aboutsummaryrefslogtreecommitdiff
path: root/sys/contrib/openzfs/module/zfs/vdev_queue.c
diff options
context:
space:
mode:
Diffstat (limited to 'sys/contrib/openzfs/module/zfs/vdev_queue.c')
-rw-r--r--sys/contrib/openzfs/module/zfs/vdev_queue.c1145
1 files changed, 1145 insertions, 0 deletions
diff --git a/sys/contrib/openzfs/module/zfs/vdev_queue.c b/sys/contrib/openzfs/module/zfs/vdev_queue.c
new file mode 100644
index 000000000000..c12713b107bf
--- /dev/null
+++ b/sys/contrib/openzfs/module/zfs/vdev_queue.c
@@ -0,0 +1,1145 @@
+// SPDX-License-Identifier: CDDL-1.0
+/*
+ * CDDL HEADER START
+ *
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License (the "License").
+ * You may not use this file except in compliance with the License.
+ *
+ * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
+ * or https://opensource.org/licenses/CDDL-1.0.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When distributing Covered Code, include this CDDL HEADER in each
+ * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+/*
+ * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
+ * Use is subject to license terms.
+ */
+
+/*
+ * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
+ */
+
+#include <sys/zfs_context.h>
+#include <sys/vdev_impl.h>
+#include <sys/spa_impl.h>
+#include <sys/zio.h>
+#include <sys/avl.h>
+#include <sys/dsl_pool.h>
+#include <sys/metaslab_impl.h>
+#include <sys/spa.h>
+#include <sys/abd.h>
+
+/*
+ * ZFS I/O Scheduler
+ * ---------------
+ *
+ * ZFS issues I/O operations to leaf vdevs to satisfy and complete zios. The
+ * I/O scheduler determines when and in what order those operations are
+ * issued. The I/O scheduler divides operations into five I/O classes
+ * prioritized in the following order: sync read, sync write, async read,
+ * async write, and scrub/resilver. Each queue defines the minimum and
+ * maximum number of concurrent operations that may be issued to the device.
+ * In addition, the device has an aggregate maximum. Note that the sum of the
+ * per-queue minimums must not exceed the aggregate maximum. If the
+ * sum of the per-queue maximums exceeds the aggregate maximum, then the
+ * number of active i/os may reach zfs_vdev_max_active, in which case no
+ * further i/os will be issued regardless of whether all per-queue
+ * minimums have been met.
+ *
+ * For many physical devices, throughput increases with the number of
+ * concurrent operations, but latency typically suffers. Further, physical
+ * devices typically have a limit at which more concurrent operations have no
+ * effect on throughput or can actually cause it to decrease.
+ *
+ * The scheduler selects the next operation to issue by first looking for an
+ * I/O class whose minimum has not been satisfied. Once all are satisfied and
+ * the aggregate maximum has not been hit, the scheduler looks for classes
+ * whose maximum has not been satisfied. Iteration through the I/O classes is
+ * done in the order specified above. No further operations are issued if the
+ * aggregate maximum number of concurrent operations has been hit or if there
+ * are no operations queued for an I/O class that has not hit its maximum.
+ * Every time an i/o is queued or an operation completes, the I/O scheduler
+ * looks for new operations to issue.
+ *
+ * All I/O classes have a fixed maximum number of outstanding operations
+ * except for the async write class. Asynchronous writes represent the data
+ * that is committed to stable storage during the syncing stage for
+ * transaction groups (see txg.c). Transaction groups enter the syncing state
+ * periodically so the number of queued async writes will quickly burst up and
+ * then bleed down to zero. Rather than servicing them as quickly as possible,
+ * the I/O scheduler changes the maximum number of active async write i/os
+ * according to the amount of dirty data in the pool (see dsl_pool.c). Since
+ * both throughput and latency typically increase with the number of
+ * concurrent operations issued to physical devices, reducing the burstiness
+ * in the number of concurrent operations also stabilizes the response time of
+ * operations from other -- and in particular synchronous -- queues. In broad
+ * strokes, the I/O scheduler will issue more concurrent operations from the
+ * async write queue as there's more dirty data in the pool.
+ *
+ * Async Writes
+ *
+ * The number of concurrent operations issued for the async write I/O class
+ * follows a piece-wise linear function defined by a few adjustable points.
+ *
+ * | o---------| <-- zfs_vdev_async_write_max_active
+ * ^ | /^ |
+ * | | / | |
+ * active | / | |
+ * I/O | / | |
+ * count | / | |
+ * | / | |
+ * |------------o | | <-- zfs_vdev_async_write_min_active
+ * 0|____________^______|_________|
+ * 0% | | 100% of zfs_dirty_data_max
+ * | |
+ * | `-- zfs_vdev_async_write_active_max_dirty_percent
+ * `--------- zfs_vdev_async_write_active_min_dirty_percent
+ *
+ * Until the amount of dirty data exceeds a minimum percentage of the dirty
+ * data allowed in the pool, the I/O scheduler will limit the number of
+ * concurrent operations to the minimum. As that threshold is crossed, the
+ * number of concurrent operations issued increases linearly to the maximum at
+ * the specified maximum percentage of the dirty data allowed in the pool.
+ *
+ * Ideally, the amount of dirty data on a busy pool will stay in the sloped
+ * part of the function between zfs_vdev_async_write_active_min_dirty_percent
+ * and zfs_vdev_async_write_active_max_dirty_percent. If it exceeds the
+ * maximum percentage, this indicates that the rate of incoming data is
+ * greater than the rate that the backend storage can handle. In this case, we
+ * must further throttle incoming writes (see dmu_tx_delay() for details).
+ */
+
+/*
+ * The maximum number of i/os active to each device. Ideally, this will be >=
+ * the sum of each queue's max_active.
+ */
+uint_t zfs_vdev_max_active = 1000;
+
+/*
+ * Per-queue limits on the number of i/os active to each device. If the
+ * number of active i/os is < zfs_vdev_max_active, then the min_active comes
+ * into play. We will send min_active from each queue round-robin, and then
+ * send from queues in the order defined by zio_priority_t up to max_active.
