aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/CodeGen/RegAllocFast.cpp
blob: e81d4793013682a9b3fca9edbc29127a95e98cff (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
//===- RegAllocFast.cpp - A fast register allocator for debug code --------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file This register allocator allocates registers to a basic block at a
/// time, attempting to keep values in registers and reusing registers as
/// appropriate.
//
//===----------------------------------------------------------------------===//

#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/IndexedMap.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/SparseSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RegAllocCommon.h"
#include "llvm/CodeGen/RegAllocRegistry.h"
#include "llvm/CodeGen/RegisterClassInfo.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/InitializePasses.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <tuple>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "regalloc"

STATISTIC(NumStores, "Number of stores added");
STATISTIC(NumLoads, "Number of loads added");
STATISTIC(NumCoalesced, "Number of copies coalesced");

// FIXME: Remove this switch when all testcases are fixed!
static cl::opt<bool> IgnoreMissingDefs("rafast-ignore-missing-defs",
                                       cl::Hidden);

static RegisterRegAlloc fastRegAlloc("fast", "fast register allocator",
                                     createFastRegisterAllocator);

namespace {

/// Assign ascending index for instructions in machine basic block. The index
/// can be used to determine dominance between instructions in same MBB.
class InstrPosIndexes {
public:
  void unsetInitialized() { IsInitialized = false; }

  void init(const MachineBasicBlock &MBB) {
    CurMBB = &MBB;
    Instr2PosIndex.clear();
    uint64_t LastIndex = 0;
    for (const MachineInstr &MI : MBB) {
      LastIndex += InstrDist;
      Instr2PosIndex[&MI] = LastIndex;
    }
  }

  /// Set \p Index to index of \p MI. If \p MI is new inserted, it try to assign
  /// index without affecting existing instruction's index. Return true if all
  /// instructions index has been reassigned.
  bool getIndex(const MachineInstr &MI, uint64_t &Index) {
    if (!IsInitialized) {
      init(*MI.getParent());
      IsInitialized = true;
      Index = Instr2PosIndex.at(&MI);
      return true;
    }

    assert(MI.getParent() == CurMBB && "MI is not in CurMBB");
    auto It = Instr2PosIndex.find(&MI);
    if (It != Instr2PosIndex.end()) {
      Index = It->second;
      return false;
    }

    // Distance is the number of consecutive unassigned instructions including
    // MI. Start is the first instruction of them. End is the next of last
    // instruction of them.
    // e.g.
    // |Instruction|  A   |  B   |  C   |  MI  |  D   |  E   |
    // |   Index   | 1024 |      |      |      |      | 2048 |
    //
    // In this case, B, C, MI, D are unassigned. Distance is 4, Start is B, End
    // is E.
    unsigned Distance = 1;
    MachineBasicBlock::const_iterator Start = MI.getIterator(),
                                      End = std::next(Start);
    while (Start != CurMBB->begin() &&
           !Instr2PosIndex.count(&*std::prev(Start))) {
      --Start;
      ++Distance;
    }
    while (End != CurMBB->end() && !Instr2PosIndex.count(&*(End))) {
      ++End;
      ++Distance;
    }

    // LastIndex is initialized to last used index prior to MI or zero.
    // In previous example, LastIndex is 1024, EndIndex is 2048;
    uint64_t LastIndex =
        Start == CurMBB->begin() ? 0 : Instr2PosIndex.at(&*std::prev(Start));
    uint64_t Step;
    if (End == CurMBB->end())
      Step = static_cast<uint64_t>(InstrDist);
    else {
      // No instruction uses index zero.
      uint64_t EndIndex = Instr2PosIndex.at(&*End);
      assert(EndIndex > LastIndex && "Index must be ascending order");
      unsigned NumAvailableIndexes = EndIndex - LastIndex - 1;
      // We want index gap between two adjacent MI is as same as possible. Given
      // total A available indexes, D is number of consecutive unassigned
      // instructions, S is the step.
      // |<- S-1 -> MI <- S-1 -> MI <- A-S*D ->|
      // There're S-1 available indexes between unassigned instruction and its
      // predecessor. There're A-S*D available indexes between the last
      // unassigned instruction and its successor.
      // Ideally, we want
      //    S-1 = A-S*D
      // then
      //    S = (A+1)/(D+1)
      // An valid S must be integer greater than zero, so
      //    S <= (A+1)/(D+1)
      // =>
      //    A-S*D >= 0
      // That means we can safely use (A+1)/(D+1) as step.
      // In previous example, Step is 204, Index of B, C, MI, D is 1228, 1432,
      // 1636, 1840.
      Step = (NumAvailableIndexes + 1) / (Distance + 1);
    }

    // Reassign index for all instructions if number of new inserted
    // instructions exceed slot or all instructions are new.
    if (LLVM_UNLIKELY(!Step || (!LastIndex && Step == InstrDist))) {
      init(*CurMBB);
      Index = Instr2PosIndex.at(&MI);
      return true;
    }

    for (auto I = Start; I != End; ++I) {
      LastIndex += Step;
      Instr2PosIndex[&*I] = LastIndex;
    }
    Index = Instr2PosIndex.at(&MI);
    return false;
  }

private:
  bool IsInitialized = false;
  enum { InstrDist = 1024 };
  const MachineBasicBlock *CurMBB = nullptr;
  DenseMap<const MachineInstr *, uint64_t> Instr2PosIndex;
};

class RegAllocFast : public MachineFunctionPass {
public:
  static char ID;

  RegAllocFast(const RegClassFilterFunc F = allocateAllRegClasses,
               bool ClearVirtRegs_ = true)
      : MachineFunctionPass(ID), ShouldAllocateClass(F),
        StackSlotForVirtReg(-1), ClearVirtRegs(ClearVirtRegs_) {}

private:
  MachineFrameInfo *MFI = nullptr;
  MachineRegisterInfo *MRI = nullptr;
  const TargetRegisterInfo *TRI = nullptr;
  const TargetInstrInfo *TII = nullptr;
  RegisterClassInfo RegClassInfo;
  const RegClassFilterFunc ShouldAllocateClass;

  /// Basic block currently being allocated.
  MachineBasicBlock *MBB = nullptr;

  /// Maps virtual regs to the frame index where these values are spilled.
  IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg;

  bool ClearVirtRegs;

  /// Everything we know about a live virtual register.
  struct LiveReg {
    MachineInstr *LastUse = nullptr; ///< Last instr to use reg.
    Register VirtReg;                ///< Virtual register number.
    MCPhysReg PhysReg = 0;           ///< Currently held here.
    bool LiveOut = false;            ///< Register is possibly live out.
    bool Reloaded = false;           ///< Register was reloaded.
    bool Error = false;              ///< Could not allocate.

    explicit LiveReg(Register VirtReg) : VirtReg(VirtReg) {}

    unsigned getSparseSetIndex() const {
      return Register::virtReg2Index(VirtReg);
    }
  };

  using LiveRegMap = SparseSet<LiveReg, identity<unsigned>, uint16_t>;
  /// This map contains entries for each virtual register that is currently
  /// available in a physical register.
  LiveRegMap LiveVirtRegs;

  /// Stores assigned virtual registers present in the bundle MI.
  DenseMap<Register, MCPhysReg> BundleVirtRegsMap;

  DenseMap<unsigned, SmallVector<MachineOperand *, 2>> LiveDbgValueMap;
  /// List of DBG_VALUE that we encountered without the vreg being assigned
  /// because they were placed after the last use of the vreg.
  DenseMap<unsigned, SmallVector<MachineInstr *, 1>> DanglingDbgValues;

  /// Has a bit set for every virtual register for which it was determined
  /// that it is alive across blocks.
  BitVector MayLiveAcrossBlocks;

  /// State of a register unit.
  enum RegUnitState {
    /// A free register is not currently in use and can be allocated
    /// immediately without checking aliases.
    regFree,

    /// A pre-assigned register has been assigned before register allocation
    /// (e.g., setting up a call parameter).
    regPreAssigned,

    /// Used temporarily in reloadAtBegin() to mark register units that are
    /// live-in to the basic block.
    regLiveIn,

    /// A register state may also be a virtual register number, indication
    /// that the physical register is currently allocated to a virtual
    /// register. In that case, LiveVirtRegs contains the inverse mapping.
  };

  /// Maps each physical register to a RegUnitState enum or virtual register.
  std::vector<unsigned> RegUnitStates;

