aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Target/AArch64/AArch64SchedNeoverseN2.td
blob: a6fab5e6245f80fd32651abe93fa09fb5c45a18b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
//=- AArch64SchedNeoverseN2.td - NeoverseN2 Scheduling Defs --*- tablegen -*-=//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the scheduling model for the Arm Neoverse N2 processors.
//
//===----------------------------------------------------------------------===//

def NeoverseN2Model : SchedMachineModel {
  let IssueWidth            =  10; // Micro-ops dispatched at a time.
  let MicroOpBufferSize     = 160; // Entries in micro-op re-order buffer.
  let LoadLatency           =   4; // Optimistic load latency.
  let MispredictPenalty     =  10; // Extra cycles for mispredicted branch.
  let LoopMicroOpBufferSize =  16; // NOTE: Copied from Cortex-A57.
  let CompleteModel         =   1;

  list<Predicate> UnsupportedFeatures = !listconcat(SMEUnsupported.F,
    [HasSVE2p1, HasPAuthLR, HasCPA]);
}

//===----------------------------------------------------------------------===//
// Define each kind of processor resource and number available on Neoverse N2.
// Instructions are first fetched and then decoded into internal macro-ops
// (MOPs). From there, the MOPs proceed through register renaming and dispatch
// stages. A MOP can be split into two micro-ops further down the pipeline
// after the decode stage. Once dispatched, micro-ops wait for their operands
// and issue out-of-order to one of thirteen issue pipelines. Each issue
// pipeline can accept one micro-op per cycle.

let SchedModel = NeoverseN2Model in {

// Define the (13) issue ports.
def N2UnitB   : ProcResource<2>;  // Branch 0/1
def N2UnitS   : ProcResource<2>;  // Integer single Cycle 0/1
def N2UnitM0  : ProcResource<1>;  // Integer multicycle 0
def N2UnitM1  : ProcResource<1>;  // Integer multicycle 1
def N2UnitL01 : ProcResource<2>;  // Load/Store 0/1
def N2UnitL2  : ProcResource<1>;  // Load 2
def N2UnitD   : ProcResource<2>;  // Store data 0/1
def N2UnitV0  : ProcResource<1>;  // FP/ASIMD 0
def N2UnitV1  : ProcResource<1>;  // FP/ASIMD 1

def N2UnitV : ProcResGroup<[N2UnitV0, N2UnitV1]>;  // FP/ASIMD 0/1
def N2UnitM : ProcResGroup<[N2UnitM0, N2UnitM1]>;  // Integer single/multicycle 0/1
def N2UnitL : ProcResGroup<[N2UnitL01, N2UnitL2]>; // Load/Store 0/1 and Load 2
def N2UnitI : ProcResGroup<[N2UnitS, N2UnitM0, N2UnitM1]>; // Integer single cycle 0/1 and single/multicycle 0/1

// Define commonly used read types.

// No forwarding is provided for these types.
def : ReadAdvance<ReadI,       0>;
def : ReadAdvance<ReadISReg,   0>;
def : ReadAdvance<ReadIEReg,   0>;
def : ReadAdvance<ReadIM,      0>;
def : ReadAdvance<ReadIMA,     0>;
def : ReadAdvance<ReadID,      0>;
def : ReadAdvance<ReadExtrHi,  0>;
def : ReadAdvance<ReadAdrBase, 0>;
def : ReadAdvance<ReadST,      0>;
def : ReadAdvance<ReadVLD,     0>;

def : WriteRes<WriteAtomic,  []> { let Unsupported = 1; }
def : WriteRes<WriteBarrier, []> { let Latency = 1; }
def : WriteRes<WriteHint,    []> { let Latency = 1; }
def : WriteRes<WriteLDHi,    []> { let Latency = 4; }

//===----------------------------------------------------------------------===//
// Define customized scheduler read/write types specific to the Neoverse N2.

//===----------------------------------------------------------------------===//
// Define generic 1 micro-op types

def N2Write_1cyc_1B   : SchedWriteRes<[N2UnitB]>   { let Latency = 1; }
def N2Write_1cyc_1I   : SchedWriteRes<[N2UnitI]>   { let Latency = 1; }
def N2Write_1cyc_1M   : SchedWriteRes<[N2UnitM]>   { let Latency = 1; }
def N2Write_1cyc_1M0  : SchedWriteRes<[N2UnitM0]>  { let Latency = 1; }
def N2Write_1cyc_1L01 : SchedWriteRes<[N2UnitL01]> { let Latency = 1; }
def N2Write_2cyc_1M   : SchedWriteRes<[N2UnitM]>   { let Latency = 2; }
def N2Write_3cyc_1M   : SchedWriteRes<[N2UnitM]>   { let Latency = 3; }
def N2Write_2cyc_1M0  : SchedWriteRes<[N2UnitM0]>  { let Latency = 2;
                                                     let ReleaseAtCycles = [2]; }
def N2Write_3cyc_1M0  : SchedWriteRes<[N2UnitM0]>  { let Latency = 3;
                                                     let ReleaseAtCycles = [3]; }
def N2Write_5cyc_1M0  : SchedWriteRes<[N2UnitM0]>  { let Latency = 5;
                                                     let ReleaseAtCycles = [5]; }
def N2Write_12cyc_1M0 : SchedWriteRes<[N2UnitM0]>  { let Latency = 12;
                                                     let ReleaseAtCycles = [12]; }
def N2Write_20cyc_1M0 : SchedWriteRes<[N2UnitM0]>  { let Latency = 20;
                                                     let ReleaseAtCycles = [20]; }
def N2Write_4cyc_1L   : SchedWriteRes<[N2UnitL]>   { let Latency = 4; }
def N2Write_6cyc_1L   : SchedWriteRes<[N2UnitL]>   { let Latency = 6; }
def N2Write_2cyc_1V   : SchedWriteRes<[N2UnitV]>   { let Latency = 2; }
def N2Write_3cyc_1V   : SchedWriteRes<[N2UnitV]>   { let Latency = 3; }
def N2Write_4cyc_1V   : SchedWriteRes<[N2UnitV]>   { let Latency = 4; }
def N2Write_5cyc_1V   : SchedWriteRes<[N2UnitV]>   { let Latency = 5; }
def N2Write_12cyc_1V  : SchedWriteRes<[N2UnitV]>   { let Latency = 12; }
def N2Write_2cyc_1V0  : SchedWriteRes<[N2UnitV0]>  { let Latency = 2; }
def N2Write_3cyc_1V0  : SchedWriteRes<[N2UnitV0]>  { let Latency = 3; }
def N2Write_4cyc_1V0  : SchedWriteRes<[N2UnitV0]>  { let Latency = 4; }
def N2Write_7cyc_1V0  : SchedWriteRes<[N2UnitV0]>  { let Latency = 7;
                                                     let ReleaseAtCycles = [7]; }
def N2Write_9cyc_1V0  : SchedWriteRes<[N2UnitV0]>  { let Latency = 9; }
def N2Write_10cyc_1V0 : SchedWriteRes<[N2UnitV0]>  { let Latency = 10; }
def N2Write_12cyc_1V0 : SchedWriteRes<[N2UnitV0]>  { let Latency = 12; }
def N2Write_13cyc_1V0 : SchedWriteRes<[N2UnitV0]>  { let Latency = 13; }
def N2Write_15cyc_1V0 : SchedWriteRes<[N2UnitV0]>  { let Latency = 15; }
def N2Write_16cyc_1V0 : SchedWriteRes<[N2UnitV0]>  { let Latency = 16; }
def N2Write_20cyc_1V0 : SchedWriteRes<[N2UnitV0]>  { let Latency = 20; }
def N2Write_2cyc_1V1  : SchedWriteRes<[N2UnitV1]>  { let Latency = 2; }
def N2Write_3cyc_1V1  : SchedWriteRes<[N2UnitV1]>  { let Latency = 3; }
def N2Write_4cyc_1V1  : SchedWriteRes<[N2UnitV1]>  { let Latency = 4; }
def N2Write_6cyc_1V1  : SchedWriteRes<[N2UnitV1]>  { let Latency = 6; }
def N2Write_10cyc_1V1 : SchedWriteRes<[N2UnitV1]>  { let Latency = 10; }
def N2Write_6cyc_1L01 : SchedWriteRes<[N2UnitL01]> { let Latency = 6; }

//===----------------------------------------------------------------------===//
// Define generic 2 micro-op types

def N2Write_1cyc_1B_1S : SchedWriteRes<[N2UnitB, N2UnitS]> {
  let Latency     = 1;
  let NumMicroOps = 2;
}

def N2Write_6cyc_1M0_1B : SchedWriteRes<[N2UnitM0, N2UnitB]> {
  let Latency     = 6;
  let NumMicroOps = 2;
}

def N2Write_9cyc_1M0_1L : SchedWriteRes<[N2UnitM0, N2UnitL]> {
  let Latency     = 9;
  let NumMicroOps = 2;
}

def N2Write_3cyc_1I_1M : SchedWriteRes<[N2UnitI, N2UnitM]> {
  let Latency     = 3;
  let NumMicroOps = 2;
}

def N2Write_4cyc_1I_1L : SchedWriteRes<[N2UnitI, N2UnitL]> {
  let Latency     = 4;
  let NumMicroOps = 2;
}

def N2Write_5cyc_1I_1L : SchedWriteRes<[N2UnitI, N2UnitL]> {
  let Latency     = 5;
  let NumMicroOps = 2;
}

def N2Write_6cyc_1I_1L : SchedWriteRes<[N2UnitI, N2UnitL]> {
  let Latency     = 6;
  let NumMicroOps = 2;
}

def N2Write_7cyc_1I_1L : SchedWriteRes<[N2UnitI, N2UnitL]> {
  let Latency     = 7;
  let NumMicroOps = 2;
}

def N2Write_1cyc_1L01_1D : SchedWriteRes<[N2UnitL01, N2UnitD]> {
  let Latency     = 1;
  let NumMicroOps = 2;
}

def N2Write_5cyc_1M0_1V : SchedWriteRes<[N2UnitM0, N2UnitV]> {
  let Latency     = 5;
  let NumMicroOps = 2;
}

def N2Write_2cyc_1L01_1V : SchedWriteRes<[N2UnitL01, N2UnitV]> {
  let Latency     = 2;
  let NumMicroOps = 2;
}

def N2Write_4cyc_1V1_1V : SchedWriteRes<[N2UnitV1, N2UnitV]> {
  let Latency     = 4;
  let NumMicroOps = 2;
}

def N2Write_4cyc_2V0 : SchedWriteRes<[N2UnitV0, N2UnitV0]> {
  let Latency     = 4;
  let NumMicroOps = 2;
}

def N2Write_10cyc_2V0 : SchedWriteRes<[N2UnitV0, N2UnitV0]> {
  let Latency = 10;
  let NumMicroOps = 2;
  let ReleaseAtCycles = [5, 5];
}

def N2Write_13cyc_2V0 : SchedWriteRes<[N2UnitV0, N2UnitV0]> {
  let Latency = 13;
  let NumMicroOps = 2;
  let ReleaseAtCycles = [6, 7];
}

def N2Write_15cyc_2V0 : SchedWriteRes<[N2UnitV0, N2UnitV0]> {
  let Latency = 15;
  let NumMicroOps = 2;
  let ReleaseAtCycles = [7, 8];
}

def N2Write_16cyc_2V0 : SchedWriteRes<[N2UnitV0, N2UnitV0]> {
  let Latency = 16;
  let NumMicroOps = 2;
  let ReleaseAtCycles = [8, 8];
}

def N2Write_4cyc_2V : SchedWriteRes<[N2UnitV, N2UnitV]> {
  let Latency     = 4;
  let NumMicroOps = 2;
}

def N2Write_6cyc_2V : SchedWriteRes<[N2UnitV, N2UnitV]> {
  let Latency     = 6;
  let NumMicroOps = 2;
}

def N2Write_6cyc_2L : SchedWriteRes<[N2UnitL, N2UnitL]> {
  let Latency     = 6;
  let NumMicroOps = 2;
}

def N2Write_8cyc_1L_1V : SchedWriteRes<[N2UnitL, N2UnitV]> {
  let Latency     = 8;
  let NumMicroOps = 2;
}

def N2Write_4cyc_1L01_1V : SchedWriteRes<[N2UnitL01, N2UnitV]> {
  let Latency     = 4;
  let NumMicroOps = 2;
}

def N2Write_3cyc_1M0_1M  : SchedWriteRes<[N2UnitM0, N2UnitM]> {
  let Latency     = 3;
  let NumMicroOps = 2;
}

def N2Write_2cyc_1M0_1M  : SchedWriteRes<[N2UnitM0, N2UnitM]> {
  let Latency     = 2;
  let NumMicroOps = 2;
}

def N2Write_6cyc_2V1 : SchedWriteRes<[N2UnitV1, N2UnitV1]> {
  let Latency     = 6;
  let NumMicroOps = 2;
}

def N2Write_4cyc_1V0_1M : SchedWriteRes<[N2UnitV0, N2UnitM]> {
  let Latency     = 4;
  let NumMicroOps = 2;
}

def N2Write_5cyc_2V0 : SchedWriteRes<[N2UnitV0, N2UnitV0]> {
  let Latency     = 5;
  let NumMicroOps = 2;
}

def N2Write_5cyc_1V1_1M0 : SchedWriteRes<[N2UnitV1, N2UnitM0]> {
  let Latency     = 5;
  let NumMicroOps = 2;
}

def N2Write_7cyc_1M0_1V0 : SchedWriteRes<[N2UnitM0, N2UnitV0]> {
  let Latency     = 7;
  let NumMicroOps = 2;
}

def N2Write_2cyc_1V0_1M : SchedWriteRes<[N2UnitV0, N2UnitM]> {
  let Latency     = 2;
  let NumMicroOps = 2;
}

def N2Write_6cyc_1V_1V1 : SchedWriteRes<[N2UnitV, N2UnitV1]> {
  let Latency     = 6;
  let NumMicroOps = 2;
}

def N2Write_6cyc_1L_1M : SchedWriteRes<[N2UnitL, N2UnitM]> {
  let Latency     = 6;
  let NumMicroOps = 2;
}

def N2Write_6cyc_1L_1S : SchedWriteRes<[N2UnitL, N2UnitS]> {
  let Latency     = 6;
  let NumMicroOps = 2;
}

def N2Write_9cyc_1L_1V : SchedWriteRes<[N2UnitL, N2UnitV]> {
  let Latency     = 9;
  let NumMicroOps = 2;
}

def N2Write_4cyc_2V1 : SchedWriteRes<[N2UnitV1, N2UnitV1]> {
  let Latency     = 4;
  let NumMicroOps = 2;
}

