
+ mc->mc_skipped = 1;
+ mc->mc_speculative = 1;
+ continue;
+ }
+
+ if (mc->mc_vd->vdev_ops == &vdev_draid_spare_ops) {
+ mm->mm_preferred[0] = c;
+ mm->mm_preferred_cnt = 1;
+ break;
+ }
+
+ mc->mc_load = vdev_mirror_load(mm, mc->mc_vd, mc->mc_offset);
+ if (mc->mc_load > lowest_load)
+ continue;
+
+ if (mc->mc_load < lowest_load) {
+ lowest_load = mc->mc_load;
+ mm->mm_preferred_cnt = 0;
+ }
+ mm->mm_preferred[mm->mm_preferred_cnt] = c;
+ mm->mm_preferred_cnt++;
+ }
+
+ if (mm->mm_preferred_cnt == 1) {
+ MIRROR_BUMP(vdev_mirror_stat_preferred_found);
+ return (mm->mm_preferred[0]);
+ }
+
+ if (mm->mm_preferred_cnt > 1) {
+ MIRROR_BUMP(vdev_mirror_stat_preferred_not_found);
+ return (vdev_mirror_preferred_child_randomize(zio));
+ }
+
+ /*
+ * Every device is either missing or has this txg in its DTL.
+ * Look for any child we haven't already tried before giving up.
+ */
+ for (c = 0; c < mm->mm_children; c++) {
+ if (!mm->mm_child[c].mc_tried)
+ return (c);
+ }
+
+ /*
+ * Every child failed. There's no place left to look.
+ */
+ return (-1);
+}
+
+static void
+vdev_mirror_io_start(zio_t *zio)
+{
+ mirror_map_t *mm;
+ mirror_child_t *mc;
+ int c, children;
+
+ mm = vdev_mirror_map_init(zio);
+ zio->io_vsd = mm;
+ zio->io_vsd_ops = &vdev_mirror_vsd_ops;
+
+ if (mm == NULL) {
+ ASSERT(!spa_trust_config(zio->io_spa));
+ ASSERT(zio->io_type == ZIO_TYPE_READ);
+ zio_execute(zio);
+ return;
+ }
+
+ if (zio->io_type == ZIO_TYPE_READ) {
+ if ((zio->io_flags & ZIO_FLAG_SCRUB) && !mm->mm_resilvering) {
+ /*
+ * For scrubbing reads we need to issue reads to all
+ * children. One child can reuse parent buffer, but
+ * for others we have to allocate separate ones to
+ * verify checksums if io_bp is non-NULL, or compare
+ * them in vdev_mirror_io_done() otherwise.
+ */
+ boolean_t first = B_TRUE;
+ for (c = 0; c < mm->mm_children; c++) {
+ mc = &mm->mm_child[c];
+
+ /* Don't issue ZIOs to offline children */
+ if (!vdev_mirror_child_readable(mc)) {
+ mc->mc_error = SET_ERROR(ENXIO);
+ mc->mc_tried = 1;
+ mc->mc_skipped = 1;
+ continue;
+ }
+
+ mc->mc_abd = first ? zio->io_abd :
+ abd_alloc_sametype(zio->io_abd,
+ zio->io_size);
+ zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
+ mc->mc_vd, mc->mc_offset, mc->mc_abd,
+ zio->io_size, zio->io_type,
+ zio->io_priority, 0,
+ vdev_mirror_child_done, mc));
+ first = B_FALSE;
+ }
+ zio_execute(zio);
+ return;
+ }
+ /*
+ * For normal reads just pick one child.
+ */
+ c = vdev_mirror_child_select(zio);
+ children = (c >= 0);
+ } else {
+ ASSERT(zio->io_type == ZIO_TYPE_WRITE);
+
+ /*
+ * Writes go to all children.
+ */
+ c = 0;
+ children = mm->mm_children;
+ }
+
+ while (children--) {
+ mc = &mm->mm_child[c];
+ c++;
+
+ /*
+ * When sequentially resilvering only issue write repair
+ * IOs to the vdev which is being rebuilt since performance
+ * is limited by the slowest child. This is an issue for
+ * faster replacement devices such as distributed spares.
