aboutsummaryrefslogtreecommitdiff
path: root/usr.sbin/makefs/ffs/ffs_alloc.c
diff options
context:
space:
mode:
Diffstat (limited to 'usr.sbin/makefs/ffs/ffs_alloc.c')
-rw-r--r--usr.sbin/makefs/ffs/ffs_alloc.c676
1 files changed, 676 insertions, 0 deletions
diff --git a/usr.sbin/makefs/ffs/ffs_alloc.c b/usr.sbin/makefs/ffs/ffs_alloc.c
new file mode 100644
index 000000000000..c5aae97928b5
--- /dev/null
+++ b/usr.sbin/makefs/ffs/ffs_alloc.c
@@ -0,0 +1,676 @@
+/* $NetBSD: ffs_alloc.c,v 1.14 2004/06/20 22:20:18 jmc Exp $ */
+/* From: NetBSD: ffs_alloc.c,v 1.50 2001/09/06 02:16:01 lukem Exp */
+
+/*-
+ * SPDX-License-Identifier: BSD-3-Clause
+ *
+ * Copyright (c) 2002 Networks Associates Technology, Inc.
+ * All rights reserved.
+ *
+ * This software was developed for the FreeBSD Project by Marshall
+ * Kirk McKusick and Network Associates Laboratories, the Security
+ * Research Division of Network Associates, Inc. under DARPA/SPAWAR
+ * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
+ * research program
+ *
+ * Copyright (c) 1982, 1986, 1989, 1993
+ * The Regents of the University of California. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. Neither the name of the University nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ */
+
+#include <sys/param.h>
+#include <sys/time.h>
+
+#include <errno.h>
+#include <stdint.h>
+
+#include "makefs.h"
+
+#include <ufs/ufs/dinode.h>
+#include <ufs/ffs/fs.h>
+
+#include "ffs/ufs_bswap.h"
+#include "ffs/buf.h"
+#include "ffs/ufs_inode.h"
+#include "ffs/ffs_extern.h"
+
+static int scanc(u_int, const u_char *, const u_char *, int);
+
+static daddr_t ffs_alloccg(struct inode *, int, daddr_t, int);
+static daddr_t ffs_alloccgblk(struct inode *, struct m_buf *, daddr_t);
+static daddr_t ffs_hashalloc(struct inode *, u_int, daddr_t, int,
+ daddr_t (*)(struct inode *, int, daddr_t, int));
+static int32_t ffs_mapsearch(struct fs *, struct cg *, daddr_t, int);
+
+/*
+ * Allocate a block in the file system.
+ *
+ * The size of the requested block is given, which must be some
+ * multiple of fs_fsize and <= fs_bsize.
+ * A preference may be optionally specified. If a preference is given
+ * the following hierarchy is used to allocate a block:
+ * 1) allocate the requested block.
+ * 2) allocate a rotationally optimal block in the same cylinder.
+ * 3) allocate a block in the same cylinder group.
+ * 4) quadratically rehash into other cylinder groups, until an
+ * available block is located.
+ * If no block preference is given the following hierarchy is used
+ * to allocate a block:
+ * 1) allocate a block in the cylinder group that contains the
+ * inode for the file.
+ * 2) quadratically rehash into other cylinder groups, until an
+ * available block is located.
+ */
+int
+ffs_alloc(struct inode *ip, daddr_t lbn __unused, daddr_t bpref, int size,
+ daddr_t *bnp)
+{
+ struct fs *fs = ip->i_fs;
+ daddr_t bno;
+ int cg;
+
+ *bnp = 0;
+ if (size > fs->fs_bsize || fragoff(fs, size) != 0) {
+ errx(1, "ffs_alloc: bad size: bsize %d size %d",
+ fs->fs_bsize, size);
+ }
+ if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
+ goto nospace;
+ if (bpref >= fs->fs_size)
+ bpref = 0;
+ if (bpref == 0)
+ cg = ino_to_cg(fs, ip->i_number);
+ else
+ cg = dtog(fs, bpref);
+ bno = ffs_hashalloc(ip, cg, bpref, size, ffs_alloccg);
+ if (bno > 0) {
+ if (ip->i_fs->fs_magic == FS_UFS1_MAGIC)
+ ip->i_ffs1_blocks += size / DEV_BSIZE;
+ else
+ ip->i_ffs2_blocks += size / DEV_BSIZE;
+ *bnp = bno;
+ return (0);
+ }
+nospace:
+ return (ENOSPC);
+}
+
+/*
+ * Select the desired position for the next block in a file. The file is
+ * logically divided into sections. The first section is composed of the
+ * direct blocks. Each additional section contains fs_maxbpg blocks.
