aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/include/llvm/Analysis/ValueTracking.h
blob: a3186e61b94adf11210ed2c8d6e5770206fadbcd (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
//===- llvm/Analysis/ValueTracking.h - Walk computations --------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains routines that help analyze properties that chains of
// computations have.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_ANALYSIS_VALUETRACKING_H
#define LLVM_ANALYSIS_VALUETRACKING_H

#include "llvm/ADT/ArrayRef.h"
#include "llvm/Analysis/SimplifyQuery.h"
#include "llvm/Analysis/WithCache.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/FMF.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Intrinsics.h"
#include <cassert>
#include <cstdint>

namespace llvm {

class Operator;
class AddOperator;
class AllocaInst;
class APInt;
class AssumptionCache;
class DominatorTree;
class GEPOperator;
class LoadInst;
class WithOverflowInst;
struct KnownBits;
class Loop;
class LoopInfo;
class MDNode;
class StringRef;
class TargetLibraryInfo;
class Value;

constexpr unsigned MaxAnalysisRecursionDepth = 6;

/// Determine which bits of V are known to be either zero or one and return
/// them in the KnownZero/KnownOne bit sets.
///
/// This function is defined on values with integer type, values with pointer
/// type, and vectors of integers.  In the case
/// where V is a vector, the known zero and known one values are the
/// same width as the vector element, and the bit is set only if it is true
/// for all of the elements in the vector.
void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL,
                      unsigned Depth = 0, AssumptionCache *AC = nullptr,
                      const Instruction *CxtI = nullptr,
                      const DominatorTree *DT = nullptr,
                      bool UseInstrInfo = true);

/// Returns the known bits rather than passing by reference.
KnownBits computeKnownBits(const Value *V, const DataLayout &DL,
                           unsigned Depth = 0, AssumptionCache *AC = nullptr,
                           const Instruction *CxtI = nullptr,
                           const DominatorTree *DT = nullptr,
                           bool UseInstrInfo = true);

/// Returns the known bits rather than passing by reference.
KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts,
                           const DataLayout &DL, unsigned Depth = 0,
                           AssumptionCache *AC = nullptr,
                           const Instruction *CxtI = nullptr,
                           const DominatorTree *DT = nullptr,
                           bool UseInstrInfo = true);

KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts,
                           unsigned Depth, const SimplifyQuery &Q);

KnownBits computeKnownBits(const Value *V, unsigned Depth,
                           const SimplifyQuery &Q);

void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth,
                      const SimplifyQuery &Q);

/// Compute known bits from the range metadata.
/// \p KnownZero the set of bits that are known to be zero
/// \p KnownOne the set of bits that are known to be one
void computeKnownBitsFromRangeMetadata(const MDNode &Ranges, KnownBits &Known);

/// Merge bits known from context-dependent facts into Known.
void computeKnownBitsFromContext(const Value *V, KnownBits &Known,
                                 unsigned Depth, const SimplifyQuery &Q);

/// Using KnownBits LHS/RHS produce the known bits for logic op (and/xor/or).
KnownBits analyzeKnownBitsFromAndXorOr(const Operator *I,
                                       const KnownBits &KnownLHS,
                                       const KnownBits &KnownRHS,
                                       unsigned Depth, const SimplifyQuery &SQ);

/// Return true if LHS and RHS have no common bits set.
bool haveNoCommonBitsSet(const WithCache<const Value *> &LHSCache,
                         const WithCache<const Value *> &RHSCache,
                         const SimplifyQuery &SQ);

/// Return true if the given value is known to have exactly one bit set when
/// defined. For vectors return true if every element is known to be a power
/// of two when defined. Supports values with integer or pointer type and
/// vectors of integers. If 'OrZero' is set, then return true if the given
/// value is either a power of two or zero.
bool isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
                            bool OrZero = false, unsigned Depth = 0,
                            AssumptionCache *AC = nullptr,
                            const Instruction *CxtI = nullptr,
                            const DominatorTree *DT = nullptr,
                            bool UseInstrInfo = true);

bool isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI);

/// Return true if the given value is known to be non-zero when defined. For
/// vectors, return true if every element is known to be non-zero when
/// defined. For pointers, if the context instruction and dominator tree are
/// specified, perform context-sensitive analysis and return true if the
/// pointer couldn't possibly be null at the specified instruction.
/// Supports values with integer or pointer type and vectors of integers.
bool isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth = 0,
                    AssumptionCache *AC = nullptr,
                    const Instruction *CxtI = nullptr,
                    const DominatorTree *DT = nullptr,
                    bool UseInstrInfo = true);

/// Return true if the two given values are negation.
/// Currently can recoginze Value pair:
/// 1: <X, Y> if X = sub (0, Y) or Y = sub (0, X)
/// 2: <X, Y> if X = sub (A, B) and Y = sub (B, A)
bool isKnownNegation(const Value *X, const Value *Y, bool NeedNSW = false);

/// Returns true if the give value is known to be non-negative.
bool isKnownNonNegative(const Value *V, const SimplifyQuery &SQ,
                        unsigned Depth = 0);

/// Returns true if the given value is known be positive (i.e. non-negative
/// and non-zero).
bool isKnownPositive(const Value *V, const SimplifyQuery &SQ,
                     unsigned Depth = 0);

/// Returns true if the given value is known be negative (i.e. non-positive
/// and non-zero).
bool isKnownNegative(const Value *V, const SimplifyQuery &DL,
                     unsigned Depth = 0);

/// Return true if the given values are known to be non-equal when defined.
/// Supports scalar integer types only.
bool isKnownNonEqual(const Value *V1, const Value *V2, const DataLayout &DL,
                     AssumptionCache *AC = nullptr,
                     const Instruction *CxtI = nullptr,
                     const DominatorTree *DT = nullptr,
                     bool UseInstrInfo = true);

/// Return true if 'V & Mask' is known to be zero. We use this predicate to
/// simplify operations downstream. Mask is known to be zero for bits that V
/// cannot have.
///
/// This function is defined on values with integer type, values with pointer
/// type, and vectors of integers.  In the case
/// where V is a vector, the mask, known zero, and known one values are the
/// same width as the vector element, and the bit is set only if it is true
/// for all of the elements in the vector.
bool MaskedValueIsZero(const Value *V, const APInt &Mask,
                       const SimplifyQuery &DL, unsigned Depth = 0);