//===----------------------------------------------------------------------===//
// Define generic 3 micro-op types

def N2Write_1cyc_1L01_1D_1I : SchedWriteRes<[N2UnitL01, N2UnitD, N2UnitI]> {
  let Latency     = 1;
  let NumMicroOps = 3;
}

def N2Write_2cyc_1L01_1V_1I : SchedWriteRes<[N2UnitL01, N2UnitV, N2UnitI]> {
  let Latency     = 2;
  let NumMicroOps = 3;
}

def N2Write_2cyc_1L01_2V : SchedWriteRes<[N2UnitL01, N2UnitV, N2UnitV]> {
  let Latency     = 2;
  let NumMicroOps = 3;
}

def N2Write_7cyc_1M_1M0_1V : SchedWriteRes<[N2UnitM, N2UnitM0, N2UnitV]> {
  let Latency     = 7;
  let NumMicroOps = 3;
}

def N2Write_8cyc_1M0_1V1_1V : SchedWriteRes<[N2UnitM0, N2UnitV1, N2UnitV]> {
  let Latency     = 8;
  let NumMicroOps = 3;
}

def N2Write_10cyc_1V_1L_1S : SchedWriteRes<[N2UnitV, N2UnitL, N2UnitL]> {
  let Latency     = 10;
  let NumMicroOps = 3;
}

def N2Write_2cyc_1L01_1S_1V : SchedWriteRes<[N2UnitL01, N2UnitS, N2UnitV]> {
  let Latency     = 2;
  let NumMicroOps = 3;
}

def N2Write_4cyc_1L01_1S_1V : SchedWriteRes<[N2UnitL01, N2UnitS, N2UnitV]> {
  let Latency     = 4;
  let NumMicroOps = 3;
}

def N2Write_6cyc_3L : SchedWriteRes<[N2UnitL, N2UnitL, N2UnitL]> {
  let Latency     = 6;
  let NumMicroOps = 3;
}

def N2Write_8cyc_1L_2V : SchedWriteRes<[N2UnitL, N2UnitV, N2UnitV]> {
  let Latency     = 8;
  let NumMicroOps = 3;
}

//===----------------------------------------------------------------------===//
// Define generic 4 micro-op types

def N2Write_2cyc_1L01_2V_1I : SchedWriteRes<[N2UnitL01, N2UnitV, N2UnitV,
                                             N2UnitI]> {
  let Latency     = 2;
  let NumMicroOps = 4;
}

def N2Write_6cyc_4V0 : SchedWriteRes<[N2UnitV0, N2UnitV0, N2UnitV0, N2UnitV0]> {
  let Latency     = 6;
  let NumMicroOps = 4;
}

def N2Write_4cyc_4V : SchedWriteRes<[N2UnitV, N2UnitV, N2UnitV, N2UnitV]> {
  let Latency     = 4;
  let NumMicroOps = 4;
}

def N2Write_6cyc_4V : SchedWriteRes<[N2UnitV, N2UnitV, N2UnitV, N2UnitV]> {
  let Latency     = 6;
  let NumMicroOps = 4;
}

def N2Write_8cyc_2L_2V : SchedWriteRes<[N2UnitL, N2UnitL, N2UnitV, N2UnitV]> {
  let Latency     = 8;
  let NumMicroOps = 4;
}

def N2Write_9cyc_2L_2V : SchedWriteRes<[N2UnitL, N2UnitL, N2UnitV, N2UnitV]> {
  let Latency     = 9;
  let NumMicroOps = 4;
}

def N2Write_2cyc_2L01_2V : SchedWriteRes<[N2UnitL01, N2UnitL01, N2UnitV,
                                          N2UnitV]> {
  let Latency     = 2;
  let NumMicroOps = 4;
}

def N2Write_4cyc_2L01_2V : SchedWriteRes<[N2UnitL01, N2UnitL01, N2UnitV,
                                          N2UnitV]> {
  let Latency     = 4;
  let NumMicroOps = 4;
}

def N2Write_5cyc_2L01_2V : SchedWriteRes<[N2UnitL01, N2UnitL01, N2UnitV,
                                          N2UnitV]> {
  let Latency     = 5;
  let NumMicroOps = 4;
}

def N2Write_8cyc_2M0_2V0 : SchedWriteRes<[N2UnitM0, N2UnitM0, N2UnitV0,
                                          N2UnitV0]> {
  let Latency     = 8;
  let NumMicroOps = 4;
}

def N2Write_11cyc_2V_2V1 : SchedWriteRes<[N2UnitV, N2UnitV, N2UnitV1,
                                          N2UnitV1]> {
  let Latency     = 11;
  let NumMicroOps = 4;
}

def N2Write_9cyc_2V_2V1 : SchedWriteRes<[N2UnitV, N2UnitV, N2UnitV1,
                                         N2UnitV1]> {
  let Latency     = 9;
  let NumMicroOps = 4;
}

def N2Write_8cyc_2V_2V1 : SchedWriteRes<[N2UnitV, N2UnitV, N2UnitV1,
                                         N2UnitV1]> {
  let Latency     = 8;
  let NumMicroOps = 4;
}

def N2Write_10cyc_2L_2V1 : SchedWriteRes<[N2UnitV, N2UnitV, N2UnitV1,
                                          N2UnitV1]> {
  let Latency     = 10;
  let NumMicroOps = 4;
}

def N2Write_10cyc_2L_2V : SchedWriteRes<[N2UnitL, N2UnitL, N2UnitV, N2UnitV]> {
  let Latency     = 10;
  let NumMicroOps = 4;
}

def N2Write_4cyc_2M0_2M : SchedWriteRes<[N2UnitM0, N2UnitM0, N2UnitM,
                                         N2UnitM]> {
  let Latency     = 4;
  let NumMicroOps = 4;
}

def N2Write_6cyc_2I_2L : SchedWriteRes<[N2UnitI, N2UnitI, N2UnitL, N2UnitL]> {
  let Latency     = 6;
  let NumMicroOps = 4;
}

def N2Write_7cyc_4L : SchedWriteRes<[N2UnitL, N2UnitL, N2UnitL, N2UnitL]> {
  let Latency     = 7;
  let NumMicroOps = 4;
}

//===----------------------------------------------------------------------===//
// Define generic 5 micro-op types

def N2Write_2cyc_1L01_2V_2I : SchedWriteRes<[N2UnitL01, N2UnitV, N2UnitV,
                                             N2UnitI, N2UnitI]> {
  let Latency     = 2;
  let NumMicroOps = 5;
}

def N2Write_8cyc_2L_3V : SchedWriteRes<[N2UnitL, N2UnitL, N2UnitV, N2UnitV,
                                        N2UnitV]> {
  let Latency     = 8;
  let NumMicroOps = 5;
}

//===----------------------------------------------------------------------===//
// Define generic 6 micro-op types

def N2Write_8cyc_3L_3V : SchedWriteRes<[N2UnitL, N2UnitL, N2UnitL,
                                        N2UnitV, N2UnitV, N2UnitV]> {
  let Latency     = 8;
  let NumMicroOps = 6;
}

def N2Write_2cyc_3L01_3V : SchedWriteRes<[N2UnitL01, N2UnitL01, N2UnitL01,
                                          N2UnitV, N2UnitV, N2UnitV]> {
  let Latency     = 2;
  let NumMicroOps = 6;
}

def N2Write_6cyc_3L01_3V : SchedWriteRes<[N2UnitL01, N2UnitL01, N2UnitL01,
                                          N2UnitV, N2UnitV, N2UnitV]> {
  let Latency     = 6;
  let NumMicroOps = 6;
}

def N2Write_4cyc_3L01_3V : SchedWriteRes<[N2UnitL01, N2UnitL01, N2UnitL01,
                                          N2UnitV, N2UnitV, N2UnitV]> {
  let Latency     = 4;
  let NumMicroOps = 6;
}

def N2Write_10cyc_2L_2V_2S : SchedWriteRes<[N2UnitL, N2UnitL, N2UnitV, N2UnitV,
                                            N2UnitS, N2UnitS]> {
  let Latency     = 10;
  let NumMicroOps = 6;
}

//===----------------------------------------------------------------------===//
// Define generic 7 micro-op types

def N2Write_8cyc_3L_4V : SchedWriteRes<[N2UnitL, N2UnitL, N2UnitL,
                                        N2UnitV, N2UnitV, N2UnitV, N2UnitV]> {
  let Latency     = 8;
  let NumMicroOps = 7;
}

//===----------------------------------------------------------------------===//
// Define generic 8 micro-op types

def N2Write_6cyc_8V : SchedWriteRes<[N2UnitV, N2UnitV, N2UnitV, N2UnitV,
                                     N2UnitV, N2UnitV, N2UnitV, N2UnitV]> {
  let Latency     = 6;
  let NumMicroOps = 8;
}

def N2Write_2cyc_4L01_4V : SchedWriteRes<[N2UnitL01, N2UnitL01, N2UnitL01,
                                          N2UnitL01, N2UnitV, N2UnitV, N2UnitV,
                                          N2UnitV]> {
  let Latency     = 2;
  let NumMicroOps = 8;
}

def N2Write_5cyc_4L01_4V : SchedWriteRes<[N2UnitL01, N2UnitL01, N2UnitL01,
                                          N2UnitL01, N2UnitV, N2UnitV, N2UnitV,
                                          N2UnitV]> {
  let Latency     = 5;
  let NumMicroOps = 8;
}

def N2Write_8cyc_4L_4V : SchedWriteRes<[N2UnitL, N2UnitL, N2UnitL, N2UnitL,
                                        N2UnitV, N2UnitV, N2UnitV, N2UnitV]> {
  let Latency     = 8;
  let NumMicroOps = 8;
}

def N2Write_9cyc_4L_4V : SchedWriteRes<[N2UnitL, N2UnitL, N2UnitL, N2UnitL,
                                        N2UnitV, N2UnitV, N2UnitV, N2UnitV]> {
  let Latency     = 9;
  let NumMicroOps = 8;
}

//===----------------------------------------------------------------------===//
// Define generic 10 micro-op types

def N2Write_7cyc_5L01_5V : SchedWriteRes<[N2UnitL01, N2UnitL01, N2UnitL01,
                                          N2UnitL01, N2UnitL01, N2UnitV,
                                          N2UnitV, N2UnitV, N2UnitV, N2UnitV]> {
  let Latency     = 7;
  let NumMicroOps = 10;
}

//===----------------------------------------------------------------------===//
// Define generic 12 micro-op types

def N2Write_7cyc_6L01_6V : SchedWriteRes<[N2UnitL01, N2UnitL01, N2UnitL01,
                                          N2UnitL01, N2UnitL01, N2UnitL01,
                                          N2UnitV, N2UnitV, N2UnitV, N2UnitV,
                                          N2UnitV, N2UnitV]> {
  let Latency     = 7;
  let NumMicroOps = 12;
}

//===----------------------------------------------------------------------===//
// Define generic 15 micro-op types

def N2Write_7cyc_5L01_5S_5V : SchedWriteRes<[N2UnitL01, N2UnitL01, N2UnitL01,
                                             N2UnitL01, N2UnitL01, N2UnitS,
                                             N2UnitS, N2UnitS, N2UnitS,
                                             N2UnitS, N2UnitV, N2UnitV,
                                             N2UnitV, N2UnitV, N2UnitV]> {
  let Latency     = 7;
  let NumMicroOps = 15;
}

//===----------------------------------------------------------------------===//
// Define generic 18 micro-op types

def N2Write_11cyc_9L01_9V : SchedWriteRes<[N2UnitL01, N2UnitL01, N2UnitL01,
                                           N2UnitL01, N2UnitL01, N2UnitL01,
                                           N2UnitL01, N2UnitL01, N2UnitL01,
                                           N2UnitV, N2UnitV, N2UnitV,
                                           N2UnitV, N2UnitV, N2UnitV,
                                           N2UnitV, N2UnitV, N2UnitV]> {
  let Latency     = 11;
  let NumMicroOps = 18;
}

//===----------------------------------------------------------------------===//
// Define generic 27 micro-op types

def N2Write_11cyc_9L01_9S_9V : SchedWriteRes<[N2UnitL01, N2UnitL01, N2UnitL01,
                                              N2UnitL01, N2UnitL01, N2UnitL01,
                                              N2UnitL01, N2UnitL01, N2UnitL01,
                                              N2UnitS, N2UnitS, N2UnitS,
                                              N2UnitS, N2UnitS, N2UnitS,
                                              N2UnitS, N2UnitS, N2UnitS,
                                              N2UnitV, N2UnitV, N2UnitV,
                                              N2UnitV, N2UnitV, N2UnitV,
                                              N2UnitV, N2UnitV, N2UnitV]> {
  let Latency     = 11;
  let NumMicroOps = 27;
}

//===----------------------------------------------------------------------===//
// Define types for arithmetic and logical ops with short shifts
def N2Write_Arith : SchedWriteVariant<[
                      SchedVar<IsCheapLSL,  [N2Write_1cyc_1I]>,
                      SchedVar<NoSchedPred, [N2Write_2cyc_1M]>]>;

def N2Write_Logical: SchedWriteVariant<[
                       SchedVar<NeoverseNoLSL, [N2Write_1cyc_1I]>,
                       SchedVar<NoSchedPred,   [N2Write_2cyc_1M]>]>;

// Miscellaneous
// -----------------------------------------------------------------------------

def : InstRW<[WriteI], (instrs COPY)>;

// Branch Instructions
// -----------------------------------------------------------------------------

// Branch, immed
// Compare and branch
def : SchedAlias<WriteBr,    N2Write_1cyc_1B>;

// Branch, register
def : SchedAlias<WriteBrReg, N2Write_1cyc_1B>;

// Branch and link, immed
// Branch and link, register
def : InstRW<[N2Write_1cyc_1B_1S], (instrs BL, BLR)>;

// Arithmetic and Logical Instructions
// -----------------------------------------------------------------------------

// ALU, basic
// ALU, basic, flagset
def : SchedAlias<WriteI,     N2Write_1cyc_1I>;

// ALU, extend and shift
def : SchedAlias<WriteIEReg, N2Write_2cyc_1M>;

// Arithmetic, LSL shift, shift <= 4
// Arithmetic, flagset, LSL shift, shift <= 4
// Arithmetic, LSR/ASR/ROR shift or LSL shift > 4
def : SchedAlias<WriteISReg, N2Write_Arith>;

// Logical, shift, no flagset
def : InstRW<[N2Write_1cyc_1I],
             (instregex "^(AND|BIC|EON|EOR|ORN|ORR)[WX]rs$")>;

// Logical, shift, flagset
def : InstRW<[N2Write_Logical], (instregex "^(AND|BIC)S[WX]rs$")>;

// Arithmetic, immediate to logical address tag
def : InstRW<[N2Write_2cyc_1M], (instrs ADDG, SUBG)>;

// Convert floating-point condition flags
// Flag manipulation instructions
def : WriteRes<WriteSys, []> { let Latency = 1; }

// Insert Random Tags
def : InstRW<[N2Write_2cyc_1M], (instrs IRG, IRGstack)>;

// Insert Tag Mask
// Subtract Pointer
// Subtract Pointer, flagset
def : InstRW<[N2Write_1cyc_1I], (instrs GMI, SUBP, SUBPS)>;

// Move and shift instructions
// -----------------------------------------------------------------------------

def : SchedAlias<WriteImm, N2Write_1cyc_1I>;

// Divide and Multiply Instructions
// -----------------------------------------------------------------------------

