diff options
Diffstat (limited to 'tests/sys/sound/pcm_read_write.c')
-rw-r--r-- | tests/sys/sound/pcm_read_write.c | 262 |
1 files changed, 262 insertions, 0 deletions
diff --git a/tests/sys/sound/pcm_read_write.c b/tests/sys/sound/pcm_read_write.c new file mode 100644 index 000000000000..a77b953a78a0 --- /dev/null +++ b/tests/sys/sound/pcm_read_write.c @@ -0,0 +1,262 @@ +/*- + * Copyright (c) 2025 Florian Walpen + * + * SPDX-License-Identifier: BSD-2-Clause + */ + +/* + * These tests exercise conversion functions of the sound module, used to read + * pcm samples from a buffer, and write pcm samples to a buffer. The test cases + * are non-exhaustive, but should detect systematic errors in conversion of the + * various sample formats supported. In particular, the test cases establish + * correctness independent of the machine's endianness, making them suitable to + * check for architecture-specific problems. + */ + +#include <sys/types.h> +#include <sys/soundcard.h> + +#include <atf-c.h> +#include <stdio.h> +#include <string.h> + +#include <dev/sound/pcm/sound.h> +#include <dev/sound/pcm/pcm.h> +#include <dev/sound/pcm/g711.h> + +/* Generic test data, with buffer content matching the sample values. */ +static struct afmt_test_data { + const char *label; + uint8_t buffer[4]; + size_t size; + int format; + intpcm_t value; + _Static_assert((sizeof(intpcm_t) == 4), + "Test data assumes 32bit, adjust negative values to new size."); +} const afmt_tests[] = { + /* 8 bit sample formats. */ + {"s8_1", {0x01, 0x00, 0x00, 0x00}, 1, AFMT_S8, 0x00000001}, + {"s8_2", {0x81, 0x00, 0x00, 0x00}, 1, AFMT_S8, 0xffffff81}, + {"u8_1", {0x01, 0x00, 0x00, 0x00}, 1, AFMT_U8, 0xffffff81}, + {"u8_2", {0x81, 0x00, 0x00, 0x00}, 1, AFMT_U8, 0x00000001}, + + /* 16 bit sample formats. */ + {"s16le_1", {0x01, 0x02, 0x00, 0x00}, 2, AFMT_S16_LE, 0x00000201}, + {"s16le_2", {0x81, 0x82, 0x00, 0x00}, 2, AFMT_S16_LE, 0xffff8281}, + {"s16be_1", {0x01, 0x02, 0x00, 0x00}, 2, AFMT_S16_BE, 0x00000102}, + {"s16be_2", {0x81, 0x82, 0x00, 0x00}, 2, AFMT_S16_BE, 0xffff8182}, + {"u16le_1", {0x01, 0x02, 0x00, 0x00}, 2, AFMT_U16_LE, 0xffff8201}, + {"u16le_2", {0x81, 0x82, 0x00, 0x00}, 2, AFMT_U16_LE, 0x00000281}, + {"u16be_1", {0x01, 0x02, 0x00, 0x00}, 2, AFMT_U16_BE, 0xffff8102}, + {"u16be_2", {0x81, 0x82, 0x00, 0x00}, 2, AFMT_U16_BE, 0x00000182}, + + /* 24 bit sample formats. */ + {"s24le_1", {0x01, 0x02, 0x03, 0x00}, 3, AFMT_S24_LE, 0x00030201}, + {"s24le_2", {0x81, 0x82, 0x83, 0x00}, 3, AFMT_S24_LE, 0xff838281}, + {"s24be_1", {0x01, 0x02, 0x03, 0x00}, 3, AFMT_S24_BE, 0x00010203}, + {"s24be_2", {0x81, 0x82, 0x83, 0x00}, 3, AFMT_S24_BE, 0xff818283}, + {"u24le_1", {0x01, 0x02, 0x03, 0x00}, 3, AFMT_U24_LE, 0xff830201}, + {"u24le_2", {0x81, 0x82, 0x83, 0x00}, 3, AFMT_U24_LE, 0x00038281}, + {"u24be_1", {0x01, 0x02, 0x03, 0x00}, 3, AFMT_U24_BE, 0xff810203}, + {"u24be_2", {0x81, 0x82, 0x83, 0x00}, 3, AFMT_U24_BE, 0x00018283}, + + /* 32 bit sample formats. */ + {"s32le_1", {0x01, 0x02, 0x03, 0x04}, 4, AFMT_S32_LE, 0x04030201}, + {"s32le_2", {0x81, 0x82, 0x83, 0x84}, 4, AFMT_S32_LE, 0x84838281}, + {"s32be_1", {0x01, 0x02, 0x03, 0x04}, 4, AFMT_S32_BE, 0x01020304}, + {"s32be_2", {0x81, 0x82, 0x83, 0x84}, 4, AFMT_S32_BE, 