aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/compiler-rt/lib/hwasan/hwasan_linux.cpp
blob: 3271a955e7ed102de886e750c631a62597f9f555 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
//===-- hwasan_linux.cpp ----------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file is a part of HWAddressSanitizer and contains Linux-, NetBSD- and
/// FreeBSD-specific code.
///
//===----------------------------------------------------------------------===//

#include "sanitizer_common/sanitizer_platform.h"
#if SANITIZER_FREEBSD || SANITIZER_LINUX || SANITIZER_NETBSD

#  include <dlfcn.h>
#  include <elf.h>
#  include <errno.h>
#  include <link.h>
#  include <pthread.h>
#  include <signal.h>
#  include <stdio.h>
#  include <stdlib.h>
#  include <sys/prctl.h>
#  include <sys/resource.h>
#  include <sys/time.h>
#  include <unistd.h>
#  include <unwind.h>

#  include "hwasan.h"
#  include "hwasan_dynamic_shadow.h"
#  include "hwasan_interface_internal.h"
#  include "hwasan_mapping.h"
#  include "hwasan_report.h"
#  include "hwasan_thread.h"
#  include "hwasan_thread_list.h"
#  include "sanitizer_common/sanitizer_common.h"
#  include "sanitizer_common/sanitizer_procmaps.h"
#  include "sanitizer_common/sanitizer_stackdepot.h"

// Configurations of HWASAN_WITH_INTERCEPTORS and SANITIZER_ANDROID.
//
// HWASAN_WITH_INTERCEPTORS=OFF, SANITIZER_ANDROID=OFF
//   Not currently tested.
// HWASAN_WITH_INTERCEPTORS=OFF, SANITIZER_ANDROID=ON
//   Integration tests downstream exist.
// HWASAN_WITH_INTERCEPTORS=ON, SANITIZER_ANDROID=OFF
//    Tested with check-hwasan on x86_64-linux.
// HWASAN_WITH_INTERCEPTORS=ON, SANITIZER_ANDROID=ON
//    Tested with check-hwasan on aarch64-linux-android.
#  if !SANITIZER_ANDROID
SANITIZER_INTERFACE_ATTRIBUTE
THREADLOCAL uptr __hwasan_tls;
#  endif

namespace __hwasan {

// With the zero shadow base we can not actually map pages starting from 0.
// This constant is somewhat arbitrary.
constexpr uptr kZeroBaseShadowStart = 0;
constexpr uptr kZeroBaseMaxShadowStart = 1 << 18;

static void ProtectGap(uptr addr, uptr size) {
  __sanitizer::ProtectGap(addr, size, kZeroBaseShadowStart,
                          kZeroBaseMaxShadowStart);
}

uptr kLowMemStart;
uptr kLowMemEnd;
uptr kHighMemStart;
uptr kHighMemEnd;

static void PrintRange(uptr start, uptr end, const char *name) {
  Printf("|| [%p, %p] || %.*s ||\n", (void *)start, (void *)end, 10, name);
}

static void PrintAddressSpaceLayout() {
  PrintRange(kHighMemStart, kHighMemEnd, "HighMem");
  if (kHighShadowEnd + 1 < kHighMemStart)
    PrintRange(kHighShadowEnd + 1, kHighMemStart - 1, "ShadowGap");
  else
    CHECK_EQ(kHighShadowEnd + 1, kHighMemStart);
  PrintRange(kHighShadowStart, kHighShadowEnd, "HighShadow");
  if (kLowShadowEnd + 1 < kHighShadowStart)
    PrintRange(kLowShadowEnd + 1, kHighShadowStart - 1, "ShadowGap");
  else
    CHECK_EQ(kLowMemEnd + 1, kHighShadowStart);
  PrintRange(kLowShadowStart, kLowShadowEnd, "LowShadow");
  if (kLowMemEnd + 1 < kLowShadowStart)
    PrintRange(kLowMemEnd + 1, kLowShadowStart - 1, "ShadowGap");
  else
    CHECK_EQ(kLowMemEnd + 1, kLowShadowStart);
  PrintRange(kLowMemStart, kLowMemEnd, "LowMem");
  CHECK_EQ(0, kLowMemStart);
}