// SDIV, UDIV
def : SchedAlias<WriteID32,  N2Write_12cyc_1M0>;
def : SchedAlias<WriteID64,  N2Write_20cyc_1M0>;

def : WriteRes<WriteIM32, [N2UnitM]> { let Latency = 2; }
def : WriteRes<WriteIM64, [N2UnitM]> { let Latency = 2; }

// Multiply high
def : InstRW<[N2Write_3cyc_1M], (instrs SMULHrr, UMULHrr)>;

// Pointer Authentication Instructions (v8.3 PAC)
// -----------------------------------------------------------------------------

// Authenticate data address
// Authenticate instruction address
// Compute pointer authentication code for data address
// Compute pointer authentication code, using generic key
// Compute pointer authentication code for instruction address
def : InstRW<[N2Write_5cyc_1M0], (instregex "^AUT", "^PAC")>;

// Branch and link, register, with pointer authentication
// Branch, register, with pointer authentication
// Branch, return, with pointer authentication
def : InstRW<[N2Write_6cyc_1M0_1B], (instrs BLRAA, BLRAAZ, BLRAB, BLRABZ, BRAA,
                                            BRAAZ, BRAB, BRABZ, RETAA, RETAB,
                                            ERETAA, ERETAB)>;


// Load register, with pointer authentication
def : InstRW<[N2Write_9cyc_1M0_1L], (instregex "^LDRA[AB](indexed|writeback)")>;

// Strip pointer authentication code
def : InstRW<[N2Write_2cyc_1M0], (instrs XPACD, XPACI, XPACLRI)>;

// Miscellaneous data-processing instructions
// -----------------------------------------------------------------------------

// Bitfield extract, one reg
// Bitfield extract, two regs
// NOTE: We don't model the difference between EXTR where both operands are the
// same (one reg).
def : SchedAlias<WriteExtr, N2Write_3cyc_1I_1M>;
def : InstRW<[N2Write_3cyc_1I_1M], (instrs EXTRWrri, EXTRXrri)>;

// Bitfield move, basic
def : SchedAlias<WriteIS, N2Write_1cyc_1I>;

// Bitfield move, insert
def : InstRW<[N2Write_2cyc_1M], (instregex "^BFM[WX]ri$")>;

// Load instructions
// -----------------------------------------------------------------------------

def : SchedAlias<WriteLD,    N2Write_4cyc_1L>;
def : SchedAlias<WriteLDIdx, N2Write_4cyc_1I_1L>;

// Load pair, signed immed offset, signed words
def : InstRW<[N2Write_5cyc_1M0, WriteLDHi], (instrs LDPSWi)>;
// Load pair, immed post-index or immed pre-index, signed words
def : InstRW<[WriteAdr, N2Write_5cyc_1M0, WriteLDHi],
             (instregex "^LDPSW(post|pre)$")>;

// Store instructions
// -----------------------------------------------------------------------------

def : SchedAlias<WriteST,    N2Write_1cyc_1L01_1D>;
def : SchedAlias<WriteSTIdx, N2Write_1cyc_1L01_1D_1I>;
def : SchedAlias<WriteSTP,   N2Write_1cyc_1L01_1D>;
def : SchedAlias<WriteAdr,   N2Write_1cyc_1I>; // copied from A57.

// Tag load instructions
// -----------------------------------------------------------------------------

// Load allocation tag
// Load multiple allocation tags
def : InstRW<[N2Write_4cyc_1L], (instrs LDG, LDGM)>;

// Tag store instructions
// -----------------------------------------------------------------------------

// Store allocation tags to one or two granules, post-index
// Store allocation tags to one or two granules, pre-index
// Store allocation tag to one or two granules, zeroing, post-index
// Store Allocation Tag to one or two granules, zeroing, pre-index
// Store allocation tag and reg pair to memory, post-Index
// Store allocation tag and reg pair to memory, pre-Index
def : InstRW<[N2Write_1cyc_1L01_1D_1I], (instrs STGPreIndex, STGPostIndex,
                                                ST2GPreIndex, ST2GPostIndex,
                                                STZGPreIndex, STZGPostIndex,
                                                STZ2GPreIndex, STZ2GPostIndex,
                                                STGPpre, STGPpost)>;

// Store allocation tags to one or two granules, signed offset
// Store allocation tag to two granules, zeroing, signed offset
// Store allocation tag and reg pair to memory, signed offset
// Store multiple allocation tags
def : InstRW<[N2Write_1cyc_1L01_1D], (instrs STGi, ST2Gi, STZGi,
                                             STZ2Gi, STGPi, STGM, STZGM)>;

// FP data processing instructions
// -----------------------------------------------------------------------------

// FP absolute value
// FP arithmetic
// FP min/max
// FP negate
// FP select
def : SchedAlias<WriteF,     N2Write_2cyc_1V>;

// FP compare
def : SchedAlias<WriteFCmp,  N2Write_2cyc_1V0>;

// FP divide, square root
def : SchedAlias<WriteFDiv,  N2Write_7cyc_1V0>;

// FP divide, H-form
def : InstRW<[N2Write_7cyc_1V0],  (instrs FDIVHrr)>;
// FP divide, S-form
def : InstRW<[N2Write_10cyc_1V0], (instrs FDIVSrr)>;
// FP divide, D-form
def : InstRW<[N2Write_15cyc_1V0], (instrs FDIVDrr)>;

// FP square root, H-form
def : InstRW<[N2Write_7cyc_1V0],  (instrs FSQRTHr)>;
// FP square root, S-form
def : InstRW<[N2Write_9cyc_1V0],  (instrs FSQRTSr)>;
// FP square root, D-form
def : InstRW<[N2Write_16cyc_1V0], (instrs FSQRTDr)>;

// FP multiply
def : WriteRes<WriteFMul, [N2UnitV]> { let Latency = 3; }

// FP multiply accumulate
def : InstRW<[N2Write_4cyc_1V], (instregex "^FN?M(ADD|SUB)[HSD]rrr$")>;

// FP round to integral
def : InstRW<[N2Write_3cyc_1V0], (instregex "^FRINT[AIMNPXZ][HSD]r$",
                                            "^FRINT(32|64)[XZ][SD]r$")>;

// FP miscellaneous instructions
// -----------------------------------------------------------------------------

// FP convert, from gen to vec reg
def : InstRW<[N2Write_3cyc_1M0], (instregex "^[SU]CVTF[SU][WX][HSD]ri$")>;

// FP convert, from vec to gen reg
def : InstRW<[N2Write_3cyc_1V], (instregex "^FCVT[AMNPZ][SU][SU][WX][HSD]r$")>;

// FP convert, Javascript from vec to gen reg
// FP convert, from vec to vec reg
def : SchedAlias<WriteFCvt, N2Write_3cyc_1V0>;

// FP move, immed
// FP move, register
def : SchedAlias<WriteFImm, N2Write_2cyc_1V>;

// FP transfer, from gen to low half of vec reg
def : InstRW<[N2Write_3cyc_1M0], (instrs FMOVWHr, FMOVXHr, FMOVWSr, FMOVXDr,
                                         FMOVHWr, FMOVHXr, FMOVSWr, FMOVDXr)>;

// FP transfer, from gen to high half of vec reg
def : InstRW<[N2Write_5cyc_1M0_1V], (instrs FMOVXDHighr)>;

// FP transfer, from vec to gen reg
def : SchedAlias<WriteFCopy, N2Write_2cyc_1V>;

// FP load instructions
// -----------------------------------------------------------------------------

// Load vector reg, literal, S/D/Q forms
// Load vector reg, unscaled immed
def : InstRW<[N2Write_6cyc_1L], (instregex "^LDR[SDQ]l$",
                                           "^LDUR[BHSDQ]i$")>;

// Load vector reg, immed post-index
def : InstRW<[N2Write_6cyc_1I_1L, WriteI], (instregex "^LDR[BHSDQ]post$")>;
// Load vector reg, immed pre-index
def : InstRW<[WriteAdr, N2Write_6cyc_1I_1L], (instregex "^LDR[BHSDQ]pre$")>;

// Load vector reg, unsigned immed
def : InstRW<[N2Write_6cyc_1L], (instregex "^LDR[BHSDQ]ui$")>;

// Load vector reg, register offset, basic
// Load vector reg, register offset, scale, S/D-form
// Load vector reg, register offset, extend
// Load vector reg, register offset, extend, scale, S/D-form
def : InstRW<[N2Write_6cyc_1L, ReadAdrBase], (instregex "^LDR[BSD]ro[WX]$")>;

// Load vector reg, register offset, scale, H/Q-form
// Load vector reg, register offset, extend, scale, H/Q-form
def : InstRW<[N2Write_7cyc_1I_1L, ReadAdrBase], (instregex "^LDR[HQ]ro[WX]$")>;

// Load vector pair, immed offset, S/D-form
def : InstRW<[N2Write_6cyc_1L, WriteLDHi], (instregex "^LDN?P[SD]i$")>;

// Load vector pair, immed offset, Q-form
def : InstRW<[N2Write_6cyc_2L, WriteLDHi], (instrs LDPQi, LDNPQi)>;

// Load vector pair, immed post-index, S/D-form
// Load vector pair, immed pre-index, S/D-form
def : InstRW<[WriteAdr, N2Write_6cyc_1I_1L, WriteLDHi],
             (instregex "^LDP[SD](pre|post)$")>;

// Load vector pair, immed post-index, Q-form
// Load vector pair, immed pre-index, Q-form
def : InstRW<[WriteAdr, N2Write_6cyc_2I_2L, WriteLDHi], (instrs LDPQpost,
                                                                LDPQpre)>;

// FP store instructions
// -----------------------------------------------------------------------------

// Store vector reg, unscaled immed, B/H/S/D-form
// Store vector reg, unscaled immed, Q-form
def : InstRW<[N2Write_2cyc_1L01_1V], (instregex "^STUR[BHSDQ]i$")>;

// Store vector reg, immed post-index, B/H/S/D-form
// Store vector reg, immed post-index, Q-form
// Store vector reg, immed pre-index, B/H/S/D-form
// Store vector reg, immed pre-index, Q-form
def : InstRW<[WriteAdr, N2Write_2cyc_1L01_1V_1I, ReadAdrBase],
             (instregex "^STR[BHSDQ](pre|post)$")>;

// Store vector reg, unsigned immed, B/H/S/D-form
// Store vector reg, unsigned immed, Q-form
def : InstRW<[N2Write_2cyc_1L01_1V], (instregex "^STR[BHSDQ]ui$")>;

// Store vector reg, register offset, basic, B/H/S/D-form
// Store vector reg, register offset, basic, Q-form
// Store vector reg, register offset, scale, S/D-form
// Store vector reg, register offset, extend, B/H/S/D-form
// Store vector reg, register offset, extend, Q-form
// Store vector reg, register offset, extend, scale, S/D-form
def : InstRW<[N2Write_2cyc_1L01_1V, ReadAdrBase],
             (instregex "^STR[BSD]ro[WX]$")>;

// Store vector reg, register offset, scale, H-form
// Store vector reg, register offset, scale, Q-form
// Store vector reg, register offset, extend, scale, H-form
// Store vector reg, register offset, extend, scale, Q-form
def : InstRW<[N2Write_2cyc_1L01_1V, ReadAdrBase],
             (instregex "^STR[HQ]ro[WX]$")>;

// Store vector pair, immed offset, S-form
// Store vector pair, immed offset, D-form
def : InstRW<[N2Write_2cyc_1L01_1V], (instregex "^STN?P[SD]i$")>;

// Store vector pair, immed offset, Q-form
def : InstRW<[N2Write_2cyc_1L01_2V], (instrs STPQi, STNPQi)>;

// Store vector pair, immed post-index, S-form
// Store vector pair, immed post-index, D-form
// Store vector pair, immed pre-index, S-form
// Store vector pair, immed pre-index, D-form
def : InstRW<[WriteAdr, N2Write_2cyc_1L01_1V_1I],
             (instregex "^STP[SD](pre|post)$")>;

// Store vector pair, immed post-index, Q-form
def : InstRW<[N2Write_2cyc_1L01_2V_1I], (instrs STPQpost)>;

// Store vector pair, immed pre-index, Q-form
def : InstRW<[N2Write_2cyc_1L01_2V_2I], (instrs STPQpre)>;

// ASIMD integer instructions
// -----------------------------------------------------------------------------

// ASIMD absolute diff
// ASIMD absolute diff long
// ASIMD arith, basic
// ASIMD arith, complex
// ASIMD arith, pair-wise
// ASIMD compare
// ASIMD logical
// ASIMD max/min, basic and pair-wise
def : SchedAlias<WriteVd, N2Write_2cyc_1V>;
def : SchedAlias<WriteVq, N2Write_2cyc_1V>;

// ASIMD absolute diff accum
// ASIMD absolute diff accum long
def : InstRW<[N2Write_4cyc_1V1],
             (instregex "^SABAv", "^UABAv", "^SABALv", "^UABALv")>;

// ASIMD arith, reduce, 4H/4S
def : InstRW<[N2Write_2cyc_1V1], (instregex "^(ADDV|[SU]ADDLV)v4(i16|i32)v$")>;

// ASIMD arith, reduce, 8B/8H
def : InstRW<[N2Write_4cyc_1V1_1V],
             (instregex "^(ADDV|[SU]ADDLV)v8(i8|i16)v$")>;

// ASIMD arith, reduce, 16B
def : InstRW<[N2Write_4cyc_1V1], (instrs ADDVv16i8v, SADDLVv16i8v,
                                         UADDLVv16i8v)>;

// ASIMD dot product
// ASIMD dot product using signed and unsigned integers
def : InstRW<[N2Write_3cyc_1V],
             (instregex "^([SU]|SU|US)DOT(lane)?(v8|v16)i8$")>;

// ASIMD matrix multiply-accumulate
def : InstRW<[N2Write_3cyc_1V], (instrs SMMLA, UMMLA, USMMLA)>;

// ASIMD max/min, reduce, 4H/4S
def : InstRW<[N2Write_2cyc_1V1], (instregex "^[SU](MAX|MIN)Vv4i16v$",
                                            "^[SU](MAX|MIN)Vv4i32v$")>;

// ASIMD max/min, reduce, 8B/8H
def : InstRW<[N2Write_4cyc_1V1_1V], (instregex "^[SU](MAX|MIN)Vv8i8v$",
                                               "^[SU](MAX|MIN)Vv8i16v$")>;

// ASIMD max/min, reduce, 16B
def : InstRW<[N2Write_4cyc_2V1], (instregex "[SU](MAX|MIN)Vv16i8v$")>;

// ASIMD multiply
def : InstRW<[N2Write_4cyc_1V0], (instregex "^MULv", "^SQ(R)?DMULHv")>;

// ASIMD multiply accumulate
def : InstRW<[N2Write_4cyc_1V0], (instregex "^MLAv", "^MLSv")>;

// ASIMD multiply accumulate high
def : InstRW<[N2Write_4cyc_1V0], (instregex "^SQRDMLAHv", "^SQRDMLSHv")>;

// ASIMD multiply accumulate long
def : InstRW<[N2Write_4cyc_1V0], (instregex "^[SU]MLALv", "^[SU]MLSLv")>;