+ *
+ * If no blocks have been allocated in the first section, the policy is to
+ * request a block in the same cylinder group as the inode that describes
+ * the file. If no blocks have been allocated in any other section, the
+ * policy is to place the section in a cylinder group with a greater than
+ * average number of free blocks. An appropriate cylinder group is found
+ * by using a rotor that sweeps the cylinder groups. When a new group of
+ * blocks is needed, the sweep begins in the cylinder group following the
+ * cylinder group from which the previous allocation was made. The sweep
+ * continues until a cylinder group with greater than the average number
+ * of free blocks is found. If the allocation is for the first block in an
+ * indirect block, the information on the previous allocation is unavailable;
+ * here a best guess is made based upon the logical block number being
+ * allocated.
+ *
+ * If a section is already partially allocated, the policy is to
+ * contiguously allocate fs_maxcontig blocks. The end of one of these
+ * contiguous blocks and the beginning of the next is physically separated
+ * so that the disk head will be in transit between them for at least
+ * fs_rotdelay milliseconds. This is to allow time for the processor to
+ * schedule another I/O transfer.
+ */
+/* XXX ondisk32 */
+daddr_t
+ffs_blkpref_ufs1(struct inode *ip, daddr_t lbn, int indx, int32_t *bap)
+{
+ struct fs *fs;
+ u_int cg, startcg;
+ int avgbfree;
+
+ fs = ip->i_fs;
+ if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
+ if (lbn < UFS_NDADDR + NINDIR(fs)) {
+ cg = ino_to_cg(fs, ip->i_number);
+ return (fs->fs_fpg * cg + fs->fs_frag);
+ }
+ /*
+ * Find a cylinder with greater than average number of
+ * unused data blocks.
+ */
+ if (indx == 0 || bap[indx - 1] == 0)
+ startcg =
+ ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
+ else
+ startcg = dtog(fs,
+ ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
+ startcg %= fs->fs_ncg;
+ avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
+ for (cg = startcg; cg < fs->fs_ncg; cg++)
+ if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree)
+ return (fs->fs_fpg * cg + fs->fs_frag);
+ for (cg = 0; cg <= startcg; cg++)
+ if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree)
+ return (fs->fs_fpg * cg + fs->fs_frag);
+ return (0);
+ }
+ /*
+ * We just always try to lay things out contiguously.
+ */
+ return ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
+}
+
+daddr_t
+ffs_blkpref_ufs2(struct inode *ip, daddr_t lbn, int indx, int64_t *bap)
+{
+ struct fs *fs;
+ u_int cg, startcg;
+ int avgbfree;
+
+ fs = ip->i_fs;
+ if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
+ if (lbn < UFS_NDADDR + NINDIR(fs)) {
+ cg = ino_to_cg(fs, ip->i_number);
+ return (fs->fs_fpg * cg + fs->fs_frag);
+ }
+ /*
+ * Find a cylinder with greater than average number of
+ * unused data blocks.
+ */
+ if (indx == 0 || bap[indx - 1] == 0)
+ startcg =
+ ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
+ else
+ startcg = dtog(fs,
+ ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
+ startcg %= fs->fs_ncg;
+ avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
+ for (cg = startcg; cg < fs->fs_ncg; cg++)
+ if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
+ return (fs->fs_fpg * cg + fs->fs_frag);
+ }
+ for (cg = 0; cg < startcg; cg++)
+ if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
+ return (fs->fs_fpg * cg + fs->fs_frag);
+ }
+ return (0);
+ }
+ /*
+ * We just always try to lay things out contiguously.