+ * Some queues have additional mechanisms to limit number of active I/Os in
+ * addition to min_active and max_active, see below.
+ *
+ * In general, smaller max_active's will lead to lower latency of synchronous
+ * operations. Larger max_active's may lead to higher overall throughput,
+ * depending on underlying storage.
+ *
+ * The ratio of the queues' max_actives determines the balance of performance
+ * between reads, writes, and scrubs. E.g., increasing
+ * zfs_vdev_scrub_max_active will cause the scrub or resilver to complete
+ * more quickly, but reads and writes to have higher latency and lower
+ * throughput.
+ */
+static uint_t zfs_vdev_sync_read_min_active = 10;
+static uint_t zfs_vdev_sync_read_max_active = 10;
+static uint_t zfs_vdev_sync_write_min_active = 10;
+static uint_t zfs_vdev_sync_write_max_active = 10;
+static uint_t zfs_vdev_async_read_min_active = 1;
+/* */ uint_t zfs_vdev_async_read_max_active = 3;
+static uint_t zfs_vdev_async_write_min_active = 2;
+static uint_t zfs_vdev_async_write_max_active = 10;
+static uint_t zfs_vdev_scrub_min_active = 1;
+static uint_t zfs_vdev_scrub_max_active = 3;
+static uint_t zfs_vdev_removal_min_active = 1;
+static uint_t zfs_vdev_removal_max_active = 2;
+static uint_t zfs_vdev_initializing_min_active = 1;
+static uint_t zfs_vdev_initializing_max_active = 1;
+static uint_t zfs_vdev_trim_min_active = 1;
+static uint_t zfs_vdev_trim_max_active = 2;
+static uint_t zfs_vdev_rebuild_min_active = 1;
+static uint_t zfs_vdev_rebuild_max_active = 3;
+
+/*
+ * When the pool has less than zfs_vdev_async_write_active_min_dirty_percent
+ * dirty data, use zfs_vdev_async_write_min_active. When it has more than
+ * zfs_vdev_async_write_active_max_dirty_percent, use
+ * zfs_vdev_async_write_max_active. The value is linearly interpolated
+ * between min and max.
+ */
+uint_t zfs_vdev_async_write_active_min_dirty_percent = 30;
+uint_t zfs_vdev_async_write_active_max_dirty_percent = 60;
+
+/*
+ * For non-interactive I/O (scrub, resilver, removal, initialize and rebuild),
+ * the number of concurrently-active I/O's is limited to *_min_active, unless
+ * the vdev is "idle". When there are no interactive I/Os active (sync or
+ * async), and zfs_vdev_nia_delay I/Os have completed since the last
+ * interactive I/O, then the vdev is considered to be "idle", and the number
+ * of concurrently-active non-interactive I/O's is increased to *_max_active.
+ */
+static uint_t zfs_vdev_nia_delay = 5;
+
+/*
+ * Some HDDs tend to prioritize sequential I/O so high that concurrent
+ * random I/O latency reaches several seconds. On some HDDs it happens
+ * even if sequential I/Os are submitted one at a time, and so setting
+ * *_max_active to 1 does not help. To prevent non-interactive I/Os, like
+ * scrub, from monopolizing the device no more than zfs_vdev_nia_credit
+ * I/Os can be sent while there are outstanding incomplete interactive
+ * I/Os. This enforced wait ensures the HDD services the interactive I/O
+ * within a reasonable amount of time.
+ */
+static uint_t zfs_vdev_nia_credit = 5;
+
+/*
+ * To reduce IOPs, we aggregate small adjacent I/Os into one large I/O.
+ * For read I/Os, we also aggregate across small adjacency gaps; for writes
+ * we include spans of optional I/Os to aid aggregation at the disk even when
+ * they aren't able to help us aggregate at this level.
+ */
+static uint_t zfs_vdev_aggregation_limit = 1 << 20;
+static uint_t zfs_vdev_aggregation_limit_non_rotating = SPA_OLD_MAXBLOCKSIZE;
+static uint_t zfs_vdev_read_gap_limit = 32 << 10;
+static uint_t zfs_vdev_write_gap_limit = 4 << 10;
+
+static int
+vdev_queue_offset_compare(const void *x1, const void *x2)
+{
+ const zio_t *z1 = (const zio_t *)x1;
+ const zio_t *z2 = (const zio_t *)x2;
+
+ int cmp = TREE_CMP(z1->io_offset, z2->io_offset);
+
+ if (likely(cmp))
+ return (cmp);
+
+ return (TREE_PCMP(z1, z2));
+}
+
+#define VDQ_T_SHIFT 29
+
+static int
+vdev_queue_to_compare(const void *x1, const void *x2)
+{
+ const zio_t *z1 = (const zio_t *)x1;
+ const zio_t *z2 = (const zio_t *)x2;
+
+ int tcmp = TREE_CMP(z1->io_timestamp >> VDQ_T_SHIFT,
+ z2->io_timestamp >> VDQ_T_SHIFT);
+ int ocmp = TREE_CMP(z1->io_offset, z2->io_offset);
+ int cmp = tcmp ? tcmp : ocmp;
+
+ if (likely(cmp | (z1->io_queue_state == ZIO_QS_NONE)))
+ return (cmp);
+
+ return (TREE_PCMP(z1, z2));
+}
+
+static inline boolean_t
+vdev_queue_class_fifo(zio_priority_t p)
+{
+ return (p == ZIO_PRIORITY_SYNC_READ || p == ZIO_PRIORITY_SYNC_WRITE ||
+ p == ZIO_PRIORITY_TRIM);
+}
+
+static void
+vdev_queue_class_add(vdev_queue_t *vq, zio_t *zio)
+{
+ zio_priority_t p = zio->io_priority;
+ vq->vq_cqueued |= 1U << p;
+ if (vdev_queue_class_fifo(p)) {
+ list_insert_tail(&vq->vq_class[p].vqc_list, zio);
+ vq->vq_class[p].vqc_list_numnodes++;