  SmallVector<MachineInstr *, 32> Coalesced;

  using RegUnitSet = SparseSet<uint16_t, identity<uint16_t>>;
  /// Set of register units that are used in the current instruction, and so
  /// cannot be allocated.
  RegUnitSet UsedInInstr;
  RegUnitSet PhysRegUses;
  SmallVector<uint16_t, 8> DefOperandIndexes;
  // Register masks attached to the current instruction.
  SmallVector<const uint32_t *> RegMasks;

  // Assign index for each instruction to quickly determine dominance.
  InstrPosIndexes PosIndexes;

  void setPhysRegState(MCPhysReg PhysReg, unsigned NewState);
  bool isPhysRegFree(MCPhysReg PhysReg) const;

  /// Mark a physreg as used in this instruction.
  void markRegUsedInInstr(MCPhysReg PhysReg) {
    for (MCRegUnit Unit : TRI->regunits(PhysReg))
      UsedInInstr.insert(Unit);
  }

  // Check if physreg is clobbered by instruction's regmask(s).
  bool isClobberedByRegMasks(MCPhysReg PhysReg) const {
    return llvm::any_of(RegMasks, [PhysReg](const uint32_t *Mask) {
      return MachineOperand::clobbersPhysReg(Mask, PhysReg);
    });
  }

  /// Check if a physreg or any of its aliases are used in this instruction.
  bool isRegUsedInInstr(MCPhysReg PhysReg, bool LookAtPhysRegUses) const {
    if (LookAtPhysRegUses && isClobberedByRegMasks(PhysReg))
      return true;
    for (MCRegUnit Unit : TRI->regunits(PhysReg)) {
      if (UsedInInstr.count(Unit))
        return true;
      if (LookAtPhysRegUses && PhysRegUses.count(Unit))
        return true;
    }
    return false;
  }

  /// Mark physical register as being used in a register use operand.
  /// This is only used by the special livethrough handling code.
  void markPhysRegUsedInInstr(MCPhysReg PhysReg) {
    for (MCRegUnit Unit : TRI->regunits(PhysReg))
      PhysRegUses.insert(Unit);
  }

  /// Remove mark of physical register being used in the instruction.
  void unmarkRegUsedInInstr(MCPhysReg PhysReg) {
    for (MCRegUnit Unit : TRI->regunits(PhysReg))
      UsedInInstr.erase(Unit);
  }

  enum : unsigned {
    spillClean = 50,
    spillDirty = 100,
    spillPrefBonus = 20,
    spillImpossible = ~0u
  };

public:
  StringRef getPassName() const override { return "Fast Register Allocator"; }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.setPreservesCFG();
    MachineFunctionPass::getAnalysisUsage(AU);
  }

  MachineFunctionProperties getRequiredProperties() const override {
    return MachineFunctionProperties().set(
        MachineFunctionProperties::Property::NoPHIs);
  }

  MachineFunctionProperties getSetProperties() const override {
    if (ClearVirtRegs) {
      return MachineFunctionProperties().set(
          MachineFunctionProperties::Property::NoVRegs);
    }

    return MachineFunctionProperties();
  }

  MachineFunctionProperties getClearedProperties() const override {
    return MachineFunctionProperties().set(
        MachineFunctionProperties::Property::IsSSA);
  }

private:
  bool runOnMachineFunction(MachineFunction &MF) override;

  void allocateBasicBlock(MachineBasicBlock &MBB);

  void addRegClassDefCounts(std::vector<unsigned> &RegClassDefCounts,
                            Register Reg) const;

  void findAndSortDefOperandIndexes(const MachineInstr &MI);

  void allocateInstruction(MachineInstr &MI);
  void handleDebugValue(MachineInstr &MI);
  void handleBundle(MachineInstr &MI);

  bool usePhysReg(MachineInstr &MI, MCPhysReg PhysReg);
  bool definePhysReg(MachineInstr &MI, MCPhysReg PhysReg);
  bool displacePhysReg(MachineInstr &MI, MCPhysReg PhysReg);
  void freePhysReg(MCPhysReg PhysReg);

  unsigned calcSpillCost(MCPhysReg PhysReg) const;

  LiveRegMap::iterator findLiveVirtReg(Register VirtReg) {
    return LiveVirtRegs.find(Register::virtReg2Index(VirtReg));
  }

  LiveRegMap::const_iterator findLiveVirtReg(Register VirtReg) const {
    return LiveVirtRegs.find(Register::virtReg2Index(VirtReg));
  }

  void assignVirtToPhysReg(MachineInstr &MI, LiveReg &, MCPhysReg PhysReg);
  void allocVirtReg(MachineInstr &MI, LiveReg &LR, Register Hint,
                    bool LookAtPhysRegUses = false);
  void allocVirtRegUndef(MachineOperand &MO);
  void assignDanglingDebugValues(MachineInstr &Def, Register VirtReg,
                                 MCPhysReg Reg);
  bool defineLiveThroughVirtReg(MachineInstr &MI, unsigned OpNum,
                                Register VirtReg);
  bool defineVirtReg(MachineInstr &MI, unsigned OpNum, Register VirtReg,
                     bool LookAtPhysRegUses = false);
  bool useVirtReg(MachineInstr &MI, MachineOperand &MO, Register VirtReg);

  MachineBasicBlock::iterator
  getMBBBeginInsertionPoint(MachineBasicBlock &MBB,
                            SmallSet<Register, 2> &PrologLiveIns) const;

  void reloadAtBegin(MachineBasicBlock &MBB);
  bool setPhysReg(MachineInstr &MI, MachineOperand &MO, MCPhysReg PhysReg);

  Register traceCopies(Register VirtReg) const;
  Register traceCopyChain(Register Reg) const;

  bool shouldAllocateRegister(const Register Reg) const;
  int getStackSpaceFor(Register VirtReg);
  void spill(MachineBasicBlock::iterator Before, Register VirtReg,
             MCPhysReg AssignedReg, bool Kill, bool LiveOut);
  void reload(MachineBasicBlock::iterator Before, Register VirtReg,
              MCPhysReg PhysReg);

  bool mayLiveOut(Register VirtReg);
  bool mayLiveIn(Register VirtReg);

  void dumpState() const;
};

} // end anonymous namespace

char RegAllocFast::ID = 0;

INITIALIZE_PASS(RegAllocFast, "regallocfast", "Fast Register Allocator", false,
                false)

bool RegAllocFast::shouldAllocateRegister(const Register Reg) const {
  assert(Reg.isVirtual());
  const TargetRegisterClass &RC = *MRI->getRegClass(Reg);
  return ShouldAllocateClass(*TRI, RC);
}

void RegAllocFast::setPhysRegState(MCPhysReg PhysReg, unsigned NewState) {
  for (MCRegUnit Unit : TRI->regunits(PhysReg))
    RegUnitStates[Unit] = NewState;
}

bool RegAllocFast::isPhysRegFree(MCPhysReg PhysReg) const {
  for (MCRegUnit Unit : TRI->regunits(PhysReg)) {
    if (RegUnitStates[Unit] != regFree)
      return false;
  }
  return true;
}

/// This allocates space for the specified virtual register to be held on the
/// stack.
int RegAllocFast::getStackSpaceFor(Register VirtReg) {
  // Find the location Reg would belong...
  int SS = StackSlotForVirtReg[VirtReg];
  // Already has space allocated?
  if (SS != -1)
    return SS;

  // Allocate a new stack object for this spill location...
  const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
  unsigned Size = TRI->getSpillSize(RC);
  Align Alignment = TRI->getSpillAlign(RC);
  int FrameIdx = MFI->CreateSpillStackObject(Size, Alignment);

  // Assign the slot.
  StackSlotForVirtReg[VirtReg] = FrameIdx;
  return FrameIdx;
}

static bool dominates(InstrPosIndexes &PosIndexes, const MachineInstr &A,
                      const MachineInstr &B) {
  uint64_t IndexA, IndexB;
  PosIndexes.getIndex(A, IndexA);
  if (LLVM_UNLIKELY(PosIndexes.getIndex(B, IndexB)))
    PosIndexes.getIndex(A, IndexA);
  return IndexA < IndexB;
}

/// Returns false if \p VirtReg is known to not live out of the current block.
bool RegAllocFast::mayLiveOut(Register VirtReg) {
  if (MayLiveAcrossBlocks.test(Register::virtReg2Index(VirtReg))) {
    // Cannot be live-out if there are no successors.
    return !MBB->succ_empty();
  }

  const MachineInstr *SelfLoopDef = nullptr;