// ASIMD multiply accumulate saturating long
def : InstRW<[N2Write_4cyc_1V0], (instregex "^SQDMLALv", "^SQDMLSLv")>;

// ASIMD multiply/multiply long (8x8) polynomial, D-form
// ASIMD multiply/multiply long (8x8) polynomial, Q-form
def : InstRW<[N2Write_3cyc_1V0], (instregex "^PMULL?(v8i8|v16i8)$")>;

// ASIMD multiply long
def : InstRW<[N2Write_3cyc_1V], (instregex "^[SU]MULLv", "^SQDMULLv")>;

// ASIMD pairwise add and accumulate long
def : InstRW<[N2Write_4cyc_1V1], (instregex "^[SU]ADALPv")>;

// ASIMD shift accumulate
def : InstRW<[N2Write_4cyc_1V1], (instregex "^[SU]SRAv", "^[SU]RSRAv")>;

// ASIMD shift by immed, basic
def : InstRW<[N2Write_2cyc_1V1], (instregex "^SHLv", "^SHLLv", "^SHRNv",
                                            "^SSHLLv", "^SSHRv", "^USHLLv",
                                            "^USHRv")>;

// ASIMD shift by immed and insert, basic
def : InstRW<[N2Write_2cyc_1V1], (instregex "^SLIv", "^SRIv")>;

// ASIMD shift by immed, complex
def : InstRW<[N2Write_4cyc_1V1],
             (instregex "^RSHRNv", "^SQRSHRNv", "^SQRSHRUNv",
                        "^(SQSHLU?|UQSHL)[bhsd]$",
                        "^(SQSHLU?|UQSHL)(v8i8|v16i8|v4i16|v8i16|v2i32|v4i32|v2i64)_shift$",
                        "^SQSHRNv", "^SQSHRUNv", "^SRSHRv", "^UQRSHRNv",
                        "^UQSHRNv", "^URSHRv")>;

// ASIMD shift by register, basic
def : InstRW<[N2Write_2cyc_1V1], (instregex "^[SU]SHLv")>;

// ASIMD shift by register, complex
def : InstRW<[N2Write_4cyc_1V1],
             (instregex "^[SU]RSHLv", "^[SU]QRSHLv",
                        "^[SU]QSHL(v1i8|v1i16|v1i32|v1i64|v8i8|v16i8|v4i16|v8i16|v2i32|v4i32|v2i64)$")>;

// ASIMD floating-point instructions
// -----------------------------------------------------------------------------

// ASIMD FP absolute value/difference
// ASIMD FP arith, normal
// ASIMD FP compare
// ASIMD FP complex add
// ASIMD FP max/min, normal
// ASIMD FP max/min, pairwise
// ASIMD FP negate
// Handled by SchedAlias<WriteV[dq], ...>

// ASIMD FP complex multiply add
def : InstRW<[N2Write_4cyc_1V], (instregex "^FCMLAv")>;

// ASIMD FP convert, long (F16 to F32)
def : InstRW<[N2Write_4cyc_2V0], (instregex "^FCVTL(v4|v8)i16")>;

// ASIMD FP convert, long (F32 to F64)
def : InstRW<[N2Write_3cyc_1V0], (instregex "^FCVTL(v2|v4)i32")>;

// ASIMD FP convert, narrow (F32 to F16)
def : InstRW<[N2Write_4cyc_2V0], (instregex "^FCVTN(v4|v8)i16")>;

// ASIMD FP convert, narrow (F64 to F32)
def : InstRW<[N2Write_3cyc_1V0], (instregex "^FCVTN(v2|v4)i32",
                                            "^FCVTXN(v2|v4)f32")>;

// ASIMD FP convert, other, D-form F32 and Q-form F64
def : InstRW<[N2Write_3cyc_1V0], (instregex "^[FSU]CVT[AMNPZ][SU]v2f(32|64)$",
                                            "^[SU]CVTFv2f(32|64)$")>;

// ASIMD FP convert, other, D-form F16 and Q-form F32
def : InstRW<[N2Write_4cyc_2V0], (instregex "^[FSU]CVT[AMNPZ][SU]v4f(16|32)$",
                                            "^[SU]CVTFv4f(16|32)$")>;

// ASIMD FP convert, other, Q-form F16
def : InstRW<[N2Write_6cyc_4V0], (instregex "^[FSU]CVT[AMNPZ][SU]v8f16$",
                                            "^[SU]CVTFv8f16$")>;

// ASIMD FP divide, D-form, F16
def : InstRW<[N2Write_7cyc_1V0], (instrs FDIVv4f16)>;

// ASIMD FP divide, D-form, F32
def : InstRW<[N2Write_10cyc_2V0], (instrs FDIVv2f32)>;

// ASIMD FP divide, Q-form, F16
def : InstRW<[N2Write_13cyc_2V0], (instrs FDIVv8f16)>;

// ASIMD FP divide, Q-form, F32
def : InstRW<[N2Write_10cyc_2V0], (instrs FDIVv4f32)>;

// ASIMD FP divide, Q-form, F64
def : InstRW<[N2Write_15cyc_2V0], (instrs FDIVv2f64)>;

// ASIMD FP max/min, reduce, F32 and D-form F16
def : InstRW<[N2Write_4cyc_1V], (instregex "^(FMAX|FMIN)(NM)?Vv4(i16|i32)v$")>;

// ASIMD FP max/min, reduce, Q-form F16
def : InstRW<[N2Write_6cyc_2V], (instregex "^(FMAX|FMIN)(NM)?Vv8i16v$")>;

// ASIMD FP multiply
def : InstRW<[N2Write_3cyc_1V], (instregex "^FMULv", "^FMULXv")>;

// ASIMD FP multiply accumulate
def : InstRW<[N2Write_4cyc_1V], (instregex "^FMLAv", "^FMLSv")>;

// ASIMD FP multiply accumulate long
def : InstRW<[N2Write_5cyc_1V], (instregex "^FMLALv", "^FMLSLv")>;

// ASIMD FP round, D-form F32 and Q-form F64
def : InstRW<[N2Write_3cyc_1V0],
             (instregex "^FRINT[AIMNPXZ]v2f(32|64)$",
                        "^FRINT[32|64)[XZ]v2f(32|64)$")>;

// ASIMD FP round, D-form F16 and Q-form F32
def : InstRW<[N2Write_4cyc_2V0],
             (instregex "^FRINT[AIMNPXZ]v4f(16|32)$",
                        "^FRINT(32|64)[XZ]v4f32$")>;


// ASIMD FP round, Q-form F16
def : InstRW<[N2Write_6cyc_4V0], (instregex "^FRINT[AIMNPXZ]v8f16$")>;

// ASIMD FP square root, D-form, F16
def : InstRW<[N2Write_7cyc_1V0], (instrs FSQRTv4f16)>;

// ASIMD FP square root, D-form, F32
def : InstRW<[N2Write_10cyc_2V0], (instrs FSQRTv2f32)>;

// ASIMD FP square root, Q-form, F16
def : InstRW<[N2Write_13cyc_2V0], (instrs FSQRTv8f16)>;

// ASIMD FP square root, Q-form, F32
def : InstRW<[N2Write_10cyc_2V0], (instrs FSQRTv4f32)>;

// ASIMD FP square root, Q-form, F64
def : InstRW<[N2Write_16cyc_2V0], (instrs FSQRTv2f64)>;

// ASIMD BFloat16 (BF16) instructions
// -----------------------------------------------------------------------------

// ASIMD convert, F32 to BF16
def : InstRW<[N2Write_4cyc_1V0], (instrs BFCVTN, BFCVTN2)>;

// ASIMD dot product
def : InstRW<[N2Write_4cyc_1V], (instrs BFDOTv4bf16, BFDOTv8bf16)>;

// ASIMD matrix multiply accumulate
def : InstRW<[N2Write_5cyc_1V], (instrs BFMMLA)>;

// ASIMD multiply accumulate long
def : InstRW<[N2Write_4cyc_1V], (instrs BFMLALB, BFMLALBIdx, BFMLALT,
                                        BFMLALTIdx)>;

// Scalar convert, F32 to BF16
def : InstRW<[N2Write_3cyc_1V0], (instrs BFCVT)>;

// ASIMD miscellaneous instructions
// -----------------------------------------------------------------------------

// ASIMD bit reverse
// ASIMD bitwise insert
// ASIMD count
// ASIMD duplicate, element
// ASIMD extract
// ASIMD extract narrow
// ASIMD insert, element to element
// ASIMD move, FP immed
// ASIMD move, integer immed
// ASIMD reverse
// ASIMD table lookup, 1 or 2 table regs
// ASIMD table lookup extension, 1 table reg
// ASIMD transfer, element to gen reg
// ASIMD transpose
// ASIMD unzip/zip
// Handled by SchedAlias<WriteV[dq], ...>

// ASIMD duplicate, gen reg
def : InstRW<[N2Write_3cyc_1M0], (instregex "^DUPv.+gpr")>;

// ASIMD extract narrow, saturating
def : InstRW<[N2Write_4cyc_1V1], (instregex "^[SU]QXTNv", "^SQXTUNv")>;

// ASIMD reciprocal and square root estimate, D-form U32
def : InstRW<[N2Write_3cyc_1V0], (instrs URECPEv2i32, URSQRTEv2i32)>;

// ASIMD reciprocal and square root estimate, Q-form U32
def : InstRW<[N2Write_4cyc_2V0], (instrs URECPEv4i32, URSQRTEv4i32)>;

// ASIMD reciprocal and square root estimate, D-form F32 and scalar forms
def : InstRW<[N2Write_3cyc_1V0], (instrs FRECPEv1f16, FRECPEv1i32,
                                         FRECPEv1i64, FRECPEv2f32,
                                         FRSQRTEv1f16, FRSQRTEv1i32,
                                         FRSQRTEv1i64, FRSQRTEv2f32)>;

// ASIMD reciprocal and square root estimate, D-form F16 and Q-form F32
def : InstRW<[N2Write_4cyc_2V0], (instrs FRECPEv4f16, FRECPEv4f32,
                                         FRSQRTEv4f16, FRSQRTEv4f32)>;

// ASIMD reciprocal and square root estimate, Q-form F16
def : InstRW<[N2Write_6cyc_4V0], (instrs FRECPEv8f16, FRSQRTEv8f16)>;

// ASIMD reciprocal exponent
def : InstRW<[N2Write_3cyc_1V0], (instregex "^FRECPXv")>;

// ASIMD reciprocal step
def : InstRW<[N2Write_4cyc_1V], (instregex "^FRECPSv", "^FRSQRTSv")>;

// ASIMD table lookup, 3 table regs
def : InstRW<[N2Write_4cyc_2V], (instrs TBLv8i8Three, TBLv16i8Three)>;

// ASIMD table lookup, 4 table regs
def : InstRW<[N2Write_4cyc_4V], (instrs TBLv8i8Four, TBLv16i8Four)>;

// ASIMD table lookup extension, 2 table reg
def : InstRW<[N2Write_4cyc_2V], (instrs TBXv8i8Two, TBXv16i8Two)>;

// ASIMD table lookup extension, 3 table reg
def : InstRW<[N2Write_6cyc_4V], (instrs TBXv8i8Three, TBXv16i8Three)>;

// ASIMD table lookup extension, 4 table reg
def : InstRW<[N2Write_6cyc_8V], (instrs TBXv8i8Four, TBXv16i8Four)>;

// ASIMD transfer, gen reg to element
def : InstRW<[N2Write_5cyc_1M0_1V], (instregex "^INSvi(8|16|32|64)gpr$")>;

// ASIMD load instructions
// -----------------------------------------------------------------------------

// ASIMD load, 1 element, multiple, 1 reg, D-form
def : InstRW<[N2Write_6cyc_1L], (instregex "^LD1Onev(8b|4h|2s|1d)$")>;
def : InstRW<[WriteAdr, N2Write_6cyc_1L],
             (instregex "^LD1Onev(8b|4h|2s|1d)_POST$")>;

// ASIMD load, 1 element, multiple, 1 reg, Q-form
def : InstRW<[N2Write_6cyc_1L], (instregex "^LD1Onev(16b|8h|4s|2d)$")>;
def : InstRW<[WriteAdr, N2Write_6cyc_1L],
             (instregex "^LD1Onev(16b|8h|4s|2d)_POST$")>;

// ASIMD load, 1 element, multiple, 2 reg, D-form
def : InstRW<[N2Write_6cyc_2L], (instregex "^LD1Twov(8b|4h|2s|1d)$")>;
def : InstRW<[WriteAdr, N2Write_6cyc_2L],
             (instregex "^LD1Twov(8b|4h|2s|1d)_POST$")>;

// ASIMD load, 1 element, multiple, 2 reg, Q-form
def : InstRW<[N2Write_6cyc_2L], (instregex "^LD1Twov(16b|8h|4s|2d)$")>;
def : InstRW<[WriteAdr, N2Write_6cyc_2L],
             (instregex "^LD1Twov(16b|8h|4s|2d)_POST$")>;

// ASIMD load, 1 element, multiple, 3 reg, D-form
def : InstRW<[N2Write_6cyc_3L], (instregex "^LD1Threev(8b|4h|2s|1d)$")>;
def : InstRW<[WriteAdr, N2Write_6cyc_3L],
             (instregex "^LD1Threev(8b|4h|2s|1d)_POST$")>;

// ASIMD load, 1 element, multiple, 3 reg, Q-form
def : InstRW<[N2Write_6cyc_3L], (instregex "^LD1Threev(16b|8h|4s|2d)$")>;
def : InstRW<[WriteAdr, N2Write_6cyc_3L],
             (instregex "^LD1Threev(16b|8h|4s|2d)_POST$")>;

// ASIMD load, 1 element, multiple, 4 reg, D-form
def : InstRW<[N2Write_7cyc_4L], (instregex "^LD1Fourv(8b|4h|2s|1d)$")>;
def : InstRW<[WriteAdr, N2Write_7cyc_4L],
             (instregex "^LD1Fourv(8b|4h|2s|1d)_POST$")>;

// ASIMD load, 1 element, multiple, 4 reg, Q-form
def : InstRW<[N2Write_7cyc_4L], (instregex "^LD1Fourv(16b|8h|4s|2d)$")>;
def : InstRW<[WriteAdr, N2Write_7cyc_4L],
             (instregex "^LD1Fourv(16b|8h|4s|2d)_POST$")>;

// ASIMD load, 1 element, one lane, B/H/S
// ASIMD load, 1 element, one lane, D
def : InstRW<[N2Write_8cyc_1L_1V],           (instregex "LD1i(8|16|32|64)$")>;
def : InstRW<[WriteAdr, N2Write_8cyc_1L_1V], (instregex "LD1i(8|16|32|64)_POST$")>;

// ASIMD load, 1 element, all lanes, D-form, B/H/S
// ASIMD load, 1 element, all lanes, D-form, D
def : InstRW<[N2Write_8cyc_1L_1V],           (instregex "LD1Rv(8b|4h|2s|1d)$")>;
def : InstRW<[WriteAdr, N2Write_8cyc_1L_1V], (instregex "LD1Rv(8b|4h|2s|1d)_POST$")>;