+ }
+ else
+ avl_add(&vq->vq_class[p].vqc_tree, zio);
+}
+
+static void
+vdev_queue_class_remove(vdev_queue_t *vq, zio_t *zio)
+{
+ zio_priority_t p = zio->io_priority;
+ uint32_t empty;
+ if (vdev_queue_class_fifo(p)) {
+ list_t *list = &vq->vq_class[p].vqc_list;
+ list_remove(list, zio);
+ empty = list_is_empty(list);
+ vq->vq_class[p].vqc_list_numnodes--;
+ } else {
+ avl_tree_t *tree = &vq->vq_class[p].vqc_tree;
+ avl_remove(tree, zio);
+ empty = avl_is_empty(tree);
+ }
+ vq->vq_cqueued &= ~(empty << p);
+}
+
+static uint_t
+vdev_queue_class_min_active(vdev_queue_t *vq, zio_priority_t p)
+{
+ switch (p) {
+ case ZIO_PRIORITY_SYNC_READ:
+ return (zfs_vdev_sync_read_min_active);
+ case ZIO_PRIORITY_SYNC_WRITE:
+ return (zfs_vdev_sync_write_min_active);
+ case ZIO_PRIORITY_ASYNC_READ:
+ return (zfs_vdev_async_read_min_active);
+ case ZIO_PRIORITY_ASYNC_WRITE:
+ return (zfs_vdev_async_write_min_active);
+ case ZIO_PRIORITY_SCRUB:
+ return (vq->vq_ia_active == 0 ? zfs_vdev_scrub_min_active :
+ MIN(vq->vq_nia_credit, zfs_vdev_scrub_min_active));
+ case ZIO_PRIORITY_REMOVAL:
+ return (vq->vq_ia_active == 0 ? zfs_vdev_removal_min_active :
+ MIN(vq->vq_nia_credit, zfs_vdev_removal_min_active));
+ case ZIO_PRIORITY_INITIALIZING:
+ return (vq->vq_ia_active == 0 ?zfs_vdev_initializing_min_active:
+ MIN(vq->vq_nia_credit, zfs_vdev_initializing_min_active));
+ case ZIO_PRIORITY_TRIM:
+ return (zfs_vdev_trim_min_active);
+ case ZIO_PRIORITY_REBUILD:
+ return (vq->vq_ia_active == 0 ? zfs_vdev_rebuild_min_active :
+ MIN(vq->vq_nia_credit, zfs_vdev_rebuild_min_active));
+ default:
+ panic("invalid priority %u", p);
+ return (0);
+ }
+}
+
+static uint_t
+vdev_queue_max_async_writes(spa_t *spa)
+{
+ uint_t writes;
+ uint64_t dirty = 0;
+ dsl_pool_t *dp = spa_get_dsl(spa);
+ uint64_t min_bytes = zfs_dirty_data_max *
+ zfs_vdev_async_write_active_min_dirty_percent / 100;
+ uint64_t max_bytes = zfs_dirty_data_max *
+ zfs_vdev_async_write_active_max_dirty_percent / 100;
+
+ /*
+ * Async writes may occur before the assignment of the spa's
+ * dsl_pool_t if a self-healing zio is issued prior to the
+ * completion of dmu_objset_open_impl().
+ */
+ if (dp == NULL)
+ return (zfs_vdev_async_write_max_active);
+
+ /*
+ * Sync tasks correspond to interactive user actions. To reduce the
+ * execution time of those actions we push data out as fast as possible.
+ */
+ dirty = dp->dp_dirty_total;
+ if (dirty > max_bytes || spa_has_pending_synctask(spa))
+ return (zfs_vdev_async_write_max_active);
+
+ if (dirty < min_bytes)
+ return (zfs_vdev_async_write_min_active);
+
+ /*
+ * linear interpolation:
+ * slope = (max_writes - min_writes) / (max_bytes - min_bytes)
+ * move right by min_bytes
+ * move up by min_writes
+ */
+ writes = (dirty - min_bytes) *
+ (zfs_vdev_async_write_max_active -
+ zfs_vdev_async_write_min_active) /
+ (max_bytes - min_bytes) +
+ zfs_vdev_async_write_min_active;
+ ASSERT3U(writes, >=, zfs_vdev_async_write_min_active);
+ ASSERT3U(writes, <=, zfs_vdev_async_write_max_active);
+ return (writes);
+}
+
+static uint_t
+vdev_queue_class_max_active(vdev_queue_t *vq, zio_priority_t p)
+{
+ switch (p) {
+ case ZIO_PRIORITY_SYNC_READ:
+ return (zfs_vdev_sync_read_max_active);
+ case ZIO_PRIORITY_SYNC_WRITE:
+ return (zfs_vdev_sync_write_max_active);
+ case ZIO_PRIORITY_ASYNC_READ:
+ return (zfs_vdev_async_read_max_active);
+ case ZIO_PRIORITY_ASYNC_WRITE:
+ return (vdev_queue_max_async_writes(vq->vq_vdev->vdev_spa));
+ case ZIO_PRIORITY_SCRUB:
+ if (vq->vq_ia_active > 0) {
+ return (MIN(vq->vq_nia_credit,
+ zfs_vdev_scrub_min_active));
+ } else if (vq->vq_nia_credit < zfs_vdev_nia_delay)
+ return (MAX(1, zfs_vdev_scrub_min_active));
+ return (zfs_vdev_scrub_max_active);
+ case ZIO_PRIORITY_REMOVAL:
+ if (vq->vq_ia_active > 0) {
+ return (MIN(vq->vq_nia_credit,
+ zfs_vdev_removal_min_active));
+ } else if (vq->vq_nia_credit < zfs_vdev_nia_delay)
+ return (MAX(1, zfs_vdev_removal_min_active));
+ return (zfs_vdev_removal_max_active);
+ case ZIO_PRIORITY_INITIALIZING:
+ if (vq->vq_ia_active > 0) {
+ return (MIN(vq->vq_nia_credit,
+ zfs_vdev_initializing_min_active));
+ } else if (vq->vq_nia_credit < zfs_vdev_nia_delay)
+ return (MAX(1, zfs_vdev_initializing_min_active));
+ return (zfs_vdev_initializing_max_active);
+ case ZIO_PRIORITY_TRIM:
+ return (zfs_vdev_trim_max_active);
+ case ZIO_PRIORITY_REBUILD:
+ if (vq->vq_ia_active > 0) {
+ return (MIN(vq->vq_nia_credit,
+ zfs_vdev_rebuild_min_active));
+ } else if (vq->vq_nia_credit < zfs_vdev_nia_delay)
+ return (MAX(1, zfs_vdev_rebuild_min_active));
+ return (zfs_vdev_rebuild_max_active);
+ default:
+ panic("invalid priority %u", p);
+ return (0);
+ }
+}
+
+/*
+ * Return the i/o class to issue from, or ZIO_PRIORITY_NUM_QUEUEABLE if
+ * there is no eligible class.