  // If this block loops back to itself, it is necessary to check whether the
  // use comes after the def.
  if (MBB->isSuccessor(MBB)) {
    // Find the first def in the self loop MBB.
    for (const MachineInstr &DefInst : MRI->def_instructions(VirtReg)) {
      if (DefInst.getParent() != MBB) {
        MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg));
        return true;
      } else {
        if (!SelfLoopDef || dominates(PosIndexes, DefInst, *SelfLoopDef))
          SelfLoopDef = &DefInst;
      }
    }
    if (!SelfLoopDef) {
      MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg));
      return true;
    }
  }

  // See if the first \p Limit uses of the register are all in the current
  // block.
  static const unsigned Limit = 8;
  unsigned C = 0;
  for (const MachineInstr &UseInst : MRI->use_nodbg_instructions(VirtReg)) {
    if (UseInst.getParent() != MBB || ++C >= Limit) {
      MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg));
      // Cannot be live-out if there are no successors.
      return !MBB->succ_empty();
    }

    if (SelfLoopDef) {
      // Try to handle some simple cases to avoid spilling and reloading every
      // value inside a self looping block.
      if (SelfLoopDef == &UseInst ||
          !dominates(PosIndexes, *SelfLoopDef, UseInst)) {
        MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg));
        return true;
      }
    }
  }

  return false;
}

/// Returns false if \p VirtReg is known to not be live into the current block.
bool RegAllocFast::mayLiveIn(Register VirtReg) {
  if (MayLiveAcrossBlocks.test(Register::virtReg2Index(VirtReg)))
    return !MBB->pred_empty();

  // See if the first \p Limit def of the register are all in the current block.
  static const unsigned Limit = 8;
  unsigned C = 0;
  for (const MachineInstr &DefInst : MRI->def_instructions(VirtReg)) {
    if (DefInst.getParent() != MBB || ++C >= Limit) {
      MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg));
      return !MBB->pred_empty();
    }
  }

  return false;
}

/// Insert spill instruction for \p AssignedReg before \p Before. Update
/// DBG_VALUEs with \p VirtReg operands with the stack slot.
void RegAllocFast::spill(MachineBasicBlock::iterator Before, Register VirtReg,
                         MCPhysReg AssignedReg, bool Kill, bool LiveOut) {
  LLVM_DEBUG(dbgs() << "Spilling " << printReg(VirtReg, TRI) << " in "
                    << printReg(AssignedReg, TRI));
  int FI = getStackSpaceFor(VirtReg);
  LLVM_DEBUG(dbgs() << " to stack slot #" << FI << '\n');

  const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
  TII->storeRegToStackSlot(*MBB, Before, AssignedReg, Kill, FI, &RC, TRI,
                           VirtReg);
  ++NumStores;

  MachineBasicBlock::iterator FirstTerm = MBB->getFirstTerminator();

  // When we spill a virtual register, we will have spill instructions behind
  // every definition of it, meaning we can switch all the DBG_VALUEs over
  // to just reference the stack slot.
  SmallVectorImpl<MachineOperand *> &LRIDbgOperands = LiveDbgValueMap[VirtReg];
  SmallMapVector<MachineInstr *, SmallVector<const MachineOperand *>, 2>
      SpilledOperandsMap;
  for (MachineOperand *MO : LRIDbgOperands)
    SpilledOperandsMap[MO->getParent()].push_back(MO);
  for (auto MISpilledOperands : SpilledOperandsMap) {
    MachineInstr &DBG = *MISpilledOperands.first;
    // We don't have enough support for tracking operands of DBG_VALUE_LISTs.
    if (DBG.isDebugValueList())
      continue;
    MachineInstr *NewDV = buildDbgValueForSpill(
        *MBB, Before, *MISpilledOperands.first, FI, MISpilledOperands.second);
    assert(NewDV->getParent() == MBB && "dangling parent pointer");
    (void)NewDV;
    LLVM_DEBUG(dbgs() << "Inserting debug info due to spill:\n" << *NewDV);

    if (LiveOut) {
      // We need to insert a DBG_VALUE at the end of the block if the spill slot
      // is live out, but there is another use of the value after the
      // spill. This will allow LiveDebugValues to see the correct live out
      // value to propagate to the successors.
      MachineInstr *ClonedDV = MBB->getParent()->CloneMachineInstr(NewDV);
      MBB->insert(FirstTerm, ClonedDV);
      LLVM_DEBUG(dbgs() << "Cloning debug info due to live out spill\n");
    }

    // Rewrite unassigned dbg_values to use the stack slot.
    // TODO We can potentially do this for list debug values as well if we know
    // how the dbg_values are getting unassigned.
    if (DBG.isNonListDebugValue()) {
      MachineOperand &MO = DBG.getDebugOperand(0);
      if (MO.isReg() && MO.getReg() == 0) {
        updateDbgValueForSpill(DBG, FI, 0);
      }
    }
  }
  // Now this register is spilled there is should not be any DBG_VALUE
  // pointing to this register because they are all pointing to spilled value
  // now.
  LRIDbgOperands.clear();
}

/// Insert reload instruction for \p PhysReg before \p Before.
void RegAllocFast::reload(MachineBasicBlock::iterator Before, Register VirtReg,
                          MCPhysReg PhysReg) {
  LLVM_DEBUG(dbgs() << "Reloading " << printReg(VirtReg, TRI) << " into "
                    << printReg(PhysReg, TRI) << '\n');
  int FI = getStackSpaceFor(VirtReg);
  const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
  TII->loadRegFromStackSlot(*MBB, Before, PhysReg, FI, &RC, TRI, VirtReg);
  ++NumLoads;
}

/// Get basic block begin insertion point.
/// This is not just MBB.begin() because surprisingly we have EH_LABEL
/// instructions marking the begin of a basic block. This means we must insert
/// new instructions after such labels...
MachineBasicBlock::iterator RegAllocFast::getMBBBeginInsertionPoint(
    MachineBasicBlock &MBB, SmallSet<Register, 2> &PrologLiveIns) const {
  MachineBasicBlock::iterator I = MBB.begin();
  while (I != MBB.end()) {
    if (I->isLabel()) {
      ++I;
      continue;
    }

    // Most reloads should be inserted after prolog instructions.
    if (!TII->isBasicBlockPrologue(*I))
      break;

    // However if a prolog instruction reads a register that needs to be
    // reloaded, the reload should be inserted before the prolog.
    for (MachineOperand &MO : I->operands()) {
      if (MO.isReg())
        PrologLiveIns.insert(MO.getReg());
    }

    ++I;
  }

  return I;
}

/// Reload all currently assigned virtual registers.
void RegAllocFast::reloadAtBegin(MachineBasicBlock &MBB) {
  if (LiveVirtRegs.empty())
    return;

  for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) {
    MCPhysReg Reg = P.PhysReg;
    // Set state to live-in. This possibly overrides mappings to virtual
    // registers but we don't care anymore at this point.
    setPhysRegState(Reg, regLiveIn);
  }

  SmallSet<Register, 2> PrologLiveIns;

  // The LiveRegMap is keyed by an unsigned (the virtreg number), so the order
  // of spilling here is deterministic, if arbitrary.
  MachineBasicBlock::iterator InsertBefore =
      getMBBBeginInsertionPoint(MBB, PrologLiveIns);
  for (const LiveReg &LR : LiveVirtRegs) {
    MCPhysReg PhysReg = LR.PhysReg;
    if (PhysReg == 0)
      continue;

    MCRegister FirstUnit = *TRI->regunits(PhysReg).begin();
    if (RegUnitStates[FirstUnit] == regLiveIn)
      continue;

    assert((&MBB != &MBB.getParent()->front() || IgnoreMissingDefs) &&
           "no reload in start block. Missing vreg def?");

    if (PrologLiveIns.count(PhysReg)) {
      // FIXME: Theoretically this should use an insert point skipping labels
      // but I'm not sure how labels should interact with prolog instruction
      // that need reloads.
      reload(MBB.begin(), LR.VirtReg, PhysReg);
    } else
      reload(InsertBefore, LR.VirtReg, PhysReg);
  }
  LiveVirtRegs.clear();
}