static uptr GetHighMemEnd() {
  // HighMem covers the upper part of the address space.
  uptr max_address = GetMaxUserVirtualAddress();
  // Adjust max address to make sure that kHighMemEnd and kHighMemStart are
  // properly aligned:
  max_address |= (GetMmapGranularity() << kShadowScale) - 1;
  return max_address;
}

static void InitializeShadowBaseAddress(uptr shadow_size_bytes) {
  if (flags()->fixed_shadow_base != (uptr)-1) {
    __hwasan_shadow_memory_dynamic_address = flags()->fixed_shadow_base;
  } else {
    __hwasan_shadow_memory_dynamic_address =
        FindDynamicShadowStart(shadow_size_bytes);
  }
}

static void MaybeDieIfNoTaggingAbi(const char *message) {
  if (!flags()->fail_without_syscall_abi)
    return;
  Printf("FATAL: %s\n", message);
  Die();
}

#  define PR_SET_TAGGED_ADDR_CTRL 55
#  define PR_GET_TAGGED_ADDR_CTRL 56
#  define PR_TAGGED_ADDR_ENABLE (1UL << 0)
#  define ARCH_GET_UNTAG_MASK 0x4001
#  define ARCH_ENABLE_TAGGED_ADDR 0x4002
#  define ARCH_GET_MAX_TAG_BITS 0x4003

static bool CanUseTaggingAbi() {
#  if defined(__x86_64__)
  unsigned long num_bits = 0;
  // Check for x86 LAM support. This API is based on a currently unsubmitted
  // patch to the Linux kernel (as of August 2022) and is thus subject to
  // change. The patch is here:
  // https://lore.kernel.org/all/20220815041803.17954-1-kirill.shutemov@linux.intel.com/
  //
  // arch_prctl(ARCH_GET_MAX_TAG_BITS, &bits) returns the maximum number of tag
  // bits the user can request, or zero if LAM is not supported by the hardware.
  if (internal_iserror(internal_arch_prctl(ARCH_GET_MAX_TAG_BITS,
                                           reinterpret_cast<uptr>(&num_bits))))
    return false;
  // The platform must provide enough bits for HWASan tags.
  if (num_bits < kTagBits)
    return false;
  return true;
#  else
  // Check for ARM TBI support.
  return !internal_iserror(internal_prctl(PR_GET_TAGGED_ADDR_CTRL, 0, 0, 0, 0));
#  endif // __x86_64__
}

static bool EnableTaggingAbi() {
#  if defined(__x86_64__)
  // Enable x86 LAM tagging for the process.
  //
  // arch_prctl(ARCH_ENABLE_TAGGED_ADDR, bits) enables tagging if the number of
  // tag bits requested by the user does not exceed that provided by the system.
  // arch_prctl(ARCH_GET_UNTAG_MASK, &mask) returns the mask of significant
  // address bits. It is ~0ULL if either LAM is disabled for the process or LAM
  // is not supported by the hardware.
  if (internal_iserror(internal_arch_prctl(ARCH_ENABLE_TAGGED_ADDR, kTagBits)))
    return false;
  unsigned long mask = 0;
  // Make sure the tag bits are where we expect them to be.
  if (internal_iserror(internal_arch_prctl(ARCH_GET_UNTAG_MASK,
                                           reinterpret_cast<uptr>(&mask))))
    return false;
  // @mask has ones for non-tag bits, whereas @kAddressTagMask has ones for tag
  // bits. Therefore these masks must not overlap.
  if (mask & kAddressTagMask)
    return false;
  return true;
#  else
  // Enable ARM TBI tagging for the process. If for some reason tagging is not
  // supported, prctl(PR_SET_TAGGED_ADDR_CTRL, PR_TAGGED_ADDR_ENABLE) returns
  // -EINVAL.
  if (internal_iserror(internal_prctl(PR_SET_TAGGED_ADDR_CTRL,
                                      PR_TAGGED_ADDR_ENABLE, 0, 0, 0)))
    return false;
  // Ensure that TBI is enabled.
  if (internal_prctl(PR_GET_TAGGED_ADDR_CTRL, 0, 0, 0, 0) !=
      PR_TAGGED_ADDR_ENABLE)
    return false;
  return true;
#  endif // __x86_64__
}

void InitializeOsSupport() {
  // Check we're running on a kernel that can use the tagged address ABI.
  bool has_abi = CanUseTaggingAbi();

  if (!has_abi) {
#  if SANITIZER_ANDROID || defined(HWASAN_ALIASING_MODE)
    // Some older Android kernels have the tagged pointer ABI on
    // unconditionally, and hence don't have the tagged-addr prctl while still
    // allow the ABI.
    // If targeting Android and the prctl is not around we assume this is the
    // case.
    return;
#  else
    MaybeDieIfNoTaggingAbi(
        "HWAddressSanitizer requires a kernel with tagged address ABI.");
#  endif
  }

  if (EnableTaggingAbi())
    return;