/// Return the number of times the sign bit of the register is replicated into
/// the other bits. We know that at least 1 bit is always equal to the sign
/// bit (itself), but other cases can give us information. For example,
/// immediately after an "ashr X, 2", we know that the top 3 bits are all
/// equal to each other, so we return 3. For vectors, return the number of
/// sign bits for the vector element with the mininum number of known sign
/// bits.
unsigned ComputeNumSignBits(const Value *Op, const DataLayout &DL,
                            unsigned Depth = 0, AssumptionCache *AC = nullptr,
                            const Instruction *CxtI = nullptr,
                            const DominatorTree *DT = nullptr,
                            bool UseInstrInfo = true);

/// Get the upper bound on bit size for this Value \p Op as a signed integer.
/// i.e.  x == sext(trunc(x to MaxSignificantBits) to bitwidth(x)).
/// Similar to the APInt::getSignificantBits function.
unsigned ComputeMaxSignificantBits(const Value *Op, const DataLayout &DL,
                                   unsigned Depth = 0,
                                   AssumptionCache *AC = nullptr,
                                   const Instruction *CxtI = nullptr,
                                   const DominatorTree *DT = nullptr);

/// Map a call instruction to an intrinsic ID.  Libcalls which have equivalent
/// intrinsics are treated as-if they were intrinsics.
Intrinsic::ID getIntrinsicForCallSite(const CallBase &CB,
                                      const TargetLibraryInfo *TLI);

/// Returns a pair of values, which if passed to llvm.is.fpclass, returns the
/// same result as an fcmp with the given operands.
///
/// If \p LookThroughSrc is true, consider the input value when computing the
/// mask.
///
/// If \p LookThroughSrc is false, ignore the source value (i.e. the first pair
/// element will always be LHS.
std::pair<Value *, FPClassTest> fcmpToClassTest(CmpInst::Predicate Pred,
                                                const Function &F, Value *LHS,
                                                Value *RHS,
                                                bool LookThroughSrc = true);
std::pair<Value *, FPClassTest> fcmpToClassTest(CmpInst::Predicate Pred,
                                                const Function &F, Value *LHS,
                                                const APFloat *ConstRHS,
                                                bool LookThroughSrc = true);

struct KnownFPClass {
  /// Floating-point classes the value could be one of.
  FPClassTest KnownFPClasses = fcAllFlags;

  /// std::nullopt if the sign bit is unknown, true if the sign bit is
  /// definitely set or false if the sign bit is definitely unset.
  std::optional<bool> SignBit;

  /// Return true if it's known this can never be one of the mask entries.
  bool isKnownNever(FPClassTest Mask) const {
    return (KnownFPClasses & Mask) == fcNone;
  }

  bool isUnknown() const {
    return KnownFPClasses == fcAllFlags && !SignBit;
  }

  /// Return true if it's known this can never be a nan.
  bool isKnownNeverNaN() const {
    return isKnownNever(fcNan);
  }

  /// Return true if it's known this can never be an infinity.
  bool isKnownNeverInfinity() const {
    return isKnownNever(fcInf);
  }

  /// Return true if it's known this can never be +infinity.
  bool isKnownNeverPosInfinity() const {
    return isKnownNever(fcPosInf);
  }

  /// Return true if it's known this can never be -infinity.
  bool isKnownNeverNegInfinity() const {
    return isKnownNever(fcNegInf);
  }

  /// Return true if it's known this can never be a subnormal
  bool isKnownNeverSubnormal() const {
    return isKnownNever(fcSubnormal);
  }

  /// Return true if it's known this can never be a positive subnormal
  bool isKnownNeverPosSubnormal() const {
    return isKnownNever(fcPosSubnormal);
  }

  /// Return true if it's known this can never be a negative subnormal
  bool isKnownNeverNegSubnormal() const {
    return isKnownNever(fcNegSubnormal);
  }

  /// Return true if it's known this can never be a zero. This means a literal
  /// [+-]0, and does not include denormal inputs implicitly treated as [+-]0.
  bool isKnownNeverZero() const {
    return isKnownNever(fcZero);
  }

  /// Return true if it's known this can never be a literal positive zero.
  bool isKnownNeverPosZero() const {
    return isKnownNever(fcPosZero);
  }

  /// Return true if it's known this can never be a negative zero. This means a
  /// literal -0 and does not include denormal inputs implicitly treated as -0.
  bool isKnownNeverNegZero() const {
    return isKnownNever(fcNegZero);
  }

  /// Return true if it's know this can never be interpreted as a zero. This
  /// extends isKnownNeverZero to cover the case where the assumed
  /// floating-point mode for the function interprets denormals as zero.
  bool isKnownNeverLogicalZero(const Function &F, Type *Ty) const;

  /// Return true if it's know this can never be interpreted as a negative zero.
  bool isKnownNeverLogicalNegZero(const Function &F, Type *Ty) const;

  /// Return true if it's know this can never be interpreted as a positive zero.
  bool isKnownNeverLogicalPosZero(const Function &F, Type *Ty) const;

  static constexpr FPClassTest OrderedLessThanZeroMask =
      fcNegSubnormal | fcNegNormal | fcNegInf;
  static constexpr FPClassTest OrderedGreaterThanZeroMask =
      fcPosSubnormal | fcPosNormal | fcPosInf;

  /// Return true if we can prove that the analyzed floating-point value is
  /// either NaN or never less than -0.0.
  ///
  ///      NaN --> true
  ///       +0 --> true
  ///       -0 --> true
  ///   x > +0 --> true
  ///   x < -0 --> false
  bool cannotBeOrderedLessThanZero() const {
    return isKnownNever(OrderedLessThanZeroMask);
  }

  /// Return true if we can prove that the analyzed floating-point value is
  /// either NaN or never greater than -0.0.
  ///      NaN --> true
  ///       +0 --> true
  ///       -0 --> true
  ///   x > +0 --> false
  ///   x < -0 --> true
  bool cannotBeOrderedGreaterThanZero() const {
    return isKnownNever(OrderedGreaterThanZeroMask);
  }