+ */
+ return ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
+}
+
+/*
+ * Implement the cylinder overflow algorithm.
+ *
+ * The policy implemented by this algorithm is:
+ * 1) allocate the block in its requested cylinder group.
+ * 2) quadratically rehash on the cylinder group number.
+ * 3) brute force search for a free block.
+ *
+ * `size': size for data blocks, mode for inodes
+ */
+/*VARARGS5*/
+static daddr_t
+ffs_hashalloc(struct inode *ip, u_int cg, daddr_t pref, int size,
+ daddr_t (*allocator)(struct inode *, int, daddr_t, int))
+{
+ struct fs *fs;
+ daddr_t result;
+ u_int i, icg = cg;
+
+ fs = ip->i_fs;
+ /*
+ * 1: preferred cylinder group
+ */
+ result = (*allocator)(ip, cg, pref, size);
+ if (result)
+ return (result);
+ /*
+ * 2: quadratic rehash
+ */
+ for (i = 1; i < fs->fs_ncg; i *= 2) {
+ cg += i;
+ if (cg >= fs->fs_ncg)
+ cg -= fs->fs_ncg;
+ result = (*allocator)(ip, cg, 0, size);
+ if (result)
+ return (result);
+ }
+ /*
+ * 3: brute force search
+ * Note that we start at i == 2, since 0 was checked initially,
+ * and 1 is always checked in the quadratic rehash.
+ */
+ cg = (icg + 2) % fs->fs_ncg;
+ for (i = 2; i < fs->fs_ncg; i++) {
+ result = (*allocator)(ip, cg, 0, size);
+ if (result)
+ return (result);
+ cg++;
+ if (cg == fs->fs_ncg)
+ cg = 0;
+ }
+ return (0);
+}
+
+/*
+ * Determine whether a block can be allocated.
+ *
+ * Check to see if a block of the appropriate size is available,
+ * and if it is, allocate it.
+ */
+static daddr_t
+ffs_alloccg(struct inode *ip, int cg, daddr_t bpref, int size)
+{
+ struct cg *cgp;
+ struct m_buf *bp;
+ daddr_t bno, blkno;
+ int error, frags, allocsiz, i;
+ struct fs *fs = ip->i_fs;
+ const int needswap = UFS_FSNEEDSWAP(fs);
+
+ if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
+ return (0);
+ error = bread((void *)ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
+ (int)fs->fs_cgsize, NULL, &bp);
+ if (error) {
+ return (0);
+ }
+ cgp = (struct cg *)bp->b_data;
+ if (!cg_chkmagic_swap(cgp, needswap) ||
+ (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
+ brelse(bp);
+ return (0);
+ }
+ if (size == fs->fs_bsize) {
+ bno = ffs_alloccgblk(ip, bp, bpref);
+ bdwrite(bp);
+ return (bno);
+ }
+ /*
+ * check to see if any fragments are already available
+ * allocsiz is the size which will be allocated, hacking
+ * it down to a smaller size if necessary
+ */
+ frags = numfrags(fs, size);
+ for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
+ if (cgp->cg_frsum[allocsiz] != 0)
+ break;
+ if (allocsiz == fs->fs_frag) {
+ /*
+ * no fragments were available, so a block will be
+ * allocated, and hacked up
+ */
+ if (cgp->cg_cs.cs_nbfree == 0) {
+ brelse(bp);
+ return (0);
+ }
+ bno = ffs_alloccgblk(ip, bp, bpref);
+ bpref = dtogd(fs, bno);
+ for (i = frags; i < fs->fs_frag; i++)
+ setbit(cg_blksfree_swap(cgp, needswap), bpref + i);
+ i = fs->fs_frag - frags;
+ ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
+ fs->fs_cstotal.cs_nffree += i;
+ fs->fs_cs(fs, cg).cs_nffree += i;
+ fs->fs_fmod = 1;
+ ufs_add32(cgp->cg_frsum[i], 1, needswap);
+ bdwrite(bp);
+ return (bno);
+ }
+ bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
+ for (i = 0; i < frags; i++)
+ clrbit(cg_blksfree_swap(cgp, needswap), bno + i);
+ ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
+ fs->fs_cstotal.cs_nffree -= frags;
+ fs->fs_cs(fs, cg).cs_nffree -= frags;
+ fs->fs_fmod = 1;
+ ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
+ if (frags != allocsiz)
+ ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
+ blkno = cg * fs->fs_fpg + bno;
+ bdwrite(bp);
+ return blkno;
+}
+
+/*
+ * Allocate a block in a cylinder group.