#  if SANITIZER_ANDROID
  MaybeDieIfNoTaggingAbi(
      "HWAddressSanitizer failed to enable tagged address syscall ABI.\n"
      "Check the `sysctl abi.tagged_addr_disabled` configuration.");
#  else
  MaybeDieIfNoTaggingAbi(
      "HWAddressSanitizer failed to enable tagged address syscall ABI.\n");
#  endif
}

bool InitShadow() {
  // Define the entire memory range.
  kHighMemEnd = GetHighMemEnd();

  // Determine shadow memory base offset.
  InitializeShadowBaseAddress(MemToShadowSize(kHighMemEnd));

  // Place the low memory first.
  kLowMemEnd = __hwasan_shadow_memory_dynamic_address - 1;
  kLowMemStart = 0;

  // Define the low shadow based on the already placed low memory.
  kLowShadowEnd = MemToShadow(kLowMemEnd);
  kLowShadowStart = __hwasan_shadow_memory_dynamic_address;

  // High shadow takes whatever memory is left up there (making sure it is not
  // interfering with low memory in the fixed case).
  kHighShadowEnd = MemToShadow(kHighMemEnd);
  kHighShadowStart = Max(kLowMemEnd, MemToShadow(kHighShadowEnd)) + 1;

  // High memory starts where allocated shadow allows.
  kHighMemStart = ShadowToMem(kHighShadowStart);

  // Check the sanity of the defined memory ranges (there might be gaps).
  CHECK_EQ(kHighMemStart % GetMmapGranularity(), 0);
  CHECK_GT(kHighMemStart, kHighShadowEnd);
  CHECK_GT(kHighShadowEnd, kHighShadowStart);
  CHECK_GT(kHighShadowStart, kLowMemEnd);
  CHECK_GT(kLowMemEnd, kLowMemStart);
  CHECK_GT(kLowShadowEnd, kLowShadowStart);
  CHECK_GT(kLowShadowStart, kLowMemEnd);

  if (Verbosity())
    PrintAddressSpaceLayout();

  // Reserve shadow memory.
  ReserveShadowMemoryRange(kLowShadowStart, kLowShadowEnd, "low shadow");
  ReserveShadowMemoryRange(kHighShadowStart, kHighShadowEnd, "high shadow");

  // Protect all the gaps.
  ProtectGap(0, Min(kLowMemStart, kLowShadowStart));
  if (kLowMemEnd + 1 < kLowShadowStart)
    ProtectGap(kLowMemEnd + 1, kLowShadowStart - kLowMemEnd - 1);
  if (kLowShadowEnd + 1 < kHighShadowStart)
    ProtectGap(kLowShadowEnd + 1, kHighShadowStart - kLowShadowEnd - 1);
  if (kHighShadowEnd + 1 < kHighMemStart)
    ProtectGap(kHighShadowEnd + 1, kHighMemStart - kHighShadowEnd - 1);

  return true;
}

void InitThreads() {
  CHECK(__hwasan_shadow_memory_dynamic_address);
  uptr guard_page_size = GetMmapGranularity();
  uptr thread_space_start =
      __hwasan_shadow_memory_dynamic_address - (1ULL << kShadowBaseAlignment);
  uptr thread_space_end =
      __hwasan_shadow_memory_dynamic_address - guard_page_size;
  ReserveShadowMemoryRange(thread_space_start, thread_space_end - 1,
                           "hwasan threads", /*madvise_shadow*/ false);
  ProtectGap(thread_space_end,
             __hwasan_shadow_memory_dynamic_address - thread_space_end);
  InitThreadList(thread_space_start, thread_space_end - thread_space_start);
  hwasanThreadList().CreateCurrentThread();
}