  KnownFPClass &operator|=(const KnownFPClass &RHS) {
    KnownFPClasses = KnownFPClasses | RHS.KnownFPClasses;

    if (SignBit != RHS.SignBit)
      SignBit = std::nullopt;
    return *this;
  }

  void knownNot(FPClassTest RuleOut) {
    KnownFPClasses = KnownFPClasses & ~RuleOut;
  }

  void fneg() {
    KnownFPClasses = llvm::fneg(KnownFPClasses);
    if (SignBit)
      SignBit = !*SignBit;
  }

  void fabs() {
    if (KnownFPClasses & fcNegZero)
      KnownFPClasses |= fcPosZero;

    if (KnownFPClasses & fcNegInf)
      KnownFPClasses |= fcPosInf;

    if (KnownFPClasses & fcNegSubnormal)
      KnownFPClasses |= fcPosSubnormal;

    if (KnownFPClasses & fcNegNormal)
      KnownFPClasses |= fcPosNormal;

    signBitMustBeZero();
  }

  /// Return true if the sign bit must be 0, ignoring the sign of nans.
  bool signBitIsZeroOrNaN() const {
    return isKnownNever(fcNegative);
  }

  /// Assume the sign bit is zero.
  void signBitMustBeZero() {
    KnownFPClasses &= (fcPositive | fcNan);
    SignBit = false;
  }

  void copysign(const KnownFPClass &Sign) {
    // Don't know anything about the sign of the source. Expand the possible set
    // to its opposite sign pair.
    if (KnownFPClasses & fcZero)
      KnownFPClasses |= fcZero;
    if (KnownFPClasses & fcSubnormal)
      KnownFPClasses |= fcSubnormal;
    if (KnownFPClasses & fcNormal)
      KnownFPClasses |= fcNormal;
    if (KnownFPClasses & fcInf)
      KnownFPClasses |= fcInf;

    // Sign bit is exactly preserved even for nans.
    SignBit = Sign.SignBit;

    // Clear sign bits based on the input sign mask.
    if (Sign.isKnownNever(fcPositive | fcNan) || (SignBit && *SignBit))
      KnownFPClasses &= (fcNegative | fcNan);
    if (Sign.isKnownNever(fcNegative | fcNan) || (SignBit && !*SignBit))
      KnownFPClasses &= (fcPositive | fcNan);
  }

  // Propagate knowledge that a non-NaN source implies the result can also not
  // be a NaN. For unconstrained operations, signaling nans are not guaranteed
  // to be quieted but cannot be introduced.
  void propagateNaN(const KnownFPClass &Src, bool PreserveSign = false) {
    if (Src.isKnownNever(fcNan)) {
      knownNot(fcNan);
      if (PreserveSign)
        SignBit = Src.SignBit;
    } else if (Src.isKnownNever(fcSNan))
      knownNot(fcSNan);
  }

  /// Propagate knowledge from a source value that could be a denormal or
  /// zero. We have to be conservative since output flushing is not guaranteed,
  /// so known-never-zero may not hold.
  ///
  /// This assumes a copy-like operation and will replace any currently known
  /// information.
  void propagateDenormal(const KnownFPClass &Src, const Function &F, Type *Ty);

  /// Report known classes if \p Src is evaluated through a potentially
  /// canonicalizing operation. We can assume signaling nans will not be
  /// introduced, but cannot assume a denormal will be flushed under FTZ/DAZ.
  ///
  /// This assumes a copy-like operation and will replace any currently known
  /// information.
  void propagateCanonicalizingSrc(const KnownFPClass &Src, const Function &F,
                                  Type *Ty);

  void resetAll() { *this = KnownFPClass(); }
};

inline KnownFPClass operator|(KnownFPClass LHS, const KnownFPClass &RHS) {
  LHS |= RHS;
  return LHS;
}

inline KnownFPClass operator|(const KnownFPClass &LHS, KnownFPClass &&RHS) {
  RHS |= LHS;
  return std::move(RHS);
}

/// Determine which floating-point classes are valid for \p V, and return them
/// in KnownFPClass bit sets.
///
/// This function is defined on values with floating-point type, values vectors
/// of floating-point type, and arrays of floating-point type.

/// \p InterestedClasses is a compile time optimization hint for which floating
/// point classes should be queried. Queries not specified in \p
/// InterestedClasses should be reliable if they are determined during the
/// query.
KnownFPClass computeKnownFPClass(
    const Value *V, const APInt &DemandedElts, const DataLayout &DL,
    FPClassTest InterestedClasses = fcAllFlags, unsigned Depth = 0,
    const TargetLibraryInfo *TLI = nullptr, AssumptionCache *AC = nullptr,
    const Instruction *CxtI = nullptr, const DominatorTree *DT = nullptr,
    bool UseInstrInfo = true);

KnownFPClass computeKnownFPClass(
    const Value *V, const DataLayout &DL,
    FPClassTest InterestedClasses = fcAllFlags, unsigned Depth = 0,
    const TargetLibraryInfo *TLI = nullptr, AssumptionCache *AC = nullptr,
    const Instruction *CxtI = nullptr, const DominatorTree *DT = nullptr,
    bool UseInstrInfo = true);

/// Wrapper to account for known fast math flags at the use instruction.
inline KnownFPClass computeKnownFPClass(
    const Value *V, FastMathFlags FMF, const DataLayout &DL,
    FPClassTest InterestedClasses = fcAllFlags, unsigned Depth = 0,
    const TargetLibraryInfo *TLI = nullptr, AssumptionCache *AC = nullptr,
    const Instruction *CxtI = nullptr, const DominatorTree *DT = nullptr,
    bool UseInstrInfo = true) {
  if (FMF.noNaNs())
    InterestedClasses &= ~fcNan;
  if (FMF.noInfs())
    InterestedClasses &= ~fcInf;

  KnownFPClass Result = computeKnownFPClass(V, DL, InterestedClasses, Depth,
                                            TLI, AC, CxtI, DT, UseInstrInfo);

  if (FMF.noNaNs())
    Result.KnownFPClasses &= ~fcNan;
  if (FMF.noInfs())
    Result.KnownFPClasses &= ~fcInf;
  return Result;
}