/// Handle the direct use of a physical register.  Check that the register is
/// not used by a virtreg. Kill the physreg, marking it free. This may add
/// implicit kills to MO->getParent() and invalidate MO.
bool RegAllocFast::usePhysReg(MachineInstr &MI, MCPhysReg Reg) {
  assert(Register::isPhysicalRegister(Reg) && "expected physreg");
  bool displacedAny = displacePhysReg(MI, Reg);
  setPhysRegState(Reg, regPreAssigned);
  markRegUsedInInstr(Reg);
  return displacedAny;
}

bool RegAllocFast::definePhysReg(MachineInstr &MI, MCPhysReg Reg) {
  bool displacedAny = displacePhysReg(MI, Reg);
  setPhysRegState(Reg, regPreAssigned);
  return displacedAny;
}

/// Mark PhysReg as reserved or free after spilling any virtregs. This is very
/// similar to defineVirtReg except the physreg is reserved instead of
/// allocated.
bool RegAllocFast::displacePhysReg(MachineInstr &MI, MCPhysReg PhysReg) {
  bool displacedAny = false;

  for (MCRegUnit Unit : TRI->regunits(PhysReg)) {
    switch (unsigned VirtReg = RegUnitStates[Unit]) {
    default: {
      LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
      assert(LRI != LiveVirtRegs.end() && "datastructures in sync");
      MachineBasicBlock::iterator ReloadBefore =
          std::next((MachineBasicBlock::iterator)MI.getIterator());
      reload(ReloadBefore, VirtReg, LRI->PhysReg);

      setPhysRegState(LRI->PhysReg, regFree);
      LRI->PhysReg = 0;
      LRI->Reloaded = true;
      displacedAny = true;
      break;
    }
    case regPreAssigned:
      RegUnitStates[Unit] = regFree;
      displacedAny = true;
      break;
    case regFree:
      break;
    }
  }
  return displacedAny;
}

void RegAllocFast::freePhysReg(MCPhysReg PhysReg) {
  LLVM_DEBUG(dbgs() << "Freeing " << printReg(PhysReg, TRI) << ':');

  MCRegister FirstUnit = *TRI->regunits(PhysReg).begin();
  switch (unsigned VirtReg = RegUnitStates[FirstUnit]) {
  case regFree:
    LLVM_DEBUG(dbgs() << '\n');
    return;
  case regPreAssigned:
    LLVM_DEBUG(dbgs() << '\n');
    setPhysRegState(PhysReg, regFree);
    return;
  default: {
    LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
    assert(LRI != LiveVirtRegs.end());
    LLVM_DEBUG(dbgs() << ' ' << printReg(LRI->VirtReg, TRI) << '\n');
    setPhysRegState(LRI->PhysReg, regFree);
    LRI->PhysReg = 0;
  }
    return;
  }
}

/// Return the cost of spilling clearing out PhysReg and aliases so it is free
/// for allocation. Returns 0 when PhysReg is free or disabled with all aliases
/// disabled - it can be allocated directly.
/// \returns spillImpossible when PhysReg or an alias can't be spilled.
unsigned RegAllocFast::calcSpillCost(MCPhysReg PhysReg) const {
  for (MCRegUnit Unit : TRI->regunits(PhysReg)) {
    switch (unsigned VirtReg = RegUnitStates[Unit]) {
    case regFree:
      break;
    case regPreAssigned:
      LLVM_DEBUG(dbgs() << "Cannot spill pre-assigned "
                        << printReg(PhysReg, TRI) << '\n');
      return spillImpossible;
    default: {
      bool SureSpill = StackSlotForVirtReg[VirtReg] != -1 ||
                       findLiveVirtReg(VirtReg)->LiveOut;
      return SureSpill ? spillClean : spillDirty;
    }
    }
  }
  return 0;
}

void RegAllocFast::assignDanglingDebugValues(MachineInstr &Definition,
                                             Register VirtReg, MCPhysReg Reg) {
  auto UDBGValIter = DanglingDbgValues.find(VirtReg);
  if (UDBGValIter == DanglingDbgValues.end())
    return;

  SmallVectorImpl<MachineInstr *> &Dangling = UDBGValIter->second;
  for (MachineInstr *DbgValue : Dangling) {
    assert(DbgValue->isDebugValue());
    if (!DbgValue->hasDebugOperandForReg(VirtReg))
      continue;

    // Test whether the physreg survives from the definition to the DBG_VALUE.
    MCPhysReg SetToReg = Reg;
    unsigned Limit = 20;
    for (MachineBasicBlock::iterator I = std::next(Definition.getIterator()),
                                     E = DbgValue->getIterator();
         I != E; ++I) {
      if (I->modifiesRegister(Reg, TRI) || --Limit == 0) {
        LLVM_DEBUG(dbgs() << "Register did not survive for " << *DbgValue
                          << '\n');
        SetToReg = 0;
        break;
      }
    }
    for (MachineOperand &MO : DbgValue->getDebugOperandsForReg(VirtReg)) {
      MO.setReg(SetToReg);
      if (SetToReg != 0)
        MO.setIsRenamable();
    }
  }
  Dangling.clear();
}

/// This method updates local state so that we know that PhysReg is the
/// proper container for VirtReg now.  The physical register must not be used
/// for anything else when this is called.
void RegAllocFast::assignVirtToPhysReg(MachineInstr &AtMI, LiveReg &LR,
                                       MCPhysReg PhysReg) {
  Register VirtReg = LR.VirtReg;
  LLVM_DEBUG(dbgs() << "Assigning " << printReg(VirtReg, TRI) << " to "
                    << printReg(PhysReg, TRI) << '\n');
  assert(LR.PhysReg == 0 && "Already assigned a physreg");
  assert(PhysReg != 0 && "Trying to assign no register");
  LR.PhysReg = PhysReg;
  setPhysRegState(PhysReg, VirtReg);

  assignDanglingDebugValues(AtMI, VirtReg, PhysReg);
}

static bool isCoalescable(const MachineInstr &MI) { return MI.isFullCopy(); }

Register RegAllocFast::traceCopyChain(Register Reg) const {
  static const unsigned ChainLengthLimit = 3;
  unsigned C = 0;
  do {
    if (Reg.isPhysical())
      return Reg;
    assert(Reg.isVirtual());

    MachineInstr *VRegDef = MRI->getUniqueVRegDef(Reg);
    if (!VRegDef || !isCoalescable(*VRegDef))
      return 0;
    Reg = VRegDef->getOperand(1).getReg();
  } while (++C <= ChainLengthLimit);
  return 0;
}

/// Check if any of \p VirtReg's definitions is a copy. If it is follow the
/// chain of copies to check whether we reach a physical register we can
/// coalesce with.
Register RegAllocFast::traceCopies(Register VirtReg) const {
  static const unsigned DefLimit = 3;
  unsigned C = 0;
  for (const MachineInstr &MI : MRI->def_instructions(VirtReg)) {
    if (isCoalescable(MI)) {
      Register Reg = MI.getOperand(1).getReg();
      Reg = traceCopyChain(Reg);
      if (Reg.isValid())
        return Reg;
    }

    if (++C >= DefLimit)
      break;
  }
  return Register();
}

/// Allocates a physical register for VirtReg.
void RegAllocFast::allocVirtReg(MachineInstr &MI, LiveReg &LR, Register Hint0,
                                bool LookAtPhysRegUses) {
  const Register VirtReg = LR.VirtReg;
  assert(LR.PhysReg == 0);

  const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
  LLVM_DEBUG(dbgs() << "Search register for " << printReg(VirtReg)
                    << " in class " << TRI->getRegClassName(&RC)
                    << " with hint " << printReg(Hint0, TRI) << '\n');

  // Take hint when possible.
  if (Hint0.isPhysical() && MRI->isAllocatable(Hint0) && RC.contains(Hint0) &&
      !isRegUsedInInstr(Hint0, LookAtPhysRegUses)) {
    // Take hint if the register is currently free.
    if (isPhysRegFree(Hint0)) {
      LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint0, TRI)
                        << '\n');
      assignVirtToPhysReg(MI, LR, Hint0);
      return;
    } else {
      LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint0, TRI)
                        << " occupied\n");
    }
  } else {
    Hint0 = Register();
  }