bool MemIsApp(uptr p) {
// Memory outside the alias range has non-zero tags.
#  if !defined(HWASAN_ALIASING_MODE)
  CHECK_EQ(GetTagFromPointer(p), 0);
#  endif

  return (p >= kHighMemStart && p <= kHighMemEnd) ||
         (p >= kLowMemStart && p <= kLowMemEnd);
}

void InstallAtExitHandler() { atexit(HwasanAtExit); }

// ---------------------- TSD ---------------- {{{1

#  if HWASAN_WITH_INTERCEPTORS
static pthread_key_t tsd_key;
static bool tsd_key_inited = false;

void HwasanTSDThreadInit() {
  if (tsd_key_inited)
    CHECK_EQ(0, pthread_setspecific(tsd_key,
                                    (void *)GetPthreadDestructorIterations()));
}

void HwasanTSDDtor(void *tsd) {
  uptr iterations = (uptr)tsd;
  if (iterations > 1) {
    CHECK_EQ(0, pthread_setspecific(tsd_key, (void *)(iterations - 1)));
    return;
  }
  __hwasan_thread_exit();
}

void HwasanTSDInit() {
  CHECK(!tsd_key_inited);
  tsd_key_inited = true;
  CHECK_EQ(0, pthread_key_create(&tsd_key, HwasanTSDDtor));
}
#  else
void HwasanTSDInit() {}
void HwasanTSDThreadInit() {}
#  endif

#  if SANITIZER_ANDROID
uptr *GetCurrentThreadLongPtr() { return (uptr *)get_android_tls_ptr(); }
#  else
uptr *GetCurrentThreadLongPtr() { return &__hwasan_tls; }
#  endif

#  if SANITIZER_ANDROID
void AndroidTestTlsSlot() {
  uptr kMagicValue = 0x010203040A0B0C0D;
  uptr *tls_ptr = GetCurrentThreadLongPtr();
  uptr old_value = *tls_ptr;
  *tls_ptr = kMagicValue;
  dlerror();
  if (*(uptr *)get_android_tls_ptr() != kMagicValue) {
    Printf(
        "ERROR: Incompatible version of Android: TLS_SLOT_SANITIZER(6) is used "
        "for dlerror().\n");
    Die();
  }
  *tls_ptr = old_value;
}
#  else
void AndroidTestTlsSlot() {}
#  endif

static AccessInfo GetAccessInfo(siginfo_t *info, ucontext_t *uc) {
  // Access type is passed in a platform dependent way (see below) and encoded
  // as 0xXY, where X&1 is 1 for store, 0 for load, and X&2 is 1 if the error is
  // recoverable. Valid values of Y are 0 to 4, which are interpreted as
  // log2(access_size), and 0xF, which means that access size is passed via
  // platform dependent register (see below).
#  if defined(__aarch64__)
  // Access type is encoded in BRK immediate as 0x900 + 0xXY. For Y == 0xF,
  // access size is stored in X1 register. Access address is always in X0
  // register.
  uptr pc = (uptr)info->si_addr;
  const unsigned code = ((*(u32 *)pc) >> 5) & 0xffff;
  if ((code & 0xff00) != 0x900)
    return AccessInfo{};  // Not ours.

  const bool is_store = code & 0x10;
  const bool recover = code & 0x20;
  const uptr addr = uc->uc_mcontext.regs[0];
  const unsigned size_log = code & 0xf;
  if (size_log > 4 && size_log != 0xf)
    return AccessInfo{};  // Not ours.
  const uptr size = size_log == 0xf ? uc->uc_mcontext.regs[1] : 1U << size_log;

#  elif defined(__x86_64__)
  // Access type is encoded in the instruction following INT3 as
  // NOP DWORD ptr [EAX + 0x40 + 0xXY]. For Y == 0xF, access size is stored in
  // RSI register. Access address is always in RDI register.
  uptr pc = (uptr)uc->uc_mcontext.gregs[REG_RIP];
  uint8_t *nop = (uint8_t *)pc;
  if (*nop != 0x0f || *(nop + 1) != 0x1f || *(nop + 2) != 0x40 ||
      *(nop + 3) < 0x40)
    return AccessInfo{};  // Not ours.
  const unsigned code = *(nop + 3);

  const bool is_store = code & 0x10;
  const bool recover = code & 0x20;
  const uptr addr = uc->uc_mcontext.gregs[REG_RDI];
  const unsigned size_log = code & 0xf;
  if (size_log > 4 && size_log != 0xf)
    return AccessInfo{};  // Not ours.
  const uptr size =
      size_log == 0xf ? uc->uc_mcontext.gregs[REG_RSI] : 1U << size_log;