+ */
+static zio_priority_t
+vdev_queue_class_to_issue(vdev_queue_t *vq)
+{
+ uint32_t cq = vq->vq_cqueued;
+ zio_priority_t p, p1;
+
+ if (cq == 0 || vq->vq_active >= zfs_vdev_max_active)
+ return (ZIO_PRIORITY_NUM_QUEUEABLE);
+
+ /*
+ * Find a queue that has not reached its minimum # outstanding i/os.
+ * Do round-robin to reduce starvation due to zfs_vdev_max_active
+ * and vq_nia_credit limits.
+ */
+ p1 = vq->vq_last_prio + 1;
+ if (p1 >= ZIO_PRIORITY_NUM_QUEUEABLE)
+ p1 = 0;
+ for (p = p1; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
+ if ((cq & (1U << p)) != 0 && vq->vq_cactive[p] <
+ vdev_queue_class_min_active(vq, p))
+ goto found;
+ }
+ for (p = 0; p < p1; p++) {
+ if ((cq & (1U << p)) != 0 && vq->vq_cactive[p] <
+ vdev_queue_class_min_active(vq, p))
+ goto found;
+ }
+
+ /*
+ * If we haven't found a queue, look for one that hasn't reached its
+ * maximum # outstanding i/os.
+ */
+ for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
+ if ((cq & (1U << p)) != 0 && vq->vq_cactive[p] <
+ vdev_queue_class_max_active(vq, p))
+ break;
+ }
+
+found:
+ vq->vq_last_prio = p;
+ return (p);
+}
+
+void
+vdev_queue_init(vdev_t *vd)
+{
+ vdev_queue_t *vq = &vd->vdev_queue;
+ zio_priority_t p;
+
+ vq->vq_vdev = vd;
+
+ for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
+ if (vdev_queue_class_fifo(p)) {
+ list_create(&vq->vq_class[p].vqc_list,
+ sizeof (zio_t),
+ offsetof(struct zio, io_queue_node.l));
+ } else {
+ avl_create(&vq->vq_class[p].vqc_tree,
+ vdev_queue_to_compare, sizeof (zio_t),
+ offsetof(struct zio, io_queue_node.a));
+ }
+ }
+ avl_create(&vq->vq_read_offset_tree,
+ vdev_queue_offset_compare, sizeof (zio_t),
+ offsetof(struct zio, io_offset_node));
+ avl_create(&vq->vq_write_offset_tree,
+ vdev_queue_offset_compare, sizeof (zio_t),
+ offsetof(struct zio, io_offset_node));
+
+ vq->vq_last_offset = 0;
+ list_create(&vq->vq_active_list, sizeof (struct zio),
+ offsetof(struct zio, io_queue_node.l));
+ mutex_init(&vq->vq_lock, NULL, MUTEX_DEFAULT, NULL);
+}
+
+void
+vdev_queue_fini(vdev_t *vd)
+{
+ vdev_queue_t *vq = &vd->vdev_queue;
+
+ for (zio_priority_t p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
+ if (vdev_queue_class_fifo(p))
+ list_destroy(&vq->vq_class[p].vqc_list);
+ else
+ avl_destroy(&vq->vq_class[p].vqc_tree);
+ }
+ avl_destroy(&vq->vq_read_offset_tree);
+ avl_destroy(&vq->vq_write_offset_tree);
+
+ list_destroy(&vq->vq_active_list);
+ mutex_destroy(&vq->vq_lock);
+}
+
+static void
+vdev_queue_io_add(vdev_queue_t *vq, zio_t *zio)
+{
+ zio->io_queue_state = ZIO_QS_QUEUED;
+ vdev_queue_class_add(vq, zio);
+ if (zio->io_type == ZIO_TYPE_READ)
+ avl_add(&vq->vq_read_offset_tree, zio);
+ else if (zio->io_type == ZIO_TYPE_WRITE)
+ avl_add(&vq->vq_write_offset_tree, zio);
+}
+
+static void
+vdev_queue_io_remove(vdev_queue_t *vq, zio_t *zio)
+{
+ vdev_queue_class_remove(vq, zio);
+ if (zio->io_type == ZIO_TYPE_READ)
+ avl_remove(&vq->vq_read_offset_tree, zio);
+ else if (zio->io_type == ZIO_TYPE_WRITE)
+ avl_remove(&vq->vq_write_offset_tree, zio);
+ zio->io_queue_state = ZIO_QS_NONE;
+}
+
+static boolean_t
+vdev_queue_is_interactive(zio_priority_t p)
+{
+ switch (p) {
+ case ZIO_PRIORITY_SCRUB:
+ case ZIO_PRIORITY_REMOVAL:
+ case ZIO_PRIORITY_INITIALIZING:
+ case ZIO_PRIORITY_REBUILD:
+ return (B_FALSE);
+ default:
+ return (B_TRUE);
+ }
+}
+
+static void
+vdev_queue_pending_add(vdev_queue_t *vq, zio_t *zio)
+{
+ ASSERT(MUTEX_HELD(&vq->vq_lock));
+ ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
+ vq->vq_cactive[zio->io_priority]++;
+ vq->vq_active++;
+ if (vdev_queue_is_interactive(zio->io_priority)) {
+ if (++vq->vq_ia_active == 1)
+ vq->vq_nia_credit = 1;
+ } else if (vq->vq_ia_active > 0) {
+ vq->vq_nia_credit--;
+ }
+ zio->io_queue_state = ZIO_QS_ACTIVE;
+ list_insert_tail(&vq->vq_active_list, zio);
+}
+
+static void
+vdev_queue_pending_remove(vdev_queue_t *vq, zio_t *zio)
+{
+ ASSERT(MUTEX_HELD(&vq->vq_lock));
+ ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
+ vq->vq_cactive[zio->io_priority]--;
+ vq->vq_active--;
+ if (vdev_queue_is_interactive(zio->io_priority)) {
+ if (--vq->vq_ia_active == 0)
+ vq->vq_nia_credit = 0;
+ else
+ vq->vq_nia_credit = zfs_vdev_nia_credit;
+ } else if (vq->vq_ia_active == 0)
+ vq->vq_nia_credit++;
+ list_remove(&vq->vq_active_list, zio);
+ zio->io_queue_state = ZIO_QS_NONE;
+}
+
+static void
+vdev_queue_agg_io_done(zio_t *aio)
+{
+ abd_free(aio->io_abd);
+}
+
+/*
+ * Compute the range spanned by two i/os, which is the endpoint of the last
+ * (lio->io_offset + lio->io_size) minus start of the first (fio->io_offset).