// ASIMD load, 1 element, all lanes, Q-form
def : InstRW<[N2Write_8cyc_1L_1V],           (instregex "LD1Rv(16b|8h|4s|2d)$")>;
def : InstRW<[WriteAdr, N2Write_8cyc_1L_1V], (instregex "LD1Rv(16b|8h|4s|2d)_POST$")>;

// ASIMD load, 2 element, multiple, D-form, B/H/S
def : InstRW<[N2Write_8cyc_1L_2V],           (instregex "LD2Twov(8b|4h|2s)$")>;
def : InstRW<[WriteAdr, N2Write_8cyc_1L_2V], (instregex "LD2Twov(8b|4h|2s)_POST$")>;

// ASIMD load, 2 element, multiple, Q-form, B/H/S
// ASIMD load, 2 element, multiple, Q-form, D
def : InstRW<[N2Write_8cyc_2L_2V],           (instregex "LD2Twov(16b|8h|4s|2d)$")>;
def : InstRW<[WriteAdr, N2Write_8cyc_2L_2V], (instregex "LD2Twov(16b|8h|4s|2d)_POST$")>;

// ASIMD load, 2 element, one lane, B/H
// ASIMD load, 2 element, one lane, S
// ASIMD load, 2 element, one lane, D
def : InstRW<[N2Write_8cyc_1L_2V],           (instregex "LD2i(8|16|32|64)$")>;
def : InstRW<[WriteAdr, N2Write_8cyc_1L_2V], (instregex "LD2i(8|16|32|64)_POST$")>;

// ASIMD load, 2 element, all lanes, D-form, B/H/S
// ASIMD load, 2 element, all lanes, D-form, D
def : InstRW<[N2Write_8cyc_1L_2V],            (instregex "LD2Rv(8b|4h|2s|1d)$")>;
def : InstRW<[WriteAdr, N2Write_8cyc_1L_2V],  (instregex "LD2Rv(8b|4h|2s|1d)_POST$")>;

// ASIMD load, 2 element, all lanes, Q-form
def : InstRW<[N2Write_8cyc_1L_2V],           (instregex "LD2Rv(16b|8h|4s|2d)$")>;
def : InstRW<[WriteAdr, N2Write_8cyc_1L_2V], (instregex "LD2Rv(16b|8h|4s|2d)_POST$")>;

// ASIMD load, 3 element, multiple, D-form, B/H/S
def : InstRW<[N2Write_8cyc_2L_3V],           (instregex "LD3Threev(8b|4h|2s)$")>;
def : InstRW<[WriteAdr, N2Write_8cyc_2L_3V], (instregex "LD3Threev(8b|4h|2s)_POST$")>;

// ASIMD load, 3 element, multiple, Q-form, B/H/S
def : InstRW<[N2Write_8cyc_3L_3V],           (instregex "LD3Threev(16b|8h|4s)$")>;
def : InstRW<[WriteAdr, N2Write_8cyc_3L_3V], (instregex "LD3Threev(16b|8h|4s)_POST$")>;

// ASIMD load, 3 element, multiple, Q-form, D
def : InstRW<[N2Write_8cyc_3L_3V],           (instregex "LD3Threev(2d)$")>;
def : InstRW<[WriteAdr, N2Write_8cyc_3L_3V], (instregex "LD3Threev(2d)_POST$")>;

// ASIMD load, 3 element, one lane, B/H
// ASIMD load, 3 element, one lane, S
// ASIMD load, 3 element, one lane, D
def : InstRW<[N2Write_8cyc_2L_3V],           (instregex "LD3i(8|16|32|64)$")>;
def : InstRW<[WriteAdr, N2Write_8cyc_2L_3V], (instregex "LD3i(8|16|32|64)_POST$")>;

// ASIMD load, 3 element, all lanes, D-form, B/H/S
// ASIMD load, 3 element, all lanes, D-form, D
def : InstRW<[N2Write_8cyc_2L_3V],           (instregex "LD3Rv(8b|4h|2s|1d)$")>;
def : InstRW<[WriteAdr, N2Write_8cyc_2L_3V], (instregex "LD3Rv(8b|4h|2s|1d)_POST$")>;

// ASIMD load, 3 element, all lanes, Q-form, B/H/S
// ASIMD load, 3 element, all lanes, Q-form, D
def : InstRW<[N2Write_8cyc_3L_3V],           (instregex "LD3Rv(16b|8h|4s|2d)$")>;
def : InstRW<[WriteAdr, N2Write_8cyc_3L_3V], (instregex "LD3Rv(16b|8h|4s|2d)_POST$")>;

// ASIMD load, 4 element, multiple, D-form, B/H/S
def : InstRW<[N2Write_8cyc_3L_4V],           (instregex "LD4Fourv(8b|4h|2s)$")>;
def : InstRW<[WriteAdr, N2Write_8cyc_3L_4V], (instregex "LD4Fourv(8b|4h|2s)_POST$")>;

// ASIMD load, 4 element, multiple, Q-form, B/H/S
// ASIMD load, 4 element, multiple, Q-form, D
def : InstRW<[N2Write_9cyc_4L_4V],           (instregex "LD4Fourv(16b|8h|4s|2d)$")>;
def : InstRW<[WriteAdr, N2Write_9cyc_4L_4V], (instregex "LD4Fourv(16b|8h|4s|2d)_POST$")>;

// ASIMD load, 4 element, one lane, B/H
// ASIMD load, 4 element, one lane, S
// ASIMD load, 4 element, one lane, D
def : InstRW<[N2Write_8cyc_3L_4V],           (instregex "LD4i(8|16|32|64)$")>;
def : InstRW<[WriteAdr, N2Write_8cyc_3L_4V], (instregex "LD4i(8|16|32|64)_POST$")>;

// ASIMD load, 4 element, all lanes, D-form, B/H/S
// ASIMD load, 4 element, all lanes, D-form, D
def : InstRW<[N2Write_8cyc_3L_4V],              (instregex "LD4Rv(8b|4h|2s|1d)$")>;
def : InstRW<[WriteAdr, N2Write_8cyc_3L_4V],    (instregex "LD4Rv(8b|4h|2s|1d)_POST$")>;

// ASIMD load, 4 element, all lanes, Q-form, B/H/S
// ASIMD load, 4 element, all lanes, Q-form, D
def : InstRW<[N2Write_8cyc_4L_4V],            (instregex "LD4Rv(16b|8h|4s|2d)$")>;
def : InstRW<[WriteAdr, N2Write_8cyc_4L_4V],  (instregex "LD4Rv(16b|8h|4s|2d)_POST$")>;

// ASIMD store instructions
// -----------------------------------------------------------------------------

// ASIMD store, 1 element, multiple, 1 reg, D-form
def : InstRW<[N2Write_2cyc_1L01_1V],           (instregex "ST1Onev(8b|4h|2s|1d)$")>;
def : InstRW<[WriteAdr, N2Write_2cyc_1L01_1V], (instregex "ST1Onev(8b|4h|2s|1d)_POST$")>;

// ASIMD store, 1 element, multiple, 1 reg, Q-form
def : InstRW<[N2Write_2cyc_1L01_1V],           (instregex "ST1Onev(16b|8h|4s|2d)$")>;
def : InstRW<[WriteAdr, N2Write_2cyc_1L01_1V], (instregex "ST1Onev(16b|8h|4s|2d)_POST$")>;

// ASIMD store, 1 element, multiple, 2 reg, D-form
def : InstRW<[N2Write_2cyc_1L01_1V],           (instregex "ST1Twov(8b|4h|2s|1d)$")>;
def : InstRW<[WriteAdr, N2Write_2cyc_1L01_1V], (instregex "ST1Twov(8b|4h|2s|1d)_POST$")>;

// ASIMD store, 1 element, multiple, 2 reg, Q-form
def : InstRW<[N2Write_2cyc_2L01_2V],           (instregex "ST1Twov(16b|8h|4s|2d)$")>;
def : InstRW<[WriteAdr, N2Write_2cyc_2L01_2V], (instregex "ST1Twov(16b|8h|4s|2d)_POST$")>;

// ASIMD store, 1 element, multiple, 3 reg, D-form
def : InstRW<[N2Write_2cyc_2L01_2V],           (instregex "ST1Threev(8b|4h|2s|1d)$")>;
def : InstRW<[WriteAdr, N2Write_2cyc_2L01_2V], (instregex "ST1Threev(8b|4h|2s|1d)_POST$")>;

// ASIMD store, 1 element, multiple, 3 reg, Q-form
def : InstRW<[N2Write_2cyc_3L01_3V],           (instregex "ST1Threev(16b|8h|4s|2d)$")>;
def : InstRW<[WriteAdr, N2Write_2cyc_3L01_3V], (instregex "ST1Threev(16b|8h|4s|2d)_POST$")>;

// ASIMD store, 1 element, multiple, 4 reg, D-form
def : InstRW<[N2Write_2cyc_2L01_2V],           (instregex "ST1Fourv(8b|4h|2s|1d)$")>;
def : InstRW<[WriteAdr, N2Write_2cyc_2L01_2V], (instregex "ST1Fourv(8b|4h|2s|1d)_POST$")>;

// ASIMD store, 1 element, multiple, 4 reg, Q-form
def : InstRW<[N2Write_2cyc_4L01_4V],           (instregex "ST1Fourv(16b|8h|4s|2d)$")>;
def : InstRW<[WriteAdr, N2Write_2cyc_4L01_4V], (instregex "ST1Fourv(16b|8h|4s|2d)_POST$")>;

// ASIMD store, 1 element, one lane, B/H/S
// ASIMD store, 1 element, one lane, D
def : InstRW<[N2Write_4cyc_1L01_1V],           (instregex "ST1i(8|16|32|64)$")>;
def : InstRW<[WriteAdr, N2Write_4cyc_1L01_1V], (instregex "ST1i(8|16|32|64)_POST$")>;

// ASIMD store, 2 element, multiple, D-form, B/H/S
def : InstRW<[N2Write_4cyc_1L01_1V],           (instregex "ST2Twov(8b|4h|2s)$")>;
def : InstRW<[WriteAdr, N2Write_4cyc_1L01_1V], (instregex "ST2Twov(8b|4h|2s)_POST$")>;

// ASIMD store, 2 element, multiple, Q-form, B/H/S
// ASIMD store, 2 element, multiple, Q-form, D
def : InstRW<[N2Write_4cyc_2L01_2V],           (instregex "ST2Twov(16b|8h|4s|2d)$")>;
def : InstRW<[WriteAdr, N2Write_4cyc_2L01_2V], (instregex "ST2Twov(16b|8h|4s|2d)_POST$")>;

// ASIMD store, 2 element, one lane, B/H/S
// ASIMD store, 2 element, one lane, D
def : InstRW<[N2Write_4cyc_1L01_1V],           (instregex "ST2i(8|16|32|64)$")>;
def : InstRW<[WriteAdr, N2Write_4cyc_1L01_1V], (instregex "ST2i(8|16|32|64)_POST$")>;

// ASIMD store, 3 element, multiple, D-form, B/H/S
def : InstRW<[N2Write_5cyc_2L01_2V],           (instregex "ST3Threev(8b|4h|2s)$")>;
def : InstRW<[WriteAdr, N2Write_5cyc_2L01_2V], (instregex "ST3Threev(8b|4h|2s)_POST$")>;

// ASIMD store, 3 element, multiple, Q-form, B/H/S
// ASIMD store, 3 element, multiple, Q-form, D
def : InstRW<[N2Write_6cyc_3L01_3V],           (instregex "ST3Threev(16b|8h|4s|2d)$")>;
def : InstRW<[WriteAdr, N2Write_6cyc_3L01_3V], (instregex "ST3Threev(16b|8h|4s|2d)_POST$")>;

// ASIMD store, 3 element, one lane, B/H
// ASIMD store, 3 element, one lane, S
// ASIMD store, 3 element, one lane, D
def : InstRW<[N2Write_6cyc_3L01_3V],           (instregex "ST3i(8|16|32|64)$")>;
def : InstRW<[WriteAdr, N2Write_6cyc_3L01_3V], (instregex "ST3i(8|16|32|64)_POST$")>;

// ASIMD store, 4 element, multiple, D-form, B/H/S
def : InstRW<[N2Write_6cyc_3L01_3V],           (instregex "ST4Fourv(8b|4h|2s)$")>;
def : InstRW<[WriteAdr, N2Write_6cyc_3L01_3V], (instregex "ST4Fourv(8b|4h|2s)_POST$")>;

// ASIMD store, 4 element, multiple, Q-form, B/H/S
def : InstRW<[N2Write_7cyc_6L01_6V],           (instregex "ST4Fourv(16b|8h|4s)$")>;
def : InstRW<[WriteAdr, N2Write_7cyc_6L01_6V], (instregex "ST4Fourv(16b|8h|4s)_POST$")>;

// ASIMD store, 4 element, multiple, Q-form, D
def : InstRW<[N2Write_5cyc_4L01_4V],           (instregex "ST4Fourv(2d)$")>;
def : InstRW<[WriteAdr, N2Write_5cyc_4L01_4V], (instregex "ST4Fourv(2d)_POST$")>;

// ASIMD store, 4 element, one lane, B/H/S
def : InstRW<[N2Write_6cyc_3L01_3V],           (instregex "ST4i(8|16|32)$")>;
def : InstRW<[WriteAdr, N2Write_6cyc_3L01_3V], (instregex "ST4i(8|16|32)_POST$")>;

// ASIMD store, 4 element, one lane, D
def : InstRW<[N2Write_4cyc_3L01_3V],            (instregex "ST4i(64)$")>;
def : InstRW<[WriteAdr, N2Write_4cyc_3L01_3V],  (instregex "ST4i(64)_POST$")>;

// Cryptography extensions
// -----------------------------------------------------------------------------

// Crypto AES ops
def : InstRW<[N2Write_2cyc_1V], (instregex "^AES[DE]rr$", "^AESI?MCrr")>;

// Crypto polynomial (64x64) multiply long
def : InstRW<[N2Write_2cyc_1V0], (instrs PMULLv1i64, PMULLv2i64)>;

// Crypto SHA1 hash acceleration op
// Crypto SHA1 schedule acceleration ops
def : InstRW<[N2Write_2cyc_1V0], (instregex "^SHA1(H|SU0|SU1)")>;

// Crypto SHA1 hash acceleration ops
// Crypto SHA256 hash acceleration ops
def : InstRW<[N2Write_4cyc_1V0], (instregex "^SHA1[CMP]", "^SHA256H2?")>;

// Crypto SHA256 schedule acceleration ops
def : InstRW<[N2Write_2cyc_1V0], (instregex "^SHA256SU[01]")>;

// Crypto SHA512 hash acceleration ops
def : InstRW<[N2Write_2cyc_1V0], (instregex "^SHA512(H|H2|SU0|SU1)")>;

// Crypto SHA3 ops
def : InstRW<[N2Write_2cyc_1V0], (instrs BCAX, EOR3, RAX1, XAR)>;