/// Return true if we can prove that the specified FP value is never equal to
/// -0.0. Users should use caution when considering PreserveSign
/// denormal-fp-math.
inline bool cannotBeNegativeZero(const Value *V, const DataLayout &DL,
                                 const TargetLibraryInfo *TLI = nullptr,
                                 unsigned Depth = 0,
                                 AssumptionCache *AC = nullptr,
                                 const Instruction *CtxI = nullptr,
                                 const DominatorTree *DT = nullptr,
                                 bool UseInstrInfo = true) {
  KnownFPClass Known = computeKnownFPClass(V, DL, fcNegZero, Depth, TLI, AC,
                                           CtxI, DT, UseInstrInfo);
  return Known.isKnownNeverNegZero();
}

/// Return true if we can prove that the specified FP value is either NaN or
/// never less than -0.0.
///
///      NaN --> true
///       +0 --> true
///       -0 --> true
///   x > +0 --> true
///   x < -0 --> false
inline bool cannotBeOrderedLessThanZero(const Value *V, const DataLayout &DL,
                                        const TargetLibraryInfo *TLI = nullptr,
                                        unsigned Depth = 0,
                                        AssumptionCache *AC = nullptr,
                                        const Instruction *CtxI = nullptr,
                                        const DominatorTree *DT = nullptr,
                                        bool UseInstrInfo = true) {
  KnownFPClass Known =
      computeKnownFPClass(V, DL, KnownFPClass::OrderedLessThanZeroMask, Depth,
                          TLI, AC, CtxI, DT, UseInstrInfo);
  return Known.cannotBeOrderedLessThanZero();
}

/// Return true if the floating-point scalar value is not an infinity or if
/// the floating-point vector value has no infinities. Return false if a value
/// could ever be infinity.
inline bool isKnownNeverInfinity(const Value *V, const DataLayout &DL,
                                 const TargetLibraryInfo *TLI = nullptr,
                                 unsigned Depth = 0,
                                 AssumptionCache *AC = nullptr,
                                 const Instruction *CtxI = nullptr,
                                 const DominatorTree *DT = nullptr,
                                 bool UseInstrInfo = true) {
  KnownFPClass Known = computeKnownFPClass(V, DL, fcInf, Depth, TLI, AC, CtxI,
                                           DT, UseInstrInfo);
  return Known.isKnownNeverInfinity();
}

/// Return true if the floating-point value can never contain a NaN or infinity.
inline bool isKnownNeverInfOrNaN(
    const Value *V, const DataLayout &DL, const TargetLibraryInfo *TLI,
    unsigned Depth = 0, AssumptionCache *AC = nullptr,
    const Instruction *CtxI = nullptr, const DominatorTree *DT = nullptr,
    bool UseInstrInfo = true) {
  KnownFPClass Known = computeKnownFPClass(V, DL, fcInf | fcNan, Depth, TLI, AC,
                                           CtxI, DT, UseInstrInfo);
  return Known.isKnownNeverNaN() && Known.isKnownNeverInfinity();
}

/// Return true if the floating-point scalar value is not a NaN or if the
/// floating-point vector value has no NaN elements. Return false if a value
/// could ever be NaN.
inline bool isKnownNeverNaN(const Value *V, const DataLayout &DL,
                            const TargetLibraryInfo *TLI, unsigned Depth = 0,
                            AssumptionCache *AC = nullptr,
                            const Instruction *CtxI = nullptr,
                            const DominatorTree *DT = nullptr,
                            bool UseInstrInfo = true) {
  KnownFPClass Known = computeKnownFPClass(V, DL, fcNan, Depth, TLI, AC, CtxI,
                                           DT, UseInstrInfo);
  return Known.isKnownNeverNaN();
}

/// Return true if we can prove that the specified FP value's sign bit is 0.
///
///      NaN --> true/false (depending on the NaN's sign bit)
///       +0 --> true
///       -0 --> false
///   x > +0 --> true
///   x < -0 --> false
bool SignBitMustBeZero(const Value *V, const DataLayout &DL,
                       const TargetLibraryInfo *TLI);

/// If the specified value can be set by repeating the same byte in memory,
/// return the i8 value that it is represented with. This is true for all i8
/// values obviously, but is also true for i32 0, i32 -1, i16 0xF0F0, double
/// 0.0 etc. If the value can't be handled with a repeated byte store (e.g.
/// i16 0x1234), return null. If the value is entirely undef and padding,
/// return undef.
Value *isBytewiseValue(Value *V, const DataLayout &DL);

/// Given an aggregate and an sequence of indices, see if the scalar value
/// indexed is already around as a register, for example if it were inserted
/// directly into the aggregate.
///
/// If InsertBefore is not null, this function will duplicate (modified)
/// insertvalues when a part of a nested struct is extracted.
Value *FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
                         Instruction *InsertBefore = nullptr);

/// Analyze the specified pointer to see if it can be expressed as a base
/// pointer plus a constant offset. Return the base and offset to the caller.
///
/// This is a wrapper around Value::stripAndAccumulateConstantOffsets that
/// creates and later unpacks the required APInt.
inline Value *GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
                                               const DataLayout &DL,
                                               bool AllowNonInbounds = true) {
  APInt OffsetAPInt(DL.getIndexTypeSizeInBits(Ptr->getType()), 0);
  Value *Base =
      Ptr->stripAndAccumulateConstantOffsets(DL, OffsetAPInt, AllowNonInbounds);

  Offset = OffsetAPInt.getSExtValue();
  return Base;
}
inline const Value *
GetPointerBaseWithConstantOffset(const Value *Ptr, int64_t &Offset,
                                 const DataLayout &DL,
                                 bool AllowNonInbounds = true) {
  return GetPointerBaseWithConstantOffset(const_cast<Value *>(Ptr), Offset, DL,
                                          AllowNonInbounds);
}

/// Returns true if the GEP is based on a pointer to a string (array of
// \p CharSize integers) and is indexing into this string.
bool isGEPBasedOnPointerToString(const GEPOperator *GEP, unsigned CharSize = 8);

/// Represents offset+length into a ConstantDataArray.
struct ConstantDataArraySlice {
  /// ConstantDataArray pointer. nullptr indicates a zeroinitializer (a valid
  /// initializer, it just doesn't fit the ConstantDataArray interface).
  const ConstantDataArray *Array;