+ */
+ if ((zio->io_priority == ZIO_PRIORITY_REBUILD) &&
+ (zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
+ !(zio->io_flags & ZIO_FLAG_SCRUB) &&
+ mm->mm_rebuilding && !mc->mc_rebuilding) {
+ continue;
+ }
+
+ zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
+ mc->mc_vd, mc->mc_offset, zio->io_abd, zio->io_size,
+ zio->io_type, zio->io_priority, 0,
+ vdev_mirror_child_done, mc));
+ }
+
+ zio_execute(zio);
+}
+
+static int
+vdev_mirror_worst_error(mirror_map_t *mm)
+{
+ int error[2] = { 0, 0 };
+
+ for (int c = 0; c < mm->mm_children; c++) {
+ mirror_child_t *mc = &mm->mm_child[c];
+ int s = mc->mc_speculative;
+ error[s] = zio_worst_error(error[s], mc->mc_error);
+ }
+
+ return (error[0] ? error[0] : error[1]);
+}
+
+static void
+vdev_mirror_io_done(zio_t *zio)
+{
+ mirror_map_t *mm = zio->io_vsd;
+ mirror_child_t *mc;
+ int c;
+ int good_copies = 0;
+ int unexpected_errors = 0;
+ int last_good_copy = -1;
+
+ if (mm == NULL)
+ return;
+
+ for (c = 0; c < mm->mm_children; c++) {
+ mc = &mm->mm_child[c];
+
+ if (mc->mc_error) {
+ if (!mc->mc_skipped)
+ unexpected_errors++;
+ } else if (mc->mc_tried) {
+ last_good_copy = c;
+ good_copies++;
+ }
+ }
+
+ if (zio->io_type == ZIO_TYPE_WRITE) {
+ /*
+ * XXX -- for now, treat partial writes as success.
+ *
+ * Now that we support write reallocation, it would be better
+ * to treat partial failure as real failure unless there are
+ * no non-degraded top-level vdevs left, and not update DTLs
+ * if we intend to reallocate.
+ */
+ if (good_copies != mm->mm_children) {
+ /*
+ * Always require at least one good copy.
+ *
+ * For ditto blocks (io_vd == NULL), require
+ * all copies to be good.
+ *
+ * XXX -- for replacing vdevs, there's no great answer.
+ * If the old device is really dead, we may not even
+ * be able to access it -- so we only want to
+ * require good writes to the new device. But if
+ * the new device turns out to be flaky, we want
+ * to be able to detach it -- which requires all
+ * writes to the old device to have succeeded.
+ */
+ if (good_copies == 0 || zio->io_vd == NULL)
+ zio->io_error = vdev_mirror_worst_error(mm);
+ }
+ return;
+ }
+
+ ASSERT(zio->io_type == ZIO_TYPE_READ);
+
+ /*
+ * Any Direct I/O read that has a checksum error must be treated as
+ * suspicious as the contents of the buffer could be getting
+ * manipulated while the I/O is taking place. The checksum verify error
+ * will be reported to the top-level Mirror VDEV.
+ *
+ * There will be no attampt at reading any additional data copies. If
+ * the buffer is still being manipulated while attempting to read from
+ * another child, there exists a possibly that the checksum could be
+ * verified as valid. However, the buffer contents could again get
+ * manipulated after verifying the checksum. This would lead to bad data
+ * being written out during self healing.
+ */
+ if ((zio->io_flags & ZIO_FLAG_DIO_READ) &&
+ (zio->io_post & ZIO_POST_DIO_CHKSUM_ERR)) {
+ zio_dio_chksum_verify_error_report(zio);
+ zio->io_error = vdev_mirror_worst_error(mm);
+ ASSERT3U(zio->io_error, ==, ECKSUM);
+ return;
+ }
+
+ /*
+ * If we don't have a good copy yet, keep trying other children.