  // Try other hint.
  Register Hint1 = traceCopies(VirtReg);
  if (Hint1.isPhysical() && MRI->isAllocatable(Hint1) && RC.contains(Hint1) &&
      !isRegUsedInInstr(Hint1, LookAtPhysRegUses)) {
    // Take hint if the register is currently free.
    if (isPhysRegFree(Hint1)) {
      LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint1, TRI)
                        << '\n');
      assignVirtToPhysReg(MI, LR, Hint1);
      return;
    } else {
      LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint1, TRI)
                        << " occupied\n");
    }
  } else {
    Hint1 = Register();
  }

  MCPhysReg BestReg = 0;
  unsigned BestCost = spillImpossible;
  ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC);
  for (MCPhysReg PhysReg : AllocationOrder) {
    LLVM_DEBUG(dbgs() << "\tRegister: " << printReg(PhysReg, TRI) << ' ');
    if (isRegUsedInInstr(PhysReg, LookAtPhysRegUses)) {
      LLVM_DEBUG(dbgs() << "already used in instr.\n");
      continue;
    }

    unsigned Cost = calcSpillCost(PhysReg);
    LLVM_DEBUG(dbgs() << "Cost: " << Cost << " BestCost: " << BestCost << '\n');
    // Immediate take a register with cost 0.
    if (Cost == 0) {
      assignVirtToPhysReg(MI, LR, PhysReg);
      return;
    }

    if (PhysReg == Hint0 || PhysReg == Hint1)
      Cost -= spillPrefBonus;

    if (Cost < BestCost) {
      BestReg = PhysReg;
      BestCost = Cost;
    }
  }

  if (!BestReg) {
    // Nothing we can do: Report an error and keep going with an invalid
    // allocation.
    if (MI.isInlineAsm())
      MI.emitError("inline assembly requires more registers than available");
    else
      MI.emitError("ran out of registers during register allocation");

    LR.Error = true;
    LR.PhysReg = 0;
    return;
  }

  displacePhysReg(MI, BestReg);
  assignVirtToPhysReg(MI, LR, BestReg);
}

void RegAllocFast::allocVirtRegUndef(MachineOperand &MO) {
  assert(MO.isUndef() && "expected undef use");
  Register VirtReg = MO.getReg();
  assert(VirtReg.isVirtual() && "Expected virtreg");
  if (!shouldAllocateRegister(VirtReg))
    return;

  LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg);
  MCPhysReg PhysReg;
  if (LRI != LiveVirtRegs.end() && LRI->PhysReg) {
    PhysReg = LRI->PhysReg;
  } else {
    const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
    ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC);
    assert(!AllocationOrder.empty() && "Allocation order must not be empty");
    PhysReg = AllocationOrder[0];
  }

  unsigned SubRegIdx = MO.getSubReg();
  if (SubRegIdx != 0) {
    PhysReg = TRI->getSubReg(PhysReg, SubRegIdx);
    MO.setSubReg(0);
  }
  MO.setReg(PhysReg);
  MO.setIsRenamable(true);
}

/// Variation of defineVirtReg() with special handling for livethrough regs
/// (tied or earlyclobber) that may interfere with preassigned uses.
/// \return true if MI's MachineOperands were re-arranged/invalidated.
bool RegAllocFast::defineLiveThroughVirtReg(MachineInstr &MI, unsigned OpNum,
                                            Register VirtReg) {
  if (!shouldAllocateRegister(VirtReg))
    return false;
  LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
  if (LRI != LiveVirtRegs.end()) {
    MCPhysReg PrevReg = LRI->PhysReg;
    if (PrevReg != 0 && isRegUsedInInstr(PrevReg, true)) {
      LLVM_DEBUG(dbgs() << "Need new assignment for " << printReg(PrevReg, TRI)
                        << " (tied/earlyclobber resolution)\n");
      freePhysReg(PrevReg);
      LRI->PhysReg = 0;
      allocVirtReg(MI, *LRI, 0, true);
      MachineBasicBlock::iterator InsertBefore =
          std::next((MachineBasicBlock::iterator)MI.getIterator());
      LLVM_DEBUG(dbgs() << "Copy " << printReg(LRI->PhysReg, TRI) << " to "
                        << printReg(PrevReg, TRI) << '\n');
      BuildMI(*MBB, InsertBefore, MI.getDebugLoc(),
              TII->get(TargetOpcode::COPY), PrevReg)
          .addReg(LRI->PhysReg, llvm::RegState::Kill);
    }
    MachineOperand &MO = MI.getOperand(OpNum);
    if (MO.getSubReg() && !MO.isUndef()) {
      LRI->LastUse = &MI;
    }
  }
  return defineVirtReg(MI, OpNum, VirtReg, true);
}

/// Allocates a register for VirtReg definition. Typically the register is
/// already assigned from a use of the virtreg, however we still need to
/// perform an allocation if:
/// - It is a dead definition without any uses.
/// - The value is live out and all uses are in different basic blocks.
///
/// \return true if MI's MachineOperands were re-arranged/invalidated.
bool RegAllocFast::defineVirtReg(MachineInstr &MI, unsigned OpNum,
                                 Register VirtReg, bool LookAtPhysRegUses) {
  assert(VirtReg.isVirtual() && "Not a virtual register");
  if (!shouldAllocateRegister(VirtReg))
    return false;
  MachineOperand &MO = MI.getOperand(OpNum);
  LiveRegMap::iterator LRI;
  bool New;
  std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg));
  if (New) {
    if (!MO.isDead()) {
      if (mayLiveOut(VirtReg)) {
        LRI->LiveOut = true;
      } else {
        // It is a dead def without the dead flag; add the flag now.
        MO.setIsDead(true);
      }
    }
  }
  if (LRI->PhysReg == 0) {
    allocVirtReg(MI, *LRI, 0, LookAtPhysRegUses);
    // If no physical register is available for LRI, we assign one at random
    // and bail out of this function immediately.
    if (LRI->Error) {
      const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
      ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC);
      if (AllocationOrder.empty())
        return setPhysReg(MI, MO, MCRegister::NoRegister);
      return setPhysReg(MI, MO, *AllocationOrder.begin());
    }
  } else {
    assert(!isRegUsedInInstr(LRI->PhysReg, LookAtPhysRegUses) &&
           "TODO: preassign mismatch");
    LLVM_DEBUG(dbgs() << "In def of " << printReg(VirtReg, TRI)
                      << " use existing assignment to "
                      << printReg(LRI->PhysReg, TRI) << '\n');
  }

  MCPhysReg PhysReg = LRI->PhysReg;
  if (LRI->Reloaded || LRI->LiveOut) {
    if (!MI.isImplicitDef()) {
      MachineBasicBlock::iterator SpillBefore =
          std::next((MachineBasicBlock::iterator)MI.getIterator());
      LLVM_DEBUG(dbgs() << "Spill Reason: LO: " << LRI->LiveOut
                        << " RL: " << LRI->Reloaded << '\n');
      bool Kill = LRI->LastUse == nullptr;
      spill(SpillBefore, VirtReg, PhysReg, Kill, LRI->LiveOut);

      // We need to place additional spills for each indirect destination of an
      // INLINEASM_BR.
      if (MI.getOpcode() == TargetOpcode::INLINEASM_BR) {
        int FI = StackSlotForVirtReg[VirtReg];
        const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
        for (MachineOperand &MO : MI.operands()) {
          if (MO.isMBB()) {
            MachineBasicBlock *Succ = MO.getMBB();
            TII->storeRegToStackSlot(*Succ, Succ->begin(), PhysReg, Kill, FI,
                                     &RC, TRI, VirtReg);
            ++NumStores;
            Succ->addLiveIn(PhysReg);
          }
        }
      }

      LRI->LastUse = nullptr;
    }
    LRI->LiveOut = false;
    LRI->Reloaded = false;
  }
  if (MI.getOpcode() == TargetOpcode::BUNDLE) {
    BundleVirtRegsMap[VirtReg] = PhysReg;
  }
  markRegUsedInInstr(PhysReg);
  return setPhysReg(MI, MO, PhysReg);
}

/// Allocates a register for a VirtReg use.
/// \return true if MI's MachineOperands were re-arranged/invalidated.
bool RegAllocFast::useVirtReg(MachineInstr &MI, MachineOperand &MO,
                              Register VirtReg) {
  assert(VirtReg.isVirtual() && "Not a virtual register");
  if (!shouldAllocateRegister(VirtReg))
    return false;
  LiveRegMap::iterator LRI;
  bool New;
  std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg));
  if (New) {
    if (!MO.isKill()) {
      if (mayLiveOut(VirtReg)) {
        LRI->LiveOut = true;
      } else {
        // It is a last (killing) use without the kill flag; add the flag now.
        MO.setIsKill(true);
      }
    }
  } else {
    assert((!MO.isKill() || LRI->LastUse == &MI) && "Invalid kill flag");
  }