  /// Slice starts at this Offset.
  uint64_t Offset;

  /// Length of the slice.
  uint64_t Length;

  /// Moves the Offset and adjusts Length accordingly.
  void move(uint64_t Delta) {
    assert(Delta < Length);
    Offset += Delta;
    Length -= Delta;
  }

  /// Convenience accessor for elements in the slice.
  uint64_t operator[](unsigned I) const {
    return Array == nullptr ? 0 : Array->getElementAsInteger(I + Offset);
  }
};

/// Returns true if the value \p V is a pointer into a ConstantDataArray.
/// If successful \p Slice will point to a ConstantDataArray info object
/// with an appropriate offset.
bool getConstantDataArrayInfo(const Value *V, ConstantDataArraySlice &Slice,
                              unsigned ElementSize, uint64_t Offset = 0);

/// This function computes the length of a null-terminated C string pointed to
/// by V. If successful, it returns true and returns the string in Str. If
/// unsuccessful, it returns false. This does not include the trailing null
/// character by default. If TrimAtNul is set to false, then this returns any
/// trailing null characters as well as any other characters that come after
/// it.
bool getConstantStringInfo(const Value *V, StringRef &Str,
                           bool TrimAtNul = true);

/// If we can compute the length of the string pointed to by the specified
/// pointer, return 'len+1'.  If we can't, return 0.
uint64_t GetStringLength(const Value *V, unsigned CharSize = 8);

/// This function returns call pointer argument that is considered the same by
/// aliasing rules. You CAN'T use it to replace one value with another. If
/// \p MustPreserveNullness is true, the call must preserve the nullness of
/// the pointer.
const Value *getArgumentAliasingToReturnedPointer(const CallBase *Call,
                                                  bool MustPreserveNullness);
inline Value *getArgumentAliasingToReturnedPointer(CallBase *Call,
                                                   bool MustPreserveNullness) {
  return const_cast<Value *>(getArgumentAliasingToReturnedPointer(
      const_cast<const CallBase *>(Call), MustPreserveNullness));
}

/// {launder,strip}.invariant.group returns pointer that aliases its argument,
/// and it only captures pointer by returning it.
/// These intrinsics are not marked as nocapture, because returning is
/// considered as capture. The arguments are not marked as returned neither,
/// because it would make it useless. If \p MustPreserveNullness is true,
/// the intrinsic must preserve the nullness of the pointer.
bool isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
    const CallBase *Call, bool MustPreserveNullness);

/// This method strips off any GEP address adjustments and pointer casts from
/// the specified value, returning the original object being addressed. Note
/// that the returned value has pointer type if the specified value does. If
/// the MaxLookup value is non-zero, it limits the number of instructions to
/// be stripped off.
const Value *getUnderlyingObject(const Value *V, unsigned MaxLookup = 6);
inline Value *getUnderlyingObject(Value *V, unsigned MaxLookup = 6) {
  // Force const to avoid infinite recursion.
  const Value *VConst = V;
  return const_cast<Value *>(getUnderlyingObject(VConst, MaxLookup));
}

/// This method is similar to getUnderlyingObject except that it can
/// look through phi and select instructions and return multiple objects.
///
/// If LoopInfo is passed, loop phis are further analyzed.  If a pointer
/// accesses different objects in each iteration, we don't look through the
/// phi node. E.g. consider this loop nest:
///
///   int **A;
///   for (i)
///     for (j) {
///        A[i][j] = A[i-1][j] * B[j]
///     }
///
/// This is transformed by Load-PRE to stash away A[i] for the next iteration
/// of the outer loop:
///
///   Curr = A[0];          // Prev_0
///   for (i: 1..N) {
///     Prev = Curr;        // Prev = PHI (Prev_0, Curr)
///     Curr = A[i];
///     for (j: 0..N) {
///        Curr[j] = Prev[j] * B[j]
///     }
///   }
///
/// Since A[i] and A[i-1] are independent pointers, getUnderlyingObjects
/// should not assume that Curr and Prev share the same underlying object thus
/// it shouldn't look through the phi above.
void getUnderlyingObjects(const Value *V,
                          SmallVectorImpl<const Value *> &Objects,
                          LoopInfo *LI = nullptr, unsigned MaxLookup = 6);

/// This is a wrapper around getUnderlyingObjects and adds support for basic
/// ptrtoint+arithmetic+inttoptr sequences.
bool getUnderlyingObjectsForCodeGen(const Value *V,
                                    SmallVectorImpl<Value *> &Objects);

/// Returns unique alloca where the value comes from, or nullptr.
/// If OffsetZero is true check that V points to the begining of the alloca.
AllocaInst *findAllocaForValue(Value *V, bool OffsetZero = false);
inline const AllocaInst *findAllocaForValue(const Value *V,
                                            bool OffsetZero = false) {
  return findAllocaForValue(const_cast<Value *>(V), OffsetZero);
}

/// Return true if the only users of this pointer are lifetime markers.
bool onlyUsedByLifetimeMarkers(const Value *V);

/// Return true if the only users of this pointer are lifetime markers or
/// droppable instructions.
bool onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V);

/// Return true if speculation of the given load must be suppressed to avoid
/// ordering or interfering with an active sanitizer.  If not suppressed,
/// dereferenceability and alignment must be proven separately.  Note: This
/// is only needed for raw reasoning; if you use the interface below
/// (isSafeToSpeculativelyExecute), this is handled internally.
bool mustSuppressSpeculation(const LoadInst &LI);

/// Return true if the instruction does not have any effects besides
/// calculating the result and does not have undefined behavior.
///
/// This method never returns true for an instruction that returns true for
/// mayHaveSideEffects; however, this method also does some other checks in
/// addition. It checks for undefined behavior, like dividing by zero or
/// loading from an invalid pointer (but not for undefined results, like a
/// shift with a shift amount larger than the width of the result). It checks
/// for malloc and alloca because speculatively executing them might cause a
/// memory leak. It also returns false for instructions related to control
/// flow, specifically terminators and PHI nodes.
///
/// If the CtxI is specified this method performs context-sensitive analysis
/// and returns true if it is safe to execute the instruction immediately
/// before the CtxI.
///
/// If the CtxI is NOT specified this method only looks at the instruction
/// itself and its operands, so if this method returns true, it is safe to
/// move the instruction as long as the correct dominance relationships for
/// the operands and users hold.
///
/// This method can return true for instructions that read memory;
/// for such instructions, moving them may change the resulting value.
bool isSafeToSpeculativelyExecute(const Instruction *I,
                                  const Instruction *CtxI = nullptr,
                                  AssumptionCache *AC = nullptr,
                                  const DominatorTree *DT = nullptr,
                                  const TargetLibraryInfo *TLI = nullptr);