+ *
+ * This algorithm implements the following policy:
+ * 1) allocate the requested block.
+ * 2) allocate a rotationally optimal block in the same cylinder.
+ * 3) allocate the next available block on the block rotor for the
+ * specified cylinder group.
+ * Note that this routine only allocates fs_bsize blocks; these
+ * blocks may be fragmented by the routine that allocates them.
+ */
+static daddr_t
+ffs_alloccgblk(struct inode *ip, struct m_buf *bp, daddr_t bpref)
+{
+ struct cg *cgp;
+ daddr_t blkno;
+ int32_t bno;
+ struct fs *fs = ip->i_fs;
+ const int needswap = UFS_FSNEEDSWAP(fs);
+ u_int8_t *blksfree_swap;
+
+ cgp = (struct cg *)bp->b_data;
+ blksfree_swap = cg_blksfree_swap(cgp, needswap);
+ if (bpref == 0 || (uint32_t)dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
+ bpref = ufs_rw32(cgp->cg_rotor, needswap);
+ } else {
+ bpref = blknum(fs, bpref);
+ bno = dtogd(fs, bpref);
+ /*
+ * if the requested block is available, use it
+ */
+ if (ffs_isblock(fs, blksfree_swap, fragstoblks(fs, bno)))
+ goto gotit;
+ }
+ /*
+ * Take the next available one in this cylinder group.
+ */
+ bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
+ if (bno < 0)
+ return (0);
+ cgp->cg_rotor = ufs_rw32(bno, needswap);
+gotit:
+ blkno = fragstoblks(fs, bno);
+ ffs_clrblock(fs, blksfree_swap, (long)blkno);
+ ffs_clusteracct(fs, cgp, blkno, -1);
+ ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
+ fs->fs_cstotal.cs_nbfree--;
+ fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
+ fs->fs_fmod = 1;
+ blkno = ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno;
+ return (blkno);
+}
+
+/*
+ * Free a block or fragment.
+ *
+ * The specified block or fragment is placed back in the
+ * free map. If a fragment is deallocated, a possible
+ * block reassembly is checked.