+ */
+ if (good_copies == 0 && (c = vdev_mirror_child_select(zio)) != -1) {
+ ASSERT(c >= 0 && c < mm->mm_children);
+ mc = &mm->mm_child[c];
+ zio_vdev_io_redone(zio);
+ zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
+ mc->mc_vd, mc->mc_offset, zio->io_abd, zio->io_size,
+ ZIO_TYPE_READ, zio->io_priority, 0,
+ vdev_mirror_child_done, mc));
+ return;
+ }
+
+ if (zio->io_flags & ZIO_FLAG_SCRUB && !mm->mm_resilvering) {
+ abd_t *best_abd = NULL;
+ if (last_good_copy >= 0)
+ best_abd = mm->mm_child[last_good_copy].mc_abd;
+
+ /*
+ * If we're scrubbing but don't have a BP available (because
+ * this vdev is under a raidz or draid vdev) then the best we
+ * can do is compare all of the copies read. If they're not
+ * identical then return a checksum error and the most likely
+ * correct data. The raidz code will issue a repair I/O if
+ * possible.
+ */
+ if (zio->io_bp == NULL) {
+ ASSERT(zio->io_vd->vdev_ops == &vdev_replacing_ops ||
+ zio->io_vd->vdev_ops == &vdev_spare_ops);
+
+ abd_t *pref_abd = NULL;
+ for (c = 0; c < last_good_copy; c++) {
+ mc = &mm->mm_child[c];
+ if (mc->mc_error || !mc->mc_tried)
+ continue;
+
+ if (abd_cmp(mc->mc_abd, best_abd) != 0)
+ zio->io_error = SET_ERROR(ECKSUM);
+
+ /*
+ * The distributed spare is always prefered
+ * by vdev_mirror_child_select() so it's
+ * considered to be the best candidate.
+ */
+ if (pref_abd == NULL &&
+ mc->mc_vd->vdev_ops ==
+ &vdev_draid_spare_ops)
+ pref_abd = mc->mc_abd;
+
+ /*
+ * In the absence of a preferred copy, use
+ * the parent pointer to avoid a memory copy.
+ */
+ if (mc->mc_abd == zio->io_abd)
+ best_abd = mc->mc_abd;
+ }
+ if (pref_abd)
+ best_abd = pref_abd;
+ } else {
+
+ /*
+ * If we have a BP available, then checksums are
+ * already verified and we just need a buffer
+ * with valid data, preferring parent one to
+ * avoid a memory copy.
+ */
+ for (c = 0; c < last_good_copy; c++) {
+ mc = &mm->mm_child[c];
+ if (mc->mc_error || !mc->mc_tried)
+ continue;
+ if (mc->mc_abd == zio->io_abd) {
+ best_abd = mc->mc_abd;
+ break;
+ }
+ }
+ }
+
+ if (best_abd && best_abd != zio->io_abd)
+ abd_copy(zio->io_abd, best_abd, zio->io_size);
+ for (c = 0; c < mm->mm_children; c++) {
+ mc = &mm->mm_child[c];
+ if (mc->mc_abd != zio->io_abd)
+ abd_free(mc->mc_abd);
+ mc->mc_abd = NULL;
+ }
+ }
+
+ if (good_copies == 0) {
+ zio->io_error = vdev_mirror_worst_error(mm);
+ ASSERT(zio->io_error != 0);
+ }
+
+ if (good_copies && spa_writeable(zio->io_spa) &&
+ (unexpected_errors ||
+ (zio->io_flags & ZIO_FLAG_RESILVER) ||
+ ((zio->io_flags & ZIO_FLAG_SCRUB) && mm->mm_resilvering))) {
+ /*
+ * Use the good data we have in hand to repair damaged children.
+ */
+ for (c = 0; c < mm->mm_children; c++) {
+ /*
+ * Don't rewrite known good children.
+ * Not only is it unnecessary, it could
+ * actually be harmful: if the system lost
+ * power while rewriting the only good copy,
+ * there would be no good copies left!