// Crypto SM3 ops
def : InstRW<[N2Write_2cyc_1V0], (instregex "^SM3PARTW[12]$", "^SM3SS1$",
                                            "^SM3TT[12][AB]$")>;

// Crypto SM4 ops
def : InstRW<[N2Write_4cyc_1V0], (instrs SM4E, SM4ENCKEY)>;

// CRC
// -----------------------------------------------------------------------------

def : InstRW<[N2Write_2cyc_1M0], (instregex "^CRC32")>;

// SVE Predicate instructions
// -----------------------------------------------------------------------------

// Loop control, based on predicate
def : InstRW<[N2Write_2cyc_1M], (instrs BRKA_PPmP, BRKA_PPzP,
                                        BRKB_PPmP, BRKB_PPzP)>;

// Loop control, based on predicate and flag setting
def : InstRW<[N2Write_3cyc_1M], (instrs BRKAS_PPzP, BRKBS_PPzP)>;

// Loop control, propagating
def : InstRW<[N2Write_2cyc_1M0], (instrs BRKN_PPzP, BRKPA_PPzPP, BRKPB_PPzPP)>;

// Loop control, propagating and flag setting
def : InstRW<[N2Write_3cyc_1M0_1M], (instrs BRKNS_PPzP, BRKPAS_PPzPP,
                                            BRKPBS_PPzPP)>;

// Loop control, based on GPR
def : InstRW<[N2Write_3cyc_1M],
             (instregex "^WHILE(GE|GT|HI|HS|LE|LO|LS|LT)_P(WW|XX)_[BHSD]$")>;

def : InstRW<[N2Write_3cyc_1M], (instregex "^WHILE(RW|WR)_PXX_[BHSD]$")>;

// Loop terminate
def : InstRW<[N2Write_1cyc_1M], (instregex "^CTERM(EQ|NE)_(WW|XX)$")>;

// Predicate counting scalar
def : InstRW<[N2Write_2cyc_1M], (instrs ADDPL_XXI, ADDVL_XXI, RDVLI_XI)>;
def : InstRW<[N2Write_2cyc_1M],
             (instregex "^(CNT|DEC|INC|SQDEC|SQINC|UQDEC|UQINC)[BHWD]_XPiI$",
                        "^SQ(DEC|INC)[BHWD]_XPiWdI$",
                        "^(UQDEC|UQINC)[BHWD]_WPiI$")>;

// Predicate counting scalar, active predicate
def : InstRW<[N2Write_2cyc_1M],
             (instregex "^CNTP_XPP_[BHSD]$",
                        "^(DEC|INC|SQDEC|SQINC|UQDEC|UQINC)P_XP_[BHSD]$",
                        "^(UQDEC|UQINC)P_WP_[BHSD]$",
                        "^(SQDEC|SQINC|UQDEC|UQINC)P_XPWd_[BHSD]$")>;

// Predicate counting vector, active predicate
def : InstRW<[N2Write_7cyc_1M_1M0_1V],
             (instregex "^(DEC|INC|SQDEC|SQINC|UQDEC|UQINC)P_ZP_[HSD]$")>;

// Predicate logical
def : InstRW<[N2Write_1cyc_1M0],
             (instregex "^(AND|BIC|EOR|NAND|NOR|ORN|ORR)_PPzPP$")>;

// Predicate logical, flag setting
def : InstRW<[N2Write_2cyc_1M0_1M],
             (instregex "^(ANDS|BICS|EORS|NANDS|NORS|ORNS|ORRS)_PPzPP$")>;

// Predicate reverse
def : InstRW<[N2Write_2cyc_1M], (instregex "^REV_PP_[BHSD]$")>;

// Predicate select
def : InstRW<[N2Write_1cyc_1M0], (instrs SEL_PPPP)>;

// Predicate set
def : InstRW<[N2Write_2cyc_1M], (instregex "^PFALSE$", "^PTRUE_[BHSD]$")>;

// Predicate set/initialize, set flags
def : InstRW<[N2Write_3cyc_1M], (instregex "^PTRUES_[BHSD]$")>;

// Predicate find first/next
def : InstRW<[N2Write_3cyc_1M], (instregex "^PFIRST_B$", "^PNEXT_[BHSD]$")>;

// Predicate test
def : InstRW<[N2Write_1cyc_1M], (instrs PTEST_PP)>;

// Predicate transpose
def : InstRW<[N2Write_2cyc_1M], (instregex "^TRN[12]_PPP_[BHSDQ]$")>;

// Predicate unpack and widen
def : InstRW<[N2Write_2cyc_1M], (instrs PUNPKHI_PP, PUNPKLO_PP)>;

// Predicate zip/unzip
def : InstRW<[N2Write_2cyc_1M], (instregex "^(ZIP|UZP)[12]_PPP_[BHSDQ]$")>;

// SVE integer instructions
// -----------------------------------------------------------------------------

// Arithmetic, absolute diff
def : InstRW<[N2Write_2cyc_1V], (instregex "^[SU]ABD_ZPmZ_[BHSD]$")>;

// Arithmetic, absolute diff accum
def : InstRW<[N2Write_4cyc_1V1], (instregex "^[SU]ABA_ZZZ_[BHSD]$")>;

// Arithmetic, absolute diff accum long
def : InstRW<[N2Write_4cyc_1V1], (instregex "^[SU]ABAL[TB]_ZZZ_[HSD]$")>;

// Arithmetic, absolute diff long
def : InstRW<[N2Write_2cyc_1V], (instregex "^[SU]ABDL[TB]_ZZZ_[HSD]$")>;

// Arithmetic, basic
def : InstRW<[N2Write_2cyc_1V],
             (instregex "^(ABS|ADD|CNOT|NEG|SUB|SUBR)_ZPmZ_[BHSD]$",
                        "^(ADD|SUB)_ZZZ_[BHSD]$",
                        "^(ADD|SUB|SUBR)_ZI_[BHSD]$",
                        "^ADR_[SU]XTW_ZZZ_D_[0123]$",
                        "^ADR_LSL_ZZZ_[SD]_[0123]$",
                        "^[SU](ADD|SUB)[LW][BT]_ZZZ_[HSD]$",
                        "^SADDLBT_ZZZ_[HSD]$",
                        "^[SU]H(ADD|SUB|SUBR)_ZPmZ_[BHSD]$",
                        "^SSUBL(BT|TB)_ZZZ_[HSD]$")>;

// Arithmetic, complex
def : InstRW<[N2Write_2cyc_1V],
             (instregex "^R?(ADD|SUB)HN[BT]_ZZZ_[BHS]$",
                        "^SQ(ABS|ADD|NEG|SUB|SUBR)_ZPmZ_[BHSD]$",
                        "^[SU]Q(ADD|SUB)_ZZZ_[BHSD]$",
                        "^[SU]Q(ADD|SUB)_ZI_[BHSD]$",
                        "^(SRH|SUQ|UQ|USQ|URH)ADD_ZPmZ_[BHSD]$",
                        "^(UQSUB|UQSUBR)_ZPmZ_[BHSD]$")>;

// Arithmetic, large integer
def : InstRW<[N2Write_2cyc_1V], (instregex "^(AD|SB)CL[BT]_ZZZ_[SD]$")>;

// Arithmetic, pairwise add
def : InstRW<[N2Write_2cyc_1V], (instregex "^ADDP_ZPmZ_[BHSD]$")>;

// Arithmetic, pairwise add and accum long
def : InstRW<[N2Write_4cyc_1V1], (instregex "^[SU]ADALP_ZPmZ_[HSD]$")>;

// Arithmetic, shift
def : InstRW<[N2Write_2cyc_1V1],
             (instregex "^(ASR|LSL|LSR)_WIDE_ZPmZ_[BHS]$",
                        "^(ASR|LSL|LSR)_WIDE_ZZZ_[BHS]$",
                        "^(ASR|LSL|LSR)_ZPmI_[BHSD]$",
                        "^(ASR|LSL|LSR)_ZPmZ_[BHSD]$",
                        "^(ASR|LSL|LSR)_ZZI_[BHSD]$",
                        "^(ASRR|LSLR|LSRR)_ZPmZ_[BHSD]$")>;

// Arithmetic, shift and accumulate
def : InstRW<[N2Write_4cyc_1V1],
             (instregex "^(SRSRA|SSRA|URSRA|USRA)_ZZI_[BHSD]$")>;

// Arithmetic, shift by immediate
// Arithmetic, shift by immediate and insert
def : InstRW<[N2Write_2cyc_1V1],
             (instregex "^(SHRNB|SHRNT|SSHLLB|SSHLLT|USHLLB|USHLLT|SLI|SRI)_ZZI_[BHSD]$")>;

// Arithmetic, shift complex
def : InstRW<[N2Write_4cyc_1V1],
             (instregex "^(SQ)?RSHRU?N[BT]_ZZI_[BHS]$",
                        "^(SQRSHL|SQRSHLR|SQSHL|SQSHLR|UQRSHL|UQRSHLR|UQSHL|UQSHLR)_ZPmZ_[BHSD]$",
                        "^(SQSHL|SQSHLU|UQSHL)_ZPmI_[BHSD]$",
                        "^SQSHRU?N[BT]_ZZI_[BHS]$",
                        "^UQR?SHRN[BT]_ZZI_[BHS]$")>;

// Arithmetic, shift right for divide
def : InstRW<[N2Write_4cyc_1V1], (instregex "^ASRD_ZPmI_[BHSD]$")>;

// Arithmetic, shift rounding
def : InstRW<[N2Write_4cyc_1V1],
             (instregex "^(SRSHL|SRSHLR|URSHL|URSHLR)_ZPmZ_[BHSD]$",
                        "^[SU]RSHR_ZPmI_[BHSD]$")>;

// Bit manipulation
def : InstRW<[N2Write_6cyc_2V1],
             (instregex "^(BDEP|BEXT|BGRP)_ZZZ_[BHSD]$")>;

// Bitwise select
def : InstRW<[N2Write_2cyc_1V], (instregex "^(BSL|BSL1N|BSL2N|NBSL)_ZZZZ$")>;

// Count/reverse bits
def : InstRW<[N2Write_2cyc_1V], (instregex "^(CLS|CLZ|CNT|RBIT)_ZPmZ_[BHSD]$")>;

// Broadcast logical bitmask immediate to vector
def : InstRW<[N2Write_2cyc_1V], (instrs DUPM_ZI)>;

// Compare and set flags
def : InstRW<[N2Write_4cyc_1V0_1M],
             (instregex "^CMP(EQ|GE|GT|HI|HS|LE|LO|LS|LT|NE)_PPzZ[IZ]_[BHSD]$",
                        "^CMP(EQ|GE|GT|HI|HS|LE|LO|LS|LT|NE)_WIDE_PPzZZ_[BHS]$")>;

// Complex add
def : InstRW<[N2Write_2cyc_1V], (instregex "^(SQ)?CADD_ZZI_[BHSD]$")>;

// Complex dot product 8-bit element
def : InstRW<[N2Write_3cyc_1V], (instrs CDOT_ZZZ_S, CDOT_ZZZI_S)>;

// Complex dot product 16-bit element
def : InstRW<[N2Write_4cyc_1V0], (instrs CDOT_ZZZ_D, CDOT_ZZZI_D)>;

// Complex multiply-add B, H, S element size
def : InstRW<[N2Write_4cyc_1V0], (instregex "^CMLA_ZZZ_[BHS]$",
                                            "^CMLA_ZZZI_[HS]$")>;

// Complex multiply-add D element size
def : InstRW<[N2Write_5cyc_2V0], (instrs CMLA_ZZZ_D)>;

// Conditional extract operations, scalar form
def : InstRW<[N2Write_8cyc_1M0_1V1_1V], (instregex "^CLAST[AB]_RPZ_[BHSD]$")>;

// Conditional extract operations, SIMD&FP scalar and vector forms
def : InstRW<[N2Write_3cyc_1V1], (instregex "^CLAST[AB]_[VZ]PZ_[BHSD]$",
                                            "^COMPACT_ZPZ_[SD]$",
                                            "^SPLICE_ZPZZ?_[BHSD]$")>;

// Convert to floating point, 64b to float or convert to double
def : InstRW<[N2Write_3cyc_1V0], (instregex "^[SU]CVTF_ZPmZ_Dto[SD]$")>;

// Convert to floating point, 64b to half
def : InstRW<[N2Write_3cyc_1V0], (instregex "^[SU]CVTF_ZPmZ_DtoH$")>;

// Convert to floating point, 32b to single or half
def : InstRW<[N2Write_4cyc_2V0], (instregex "^[SU]CVTF_ZPmZ_Sto[HS]$")>;

// Convert to floating point, 32b to double
def : InstRW<[N2Write_3cyc_1V0], (instregex "^[SU]CVTF_ZPmZ_StoD$")>;

// Convert to floating point, 16b to half
def : InstRW<[N2Write_6cyc_4V0], (instregex "^[SU]CVTF_ZPmZ_HtoH$")>;

// Copy, scalar
def : InstRW<[N2Write_5cyc_1M0_1V], (instregex "^CPY_ZPmR_[BHSD]$")>;

// Copy, scalar SIMD&FP or imm
def : InstRW<[N2Write_2cyc_1V], (instregex "^CPY_ZPm[IV]_[BHSD]$",
                                           "^CPY_ZPzI_[BHSD]$")>;

// Divides, 32 bit
def : InstRW<[N2Write_12cyc_1V0], (instregex "^[SU]DIVR?_ZPmZ_S$")>;

// Divides, 64 bit
def : InstRW<[N2Write_20cyc_1V0], (instregex "^[SU]DIVR?_ZPmZ_D$")>;

// Dot product, 8 bit
def : InstRW<[N2Write_3cyc_1V], (instregex "^[SU]DOT_ZZZI?_S$")>;

// Dot product, 8 bit, using signed and unsigned integers
def : InstRW<[N2Write_3cyc_1V], (instrs SUDOT_ZZZI, USDOT_ZZZI, USDOT_ZZZ)>;

// Dot product, 16 bit
def : InstRW<[N2Write_4cyc_1V0], (instregex "^[SU]DOT_ZZZI?_D$")>;

// Duplicate, immediate and indexed form
def : InstRW<[N2Write_2cyc_1V], (instregex "^DUP_ZI_[BHSD]$",
                                           "^DUP_ZZI_[BHSDQ]$")>;

// Duplicate, scalar form
def : InstRW<[N2Write_3cyc_1M0], (instregex "^DUP_ZR_[BHSD]$")>;

// Extend, sign or zero
def : InstRW<[N2Write_2cyc_1V1], (instregex "^[SU]XTB_ZPmZ_[HSD]$",
                                            "^[SU]XTH_ZPmZ_[SD]$",
                                            "^[SU]XTW_ZPmZ_[D]$")>;

// Extract
def : InstRW<[N2Write_2cyc_1V], (instrs EXT_ZZI, EXT_ZZI_B)>;

// Extract narrow saturating
def : InstRW<[N2Write_4cyc_1V1], (instregex "^[SU]QXTN[BT]_ZZ_[BHS]$",
                                            "^SQXTUN[BT]_ZZ_[BHS]$")>;