/// This returns the same result as isSafeToSpeculativelyExecute if Opcode is
/// the actual opcode of Inst. If the provided and actual opcode differ, the
/// function (virtually) overrides the opcode of Inst with the provided
/// Opcode. There are come constraints in this case:
/// * If Opcode has a fixed number of operands (eg, as binary operators do),
///   then Inst has to have at least as many leading operands. The function
///   will ignore all trailing operands beyond that number.
/// * If Opcode allows for an arbitrary number of operands (eg, as CallInsts
///   do), then all operands are considered.
/// * The virtual instruction has to satisfy all typing rules of the provided
///   Opcode.
/// * This function is pessimistic in the following sense: If one actually
///   materialized the virtual instruction, then isSafeToSpeculativelyExecute
///   may say that the materialized instruction is speculatable whereas this
///   function may have said that the instruction wouldn't be speculatable.
///   This behavior is a shortcoming in the current implementation and not
///   intentional.
bool isSafeToSpeculativelyExecuteWithOpcode(
    unsigned Opcode, const Instruction *Inst, const Instruction *CtxI = nullptr,
    AssumptionCache *AC = nullptr, const DominatorTree *DT = nullptr,
    const TargetLibraryInfo *TLI = nullptr);

/// Returns true if the result or effects of the given instructions \p I
/// depend values not reachable through the def use graph.
/// * Memory dependence arises for example if the instruction reads from
///   memory or may produce effects or undefined behaviour. Memory dependent
///   instructions generally cannot be reorderd with respect to other memory
///   dependent instructions.
/// * Control dependence arises for example if the instruction may fault
///   if lifted above a throwing call or infinite loop.
bool mayHaveNonDefUseDependency(const Instruction &I);

/// Return true if it is an intrinsic that cannot be speculated but also
/// cannot trap.
bool isAssumeLikeIntrinsic(const Instruction *I);

/// Return true if it is valid to use the assumptions provided by an
/// assume intrinsic, I, at the point in the control-flow identified by the
/// context instruction, CxtI.
bool isValidAssumeForContext(const Instruction *I, const Instruction *CxtI,
                             const DominatorTree *DT = nullptr);

enum class OverflowResult {
  /// Always overflows in the direction of signed/unsigned min value.
  AlwaysOverflowsLow,
  /// Always overflows in the direction of signed/unsigned max value.
  AlwaysOverflowsHigh,
  /// May or may not overflow.
  MayOverflow,
  /// Never overflows.
  NeverOverflows,
};

OverflowResult computeOverflowForUnsignedMul(const Value *LHS, const Value *RHS,
                                             const SimplifyQuery &SQ);
OverflowResult computeOverflowForSignedMul(const Value *LHS, const Value *RHS,
                                           const SimplifyQuery &SQ);
OverflowResult
computeOverflowForUnsignedAdd(const WithCache<const Value *> &LHS,
                              const WithCache<const Value *> &RHS,
                              const SimplifyQuery &SQ);
OverflowResult computeOverflowForSignedAdd(const WithCache<const Value *> &LHS,
                                           const WithCache<const Value *> &RHS,
                                           const SimplifyQuery &SQ);
/// This version also leverages the sign bit of Add if known.
OverflowResult computeOverflowForSignedAdd(const AddOperator *Add,
                                           const SimplifyQuery &SQ);
OverflowResult computeOverflowForUnsignedSub(const Value *LHS, const Value *RHS,
                                             const SimplifyQuery &SQ);
OverflowResult computeOverflowForSignedSub(const Value *LHS, const Value *RHS,
                                           const SimplifyQuery &SQ);

/// Returns true if the arithmetic part of the \p WO 's result is
/// used only along the paths control dependent on the computation
/// not overflowing, \p WO being an <op>.with.overflow intrinsic.
bool isOverflowIntrinsicNoWrap(const WithOverflowInst *WO,
                               const DominatorTree &DT);

/// Determine the possible constant range of vscale with the given bit width,
/// based on the vscale_range function attribute.
ConstantRange getVScaleRange(const Function *F, unsigned BitWidth);

/// Determine the possible constant range of an integer or vector of integer
/// value. This is intended as a cheap, non-recursive check.
ConstantRange computeConstantRange(const Value *V, bool ForSigned,
                                   bool UseInstrInfo = true,
                                   AssumptionCache *AC = nullptr,
                                   const Instruction *CtxI = nullptr,
                                   const DominatorTree *DT = nullptr,
                                   unsigned Depth = 0);

/// Return true if this function can prove that the instruction I will
/// always transfer execution to one of its successors (including the next
/// instruction that follows within a basic block). E.g. this is not
/// guaranteed for function calls that could loop infinitely.
///
/// In other words, this function returns false for instructions that may
/// transfer execution or fail to transfer execution in a way that is not
/// captured in the CFG nor in the sequence of instructions within a basic
/// block.
///
/// Undefined behavior is assumed not to happen, so e.g. division is
/// guaranteed to transfer execution to the following instruction even
/// though division by zero might cause undefined behavior.
bool isGuaranteedToTransferExecutionToSuccessor(const Instruction *I);

/// Returns true if this block does not contain a potential implicit exit.
/// This is equivelent to saying that all instructions within the basic block
/// are guaranteed to transfer execution to their successor within the basic
/// block. This has the same assumptions w.r.t. undefined behavior as the
/// instruction variant of this function.
bool isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB);

/// Return true if every instruction in the range (Begin, End) is
/// guaranteed to transfer execution to its static successor. \p ScanLimit
/// bounds the search to avoid scanning huge blocks.
bool isGuaranteedToTransferExecutionToSuccessor(
    BasicBlock::const_iterator Begin, BasicBlock::const_iterator End,
    unsigned ScanLimit = 32);