#  elif SANITIZER_RISCV64
  // Access type is encoded in the instruction following EBREAK as
  // ADDI x0, x0, [0x40 + 0xXY]. For Y == 0xF, access size is stored in
  // X11 register. Access address is always in X10 register.
  uptr pc = (uptr)uc->uc_mcontext.__gregs[REG_PC];
  uint8_t byte1 = *((u8 *)(pc + 0));
  uint8_t byte2 = *((u8 *)(pc + 1));
  uint8_t byte3 = *((u8 *)(pc + 2));
  uint8_t byte4 = *((u8 *)(pc + 3));
  uint32_t ebreak = (byte1 | (byte2 << 8) | (byte3 << 16) | (byte4 << 24));
  bool isFaultShort = false;
  bool isEbreak = (ebreak == 0x100073);
  bool isShortEbreak = false;
#    if defined(__riscv_compressed)
  isFaultShort = ((ebreak & 0x3) != 0x3);
  isShortEbreak = ((ebreak & 0xffff) == 0x9002);
#    endif
  // faulted insn is not ebreak, not our case
  if (!(isEbreak || isShortEbreak))
    return AccessInfo{};
  // advance pc to point after ebreak and reconstruct addi instruction
  pc += isFaultShort ? 2 : 4;
  byte1 = *((u8 *)(pc + 0));
  byte2 = *((u8 *)(pc + 1));
  byte3 = *((u8 *)(pc + 2));
  byte4 = *((u8 *)(pc + 3));
  // reconstruct instruction
  uint32_t instr = (byte1 | (byte2 << 8) | (byte3 << 16) | (byte4 << 24));
  // check if this is really 32 bit instruction
  // code is encoded in top 12 bits, since instruction is supposed to be with
  // imm
  const unsigned code = (instr >> 20) & 0xffff;
  const uptr addr = uc->uc_mcontext.__gregs[10];
  const bool is_store = code & 0x10;
  const bool recover = code & 0x20;
  const unsigned size_log = code & 0xf;
  if (size_log > 4 && size_log != 0xf)
    return AccessInfo{};  // Not our case
  const uptr size =
      size_log == 0xf ? uc->uc_mcontext.__gregs[11] : 1U << size_log;

#  else
#    error Unsupported architecture
#  endif

  return AccessInfo{addr, size, is_store, !is_store, recover};
}

static bool HwasanOnSIGTRAP(int signo, siginfo_t *info, ucontext_t *uc) {
  AccessInfo ai = GetAccessInfo(info, uc);
  if (!ai.is_store && !ai.is_load)
    return false;

  SignalContext sig{info, uc};
  HandleTagMismatch(ai, StackTrace::GetNextInstructionPc(sig.pc), sig.bp, uc);

#  if defined(__aarch64__)
  uc->uc_mcontext.pc += 4;
#  elif defined(__x86_64__)
#  elif SANITIZER_RISCV64
  // pc points to EBREAK which is 2 bytes long
  uint8_t *exception_source = (uint8_t *)(uc->uc_mcontext.__gregs[REG_PC]);
  uint8_t byte1 = (uint8_t)(*(exception_source + 0));
  uint8_t byte2 = (uint8_t)(*(exception_source + 1));
  uint8_t byte3 = (uint8_t)(*(exception_source + 2));
  uint8_t byte4 = (uint8_t)(*(exception_source + 3));
  uint32_t faulted = (byte1 | (byte2 << 8) | (byte3 << 16) | (byte4 << 24));
  bool isFaultShort = false;
#    if defined(__riscv_compressed)
  isFaultShort = ((faulted & 0x3) != 0x3);
#    endif
  uc->uc_mcontext.__gregs[REG_PC] += isFaultShort ? 2 : 4;
#  else
#    error Unsupported architecture
#  endif
  return true;
}

static void OnStackUnwind(const SignalContext &sig, const void *,
                          BufferedStackTrace *stack) {
  stack->Unwind(StackTrace::GetNextInstructionPc(sig.pc), sig.bp, sig.context,
                common_flags()->fast_unwind_on_fatal);
}

void HwasanOnDeadlySignal(int signo, void *info, void *context) {
  // Probably a tag mismatch.
  if (signo == SIGTRAP)
    if (HwasanOnSIGTRAP(signo, (siginfo_t *)info, (ucontext_t *)context))
      return;