+ * Conveniently, the gap between fio and lio is given by -IO_SPAN(lio, fio);
+ * thus fio and lio are adjacent if and only if IO_SPAN(lio, fio) == 0.
+ */
+#define IO_SPAN(fio, lio) ((lio)->io_offset + (lio)->io_size - (fio)->io_offset)
+#define IO_GAP(fio, lio) (-IO_SPAN(lio, fio))
+
+/*
+ * Sufficiently adjacent io_offset's in ZIOs will be aggregated. We do this
+ * by creating a gang ABD from the adjacent ZIOs io_abd's. By using
+ * a gang ABD we avoid doing memory copies to and from the parent,
+ * child ZIOs. The gang ABD also accounts for gaps between adjacent
+ * io_offsets by simply getting the zero ABD for writes or allocating
+ * a new ABD for reads and placing them in the gang ABD as well.
+ */
+static zio_t *
+vdev_queue_aggregate(vdev_queue_t *vq, zio_t *zio)
+{
+ zio_t *first, *last, *aio, *dio, *mandatory, *nio;
+ uint64_t maxgap = 0;
+ uint64_t size;
+ uint64_t limit;
+ boolean_t stretch = B_FALSE;
+ uint64_t next_offset;
+ abd_t *abd;
+ avl_tree_t *t;
+
+ /*
+ * TRIM aggregation should not be needed since code in zfs_trim.c can
+ * submit TRIM I/O for extents up to zfs_trim_extent_bytes_max (128M).
+ */
+ if (zio->io_type == ZIO_TYPE_TRIM)
+ return (NULL);
+
+ if (zio->io_flags & ZIO_FLAG_DONT_AGGREGATE)
+ return (NULL);
+
+ if (vq->vq_vdev->vdev_nonrot)
+ limit = zfs_vdev_aggregation_limit_non_rotating;
+ else
+ limit = zfs_vdev_aggregation_limit;
+ if (limit == 0)
+ return (NULL);
+ limit = MIN(limit, SPA_MAXBLOCKSIZE);
+
+ /*
+ * I/Os to distributed spares are directly dispatched to the dRAID
+ * leaf vdevs for aggregation. See the comment at the end of the
+ * zio_vdev_io_start() function.
+ */
+ ASSERT(vq->vq_vdev->vdev_ops != &vdev_draid_spare_ops);
+
+ first = last = zio;
+
+ if (zio->io_type == ZIO_TYPE_READ) {
+ maxgap = zfs_vdev_read_gap_limit;
+ t = &vq->vq_read_offset_tree;
+ } else {
+ ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
+ t = &vq->vq_write_offset_tree;
+ }
+
+ /*
+ * We can aggregate I/Os that are sufficiently adjacent and of
+ * the same flavor, as expressed by the AGG_INHERIT flags.
+ * The latter requirement is necessary so that certain
+ * attributes of the I/O, such as whether it's a normal I/O
+ * or a scrub/resilver, can be preserved in the aggregate.
+ * We can include optional I/Os, but don't allow them
+ * to begin a range as they add no benefit in that situation.
+ */
+
+ /*
+ * We keep track of the last non-optional I/O.
+ */
+ mandatory = (first->io_flags & ZIO_FLAG_OPTIONAL) ? NULL : first;
+
+ /*
+ * Walk backwards through sufficiently contiguous I/Os
+ * recording the last non-optional I/O.
+ */
+ zio_flag_t flags = zio->io_flags & ZIO_FLAG_AGG_INHERIT;
+ while ((dio = AVL_PREV(t, first)) != NULL &&
+ (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
+ IO_SPAN(dio, last) <= limit &&
+ IO_GAP(dio, first) <= maxgap &&
+ dio->io_type == zio->io_type) {
+ first = dio;
+ if (mandatory == NULL && !(first->io_flags & ZIO_FLAG_OPTIONAL))
+ mandatory = first;
+ }
+
+ /*
+ * Skip any initial optional I/Os.
+ */
+ while ((first->io_flags & ZIO_FLAG_OPTIONAL) && first != last) {
+ first = AVL_NEXT(t, first);
+ ASSERT(first != NULL);
+ }
+
+
+ /*
+ * Walk forward through sufficiently contiguous I/Os.
+ * The aggregation limit does not apply to optional i/os, so that
+ * we can issue contiguous writes even if they are larger than the
+ * aggregation limit.