+ */
+void
+ffs_blkfree(struct inode *ip, daddr_t bno, long size)
+{
+ struct cg *cgp;
+ struct m_buf *bp;
+ int32_t fragno, cgbno;
+ int i, error, cg, blk, frags, bbase;
+ struct fs *fs = ip->i_fs;
+ const int needswap = UFS_FSNEEDSWAP(fs);
+
+ if (size > fs->fs_bsize || fragoff(fs, size) != 0 ||
+ fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
+ errx(1, "blkfree: bad size: bno %lld bsize %d size %ld",
+ (long long)bno, fs->fs_bsize, size);
+ }
+ cg = dtog(fs, bno);
+ if (bno >= fs->fs_size) {
+ warnx("bad block %lld, ino %ju", (long long)bno,
+ (uintmax_t)ip->i_number);
+ return;
+ }
+ error = bread((void *)ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
+ (int)fs->fs_cgsize, NULL, &bp);
+ if (error) {
+ return;
+ }
+ cgp = (struct cg *)bp->b_data;
+ if (!cg_chkmagic_swap(cgp, needswap)) {
+ brelse(bp);
+ return;
+ }
+ cgbno = dtogd(fs, bno);
+ if (size == fs->fs_bsize) {
+ fragno = fragstoblks(fs, cgbno);
+ if (!ffs_isfreeblock(fs, cg_blksfree_swap(cgp, needswap), fragno)) {
+ errx(1, "blkfree: freeing free block %lld",
+ (long long)bno);
+ }
+ ffs_setblock(fs, cg_blksfree_swap(cgp, needswap), fragno);
+ ffs_clusteracct(fs, cgp, fragno, 1);
+ ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
+ fs->fs_cstotal.cs_nbfree++;
+ fs->fs_cs(fs, cg).cs_nbfree++;
+ } else {
+ bbase = cgbno - fragnum(fs, cgbno);
+ /*
+ * decrement the counts associated with the old frags
+ */
+ blk = blkmap(fs, cg_blksfree_swap(cgp, needswap), bbase);
+ ffs_fragacct_swap(fs, blk, cgp->cg_frsum, -1, needswap);
+ /*
+ * deallocate the fragment
+ */
+ frags = numfrags(fs, size);
+ for (i = 0; i < frags; i++) {
+ if (isset(cg_blksfree_swap(cgp, needswap), cgbno + i)) {
+ errx(1, "blkfree: freeing free frag: block %lld",
+ (long long)(cgbno + i));
+ }
+ setbit(cg_blksfree_swap(cgp, needswap), cgbno + i);
+ }
+ ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
+ fs->fs_cstotal.cs_nffree += i;
+ fs->fs_cs(fs, cg).cs_nffree += i;
+ /*
+ * add back in counts associated with the new frags
+ */
+ blk = blkmap(fs, cg_blksfree_swap(cgp, needswap), bbase);
+ ffs_fragacct_swap(fs, blk, cgp->cg_frsum, 1, needswap);
+ /*
+ * if a complete block has been reassembled, account for it
+ */
+ fragno = fragstoblks(fs, bbase);
+ if (ffs_isblock(fs, cg_blksfree_swap(cgp, needswap), fragno)) {
+ ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
+ fs->fs_cstotal.cs_nffree -= fs->fs_frag;
+ fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
+ ffs_clusteracct(fs, cgp, fragno, 1);
+ ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
+ fs->fs_cstotal.cs_nbfree++;
+ fs->fs_cs(fs, cg).cs_nbfree++;
+ }
+ }
+ fs->fs_fmod = 1;
+ bdwrite(bp);
+}
+
+
+static int
+scanc(u_int size, const u_char *cp, const u_char table[], int mask)
+{
+ const u_char *end = &cp[size];
+
+ while (cp < end && (table[*cp] & mask) == 0)
+ cp++;
+ return (end - cp);
+}
+
+/*
+ * Find a block of the specified size in the specified cylinder group.
+ *
+ * It is a panic if a request is made to find a block if none are
+ * available.
+ */
+static int32_t
+ffs_mapsearch(struct fs *fs, struct cg *cgp, daddr_t bpref, int allocsiz)
+{
+ int32_t bno;
+ int start, len, loc, i;
+ int blk, field, subfield, pos;
+ int ostart, olen;
+ const int needswap = UFS_FSNEEDSWAP(fs);
+
+ /*
+ * find the fragment by searching through the free block
+ * map for an appropriate bit pattern
+ */
+ if (bpref)
+ start = dtogd(fs, bpref) / NBBY;
+ else
+ start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
+ len = howmany(fs->fs_fpg, NBBY) - start;
+ ostart = start;
+ olen = len;
+ loc = scanc((u_int)len,
+ (const u_char *)&cg_blksfree_swap(cgp, needswap)[start],
+ (const u_char *)fragtbl[fs->fs_frag],
+ (1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
+ if (loc == 0) {
+ len = start + 1;
+ start = 0;
+ loc = scanc((u_int)len,
+ (const u_char *)&cg_blksfree_swap(cgp, needswap)[0],
+ (const u_char *)fragtbl[fs->fs_frag],
+ (1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
+ if (loc == 0) {
+ errx(1,
+ "ffs_alloccg: map corrupted: start %d len %d offset %d %ld",
+ ostart, olen,
+ ufs_rw32(cgp->cg_freeoff, needswap),
+ (long)cg_blksfree_swap(cgp, needswap) - (long)cgp);
+ /* NOTREACHED */
+ }
+ }
+ bno = (start + len - loc) * NBBY;
+ cgp->cg_frotor = ufs_rw32(bno, needswap);
+ /*
+ * found the byte in the map
+ * sift through the bits to find the selected frag
+ */
+ for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
+ blk = blkmap(fs, cg_blksfree_swap(cgp, needswap), bno);
+ blk <<= 1;
+ field = around[allocsiz];
+ subfield = inside[allocsiz];
+ for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
+ if ((blk & field) == subfield)
+ return (bno + pos);
+ field <<= 1;
+ subfield <<= 1;
+ }
+ }
+ errx(1, "ffs_alloccg: block not in map: bno %lld", (long long)bno);
+ return (-1);
+}
+
+/*
+ * Update the cluster map because of an allocation or free.