// Extract/insert operation, SIMD and FP scalar form
def : InstRW<[N2Write_3cyc_1V1], (instregex "^LAST[AB]_VPZ_[BHSD]$",
                                            "^INSR_ZV_[BHSD]$")>;

// Extract/insert operation, scalar
def : InstRW<[N2Write_5cyc_1V1_1M0], (instregex "^LAST[AB]_RPZ_[BHSD]$",
                                                "^INSR_ZR_[BHSD]$")>;

// Histogram operations
def : InstRW<[N2Write_2cyc_1V], (instregex "^HISTCNT_ZPzZZ_[SD]$",
                                           "^HISTSEG_ZZZ$")>;

// Horizontal operations, B, H, S form, immediate operands only
def : InstRW<[N2Write_4cyc_1V0], (instregex "^INDEX_II_[BHS]$")>;

// Horizontal operations, B, H, S form, scalar, immediate operands/ scalar
// operands only / immediate, scalar operands
def : InstRW<[N2Write_7cyc_1M0_1V0], (instregex "^INDEX_(IR|RI|RR)_[BHS]$")>;

// Horizontal operations, D form, immediate operands only
def : InstRW<[N2Write_5cyc_2V0], (instrs INDEX_II_D)>;

// Horizontal operations, D form, scalar, immediate operands)/ scalar operands
// only / immediate, scalar operands
def : InstRW<[N2Write_8cyc_2M0_2V0], (instregex "^INDEX_(IR|RI|RR)_D$")>;

// Logical
def : InstRW<[N2Write_2cyc_1V],
             (instregex "^(AND|EOR|ORR)_ZI$",
                        "^(AND|BIC|EOR|EOR(BT|TB)?|ORR)_ZZZ$",
                        "^EOR(BT|TB)_ZZZ_[BHSD]$",
                        "^(AND|BIC|EOR|NOT|ORR)_ZPmZ_[BHSD]$")>;

// Max/min, basic and pairwise
def : InstRW<[N2Write_2cyc_1V], (instregex "^[SU](MAX|MIN)_ZI_[BHSD]$",
                                           "^[SU](MAX|MIN)P?_ZPmZ_[BHSD]$")>;

// Matching operations
def : InstRW<[N2Write_2cyc_1V0_1M], (instregex "^N?MATCH_PPzZZ_[BH]$")>;

// Matrix multiply-accumulate
def : InstRW<[N2Write_3cyc_1V], (instrs SMMLA_ZZZ, UMMLA_ZZZ, USMMLA_ZZZ)>;

// Move prefix
def : InstRW<[N2Write_2cyc_1V], (instregex "^MOVPRFX_ZP[mz]Z_[BHSD]$",
                                           "^MOVPRFX_ZZ$")>;

// Multiply, B, H, S element size
def : InstRW<[N2Write_4cyc_1V0], (instregex "^MUL_(ZI|ZPmZ|ZZZI|ZZZ)_[BHS]$",
                                            "^[SU]MULH_(ZPmZ|ZZZ)_[BHS]$")>;

// Multiply, D element size
def : InstRW<[N2Write_5cyc_2V0], (instregex "^MUL_(ZI|ZPmZ|ZZZI|ZZZ)_D$",
                                            "^[SU]MULH_(ZPmZ|ZZZ)_D$")>;

// Multiply long
def : InstRW<[N2Write_4cyc_1V0], (instregex "^[SU]MULL[BT]_ZZZI_[SD]$",
                                            "^[SU]MULL[BT]_ZZZ_[HSD]$")>;

// Multiply accumulate, B, H, S element size
def : InstRW<[N2Write_4cyc_1V0], (instregex "^ML[AS]_ZZZI_[BHS]$",
                                            "^(ML[AS]|MAD|MSB)_ZPmZZ_[BHS]$")>;

// Multiply accumulate, D element size
def : InstRW<[N2Write_5cyc_2V0], (instregex "^ML[AS]_ZZZI_D$",
                                            "^(ML[AS]|MAD|MSB)_ZPmZZ_D$")>;

// Multiply accumulate long
def : InstRW<[N2Write_4cyc_1V0], (instregex "^[SU]ML[AS]L[BT]_ZZZ_[HSD]$",
                                            "^[SU]ML[AS]L[BT]_ZZZI_[SD]$")>;

// Multiply accumulate saturating doubling long regular
def : InstRW<[N2Write_4cyc_1V0], (instregex "^SQDML[AS](LB|LT|LBT)_ZZZ_[HSD]$",
                                            "^SQDML[AS](LB|LT)_ZZZI_[SD]$")>;

// Multiply saturating doubling high, B, H, S element size
def : InstRW<[N2Write_4cyc_1V0], (instregex "^SQDMULH_ZZZ_[BHS]$",
                                            "^SQDMULH_ZZZI_[HS]$")>;

// Multiply saturating doubling high, D element size
def : InstRW<[N2Write_5cyc_2V0], (instrs SQDMULH_ZZZ_D, SQDMULH_ZZZI_D)>;

// Multiply saturating doubling long
def : InstRW<[N2Write_4cyc_1V0], (instregex "^SQDMULL[BT]_ZZZ_[HSD]$",
                                            "^SQDMULL[BT]_ZZZI_[SD]$")>;

// Multiply saturating rounding doubling regular/complex accumulate, B, H, S
// element size
def : InstRW<[N2Write_4cyc_1V0], (instregex "^SQRDML[AS]H_ZZZ_[BHS]$",
                                            "^SQRDCMLAH_ZZZ_[BHS]$",
                                            "^SQRDML[AS]H_ZZZI_[HS]$",
                                            "^SQRDCMLAH_ZZZI_[HS]$")>;

// Multiply saturating rounding doubling regular/complex accumulate, D element
// size
def : InstRW<[N2Write_5cyc_2V0], (instregex "^SQRDML[AS]H_ZZZI?_D$",
                                            "^SQRDCMLAH_ZZZ_D$")>;

// Multiply saturating rounding doubling regular/complex, B, H, S element size
def : InstRW<[N2Write_4cyc_1V0], (instregex "^SQRDMULH_ZZZ_[BHS]$",
                                            "^SQRDMULH_ZZZI_[HS]$")>;

// Multiply saturating rounding doubling regular/complex, D element size
def : InstRW<[N2Write_5cyc_2V0], (instregex "^SQRDMULH_ZZZI?_D$")>;

// Multiply/multiply long, (8x8) polynomial
def : InstRW<[N2Write_2cyc_1V0], (instregex "^PMUL_ZZZ_B$",
                                            "^PMULL[BT]_ZZZ_[HDQ]$")>;

// Predicate counting vector
def : InstRW<[N2Write_2cyc_1V0],
             (instregex "^(DEC|INC|SQDEC|SQINC|UQDEC|UQINC)[HWD]_ZPiI$")>;

// Reciprocal estimate
def : InstRW<[N2Write_4cyc_2V0], (instrs URECPE_ZPmZ_S, URSQRTE_ZPmZ_S)>;

// Reduction, arithmetic, B form
def : InstRW<[N2Write_11cyc_2V_2V1], (instregex "^[SU](ADD|MAX|MIN)V_VPZ_B")>;

// Reduction, arithmetic, H form
def : InstRW<[N2Write_9cyc_2V_2V1], (instregex "^[SU](ADD|MAX|MIN)V_VPZ_H")>;

// Reduction, arithmetic, S form
def : InstRW<[N2Write_8cyc_2V_2V1], (instregex "^[SU](ADD|MAX|MIN)V_VPZ_S")>;

// Reduction, arithmetic, D form
def : InstRW<[N2Write_8cyc_2V_2V1], (instregex "^[SU](ADD|MAX|MIN)V_VPZ_D")>;

// Reduction, logical
def : InstRW<[N2Write_6cyc_1V_1V1], (instregex "^(ANDV|EORV|ORV)_VPZ_[BHSD]$")>;

// Reverse, vector
def : InstRW<[N2Write_2cyc_1V], (instregex "^REV_ZZ_[BHSD]$",
                                           "^REVB_ZPmZ_[HSD]$",
                                           "^REVH_ZPmZ_[SD]$",
                                           "^REVW_ZPmZ_D$")>;

// Select, vector form
def : InstRW<[N2Write_2cyc_1V], (instregex "^SEL_ZPZZ_[BHSD]$")>;

// Table lookup
def : InstRW<[N2Write_2cyc_1V], (instregex "^TBL_ZZZZ?_[BHSD]$")>;

// Table lookup extension
def : InstRW<[N2Write_2cyc_1V], (instregex "^TBX_ZZZ_[BHSD]$")>;

// Transpose, vector form
def : InstRW<[N2Write_2cyc_1V], (instregex "^TRN[12]_ZZZ_[BHSDQ]$")>;

// Unpack and extend
def : InstRW<[N2Write_2cyc_1V], (instregex "^[SU]UNPK(HI|LO)_ZZ_[HSD]$")>;

// Zip/unzip
def : InstRW<[N2Write_2cyc_1V], (instregex "^(UZP|ZIP)[12]_ZZZ_[BHSDQ]$")>;

// SVE floating-point instructions
// -----------------------------------------------------------------------------

// Floating point absolute value/difference
def : InstRW<[N2Write_2cyc_1V], (instregex "^FAB[SD]_ZPmZ_[HSD]$")>;

// Floating point arithmetic
def : InstRW<[N2Write_2cyc_1V], (instregex "^F(ADD|SUB)_(ZPm[IZ]|ZZZ)_[HSD]$",
                                           "^FADDP_ZPmZZ_[HSD]$",
                                           "^FNEG_ZPmZ_[HSD]$",
                                           "^FSUBR_ZPm[IZ]_[HSD]$")>;

// Floating point associative add, F16
def : InstRW<[N2Write_10cyc_1V1], (instrs FADDA_VPZ_H)>;

// Floating point associative add, F32
def : InstRW<[N2Write_6cyc_1V1], (instrs FADDA_VPZ_S)>;

// Floating point associative add, F64
def : InstRW<[N2Write_4cyc_1V], (instrs FADDA_VPZ_D)>;

// Floating point compare
def : InstRW<[N2Write_2cyc_1V0], (instregex "^FACG[ET]_PPzZZ_[HSD]$",
                                            "^FCM(EQ|GE|GT|NE)_PPzZ[0Z]_[HSD]$",
                                            "^FCM(LE|LT)_PPzZ0_[HSD]$",
                                            "^FCMUO_PPzZZ_[HSD]$")>;

// Floating point complex add
def : InstRW<[N2Write_3cyc_1V], (instregex "^FCADD_ZPmZ_[HSD]$")>;

// Floating point complex multiply add
def : InstRW<[N2Write_5cyc_1V], (instregex "^FCMLA_ZPmZZ_[HSD]$",
                                           "^FCMLA_ZZZI_[HS]$")>;

// Floating point convert, long or narrow (F16 to F32 or F32 to F16)
def : InstRW<[N2Write_4cyc_2V0], (instregex "^FCVT_ZPmZ_(HtoS|StoH)$",
                                            "^FCVTLT_ZPmZ_HtoS$",
                                            "^FCVTNT_ZPmZ_StoH$")>;

// Floating point convert, long or narrow (F16 to F64, F32 to F64, F64 to F32
// or F64 to F16)
def : InstRW<[N2Write_3cyc_1V0], (instregex "^FCVT_ZPmZ_(HtoD|StoD|DtoS|DtoH)$",
                                            "^FCVTLT_ZPmZ_StoD$",
                                            "^FCVTNT_ZPmZ_DtoS$")>;

// Floating point convert, round to odd
def : InstRW<[N2Write_3cyc_1V0], (instrs FCVTX_ZPmZ_DtoS, FCVTXNT_ZPmZ_DtoS)>;

// Floating point base2 log, F16
def : InstRW<[N2Write_6cyc_4V0], (instrs FLOGB_ZPmZ_H)>;

// Floating point base2 log, F32
def : InstRW<[N2Write_4cyc_2V0], (instrs FLOGB_ZPmZ_S)>;

// Floating point base2 log, F64
def : InstRW<[N2Write_3cyc_1V0], (instrs FLOGB_ZPmZ_D)>;

// Floating point convert to integer, F16
def : InstRW<[N2Write_6cyc_4V0], (instregex "^FCVTZ[SU]_ZPmZ_HtoH$")>;

// Floating point convert to integer, F32
def : InstRW<[N2Write_4cyc_2V0], (instregex "^FCVTZ[SU]_ZPmZ_(HtoS|StoS)$")>;

// Floating point convert to integer, F64
def : InstRW<[N2Write_3cyc_1V0],
             (instregex "^FCVTZ[SU]_ZPmZ_(HtoD|StoD|DtoS|DtoD)$")>;

// Floating point copy
def : InstRW<[N2Write_2cyc_1V], (instregex "^FCPY_ZPmI_[HSD]$",
                                           "^FDUP_ZI_[HSD]$")>;

// Floating point divide, F16
def : InstRW<[N2Write_13cyc_1V0], (instregex "^FDIVR?_ZPmZ_H$")>;

// Floating point divide, F32
def : InstRW<[N2Write_10cyc_1V0], (instregex "^FDIVR?_ZPmZ_S$")>;

// Floating point divide, F64
def : InstRW<[N2Write_15cyc_1V0], (instregex "^FDIVR?_ZPmZ_D$")>;

// Floating point min/max pairwise
def : InstRW<[N2Write_2cyc_1V], (instregex "^F(MAX|MIN)(NM)?P_ZPmZZ_[HSD]$")>;

// Floating point min/max
def : InstRW<[N2Write_2cyc_1V], (instregex "^F(MAX|MIN)(NM)?_ZPm[IZ]_[HSD]$")>;

// Floating point multiply
def : InstRW<[N2Write_3cyc_1V], (instregex "^(FSCALE|FMULX)_ZPmZ_[HSD]$",
                                           "^FMUL_(ZPm[IZ]|ZZZI?)_[HSD]$")>;

// Floating point multiply accumulate
def : InstRW<[N2Write_4cyc_1V],
             (instregex "^FML[AS]_(ZPmZZ|ZZZI)_[HSD]$",
                        "^(FMAD|FNMAD|FNML[AS]|FN?MSB)_ZPmZZ_[HSD]$")>;

// Floating point multiply add/sub accumulate long
def : InstRW<[N2Write_4cyc_1V], (instregex "^FML[AS]L[BT]_ZZZI?_SHH$")>;

// Floating point reciprocal estimate, F16
def : InstRW<[N2Write_6cyc_4V0], (instrs FRECPE_ZZ_H, FRECPX_ZPmZ_H,
                                         FRSQRTE_ZZ_H)>;

// Floating point reciprocal estimate, F32
def : InstRW<[N2Write_4cyc_2V0], (instrs FRECPE_ZZ_S, FRECPX_ZPmZ_S,
                                         FRSQRTE_ZZ_S)>;

// Floating point reciprocal estimate, F64
def : InstRW<[N2Write_3cyc_1V0], (instrs FRECPE_ZZ_D, FRECPX_ZPmZ_D,
                                         FRSQRTE_ZZ_D)>;