  // If necessary allocate a register.
  if (LRI->PhysReg == 0) {
    assert(!MO.isTied() && "tied op should be allocated");
    Register Hint;
    if (MI.isCopy() && MI.getOperand(1).getSubReg() == 0) {
      Hint = MI.getOperand(0).getReg();
      if (Hint.isVirtual()) {
        assert(!shouldAllocateRegister(Hint));
        Hint = Register();
      } else {
        assert(Hint.isPhysical() &&
               "Copy destination should already be assigned");
      }
    }
    allocVirtReg(MI, *LRI, Hint, false);
    if (LRI->Error) {
      const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
      ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC);
      if (AllocationOrder.empty())
        return setPhysReg(MI, MO, MCRegister::NoRegister);
      return setPhysReg(MI, MO, *AllocationOrder.begin());
    }
  }

  LRI->LastUse = &MI;

  if (MI.getOpcode() == TargetOpcode::BUNDLE) {
    BundleVirtRegsMap[VirtReg] = LRI->PhysReg;
  }
  markRegUsedInInstr(LRI->PhysReg);
  return setPhysReg(MI, MO, LRI->PhysReg);
}

/// Changes operand OpNum in MI the refer the PhysReg, considering subregs.
/// \return true if MI's MachineOperands were re-arranged/invalidated.
bool RegAllocFast::setPhysReg(MachineInstr &MI, MachineOperand &MO,
                              MCPhysReg PhysReg) {
  if (!MO.getSubReg()) {
    MO.setReg(PhysReg);
    MO.setIsRenamable(true);
    return false;
  }

  // Handle subregister index.
  MO.setReg(PhysReg ? TRI->getSubReg(PhysReg, MO.getSubReg()) : MCRegister());
  MO.setIsRenamable(true);
  // Note: We leave the subreg number around a little longer in case of defs.
  // This is so that the register freeing logic in allocateInstruction can still
  // recognize this as subregister defs. The code there will clear the number.
  if (!MO.isDef())
    MO.setSubReg(0);

  // A kill flag implies killing the full register. Add corresponding super
  // register kill.
  if (MO.isKill()) {
    MI.addRegisterKilled(PhysReg, TRI, true);
    // Conservatively assume implicit MOs were re-arranged
    return true;
  }

  // A <def,read-undef> of a sub-register requires an implicit def of the full
  // register.
  if (MO.isDef() && MO.isUndef()) {
    if (MO.isDead())
      MI.addRegisterDead(PhysReg, TRI, true);
    else
      MI.addRegisterDefined(PhysReg, TRI);
    // Conservatively assume implicit MOs were re-arranged
    return true;
  }
  return false;
}

#ifndef NDEBUG

void RegAllocFast::dumpState() const {
  for (unsigned Unit = 1, UnitE = TRI->getNumRegUnits(); Unit != UnitE;
       ++Unit) {
    switch (unsigned VirtReg = RegUnitStates[Unit]) {
    case regFree:
      break;
    case regPreAssigned:
      dbgs() << " " << printRegUnit(Unit, TRI) << "[P]";
      break;
    case regLiveIn:
      llvm_unreachable("Should not have regLiveIn in map");
    default: {
      dbgs() << ' ' << printRegUnit(Unit, TRI) << '=' << printReg(VirtReg);
      LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg);
      assert(I != LiveVirtRegs.end() && "have LiveVirtRegs entry");
      if (I->LiveOut || I->Reloaded) {
        dbgs() << '[';
        if (I->LiveOut)
          dbgs() << 'O';
        if (I->Reloaded)
          dbgs() << 'R';
        dbgs() << ']';
      }
      assert(TRI->hasRegUnit(I->PhysReg, Unit) && "inverse mapping present");
      break;
    }
    }
  }
  dbgs() << '\n';
  // Check that LiveVirtRegs is the inverse.
  for (const LiveReg &LR : LiveVirtRegs) {
    Register VirtReg = LR.VirtReg;
    assert(VirtReg.isVirtual() && "Bad map key");
    MCPhysReg PhysReg = LR.PhysReg;
    if (PhysReg != 0) {
      assert(Register::isPhysicalRegister(PhysReg) && "mapped to physreg");
      for (MCRegUnit Unit : TRI->regunits(PhysReg)) {
        assert(RegUnitStates[Unit] == VirtReg && "inverse map valid");
      }
    }
  }
}
#endif

/// Count number of defs consumed from each register class by \p Reg
void RegAllocFast::addRegClassDefCounts(
    std::vector<unsigned> &RegClassDefCounts, Register Reg) const {
  assert(RegClassDefCounts.size() == TRI->getNumRegClasses());

  if (Reg.isVirtual()) {
    if (!shouldAllocateRegister(Reg))
      return;
    const TargetRegisterClass *OpRC = MRI->getRegClass(Reg);
    for (unsigned RCIdx = 0, RCIdxEnd = TRI->getNumRegClasses();
         RCIdx != RCIdxEnd; ++RCIdx) {
      const TargetRegisterClass *IdxRC = TRI->getRegClass(RCIdx);
      // FIXME: Consider aliasing sub/super registers.
      if (OpRC->hasSubClassEq(IdxRC))
        ++RegClassDefCounts[RCIdx];
    }

    return;
  }

  for (unsigned RCIdx = 0, RCIdxEnd = TRI->getNumRegClasses();
       RCIdx != RCIdxEnd; ++RCIdx) {
    const TargetRegisterClass *IdxRC = TRI->getRegClass(RCIdx);
    for (MCRegAliasIterator Alias(Reg, TRI, true); Alias.isValid(); ++Alias) {
      if (IdxRC->contains(*Alias)) {
        ++RegClassDefCounts[RCIdx];
        break;
      }
    }
  }
}

/// Compute \ref DefOperandIndexes so it contains the indices of "def" operands
/// that are to be allocated. Those are ordered in a way that small classes,
/// early clobbers and livethroughs are allocated first.
void RegAllocFast::findAndSortDefOperandIndexes(const MachineInstr &MI) {
  DefOperandIndexes.clear();

  // Track number of defs which may consume a register from the class.
  std::vector<unsigned> RegClassDefCounts(TRI->getNumRegClasses(), 0);
  assert(RegClassDefCounts[0] == 0);

  LLVM_DEBUG(dbgs() << "Need to assign livethroughs\n");
  for (unsigned I = 0, E = MI.getNumOperands(); I < E; ++I) {
    const MachineOperand &MO = MI.getOperand(I);
    if (!MO.isReg())
      continue;
    Register Reg = MO.getReg();
    if (MO.readsReg()) {
      if (Reg.isPhysical()) {
        LLVM_DEBUG(dbgs() << "mark extra used: " << printReg(Reg, TRI) << '\n');
        markPhysRegUsedInInstr(Reg);
      }
    }

    if (MO.isDef()) {
      if (Reg.isVirtual() && shouldAllocateRegister(Reg))
        DefOperandIndexes.push_back(I);

      addRegClassDefCounts(RegClassDefCounts, Reg);
    }
  }

  llvm::sort(DefOperandIndexes, [&](uint16_t I0, uint16_t I1) {
    const MachineOperand &MO0 = MI.getOperand(I0);
    const MachineOperand &MO1 = MI.getOperand(I1);
    Register Reg0 = MO0.getReg();
    Register Reg1 = MO1.getReg();
    const TargetRegisterClass &RC0 = *MRI->getRegClass(Reg0);
    const TargetRegisterClass &RC1 = *MRI->getRegClass(Reg1);

    // Identify regclass that are easy to use up completely just in this
    // instruction.
    unsigned ClassSize0 = RegClassInfo.getOrder(&RC0).size();
    unsigned ClassSize1 = RegClassInfo.getOrder(&RC1).size();

    bool SmallClass0 = ClassSize0 < RegClassDefCounts[RC0.getID()];
    bool SmallClass1 = ClassSize1 < RegClassDefCounts[RC1.getID()];
    if (SmallClass0 > SmallClass1)
      return true;
    if (SmallClass0 < SmallClass1)
      return false;