  HandleDeadlySignal(info, context, GetTid(), &OnStackUnwind, nullptr);
}

void Thread::InitStackAndTls(const InitState *) {
  uptr tls_size;
  uptr stack_size;
  GetThreadStackAndTls(IsMainThread(), &stack_bottom_, &stack_size, &tls_begin_,
                       &tls_size);
  stack_top_ = stack_bottom_ + stack_size;
  tls_end_ = tls_begin_ + tls_size;
}

uptr TagMemoryAligned(uptr p, uptr size, tag_t tag) {
  CHECK(IsAligned(p, kShadowAlignment));
  CHECK(IsAligned(size, kShadowAlignment));
  uptr shadow_start = MemToShadow(p);
  uptr shadow_size = MemToShadowSize(size);

  uptr page_size = GetPageSizeCached();
  uptr page_start = RoundUpTo(shadow_start, page_size);
  uptr page_end = RoundDownTo(shadow_start + shadow_size, page_size);
  uptr threshold = common_flags()->clear_shadow_mmap_threshold;
  if (SANITIZER_LINUX &&
      UNLIKELY(page_end >= page_start + threshold && tag == 0)) {
    internal_memset((void *)shadow_start, tag, page_start - shadow_start);
    internal_memset((void *)page_end, tag,
                    shadow_start + shadow_size - page_end);
    // For an anonymous private mapping MADV_DONTNEED will return a zero page on
    // Linux.
    ReleaseMemoryPagesToOSAndZeroFill(page_start, page_end);
  } else {
    internal_memset((void *)shadow_start, tag, shadow_size);
  }
  return AddTagToPointer(p, tag);
}

void HwasanInstallAtForkHandler() {
  auto before = []() {
    if (CAN_SANITIZE_LEAKS) {
      __lsan::LockGlobal();
    }
    // `_lsan` functions defined regardless of `CAN_SANITIZE_LEAKS` and lock the
    // stuff we need.
    __lsan::LockThreads();
    __lsan::LockAllocator();
    StackDepotLockAll();
  };
  auto after = []() {
    StackDepotUnlockAll();
    // `_lsan` functions defined regardless of `CAN_SANITIZE_LEAKS` and unlock
    // the stuff we need.
    __lsan::UnlockAllocator();
    __lsan::UnlockThreads();
    if (CAN_SANITIZE_LEAKS) {
      __lsan::UnlockGlobal();
    }
  };
  pthread_atfork(before, after, after);
}

void InstallAtExitCheckLeaks() {
  if (CAN_SANITIZE_LEAKS) {
    if (common_flags()->detect_leaks && common_flags()->leak_check_at_exit) {
      if (flags()->halt_on_error)
        Atexit(__lsan::DoLeakCheck);
      else
        Atexit(__lsan::DoRecoverableLeakCheckVoid);
    }
  }
}

}  // namespace __hwasan

using namespace __hwasan;

extern "C" void __hwasan_thread_enter() {
  hwasanThreadList().CreateCurrentThread()->EnsureRandomStateInited();
}

extern "C" void __hwasan_thread_exit() {
  Thread *t = GetCurrentThread();
  // Make sure that signal handler can not see a stale current thread pointer.
  atomic_signal_fence(memory_order_seq_cst);
  if (t) {
    // Block async signals on the thread as the handler can be instrumented.
    // After this point instrumented code can't access essential data from TLS
    // and will crash.
    // Bionic already calls __hwasan_thread_exit with blocked signals.
    if (SANITIZER_GLIBC)
      BlockSignals();
    hwasanThreadList().ReleaseThread(t);
  }
}

#endif  // SANITIZER_FREEBSD || SANITIZER_LINUX || SANITIZER_NETBSD