+ */
+ mc = &mm->mm_child[c];
+
+ if (mc->mc_error == 0) {
+ vdev_ops_t *ops = mc->mc_vd->vdev_ops;
+
+ if (mc->mc_tried)
+ continue;
+ /*
+ * We didn't try this child. We need to
+ * repair it if:
+ * 1. it's a scrub (in which case we have
+ * tried everything that was healthy)
+ * - or -
+ * 2. it's an indirect or distributed spare
+ * vdev (in which case it could point to any
+ * other vdev, which might have a bad DTL)
+ * - or -
+ * 3. the DTL indicates that this data is
+ * missing from this vdev
+ */
+ if (!(zio->io_flags & ZIO_FLAG_SCRUB) &&
+ ops != &vdev_indirect_ops &&
+ ops != &vdev_draid_spare_ops &&
+ !vdev_dtl_contains(mc->mc_vd, DTL_PARTIAL,
+ zio->io_txg, 1))
+ continue;
+ mc->mc_error = SET_ERROR(ESTALE);
+ }
+
+ zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
+ mc->mc_vd, mc->mc_offset,
+ zio->io_abd, zio->io_size, ZIO_TYPE_WRITE,
+ zio->io_priority == ZIO_PRIORITY_REBUILD ?
+ ZIO_PRIORITY_REBUILD : ZIO_PRIORITY_ASYNC_WRITE,
+ ZIO_FLAG_IO_REPAIR | (unexpected_errors ?
+ ZIO_FLAG_SELF_HEAL : 0), NULL, NULL));
+ }
+ }
+}
+
+static void
+vdev_mirror_state_change(vdev_t *vd, int faulted, int degraded)
+{
+ if (faulted == vd->vdev_children) {
+ if (vdev_children_are_offline(vd)) {
+ vdev_set_state(vd, B_FALSE, VDEV_STATE_OFFLINE,
+ VDEV_AUX_CHILDREN_OFFLINE);
+ } else {
+ vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
+ VDEV_AUX_NO_REPLICAS);
+ }
+ } else if (degraded + faulted != 0) {
+ vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, VDEV_AUX_NONE);
+ } else {
+ vdev_set_state(vd, B_FALSE, VDEV_STATE_HEALTHY, VDEV_AUX_NONE);
+ }
+}
+
+/*
+ * Return the maximum asize for a rebuild zio in the provided range.
+ */
+static uint64_t
+vdev_mirror_rebuild_asize(vdev_t *vd, uint64_t start, uint64_t asize,
+ uint64_t max_segment)
+{
+ (void) start;
+
+ uint64_t psize = MIN(P2ROUNDUP(max_segment, 1 << vd->vdev_ashift),
+ SPA_MAXBLOCKSIZE);
+
+ return (MIN(asize, vdev_psize_to_asize(vd, psize)));
+}
+
+vdev_ops_t vdev_mirror_ops = {
+ .vdev_op_init = NULL,
+ .vdev_op_fini = NULL,
+ .vdev_op_open = vdev_mirror_open,
+ .vdev_op_close = vdev_mirror_close,
+ .vdev_op_psize_to_asize = vdev_default_asize,
+ .vdev_op_asize_to_psize = vdev_default_psize,
+ .vdev_op_min_asize = vdev_default_min_asize,
+ .vdev_op_min_alloc = NULL,
+ .vdev_op_io_start = vdev_mirror_io_start,
+ .vdev_op_io_done = vdev_mirror_io_done,
+ .vdev_op_state_change = vdev_mirror_state_change,
+ .vdev_op_need_resilver = vdev_default_need_resilver,
+ .vdev_op_hold = NULL,
+ .vdev_op_rele = NULL,
+ .vdev_op_remap = NULL,
+ .vdev_op_xlate = vdev_default_xlate,
+ .vdev_op_rebuild_asize = vdev_mirror_rebuild_asize,
+ .vdev_op_metaslab_init = NULL,
+ .vdev_op_config_generate = NULL,
+ .vdev_op_nparity = NULL,