+ *
+ * Cnt == 1 means free; cnt == -1 means allocating.
+ */
+void
+ffs_clusteracct(struct fs *fs, struct cg *cgp, int32_t blkno, int cnt)
+{
+ int32_t *sump;
+ int32_t *lp;
+ u_char *freemapp, *mapp;
+ int i, start, end, forw, back, map, bit;
+ const int needswap = UFS_FSNEEDSWAP(fs);
+
+ if (fs->fs_contigsumsize <= 0)
+ return;
+ freemapp = cg_clustersfree_swap(cgp, needswap);
+ sump = cg_clustersum_swap(cgp, needswap);
+ /*
+ * Allocate or clear the actual block.
+ */
+ if (cnt > 0)
+ setbit(freemapp, blkno);
+ else
+ clrbit(freemapp, blkno);
+ /*
+ * Find the size of the cluster going forward.
+ */
+ start = blkno + 1;
+ end = start + fs->fs_contigsumsize;
+ if ((unsigned)end >= ufs_rw32(cgp->cg_nclusterblks, needswap))
+ end = ufs_rw32(cgp->cg_nclusterblks, needswap);
+ mapp = &freemapp[start / NBBY];
+ map = *mapp++;
+ bit = 1 << (start % NBBY);
+ for (i = start; i < end; i++) {
+ if ((map & bit) == 0)
+ break;
+ if ((i & (NBBY - 1)) != (NBBY - 1)) {
+ bit <<= 1;
+ } else {
+ map = *mapp++;
+ bit = 1;
+ }
+ }
+ forw = i - start;
+ /*
+ * Find the size of the cluster going backward.
+ */
+ start = blkno - 1;
+ end = start - fs->fs_contigsumsize;
+ if (end < 0)
+ end = -1;
+ mapp = &freemapp[start / NBBY];
+ map = *mapp--;
+ bit = 1 << (start % NBBY);
+ for (i = start; i > end; i--) {
+ if ((map & bit) == 0)
+ break;
+ if ((i & (NBBY - 1)) != 0) {
+ bit >>= 1;
+ } else {
+ map = *mapp--;
+ bit = 1 << (NBBY - 1);
+ }
+ }
+ back = start - i;
+ /*
+ * Account for old cluster and the possibly new forward and
+ * back clusters.
+ */
+ i = back + forw + 1;
+ if (i > fs->fs_contigsumsize)
+ i = fs->fs_contigsumsize;
+ ufs_add32(sump[i], cnt, needswap);
+ if (back > 0)
+ ufs_add32(sump[back], -cnt, needswap);
+ if (forw > 0)
+ ufs_add32(sump[forw], -cnt, needswap);
+
+ /*
+ * Update cluster summary information.
+ */
+ lp = &sump[fs->fs_contigsumsize];
+ for (i = fs->fs_contigsumsize; i > 0; i--)
+ if (ufs_rw32(*lp--, needswap) > 0)
+ break;
+ fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i;
+}