// Floating point reciprocal step
def : InstRW<[N2Write_4cyc_1V0], (instregex "^F(RECPS|RSQRTS)_ZZZ_[HSD]$")>;

// Floating point reduction, F16
def : InstRW<[N2Write_6cyc_2V],
             (instregex "^(FADDV|FMAXNMV|FMAXV|FMINNMV|FMINV)_VPZ_H$")>;

// Floating point reduction, F32
def : InstRW<[N2Write_4cyc_1V],
             (instregex "^(FADDV|FMAXNMV|FMAXV|FMINNMV|FMINV)_VPZ_S$")>;

// Floating point reduction, F64
def : InstRW<[N2Write_2cyc_1V],
             (instregex "^(FADDV|FMAXNMV|FMAXV|FMINNMV|FMINV)_VPZ_D$")>;

// Floating point round to integral, F16
def : InstRW<[N2Write_6cyc_4V0], (instregex "^FRINT[AIMNPXZ]_ZPmZ_H$")>;

// Floating point round to integral, F32
def : InstRW<[N2Write_4cyc_2V0], (instregex "^FRINT[AIMNPXZ]_ZPmZ_S$")>;

// Floating point round to integral, F64
def : InstRW<[N2Write_3cyc_1V0], (instregex "^FRINT[AIMNPXZ]_ZPmZ_D$")>;

// Floating point square root, F16
def : InstRW<[N2Write_13cyc_1V0], (instrs FSQRT_ZPmZ_H)>;

// Floating point square root, F32
def : InstRW<[N2Write_10cyc_1V0], (instrs FSQRT_ZPmZ_S)>;

// Floating point square root, F64
def : InstRW<[N2Write_16cyc_1V0], (instrs FSQRT_ZPmZ_D)>;

// Floating point trigonometric exponentiation
def : InstRW<[N2Write_3cyc_1V1], (instregex "^FEXPA_ZZ_[HSD]$")>;

// Floating point trigonometric multiply add
def : InstRW<[N2Write_4cyc_1V], (instregex "^FTMAD_ZZI_[HSD]$")>;

// Floating point trigonometric, miscellaneous
def : InstRW<[N2Write_3cyc_1V], (instregex "^FTS(MUL|SEL)_ZZZ_[HSD]$")>;

// SVE BFloat16 (BF16) instructions
// -----------------------------------------------------------------------------

// Convert, F32 to BF16
def : InstRW<[N2Write_3cyc_1V0], (instrs BFCVT_ZPmZ, BFCVTNT_ZPmZ)>;

// Dot product
def : InstRW<[N2Write_4cyc_1V], (instrs BFDOT_ZZI, BFDOT_ZZZ)>;

// Matrix multiply accumulate
def : InstRW<[N2Write_5cyc_1V], (instrs BFMMLA_ZZZ)>;

// Multiply accumulate long
def : InstRW<[N2Write_4cyc_1V], (instregex "^BFMLAL[BT]_ZZZ(I)?$")>;

// SVE Load instructions
// -----------------------------------------------------------------------------

// Load vector
def : InstRW<[N2Write_6cyc_1L], (instrs LDR_ZXI)>;

// Load predicate
def : InstRW<[N2Write_6cyc_1L_1M], (instrs LDR_PXI)>;

// Contiguous load, scalar + imm
def : InstRW<[N2Write_6cyc_1L], (instregex "^LD1[BHWD]_IMM$",
                                           "^LD1S?B_[HSD]_IMM$",
                                           "^LD1S?H_[SD]_IMM$",
                                           "^LD1S?W_D_IMM$" )>;
// Contiguous load, scalar + scalar
def : InstRW<[N2Write_6cyc_1L01], (instregex "^LD1[BHWD]$",
                                             "^LD1S?B_[HSD]$",
                                             "^LD1S?H_[SD]$",
                                             "^LD1S?W_D$" )>;

// Contiguous load broadcast, scalar + imm
def : InstRW<[N2Write_6cyc_1L], (instregex "^LD1R[BHWD]_IMM$",
                                           "^LD1RSW_IMM$",
                                           "^LD1RS?B_[HSD]_IMM$",
                                           "^LD1RS?H_[SD]_IMM$",
                                           "^LD1RS?W_D_IMM$",
                                           "^LD1RQ_[BHWD]_IMM$")>;

// Contiguous load broadcast, scalar + scalar
def : InstRW<[N2Write_6cyc_1L], (instregex "^LD1RQ_[BHWD]$")>;

// Non temporal load, scalar + imm
def : InstRW<[N2Write_6cyc_1L], (instregex "^LDNT1[BHWD]_ZRI$")>;

// Non temporal load, scalar + scalar
def : InstRW<[N2Write_6cyc_1L_1S], (instregex "^LDNT1[BHWD]_ZRR$")>;

// Non temporal gather load, vector + scalar 32-bit element size
def : InstRW<[N2Write_9cyc_1L_1V], (instregex "^LDNT1[BHW]_ZZR_S_REAL$",
                                              "^LDNT1S[BH]_ZZR_S_REAL$")>;

// Non temporal gather load, vector + scalar 64-bit element size
def : InstRW<[N2Write_10cyc_2L_2V1], (instregex "^LDNT1S?[BHW]_ZZR_D_REAL$")>;
def : InstRW<[N2Write_10cyc_2L_2V1], (instrs LDNT1D_ZZR_D_REAL)>;

// Contiguous first faulting load, scalar + scalar
def : InstRW<[N2Write_6cyc_1L_1S], (instregex "^LDFF1[BHWD]_REAL$",
                                              "^LDFF1S?B_[HSD]_REAL$",
                                              "^LDFF1S?H_[SD]_REAL$",
                                              "^LDFF1S?W_D_REAL$")>;

// Contiguous non faulting load, scalar + imm
def : InstRW<[N2Write_6cyc_1L], (instregex "^LDNF1[BHWD]_IMM_REAL$",
                                           "^LDNF1S?B_[HSD]_IMM_REAL$",
                                           "^LDNF1S?H_[SD]_IMM_REAL$",
                                           "^LDNF1S?W_D_IMM_REAL$")>;

// Contiguous Load two structures to two vectors, scalar + imm
def : InstRW<[N2Write_8cyc_1L_1V], (instregex "^LD2[BHWD]_IMM$")>;

// Contiguous Load two structures to two vectors, scalar + scalar
def : InstRW<[N2Write_9cyc_1L_1V], (instregex "^LD2[BHWD]$")>;

// Contiguous Load three structures to three vectors, scalar + imm
def : InstRW<[N2Write_9cyc_1L_1V], (instregex "^LD3[BHWD]_IMM$")>;

// Contiguous Load three structures to three vectors, scalar + scalar
def : InstRW<[N2Write_10cyc_1V_1L_1S], (instregex "^LD3[BHWD]$")>;

// Contiguous Load four structures to four vectors, scalar + imm
def : InstRW<[N2Write_9cyc_2L_2V], (instregex "^LD4[BHWD]_IMM$")>;

// Contiguous Load four structures to four vectors, scalar + scalar
def : InstRW<[N2Write_10cyc_2L_2V_2S], (instregex "^LD4[BHWD]$")>;

// Gather load, vector + imm, 32-bit element size
def : InstRW<[N2Write_9cyc_1L_1V], (instregex "^GLD(FF)?1S?[BH]_S_IMM_REAL$",
                                              "^GLD(FF)?1W_IMM_REAL$")>;

// Gather load, vector + imm, 64-bit element size
def : InstRW<[N2Write_9cyc_2L_2V], (instregex "^GLD(FF)?1S?[BHW]_D_IMM_REAL$",
                                              "^GLD(FF)?1D_IMM_REAL$")>;

// Gather load, 64-bit element size
def : InstRW<[N2Write_9cyc_2L_2V],
             (instregex "^GLD(FF)?1S?[BHW]_D_[SU]XTW_(SCALED_)?REAL$",
                        "^GLD(FF)?1S?[BHW]_D_(SCALED_)?REAL$",
                        "^GLD(FF)?1D_[SU]XTW_(SCALED_)?REAL$",
                        "^GLD(FF)?1D_(SCALED_)?REAL$")>;

// Gather load, 32-bit scaled offset
def : InstRW<[N2Write_10cyc_2L_2V],
             (instregex "^GLD(FF)?1S?[HW]_S_[SU]XTW_SCALED_REAL$",
                        "^GLD(FF)?1W_[SU]XTW_SCALED_REAL")>;

// Gather load, 32-bit unpacked unscaled offset
def : InstRW<[N2Write_9cyc_1L_1V], (instregex "^GLD(FF)?1S?[BH]_S_[SU]XTW_REAL$",
                                              "^GLD(FF)?1W_[SU]XTW_REAL$")>;

// SVE Store instructions
// -----------------------------------------------------------------------------

// Store from predicate reg
def : InstRW<[N2Write_1cyc_1L01], (instrs STR_PXI)>;

// Store from vector reg
def : InstRW<[N2Write_2cyc_1L01_1V], (instrs STR_ZXI)>;

// Contiguous store, scalar + imm
def : InstRW<[N2Write_2cyc_1L01_1V], (instregex "^ST1[BHWD]_IMM$",
                                                "^ST1B_[HSD]_IMM$",
                                                "^ST1H_[SD]_IMM$",
                                                "^ST1W_D_IMM$")>;

// Contiguous store, scalar + scalar
def : InstRW<[N2Write_2cyc_1L01_1S_1V], (instregex "^ST1H(_[SD])?$")>;
def : InstRW<[N2Write_2cyc_1L01_1V], (instregex "^ST1[BWD]$",
                                                "^ST1B_[HSD]$",
                                                "^ST1W_D$")>;

// Contiguous store two structures from two vectors, scalar + imm
def : InstRW<[N2Write_4cyc_1L01_1V], (instregex "^ST2[BHWD]_IMM$")>;

// Contiguous store two structures from two vectors, scalar + scalar
def : InstRW<[N2Write_4cyc_1L01_1S_1V], (instrs ST2H)>;

// Contiguous store two structures from two vectors, scalar + scalar
def : InstRW<[N2Write_4cyc_1L01_1V], (instregex "^ST2[BWD]$")>;

// Contiguous store three structures from three vectors, scalar + imm
def : InstRW<[N2Write_7cyc_5L01_5V], (instregex "^ST3[BHWD]_IMM$")>;

// Contiguous store three structures from three vectors, scalar + scalar
def : InstRW<[N2Write_7cyc_5L01_5S_5V], (instrs ST3H)>;

// Contiguous store three structures from three vectors, scalar + scalar
def : InstRW<[N2Write_7cyc_5L01_5S_5V], (instregex "^ST3[BWD]$")>;

// Contiguous store four structures from four vectors, scalar + imm
def : InstRW<[N2Write_11cyc_9L01_9V], (instregex "^ST4[BHWD]_IMM$")>;

// Contiguous store four structures from four vectors, scalar + scalar
def : InstRW<[N2Write_11cyc_9L01_9S_9V], (instrs ST4H)>;

// Contiguous store four structures from four vectors, scalar + scalar
def : InstRW<[N2Write_11cyc_9L01_9S_9V], (instregex "^ST4[BWD]$")>;

// Non temporal store, scalar + imm
def : InstRW<[N2Write_2cyc_1L01_1V], (instregex "^STNT1[BHWD]_ZRI$")>;

// Non temporal store, scalar + scalar
def : InstRW<[N2Write_2cyc_1L01_1S_1V], (instrs STNT1H_ZRR)>;
def : InstRW<[N2Write_2cyc_1L01_1V], (instregex "^STNT1[BWD]_ZRR$")>;

// Scatter non temporal store, vector + scalar 32-bit element size
def : InstRW<[N2Write_4cyc_2L01_2V], (instregex "^STNT1[BHW]_ZZR_S")>;

// Scatter non temporal store, vector + scalar 64-bit element size
def : InstRW<[N2Write_2cyc_1L01_1V], (instregex "^STNT1[BHWD]_ZZR_D")>;

// Scatter store vector + imm 32-bit element size
def : InstRW<[N2Write_4cyc_2L01_2V], (instregex "^SST1[BH]_S_IMM$",
                                                "^SST1W_IMM$")>;

// Scatter store vector + imm 64-bit element size
def : InstRW<[N2Write_2cyc_1L01_1V], (instregex "^SST1[BHW]_D_IMM$",
                                                "^SST1D_IMM$")>;

// Scatter store, 32-bit scaled offset
def : InstRW<[N2Write_4cyc_2L01_2V],
             (instregex "^SST1(H_S|W)_[SU]XTW_SCALED$")>;

// Scatter store, 32-bit unpacked unscaled offset
def : InstRW<[N2Write_2cyc_1L01_1V], (instregex "^SST1[BHW]_D_[SU]XTW$",
                                                "^SST1D_[SU]XTW$")>;

// Scatter store, 32-bit unpacked scaled offset
def : InstRW<[N2Write_2cyc_1L01_1V], (instregex "^SST1[HW]_D_[SU]XTW_SCALED$",
                                                "^SST1D_[SU]XTW_SCALED$")>;

// Scatter store, 32-bit unscaled offset
def : InstRW<[N2Write_4cyc_2L01_2V], (instregex "^SST1[BH]_S_[SU]XTW$",
                                                "^SST1W_[SU]XTW$")>;

// Scatter store, 64-bit scaled offset
def : InstRW<[N2Write_2cyc_1L01_1V], (instregex "^SST1[HW]_D_SCALED$",
                                                "^SST1D_SCALED$")>;

// Scatter store, 64-bit unscaled offset
def : InstRW<[N2Write_2cyc_1L01_1V], (instregex "^SST1[BHW]_D$",
                                                "^SST1D$")>;

// SVE Miscellaneous instructions
// -----------------------------------------------------------------------------

// Read first fault register, unpredicated
def : InstRW<[N2Write_2cyc_1M0], (instrs RDFFR_P_REAL)>;

// Read first fault register, predicated
def : InstRW<[N2Write_3cyc_1M0_1M], (instrs RDFFR_PPz_REAL)>;

// Read first fault register and set flags
def : InstRW<[N2Write_4cyc_2M0_2M], (instrs RDFFRS_PPz)>;

// Set first fault register
// Write to first fault register
def : InstRW<[N2Write_2cyc_1M0], (instrs SETFFR, WRFFR)>;

// Prefetch
def : InstRW<[N2Write_4cyc_1L], (instregex "^PRF[BHWD]")>;

// SVE Cryptographic instructions
// -----------------------------------------------------------------------------

// Crypto AES ops
def : InstRW<[N2Write_2cyc_1V], (instregex "^AES[DE]_ZZZ_B$",
                                           "^AESI?MC_ZZ_B$")>;

// Crypto SHA3 ops
def : InstRW<[N2Write_2cyc_1V0], (instregex "^(BCAX|EOR3)_ZZZZ$",
                                            "^RAX1_ZZZ_D$",
                                            "^XAR_ZZZI_[BHSD]$")>;

// Crypto SM4 ops
def : InstRW<[N2Write_4cyc_1V0], (instregex "^SM4E(KEY)?_ZZZ_S$")>;

}