+ */
+ while ((dio = AVL_NEXT(t, last)) != NULL &&
+ (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
+ (IO_SPAN(first, dio) <= limit ||
+ (dio->io_flags & ZIO_FLAG_OPTIONAL)) &&
+ IO_SPAN(first, dio) <= SPA_MAXBLOCKSIZE &&
+ IO_GAP(last, dio) <= maxgap &&
+ dio->io_type == zio->io_type) {
+ last = dio;
+ if (!(last->io_flags & ZIO_FLAG_OPTIONAL))
+ mandatory = last;
+ }
+
+ /*
+ * Now that we've established the range of the I/O aggregation
+ * we must decide what to do with trailing optional I/Os.
+ * For reads, there's nothing to do. While we are unable to
+ * aggregate further, it's possible that a trailing optional
+ * I/O would allow the underlying device to aggregate with
+ * subsequent I/Os. We must therefore determine if the next
+ * non-optional I/O is close enough to make aggregation
+ * worthwhile.
+ */
+ if (zio->io_type == ZIO_TYPE_WRITE && mandatory != NULL) {
+ zio_t *nio = last;
+ while ((dio = AVL_NEXT(t, nio)) != NULL &&
+ IO_GAP(nio, dio) == 0 &&
+ IO_GAP(mandatory, dio) <= zfs_vdev_write_gap_limit) {
+ nio = dio;
+ if (!(nio->io_flags & ZIO_FLAG_OPTIONAL)) {
+ stretch = B_TRUE;
+ break;
+ }
+ }
+ }
+
+ if (stretch) {
+ /*
+ * We are going to include an optional io in our aggregated
+ * span, thus closing the write gap. Only mandatory i/os can
+ * start aggregated spans, so make sure that the next i/o
+ * after our span is mandatory.
+ */
+ dio = AVL_NEXT(t, last);
+ ASSERT3P(dio, !=, NULL);
+ dio->io_flags &= ~ZIO_FLAG_OPTIONAL;
+ } else {
+ /* do not include the optional i/o */
+ while (last != mandatory && last != first) {
+ ASSERT(last->io_flags & ZIO_FLAG_OPTIONAL);
+ last = AVL_PREV(t, last);
+ ASSERT(last != NULL);
+ }
+ }
+
+ if (first == last)
+ return (NULL);
+
+ size = IO_SPAN(first, last);
+ ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
+
+ abd = abd_alloc_gang();
+ if (abd == NULL)
+ return (NULL);
+
+ aio = zio_vdev_delegated_io(first->io_vd, first->io_offset,
+ abd, size, first->io_type, zio->io_priority,
+ flags | ZIO_FLAG_DONT_QUEUE, vdev_queue_agg_io_done, NULL);
+ aio->io_timestamp = first->io_timestamp;
+
+ nio = first;
+ next_offset = first->io_offset;
+ do {
+ dio = nio;
+ nio = AVL_NEXT(t, dio);
+ ASSERT3P(dio, !=, NULL);
+ zio_add_child(dio, aio);
+ vdev_queue_io_remove(vq, dio);
+
+ if (dio->io_offset != next_offset) {
+ /* allocate a buffer for a read gap */
+ ASSERT3U(dio->io_type, ==, ZIO_TYPE_READ);
+ ASSERT3U(dio->io_offset, >, next_offset);
+ abd = abd_alloc_for_io(
+ dio->io_offset - next_offset, B_TRUE);
+ abd_gang_add(aio->io_abd, abd, B_TRUE);
+ }
+ if (dio->io_abd &&
+ (dio->io_size != abd_get_size(dio->io_abd))) {
+ /* abd size not the same as IO size */
+ ASSERT3U(abd_get_size(dio->io_abd), >, dio->io_size);
+ abd = abd_get_offset_size(dio->io_abd, 0, dio->io_size);
+ abd_gang_add(aio->io_abd, abd, B_TRUE);
+ } else {
+ if (dio->io_flags & ZIO_FLAG_NODATA) {
+ /* allocate a buffer for a write gap */
+ ASSERT3U(dio->io_type, ==, ZIO_TYPE_WRITE);
+ ASSERT0P(dio->io_abd);
+ abd_gang_add(aio->io_abd,
+ abd_get_zeros(dio->io_size), B_TRUE);
+ } else {
+ /*
+ * We pass B_FALSE to abd_gang_add()
+ * because we did not allocate a new
+ * ABD, so it is assumed the caller
+ * will free this ABD.
+ */
+ abd_gang_add(aio->io_abd, dio->io_abd,
+ B_FALSE);
+ }
+ }
+ next_offset = dio->io_offset + dio->io_size;
+ } while (dio != last);
+ ASSERT3U(abd_get_size(aio->io_abd), ==, aio->io_size);
+
+ /*
+ * Callers must call zio_vdev_io_bypass() and zio_execute() for
+ * aggregated (parent) I/Os so that we could avoid dropping the
+ * queue's lock here to avoid a deadlock that we could encounter
+ * due to lock order reversal between vq_lock and io_lock in
+ * zio_change_priority().
+ */
+ return (aio);
+}
+
+static zio_t *
+vdev_queue_io_to_issue(vdev_queue_t *vq)
+{
+ zio_t *zio, *aio;
+ zio_priority_t p;
+ avl_index_t idx;
+ avl_tree_t *tree;
+
+again:
+ ASSERT(MUTEX_HELD(&vq->vq_lock));
+
+ p = vdev_queue_class_to_issue(vq);
+
+ if (p == ZIO_PRIORITY_NUM_QUEUEABLE) {
+ /* No eligible queued i/os */
+ return (NULL);
+ }
+
+ if (vdev_queue_class_fifo(p)) {
+ zio = list_head(&vq->vq_class[p].vqc_list);
+ } else {
+ /*
+ * For LBA-ordered queues (async / scrub / initializing),
+ * issue the I/O which follows the most recently issued I/O
+ * in LBA (offset) order, but to avoid starvation only within
+ * the same 0.5 second interval as the first I/O.