0x81828384}, + {"u32le_1", {0x01, 0x02, 0x03, 0x04}, 4, AFMT_U32_LE, 0x84030201}, + {"u32le_2", {0x81, 0x82, 0x83, 0x84}, 4, AFMT_U32_LE, 0x04838281}, + {"u32be_1", {0x01, 0x02, 0x03, 0x04}, 4, AFMT_U32_BE, 0x81020304}, + {"u32be_2", {0x81, 0x82, 0x83, 0x84}, 4, AFMT_U32_BE, 0x01828384}, + + /* 32 bit floating point sample formats. */ + {"f32le_1", {0x00, 0x00, 0x00, 0x3f}, 4, AFMT_F32_LE, 0x40000000}, + {"f32le_2", {0x00, 0x00, 0x00, 0xbf}, 4, AFMT_F32_LE, 0xc0000000}, + {"f32be_1", {0x3f, 0x00, 0x00, 0x00}, 4, AFMT_F32_BE, 0x40000000}, + {"f32be_2", {0xbf, 0x00, 0x00, 0x00}, 4, AFMT_F32_BE, 0xc0000000}, + + /* u-law and A-law sample formats. */ + {"mulaw_1", {0x01, 0x00, 0x00, 0x00}, 1, AFMT_MU_LAW, 0xffffff87}, + {"mulaw_2", {0x81, 0x00, 0x00, 0x00}, 1, AFMT_MU_LAW, 0x00000079}, + {"alaw_1", {0x2a, 0x00, 0x00, 0x00}, 1, AFMT_A_LAW, 0xffffff83}, + {"alaw_2", {0xab, 0x00, 0x00, 0x00}, 1, AFMT_A_LAW, 0x00000079} +}; + +/* Normalize sample values in strictly correct (but slow) c. */ +static intpcm_t +local_normalize(intpcm_t value, int val_bits, int norm_bits) +{ + int32_t divisor; + intpcm_t remainder; + + /* Avoid undefined or implementation defined behavior. */ + if (val_bits < norm_bits) + /* Multiply instead of left shift (value may be negative). */ + return (value * (1 << (norm_bits - val_bits))); + else if (val_bits > norm_bits) { + divisor = (1 << (val_bits - norm_bits)); + /* Positive remainder, to discard lowest bits from value. */ + remainder = value % divisor; + remainder = (remainder + divisor) % divisor; + /* Divide instead of right shift (value may be negative). */ + return ((value - remainder) / divisor); + } + return value; +} + +/* Restrict magnitude of sample value to 24bit for 32bit calculations. */ +static intpcm_t +local_calc_limit(intpcm_t value, int val_bits) +{ + /* + * When intpcm32_t is defined to be 32bit, calculations for mixing and + * volume changes use 32bit integers instead of 64bit. To get some + * headroom for calculations, 32bit sample values are restricted to + * 24bit magnitude in that case. Also avoid implementation defined + * behavior here. + */ + if (sizeof(intpcm32_t) == (32 / 8) && val_bits == 32) + return (local_normalize(value, 32, 24)); + return value; +} + +ATF_TC(pcm_read); +ATF_TC_HEAD(pcm_read, tc) +{ + atf_tc_set_md_var(tc, "descr", + "Read and verify different pcm sample formats."); +} +ATF_TC_BODY(pcm_read, tc) +{ + const struct afmt_test_data *test; + uint8_t src[4]; + intpcm_t expected, result; + size_t i; + + for (i = 0; i < nitems(afmt_tests); i++) { + test = &afmt_tests[i]; + + /* Copy byte representation, fill with distinctive pattern. */ + memset(src, 0x66, sizeof(src)); + memcpy(src, test->buffer, test->size); + + /* Read sample at format magnitude. */ + expected = test->value; + result = pcm_sample_read(src, test->format); + ATF_CHECK_MSG(result == expected, + "pcm_read[\"%s\"].value: expected=0x%08x, result=0x%08x", + test->label, expected, result); + + /* Read sample at format magnitude, for calculations. */ + expected = local_calc_limit(test->value, test->size * 8); + result = pcm_sample_read_calc(src, test->format); + ATF_CHECK_MSG(result == expected, + "pcm_read[\"%s\"].calc: expected=0x%08x, result=0x%08x", + test->label, expected, result); + + /* Read sample at full 32 bit magnitude. */ + expected = local_normalize(test->value, test->size * 8, 32); + result = pcm_sample_read_norm(src, test->format); + ATF_CHECK_MSG(result == expected, + "pcm_read[\"%s\"].norm: expected=0x%08x, result=0x%08x", + test->label, expected, result); + } +} + +ATF_TC(pcm_write); +ATF_TC_HEAD(pcm_write, tc) +{ + atf_tc_set_md_var(tc, "descr", + "Write and verify different pcm sample formats."); +} +ATF_TC_BODY(pcm_write, tc) +{ + const struct afmt_test_data *test; + uint8_t expected[4]; + uint8_t dst[4]; + intpcm_t value; + size_t i; + + for (i = 0; i < nitems(afmt_tests); i++) { + test = &afmt_tests[i]; + + /* Write sample of format specific magnitude. */ + memcpy(expected, test->buffer, sizeof(expected)); + memset(dst, 0x00, sizeof(dst)); + value = test->value; + pcm_sample_write(dst, value, test->format); + ATF_CHECK_MSG(memcmp(dst, expected, sizeof(dst)) == 0, + "pcm_write[\"%s\"].value: " + "expected={0x%02x, 0x%02x, 0x%02x, 0x%02x}, " + "result={0x%02x, 0x%02x, 0x%02x, 0x%02x}, ", test->label, + expected[0], expected[1], expected[2], expected[3], + dst[0], dst[1], dst[2], dst[3]); + + /* Write sample of format specific, calculation magnitude. */ + memcpy(expected, test->buffer, sizeof(expected)); + memset(dst, 0x00, sizeof(dst)); + value = local_calc_limit(test->value, test->size * 8); + if (value != test->value) { + /* + * 32 bit sample was reduced to 24 bit resolution + * for calculation, least significant byte is lost. + */ + if (test->format & AFMT_BIGENDIAN) + expected[3] = 0x00; + else + expected[0] = 0x00; + } + pcm_sample_write_calc(dst, value, test->format); + ATF_CHECK_MSG(memcmp(dst, expected, sizeof(dst)) == 0, + "pcm_write[\"%s\"].calc: " + "expected={0x%02x, 0x%02x, 0x%02x, 0x%02x}, " + "result={0x%02x, 0x%02x, 0x%02x, 0x%02x}, ", test->label, + expected[0], expected[1], expected[2], expected[3], + dst[0], dst[1], dst[2], dst[3]); + + /* Write normalized sample of full 32 bit magnitude. */ + memcpy(expected, test->buffer, sizeof(expected)); + memset(dst, 0x00, sizeof(dst)); + value = local_normalize(test->value, test->size * 8, 32); + pcm_sample_write_norm(dst, value, test->format); + ATF_CHECK_MSG(memcmp(dst, expected, sizeof(dst)) == 0, + "pcm_write[\"%s\"].norm: " + "expected={0x%02x, 0x%02x, 0x%02x, 0x%02x}, " + "result={0x%02x, 0x%02x, 0x%02x, 0x%02x}, ", test->label, + expected[0], expected[1], expected[2], expected[3], + dst[0], dst[1], dst[2], dst[3]); + } +} + +ATF_TC(pcm_format_bits); +ATF_TC_HEAD(pcm_format_bits, tc) +{ + atf_tc_set_md_var(tc, "descr", + "Verify bit width of different pcm sample formats."); +} +ATF_TC_BODY(pcm_format_bits, tc) +{ + const struct afmt_test_data *test; + size_t bits; + size_t i; + + for (i = 0; i < nitems(afmt_tests); i++) { + test = &afmt_tests[i]; + + /* Check bit width determined for given sample format. */ + bits = AFMT_BIT(test->format); + ATF_CHECK_MSG(bits == test->size * 8, + "format_bits[%zu].size: expected=%zu, result=%zu", + i, test->size * 8, bits); + } +} + +ATF_TP_ADD_TCS(tp) +{ + ATF_TP_ADD_TC(tp, pcm_read); + ATF_TP_ADD_TC(tp, pcm_write); + ATF_TP_ADD_TC(tp, pcm_format_bits); + + return atf_no_error(); +} |