/// Same as previous, but with range expressed via iterator_range.
bool isGuaranteedToTransferExecutionToSuccessor(
    iterator_range<BasicBlock::const_iterator> Range, unsigned ScanLimit = 32);

/// Return true if this function can prove that the instruction I
/// is executed for every iteration of the loop L.
///
/// Note that this currently only considers the loop header.
bool isGuaranteedToExecuteForEveryIteration(const Instruction *I,
                                            const Loop *L);

/// Return true if \p PoisonOp's user yields poison or raises UB if its
/// operand \p PoisonOp is poison.
///
/// If \p PoisonOp is a vector or an aggregate and the operation's result is a
/// single value, any poison element in /p PoisonOp should make the result
/// poison or raise UB.
///
/// To filter out operands that raise UB on poison, you can use
/// getGuaranteedNonPoisonOp.
bool propagatesPoison(const Use &PoisonOp);

/// Insert operands of I into Ops such that I will trigger undefined behavior
/// if I is executed and that operand has a poison value.
void getGuaranteedNonPoisonOps(const Instruction *I,
                               SmallVectorImpl<const Value *> &Ops);

/// Insert operands of I into Ops such that I will trigger undefined behavior
/// if I is executed and that operand is not a well-defined value
/// (i.e. has undef bits or poison).
void getGuaranteedWellDefinedOps(const Instruction *I,
                                 SmallVectorImpl<const Value *> &Ops);

/// Return true if the given instruction must trigger undefined behavior
/// when I is executed with any operands which appear in KnownPoison holding
/// a poison value at the point of execution.
bool mustTriggerUB(const Instruction *I,
                   const SmallPtrSetImpl<const Value *> &KnownPoison);

/// Return true if this function can prove that if Inst is executed
/// and yields a poison value or undef bits, then that will trigger
/// undefined behavior.
///
/// Note that this currently only considers the basic block that is
/// the parent of Inst.
bool programUndefinedIfUndefOrPoison(const Instruction *Inst);
bool programUndefinedIfPoison(const Instruction *Inst);

/// canCreateUndefOrPoison returns true if Op can create undef or poison from
/// non-undef & non-poison operands.
/// For vectors, canCreateUndefOrPoison returns true if there is potential
/// poison or undef in any element of the result when vectors without
/// undef/poison poison are given as operands.
/// For example, given `Op = shl <2 x i32> %x, <0, 32>`, this function returns
/// true. If Op raises immediate UB but never creates poison or undef
/// (e.g. sdiv I, 0), canCreatePoison returns false.
///
/// \p ConsiderFlagsAndMetadata controls whether poison producing flags and
/// metadata on the instruction are considered.  This can be used to see if the
/// instruction could still introduce undef or poison even without poison
/// generating flags and metadata which might be on the instruction.
/// (i.e. could the result of Op->dropPoisonGeneratingFlags() still create
/// poison or undef)
///
/// canCreatePoison returns true if Op can create poison from non-poison
/// operands.
bool canCreateUndefOrPoison(const Operator *Op,
                            bool ConsiderFlagsAndMetadata = true);
bool canCreatePoison(const Operator *Op, bool ConsiderFlagsAndMetadata = true);

/// Return true if V is poison given that ValAssumedPoison is already poison.
/// For example, if ValAssumedPoison is `icmp X, 10` and V is `icmp X, 5`,
/// impliesPoison returns true.
bool impliesPoison(const Value *ValAssumedPoison, const Value *V);

/// Return true if this function can prove that V does not have undef bits
/// and is never poison. If V is an aggregate value or vector, check whether
/// all elements (except padding) are not undef or poison.
/// Note that this is different from canCreateUndefOrPoison because the
/// function assumes Op's operands are not poison/undef.
///
/// If CtxI and DT are specified this method performs flow-sensitive analysis
/// and returns true if it is guaranteed to be never undef or poison
/// immediately before the CtxI.
bool isGuaranteedNotToBeUndefOrPoison(const Value *V,
                                      AssumptionCache *AC = nullptr,
                                      const Instruction *CtxI = nullptr,
                                      const DominatorTree *DT = nullptr,
                                      unsigned Depth = 0);

/// Returns true if V cannot be poison, but may be undef.
bool isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC = nullptr,
                               const Instruction *CtxI = nullptr,
                               const DominatorTree *DT = nullptr,
                               unsigned Depth = 0);

/// Returns true if V cannot be undef, but may be poison.
bool isGuaranteedNotToBeUndef(const Value *V, AssumptionCache *AC = nullptr,
                              const Instruction *CtxI = nullptr,
                              const DominatorTree *DT = nullptr,
                              unsigned Depth = 0);

/// Return true if undefined behavior would provable be executed on the path to
/// OnPathTo if Root produced a posion result.  Note that this doesn't say
/// anything about whether OnPathTo is actually executed or whether Root is
/// actually poison.  This can be used to assess whether a new use of Root can
/// be added at a location which is control equivalent with OnPathTo (such as
/// immediately before it) without introducing UB which didn't previously
/// exist.  Note that a false result conveys no information.
bool mustExecuteUBIfPoisonOnPathTo(Instruction *Root,
                                   Instruction *OnPathTo,
                                   DominatorTree *DT);

/// Specific patterns of select instructions we can match.
enum SelectPatternFlavor {
  SPF_UNKNOWN = 0,
  SPF_SMIN,    /// Signed minimum
  SPF_UMIN,    /// Unsigned minimum
  SPF_SMAX,    /// Signed maximum
  SPF_UMAX,    /// Unsigned maximum
  SPF_FMINNUM, /// Floating point minnum
  SPF_FMAXNUM, /// Floating point maxnum
  SPF_ABS,     /// Absolute value
  SPF_NABS     /// Negated absolute value
};

/// Behavior when a floating point min/max is given one NaN and one
/// non-NaN as input.
enum SelectPatternNaNBehavior {
  SPNB_NA = 0,        /// NaN behavior not applicable.
  SPNB_RETURNS_NAN,   /// Given one NaN input, returns the NaN.
  SPNB_RETURNS_OTHER, /// Given one NaN input, returns the non-NaN.
  SPNB_RETURNS_ANY    /// Given one NaN input, can return either (or
                      /// it has been determined that no operands can
                      /// be NaN).
};

struct SelectPatternResult {
  SelectPatternFlavor Flavor;
  SelectPatternNaNBehavior NaNBehavior; /// Only applicable if Flavor is
                                        /// SPF_FMINNUM or SPF_FMAXNUM.
  bool Ordered; /// When implementing this min/max pattern as
                /// fcmp; select, does the fcmp have to be
                /// ordered?