+ */
+ tree = &vq->vq_class[p].vqc_tree;
+ zio = aio = avl_first(tree);
+ if (zio->io_offset < vq->vq_last_offset) {
+ vq->vq_io_search.io_timestamp = zio->io_timestamp;
+ vq->vq_io_search.io_offset = vq->vq_last_offset;
+ zio = avl_find(tree, &vq->vq_io_search, &idx);
+ if (zio == NULL) {
+ zio = avl_nearest(tree, idx, AVL_AFTER);
+ if (zio == NULL ||
+ (zio->io_timestamp >> VDQ_T_SHIFT) !=
+ (aio->io_timestamp >> VDQ_T_SHIFT))
+ zio = aio;
+ }
+ }
+ }
+ ASSERT3U(zio->io_priority, ==, p);
+
+ aio = vdev_queue_aggregate(vq, zio);
+ if (aio != NULL) {
+ zio = aio;
+ } else {
+ vdev_queue_io_remove(vq, zio);
+
+ /*
+ * If the I/O is or was optional and therefore has no data, we
+ * need to simply discard it. We need to drop the vdev queue's
+ * lock to avoid a deadlock that we could encounter since this
+ * I/O will complete immediately.
+ */
+ if (zio->io_flags & ZIO_FLAG_NODATA) {
+ mutex_exit(&vq->vq_lock);
+ zio_vdev_io_bypass(zio);
+ zio_execute(zio);
+ mutex_enter(&vq->vq_lock);
+ goto again;
+ }
+ }
+
+ vdev_queue_pending_add(vq, zio);
+ vq->vq_last_offset = zio->io_offset + zio->io_size;
+
+ return (zio);
+}
+
+zio_t *
+vdev_queue_io(zio_t *zio)
+{
+ vdev_queue_t *vq = &zio->io_vd->vdev_queue;
+ zio_t *dio, *nio;
+ zio_link_t *zl = NULL;
+
+ if (zio->io_flags & ZIO_FLAG_DONT_QUEUE)
+ return (zio);
+
+ /*
+ * Children i/os inherent their parent's priority, which might
+ * not match the child's i/o type. Fix it up here.
+ */
+ if (zio->io_type == ZIO_TYPE_READ) {
+ ASSERT(zio->io_priority != ZIO_PRIORITY_TRIM);
+
+ if (zio->io_priority != ZIO_PRIORITY_SYNC_READ &&
+ zio->io_priority != ZIO_PRIORITY_ASYNC_READ &&
+ zio->io_priority != ZIO_PRIORITY_SCRUB &&
+ zio->io_priority != ZIO_PRIORITY_REMOVAL &&
+ zio->io_priority != ZIO_PRIORITY_INITIALIZING &&
+ zio->io_priority != ZIO_PRIORITY_REBUILD) {
+ zio->io_priority = ZIO_PRIORITY_ASYNC_READ;
+ }
+ } else if (zio->io_type == ZIO_TYPE_WRITE) {
+ ASSERT(zio->io_priority != ZIO_PRIORITY_TRIM);
+
+ if (zio->io_priority != ZIO_PRIORITY_SYNC_WRITE &&
+ zio->io_priority != ZIO_PRIORITY_ASYNC_WRITE &&
+ zio->io_priority != ZIO_PRIORITY_REMOVAL &&
+ zio->io_priority != ZIO_PRIORITY_INITIALIZING &&
+ zio->io_priority != ZIO_PRIORITY_REBUILD) {
+ zio->io_priority = ZIO_PRIORITY_ASYNC_WRITE;
+ }
+ } else {
+ ASSERT(zio->io_type == ZIO_TYPE_TRIM);
+ ASSERT(zio->io_priority == ZIO_PRIORITY_TRIM);
+ }
+
+ zio->io_flags |= ZIO_FLAG_DONT_QUEUE;
+ zio->io_timestamp = gethrtime();
+
+ mutex_enter(&vq->vq_lock);
+ vdev_queue_io_add(vq, zio);
+ nio = vdev_queue_io_to_issue(vq);
+ mutex_exit(&vq->vq_lock);
+
+ if (nio == NULL)
+ return (NULL);
+
+ if (nio->io_done == vdev_queue_agg_io_done) {
+ while ((dio = zio_walk_parents(nio, &zl)) != NULL) {
+ ASSERT3U(dio->io_type, ==, nio->io_type);
+ zio_vdev_io_bypass(dio);
+ zio_execute(dio);
+ }
+ zio_nowait(nio);
+ return (NULL);
+ }
+
+ return (nio);
+}
+
+void
+vdev_queue_io_done(zio_t *zio)
+{
+ vdev_queue_t *vq = &zio->io_vd->vdev_queue;
+ zio_t *dio, *nio;
+ zio_link_t *zl = NULL;
+
+ hrtime_t now = gethrtime();
+ vq->vq_io_complete_ts = now;
+ vq->vq_io_delta_ts = zio->io_delta = now - zio->io_timestamp;
+
+ mutex_enter(&vq->vq_lock);
+ vdev_queue_pending_remove(vq, zio);
+
+ while ((nio = vdev_queue_io_to_issue(vq)) != NULL) {
+ mutex_exit(&vq->vq_lock);
+ if (nio->io_done == vdev_queue_agg_io_done) {
+ while ((dio = zio_walk_parents(nio, &zl)) != NULL) {
+ ASSERT3U(dio->io_type, ==, nio->io_type);
+ zio_vdev_io_bypass(dio);
+ zio_execute(dio);
+ }
+ zio_nowait(nio);
+ } else {
+ zio_vdev_io_reissue(nio);
+ zio_execute(nio);
+ }
+ mutex_enter(&vq->vq_lock);
+ }
+
+ mutex_exit(&vq->vq_lock);
+}
+
+void
+vdev_queue_change_io_priority(zio_t *zio, zio_priority_t priority)
+{
+ vdev_queue_t *vq = &zio->io_vd->vdev_queue;
+
+ /*
+ * ZIO_PRIORITY_NOW is used by the vdev cache code and the aggregate zio
+ * code to issue IOs without adding them to the vdev queue. In this
+ * case, the zio is already going to be issued as quickly as possible
+ * and so it doesn't need any reprioritization to help.