    // Allocate early clobbers and livethrough operands first.
    bool Livethrough0 = MO0.isEarlyClobber() || MO0.isTied() ||
                        (MO0.getSubReg() == 0 && !MO0.isUndef());
    bool Livethrough1 = MO1.isEarlyClobber() || MO1.isTied() ||
                        (MO1.getSubReg() == 0 && !MO1.isUndef());
    if (Livethrough0 > Livethrough1)
      return true;
    if (Livethrough0 < Livethrough1)
      return false;

    // Tie-break rule: operand index.
    return I0 < I1;
  });
}

// Returns true if MO is tied and the operand it's tied to is not Undef (not
// Undef is not the same thing as Def).
static bool isTiedToNotUndef(const MachineOperand &MO) {
  if (!MO.isTied())
    return false;
  const MachineInstr &MI = *MO.getParent();
  unsigned TiedIdx = MI.findTiedOperandIdx(MI.getOperandNo(&MO));
  const MachineOperand &TiedMO = MI.getOperand(TiedIdx);
  return !TiedMO.isUndef();
}

void RegAllocFast::allocateInstruction(MachineInstr &MI) {
  // The basic algorithm here is:
  // 1. Mark registers of def operands as free
  // 2. Allocate registers to use operands and place reload instructions for
  //    registers displaced by the allocation.
  //
  // However we need to handle some corner cases:
  // - pre-assigned defs and uses need to be handled before the other def/use
  //   operands are processed to avoid the allocation heuristics clashing with
  //   the pre-assignment.
  // - The "free def operands" step has to come last instead of first for tied
  //   operands and early-clobbers.

  UsedInInstr.clear();
  RegMasks.clear();
  BundleVirtRegsMap.clear();

  // Scan for special cases; Apply pre-assigned register defs to state.
  bool HasPhysRegUse = false;
  bool HasRegMask = false;
  bool HasVRegDef = false;
  bool HasDef = false;
  bool HasEarlyClobber = false;
  bool NeedToAssignLiveThroughs = false;
  for (MachineOperand &MO : MI.operands()) {
    if (MO.isReg()) {
      Register Reg = MO.getReg();
      if (Reg.isVirtual()) {
        if (!shouldAllocateRegister(Reg))
          continue;
        if (MO.isDef()) {
          HasDef = true;
          HasVRegDef = true;
          if (MO.isEarlyClobber()) {
            HasEarlyClobber = true;
            NeedToAssignLiveThroughs = true;
          }
          if (isTiedToNotUndef(MO) || (MO.getSubReg() != 0 && !MO.isUndef()))
            NeedToAssignLiveThroughs = true;
        }
      } else if (Reg.isPhysical()) {
        if (!MRI->isReserved(Reg)) {
          if (MO.isDef()) {
            HasDef = true;
            bool displacedAny = definePhysReg(MI, Reg);
            if (MO.isEarlyClobber())
              HasEarlyClobber = true;
            if (!displacedAny)
              MO.setIsDead(true);
          }
          if (MO.readsReg())
            HasPhysRegUse = true;
        }
      }
    } else if (MO.isRegMask()) {
      HasRegMask = true;
      RegMasks.push_back(MO.getRegMask());
    }
  }

  // Allocate virtreg defs.
  if (HasDef) {
    if (HasVRegDef) {
      // Note that Implicit MOs can get re-arranged by defineVirtReg(), so loop
      // multiple times to ensure no operand is missed.
      bool ReArrangedImplicitOps = true;

      // Special handling for early clobbers, tied operands or subregister defs:
      // Compared to "normal" defs these:
      // - Must not use a register that is pre-assigned for a use operand.
      // - In order to solve tricky inline assembly constraints we change the
      //   heuristic to figure out a good operand order before doing
      //   assignments.
      if (NeedToAssignLiveThroughs) {
        PhysRegUses.clear();

        while (ReArrangedImplicitOps) {
          ReArrangedImplicitOps = false;
          findAndSortDefOperandIndexes(MI);
          for (uint16_t OpIdx : DefOperandIndexes) {
            MachineOperand &MO = MI.getOperand(OpIdx);
            LLVM_DEBUG(dbgs() << "Allocating " << MO << '\n');
            Register Reg = MO.getReg();
            if (MO.isEarlyClobber() || isTiedToNotUndef(MO) ||
                (MO.getSubReg() && !MO.isUndef())) {
              ReArrangedImplicitOps = defineLiveThroughVirtReg(MI, OpIdx, Reg);
            } else {
              ReArrangedImplicitOps = defineVirtReg(MI, OpIdx, Reg);
            }
            // Implicit operands of MI were re-arranged,
            // re-compute DefOperandIndexes.
            if (ReArrangedImplicitOps)
              break;
          }
        }
      } else {
        // Assign virtual register defs.
        while (ReArrangedImplicitOps) {
          ReArrangedImplicitOps = false;
          for (MachineOperand &MO : MI.operands()) {
            if (!MO.isReg() || !MO.isDef())
              continue;
            Register Reg = MO.getReg();
            if (Reg.isVirtual()) {
              ReArrangedImplicitOps =
                  defineVirtReg(MI, MI.getOperandNo(&MO), Reg);
              if (ReArrangedImplicitOps)
                break;
            }
          }
        }
      }
    }

    // Free registers occupied by defs.
    // Iterate operands in reverse order, so we see the implicit super register
    // defs first (we added them earlier in case of <def,read-undef>).
    for (MachineOperand &MO : reverse(MI.operands())) {
      if (!MO.isReg() || !MO.isDef())
        continue;

      Register Reg = MO.getReg();

      // subreg defs don't free the full register. We left the subreg number
      // around as a marker in setPhysReg() to recognize this case here.
      if (Reg.isPhysical() && MO.getSubReg() != 0) {
        MO.setSubReg(0);
        continue;
      }

      assert((!MO.isTied() || !isClobberedByRegMasks(MO.getReg())) &&
             "tied def assigned to clobbered register");

      // Do not free tied operands and early clobbers.
      if (isTiedToNotUndef(MO) || MO.isEarlyClobber())
        continue;
      if (!Reg)
        continue;
      if (Reg.isVirtual()) {
        assert(!shouldAllocateRegister(Reg));
        continue;
      }
      assert(Reg.isPhysical());
      if (MRI->isReserved(Reg))
        continue;
      freePhysReg(Reg);
      unmarkRegUsedInInstr(Reg);
    }
  }

  // Displace clobbered registers.
  if (HasRegMask) {
    assert(!RegMasks.empty() && "expected RegMask");
    // MRI bookkeeping.
    for (const auto *RM : RegMasks)
      MRI->addPhysRegsUsedFromRegMask(RM);

    // Displace clobbered registers.
    for (const LiveReg &LR : LiveVirtRegs) {
      MCPhysReg PhysReg = LR.PhysReg;
      if (PhysReg != 0 && isClobberedByRegMasks(PhysReg))
        displacePhysReg(MI, PhysReg);
    }
  }

  // Apply pre-assigned register uses to state.
  if (HasPhysRegUse) {
    for (MachineOperand &MO : MI.operands()) {
      if (!MO.isReg() || !MO.readsReg())
        continue;
      Register Reg = MO.getReg();
      if (!Reg.isPhysical())
        continue;
      if (MRI->isReserved(Reg))
        continue;
      if (!usePhysReg(MI, Reg))
        MO.setIsKill(true);
    }
  }

  // Allocate virtreg uses and insert reloads as necessary.
  // Implicit MOs can get moved/removed by useVirtReg(), so loop multiple
  // times to ensure no operand is missed.
  bool HasUndefUse = false;
  bool ReArrangedImplicitMOs = true;
  while (ReArrangedImplicitMOs) {
    ReArrangedImplicitMOs = false;
    for (MachineOperand &MO : MI.operands()) {
      if (!MO.isReg() || !MO.isUse())
        continue;
      Register Reg = MO.getReg();
      if (!Reg.isVirtual() || !shouldAllocateRegister(Reg))
        continue;

      if (MO.isUndef()) {
        HasUndefUse = true;
        continue;
      }

      // Populate MayLiveAcrossBlocks in case the use block is allocated before
      // the def block (removing the vreg uses).
      mayLiveIn(Reg);

      assert(!MO.isInternalRead() && "Bundles not supported");
      assert(MO.readsReg() && "reading use");
      ReArrangedImplicitMOs = useVirtReg(MI, MO, Reg);
      if (ReArrangedImplicitMOs)
        break;
    }
  }