  /// Return true if \p SPF is a min or a max pattern.
  static bool isMinOrMax(SelectPatternFlavor SPF) {
    return SPF != SPF_UNKNOWN && SPF != SPF_ABS && SPF != SPF_NABS;
  }
};

/// Pattern match integer [SU]MIN, [SU]MAX and ABS idioms, returning the kind
/// and providing the out parameter results if we successfully match.
///
/// For ABS/NABS, LHS will be set to the input to the abs idiom. RHS will be
/// the negation instruction from the idiom.
///
/// If CastOp is not nullptr, also match MIN/MAX idioms where the type does
/// not match that of the original select. If this is the case, the cast
/// operation (one of Trunc,SExt,Zext) that must be done to transform the
/// type of LHS and RHS into the type of V is returned in CastOp.
///
/// For example:
///   %1 = icmp slt i32 %a, i32 4
///   %2 = sext i32 %a to i64
///   %3 = select i1 %1, i64 %2, i64 4
///
/// -> LHS = %a, RHS = i32 4, *CastOp = Instruction::SExt
///
SelectPatternResult matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
                                       Instruction::CastOps *CastOp = nullptr,
                                       unsigned Depth = 0);

inline SelectPatternResult matchSelectPattern(const Value *V, const Value *&LHS,
                                              const Value *&RHS) {
  Value *L = const_cast<Value *>(LHS);
  Value *R = const_cast<Value *>(RHS);
  auto Result = matchSelectPattern(const_cast<Value *>(V), L, R);
  LHS = L;
  RHS = R;
  return Result;
}

/// Determine the pattern that a select with the given compare as its
/// predicate and given values as its true/false operands would match.
SelectPatternResult matchDecomposedSelectPattern(
    CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS,
    Instruction::CastOps *CastOp = nullptr, unsigned Depth = 0);

/// Return the canonical comparison predicate for the specified
/// minimum/maximum flavor.
CmpInst::Predicate getMinMaxPred(SelectPatternFlavor SPF, bool Ordered = false);

/// Return the inverse minimum/maximum flavor of the specified flavor.
/// For example, signed minimum is the inverse of signed maximum.
SelectPatternFlavor getInverseMinMaxFlavor(SelectPatternFlavor SPF);

Intrinsic::ID getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID);

/// Return the minimum or maximum constant value for the specified integer
/// min/max flavor and type.
APInt getMinMaxLimit(SelectPatternFlavor SPF, unsigned BitWidth);

/// Check if the values in \p VL are select instructions that can be converted
/// to a min or max (vector) intrinsic. Returns the intrinsic ID, if such a
/// conversion is possible, together with a bool indicating whether all select
/// conditions are only used by the selects. Otherwise return
/// Intrinsic::not_intrinsic.
std::pair<Intrinsic::ID, bool>
canConvertToMinOrMaxIntrinsic(ArrayRef<Value *> VL);

/// Attempt to match a simple first order recurrence cycle of the form:
///   %iv = phi Ty [%Start, %Entry], [%Inc, %backedge]
///   %inc = binop %iv, %step
/// OR
///   %iv = phi Ty [%Start, %Entry], [%Inc, %backedge]
///   %inc = binop %step, %iv
///
/// A first order recurrence is a formula with the form: X_n = f(X_(n-1))
///
/// A couple of notes on subtleties in that definition:
/// * The Step does not have to be loop invariant.  In math terms, it can
///   be a free variable.  We allow recurrences with both constant and
///   variable coefficients. Callers may wish to filter cases where Step
///   does not dominate P.
/// * For non-commutative operators, we will match both forms.  This
///   results in some odd recurrence structures.  Callers may wish to filter
///   out recurrences where the phi is not the LHS of the returned operator.
/// * Because of the structure matched, the caller can assume as a post
///   condition of the match the presence of a Loop with P's parent as it's
///   header *except* in unreachable code.  (Dominance decays in unreachable
///   code.)
///
/// NOTE: This is intentional simple.  If you want the ability to analyze
/// non-trivial loop conditons, see ScalarEvolution instead.
bool matchSimpleRecurrence(const PHINode *P, BinaryOperator *&BO, Value *&Start,
                           Value *&Step);

/// Analogous to the above, but starting from the binary operator
bool matchSimpleRecurrence(const BinaryOperator *I, PHINode *&P, Value *&Start,
                           Value *&Step);

/// Return true if RHS is known to be implied true by LHS.  Return false if
/// RHS is known to be implied false by LHS.  Otherwise, return std::nullopt if
/// no implication can be made. A & B must be i1 (boolean) values or a vector of
/// such values. Note that the truth table for implication is the same as <=u on
/// i1 values (but not
/// <=s!).  The truth table for both is:
///    | T | F (B)
///  T | T | F
///  F | T | T
/// (A)
std::optional<bool> isImpliedCondition(const Value *LHS, const Value *RHS,
                                       const DataLayout &DL,
                                       bool LHSIsTrue = true,
                                       unsigned Depth = 0);
std::optional<bool> isImpliedCondition(const Value *LHS,
                                       CmpInst::Predicate RHSPred,
                                       const Value *RHSOp0, const Value *RHSOp1,
                                       const DataLayout &DL,
                                       bool LHSIsTrue = true,
                                       unsigned Depth = 0);

/// Return the boolean condition value in the context of the given instruction
/// if it is known based on dominating conditions.
std::optional<bool> isImpliedByDomCondition(const Value *Cond,
                                            const Instruction *ContextI,
                                            const DataLayout &DL);
std::optional<bool> isImpliedByDomCondition(CmpInst::Predicate Pred,
                                            const Value *LHS, const Value *RHS,
                                            const Instruction *ContextI,
                                            const DataLayout &DL);
} // end namespace llvm

#endif // LLVM_ANALYSIS_VALUETRACKING_H