+ */
+ if (zio->io_priority == ZIO_PRIORITY_NOW)
+ return;
+
+ ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
+ ASSERT3U(priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
+
+ if (zio->io_type == ZIO_TYPE_READ) {
+ if (priority != ZIO_PRIORITY_SYNC_READ &&
+ priority != ZIO_PRIORITY_ASYNC_READ &&
+ priority != ZIO_PRIORITY_SCRUB)
+ priority = ZIO_PRIORITY_ASYNC_READ;
+ } else {
+ ASSERT(zio->io_type == ZIO_TYPE_WRITE);
+ if (priority != ZIO_PRIORITY_SYNC_WRITE &&
+ priority != ZIO_PRIORITY_ASYNC_WRITE)
+ priority = ZIO_PRIORITY_ASYNC_WRITE;
+ }
+
+ mutex_enter(&vq->vq_lock);
+
+ /*
+ * If the zio is in none of the queues we can simply change
+ * the priority. If the zio is waiting to be submitted we must
+ * remove it from the queue and re-insert it with the new priority.
+ * Otherwise, the zio is currently active and we cannot change its
+ * priority.
+ */
+ if (zio->io_queue_state == ZIO_QS_QUEUED) {
+ vdev_queue_class_remove(vq, zio);
+ zio->io_priority = priority;
+ vdev_queue_class_add(vq, zio);
+ } else if (zio->io_queue_state == ZIO_QS_NONE) {
+ zio->io_priority = priority;
+ }
+
+ mutex_exit(&vq->vq_lock);
+}
+
+boolean_t
+vdev_queue_pool_busy(spa_t *spa)
+{
+ dsl_pool_t *dp = spa_get_dsl(spa);
+ uint64_t min_bytes = zfs_dirty_data_max *
+ zfs_vdev_async_write_active_min_dirty_percent / 100;
+
+ return (dp->dp_dirty_total > min_bytes);
+}
+
+/*
+ * As these two methods are only used for load calculations we're not
+ * concerned if we get an incorrect value on 32bit platforms due to lack of
+ * vq_lock mutex use here, instead we prefer to keep it lock free for
+ * performance.
+ */
+uint32_t
+vdev_queue_length(vdev_t *vd)
+{
+ return (vd->vdev_queue.vq_active);
+}
+
+uint64_t
+vdev_queue_last_offset(vdev_t *vd)
+{
+ return (vd->vdev_queue.vq_last_offset);
+}
+
+uint64_t
+vdev_queue_class_length(vdev_t *vd, zio_priority_t p)
+{
+ vdev_queue_t *vq = &vd->vdev_queue;
+ if (vdev_queue_class_fifo(p))
+ return (vq->vq_class[p].vqc_list_numnodes);
+ else
+ return (avl_numnodes(&vq->vq_class[p].vqc_tree));
+}
+
+ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, aggregation_limit, UINT, ZMOD_RW,
+ "Max vdev I/O aggregation size");
+
+ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, aggregation_limit_non_rotating, UINT,
+ ZMOD_RW, "Max vdev I/O aggregation size for non-rotating media");
+
+ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, read_gap_limit, UINT, ZMOD_RW,
+ "Aggregate read I/O over gap");
+
+ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, write_gap_limit, UINT, ZMOD_RW,
+ "Aggregate write I/O over gap");
+
+ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, max_active, UINT, ZMOD_RW,
+ "Maximum number of active I/Os per vdev");
+
+ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, async_write_active_max_dirty_percent,
+ UINT, ZMOD_RW, "Async write concurrency max threshold");
+
+ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, async_write_active_min_dirty_percent,
+ UINT, ZMOD_RW, "Async write concurrency min threshold");
+
+ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, async_read_max_active, UINT, ZMOD_RW,
+ "Max active async read I/Os per vdev");
+
+ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, async_read_min_active, UINT, ZMOD_RW,
+ "Min active async read I/Os per vdev");
+
+ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, async_write_max_active, UINT, ZMOD_RW,
+ "Max active async write I/Os per vdev");
+
+ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, async_write_min_active, UINT, ZMOD_RW,
+ "Min active async write I/Os per vdev");
+
+ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, initializing_max_active, UINT, ZMOD_RW,
+ "Max active initializing I/Os per vdev");
+
+ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, initializing_min_active, UINT, ZMOD_RW,
+ "Min active initializing I/Os per vdev");
+
+ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, removal_max_active, UINT, ZMOD_RW,
+ "Max active removal I/Os per vdev");
+
+ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, removal_min_active, UINT, ZMOD_RW,
+ "Min active removal I/Os per vdev");
+
+ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, scrub_max_active, UINT, ZMOD_RW,
+ "Max active scrub I/Os per vdev");
+
+ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, scrub_min_active, UINT, ZMOD_RW,
+ "Min active scrub I/Os per vdev");
+
+ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, sync_read_max_active, UINT, ZMOD_RW,
+ "Max active sync read I/Os per vdev");
+
+ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, sync_read_min_active, UINT, ZMOD_RW,
+ "Min active sync read I/Os per vdev");
+
+ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, sync_write_max_active, UINT, ZMOD_RW,
+ "Max active sync write I/Os per vdev");
+
+ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, sync_write_min_active, UINT, ZMOD_RW,
+ "Min active sync write I/Os per vdev");
+
+ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, trim_max_active, UINT, ZMOD_RW,
+ "Max active trim/discard I/Os per vdev");
+
+ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, trim_min_active, UINT, ZMOD_RW,
+ "Min active trim/discard I/Os per vdev");
+
+ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, rebuild_max_active, UINT, ZMOD_RW,
+ "Max active rebuild I/Os per vdev");
+
+ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, rebuild_min_active, UINT, ZMOD_RW,
+ "Min active rebuild I/Os per vdev");
+
+ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, nia_credit, UINT, ZMOD_RW,
+ "Number of non-interactive I/Os to allow in sequence");
+
+ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, nia_delay, UINT, ZMOD_RW,
+ "Number of non-interactive I/Os before _max_active");