  // Allocate undef operands. This is a separate step because in a situation
  // like  ` = OP undef %X, %X`    both operands need the same register assign
  // so we should perform the normal assignment first.
  if (HasUndefUse) {
    for (MachineOperand &MO : MI.all_uses()) {
      Register Reg = MO.getReg();
      if (!Reg.isVirtual() || !shouldAllocateRegister(Reg))
        continue;

      assert(MO.isUndef() && "Should only have undef virtreg uses left");
      allocVirtRegUndef(MO);
    }
  }

  // Free early clobbers.
  if (HasEarlyClobber) {
    for (MachineOperand &MO : reverse(MI.all_defs())) {
      if (!MO.isEarlyClobber())
        continue;
      assert(!MO.getSubReg() && "should be already handled in def processing");

      Register Reg = MO.getReg();
      if (!Reg)
        continue;
      if (Reg.isVirtual()) {
        assert(!shouldAllocateRegister(Reg));
        continue;
      }
      assert(Reg.isPhysical() && "should have register assigned");

      // We sometimes get odd situations like:
      //    early-clobber %x0 = INSTRUCTION %x0
      // which is semantically questionable as the early-clobber should
      // apply before the use. But in practice we consider the use to
      // happen before the early clobber now. Don't free the early clobber
      // register in this case.
      if (MI.readsRegister(Reg, TRI))
        continue;

      freePhysReg(Reg);
    }
  }

  LLVM_DEBUG(dbgs() << "<< " << MI);
  if (MI.isCopy() && MI.getOperand(0).getReg() == MI.getOperand(1).getReg() &&
      MI.getNumOperands() == 2) {
    LLVM_DEBUG(dbgs() << "Mark identity copy for removal\n");
    Coalesced.push_back(&MI);
  }
}

void RegAllocFast::handleDebugValue(MachineInstr &MI) {
  // Ignore DBG_VALUEs that aren't based on virtual registers. These are
  // mostly constants and frame indices.
  assert(MI.isDebugValue() && "not a DBG_VALUE*");
  for (const auto &MO : MI.debug_operands()) {
    if (!MO.isReg())
      continue;
    Register Reg = MO.getReg();
    if (!Reg.isVirtual())
      continue;
    if (!shouldAllocateRegister(Reg))
      continue;

    // Already spilled to a stackslot?
    int SS = StackSlotForVirtReg[Reg];
    if (SS != -1) {
      // Modify DBG_VALUE now that the value is in a spill slot.
      updateDbgValueForSpill(MI, SS, Reg);
      LLVM_DEBUG(dbgs() << "Rewrite DBG_VALUE for spilled memory: " << MI);
      continue;
    }

    // See if this virtual register has already been allocated to a physical
    // register or spilled to a stack slot.
    LiveRegMap::iterator LRI = findLiveVirtReg(Reg);
    SmallVector<MachineOperand *> DbgOps;
    for (MachineOperand &Op : MI.getDebugOperandsForReg(Reg))
      DbgOps.push_back(&Op);

    if (LRI != LiveVirtRegs.end() && LRI->PhysReg) {
      // Update every use of Reg within MI.
      for (auto &RegMO : DbgOps)
        setPhysReg(MI, *RegMO, LRI->PhysReg);
    } else {
      DanglingDbgValues[Reg].push_back(&MI);
    }

    // If Reg hasn't been spilled, put this DBG_VALUE in LiveDbgValueMap so
    // that future spills of Reg will have DBG_VALUEs.
    LiveDbgValueMap[Reg].append(DbgOps.begin(), DbgOps.end());
  }
}

void RegAllocFast::handleBundle(MachineInstr &MI) {
  MachineBasicBlock::instr_iterator BundledMI = MI.getIterator();
  ++BundledMI;
  while (BundledMI->isBundledWithPred()) {
    for (MachineOperand &MO : BundledMI->operands()) {
      if (!MO.isReg())
        continue;

      Register Reg = MO.getReg();
      if (!Reg.isVirtual() || !shouldAllocateRegister(Reg))
        continue;

      DenseMap<Register, MCPhysReg>::iterator DI;
      DI = BundleVirtRegsMap.find(Reg);
      assert(DI != BundleVirtRegsMap.end() && "Unassigned virtual register");

      setPhysReg(MI, MO, DI->second);
    }

    ++BundledMI;
  }
}

void RegAllocFast::allocateBasicBlock(MachineBasicBlock &MBB) {
  this->MBB = &MBB;
  LLVM_DEBUG(dbgs() << "\nAllocating " << MBB);

  PosIndexes.unsetInitialized();
  RegUnitStates.assign(TRI->getNumRegUnits(), regFree);
  assert(LiveVirtRegs.empty() && "Mapping not cleared from last block?");

  for (const auto &LiveReg : MBB.liveouts())
    setPhysRegState(LiveReg.PhysReg, regPreAssigned);

  Coalesced.clear();

  // Traverse block in reverse order allocating instructions one by one.
  for (MachineInstr &MI : reverse(MBB)) {
    LLVM_DEBUG(dbgs() << "\n>> " << MI << "Regs:"; dumpState());

    // Special handling for debug values. Note that they are not allowed to
    // affect codegen of the other instructions in any way.
    if (MI.isDebugValue()) {
      handleDebugValue(MI);
      continue;
    }

    allocateInstruction(MI);

    // Once BUNDLE header is assigned registers, same assignments need to be
    // done for bundled MIs.
    if (MI.getOpcode() == TargetOpcode::BUNDLE) {
      handleBundle(MI);
    }
  }

  LLVM_DEBUG(dbgs() << "Begin Regs:"; dumpState());

  // Spill all physical registers holding virtual registers now.
  LLVM_DEBUG(dbgs() << "Loading live registers at begin of block.\n");
  reloadAtBegin(MBB);

  // Erase all the coalesced copies. We are delaying it until now because
  // LiveVirtRegs might refer to the instrs.
  for (MachineInstr *MI : Coalesced)
    MBB.erase(MI);
  NumCoalesced += Coalesced.size();

  for (auto &UDBGPair : DanglingDbgValues) {
    for (MachineInstr *DbgValue : UDBGPair.second) {
      assert(DbgValue->isDebugValue() && "expected DBG_VALUE");
      // Nothing to do if the vreg was spilled in the meantime.
      if (!DbgValue->hasDebugOperandForReg(UDBGPair.first))
        continue;
      LLVM_DEBUG(dbgs() << "Register did not survive for " << *DbgValue
                        << '\n');
      DbgValue->setDebugValueUndef();
    }
  }
  DanglingDbgValues.clear();

  LLVM_DEBUG(MBB.dump());
}

bool RegAllocFast::runOnMachineFunction(MachineFunction &MF) {
  LLVM_DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n"
                    << "********** Function: " << MF.getName() << '\n');
  MRI = &MF.getRegInfo();
  const TargetSubtargetInfo &STI = MF.getSubtarget();
  TRI = STI.getRegisterInfo();
  TII = STI.getInstrInfo();
  MFI = &MF.getFrameInfo();
  MRI->freezeReservedRegs(MF);
  RegClassInfo.runOnMachineFunction(MF);
  unsigned NumRegUnits = TRI->getNumRegUnits();
  UsedInInstr.clear();
  UsedInInstr.setUniverse(NumRegUnits);
  PhysRegUses.clear();
  PhysRegUses.setUniverse(NumRegUnits);

  // initialize the virtual->physical register map to have a 'null'
  // mapping for all virtual registers
  unsigned NumVirtRegs = MRI->getNumVirtRegs();
  StackSlotForVirtReg.resize(NumVirtRegs);
  LiveVirtRegs.setUniverse(NumVirtRegs);
  MayLiveAcrossBlocks.clear();
  MayLiveAcrossBlocks.resize(NumVirtRegs);

  // Loop over all of the basic blocks, eliminating virtual register references
  for (MachineBasicBlock &MBB : MF)
    allocateBasicBlock(MBB);

  if (ClearVirtRegs) {
    // All machine operands and other references to virtual registers have been
    // replaced. Remove the virtual registers.
    MRI->clearVirtRegs();
  }

  StackSlotForVirtReg.clear();
  LiveDbgValueMap.clear();
  return true;
}

FunctionPass *llvm::createFastRegisterAllocator() { return new RegAllocFast(); }

FunctionPass *llvm::createFastRegisterAllocator(RegClassFilterFunc Ftor,
                                                bool ClearVirtRegs) {
  return new RegAllocFast(Ftor, ClearVirtRegs);
}