+ .vdev_op_ndisks = NULL,
+ .vdev_op_type = VDEV_TYPE_MIRROR, /* name of this vdev type */
+ .vdev_op_leaf = B_FALSE /* not a leaf vdev */
+};
+
+vdev_ops_t vdev_replacing_ops = {
+ .vdev_op_init = NULL,
+ .vdev_op_fini = NULL,
+ .vdev_op_open = vdev_mirror_open,
+ .vdev_op_close = vdev_mirror_close,
+ .vdev_op_psize_to_asize = vdev_default_asize,
+ .vdev_op_asize_to_psize = vdev_default_psize,
+ .vdev_op_min_asize = vdev_default_min_asize,
+ .vdev_op_min_alloc = NULL,
+ .vdev_op_io_start = vdev_mirror_io_start,
+ .vdev_op_io_done = vdev_mirror_io_done,
+ .vdev_op_state_change = vdev_mirror_state_change,
+ .vdev_op_need_resilver = vdev_default_need_resilver,
+ .vdev_op_hold = NULL,
+ .vdev_op_rele = NULL,
+ .vdev_op_remap = NULL,
+ .vdev_op_xlate = vdev_default_xlate,
+ .vdev_op_rebuild_asize = vdev_mirror_rebuild_asize,
+ .vdev_op_metaslab_init = NULL,
+ .vdev_op_config_generate = NULL,
+ .vdev_op_nparity = NULL,
+ .vdev_op_ndisks = NULL,
+ .vdev_op_type = VDEV_TYPE_REPLACING, /* name of this vdev type */
+ .vdev_op_leaf = B_FALSE /* not a leaf vdev */
+};
+
+vdev_ops_t vdev_spare_ops = {
+ .vdev_op_init = NULL,
+ .vdev_op_fini = NULL,
+ .vdev_op_open = vdev_mirror_open,
+ .vdev_op_close = vdev_mirror_close,
+ .vdev_op_psize_to_asize = vdev_default_asize,
+ .vdev_op_asize_to_psize = vdev_default_psize,
+ .vdev_op_min_asize = vdev_default_min_asize,
+ .vdev_op_min_alloc = NULL,
+ .vdev_op_io_start = vdev_mirror_io_start,
+ .vdev_op_io_done = vdev_mirror_io_done,
+ .vdev_op_state_change = vdev_mirror_state_change,
+ .vdev_op_need_resilver = vdev_default_need_resilver,
+ .vdev_op_hold = NULL,
+ .vdev_op_rele = NULL,
+ .vdev_op_remap = NULL,
+ .vdev_op_xlate = vdev_default_xlate,
+ .vdev_op_rebuild_asize = vdev_mirror_rebuild_asize,
+ .vdev_op_metaslab_init = NULL,
+ .vdev_op_config_generate = NULL,
+ .vdev_op_nparity = NULL,
+ .vdev_op_ndisks = NULL,
+ .vdev_op_type = VDEV_TYPE_SPARE, /* name of this vdev type */
+ .vdev_op_leaf = B_FALSE /* not a leaf vdev */
+};
+
+ZFS_MODULE_PARAM(zfs_vdev_mirror, zfs_vdev_mirror_, rotating_inc, INT, ZMOD_RW,
+ "Rotating media load increment for non-seeking I/Os");
+
+ZFS_MODULE_PARAM(zfs_vdev_mirror, zfs_vdev_mirror_, rotating_seek_inc, INT,
+ ZMOD_RW, "Rotating media load increment for seeking I/Os");
+
+ZFS_MODULE_PARAM(zfs_vdev_mirror, zfs_vdev_mirror_, rotating_seek_offset, INT,
+ ZMOD_RW,
+ "Offset in bytes from the last I/O which triggers "
+ "a reduced rotating media seek increment");
+
+ZFS_MODULE_PARAM(zfs_vdev_mirror, zfs_vdev_mirror_, non_rotating_inc, INT,
+ ZMOD_RW, "Non-rotating media load increment for non-seeking I/Os");
+
+ZFS_MODULE_PARAM(zfs_vdev_mirror, zfs_vdev_mirror_, non_rotating_seek_inc, INT,
+ ZMOD_RW, "Non-rotating media load increment for seeking I/Os");