aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Target/AArch64/AArch64Subtarget.cpp
blob: dd4c0e2eb642490f48f499bfae921c05b477ceaa (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
//===-- AArch64Subtarget.cpp - AArch64 Subtarget Information ----*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the AArch64 specific subclass of TargetSubtarget.
//
//===----------------------------------------------------------------------===//

#include "AArch64Subtarget.h"

#include "AArch64.h"
#include "AArch64InstrInfo.h"
#include "AArch64PBQPRegAlloc.h"
#include "AArch64TargetMachine.h"
#include "GISel/AArch64CallLowering.h"
#include "GISel/AArch64LegalizerInfo.h"
#include "GISel/AArch64RegisterBankInfo.h"
#include "MCTargetDesc/AArch64AddressingModes.h"
#include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineScheduler.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/TargetParser/AArch64TargetParser.h"

using namespace llvm;

#define DEBUG_TYPE "aarch64-subtarget"

#define GET_SUBTARGETINFO_CTOR
#define GET_SUBTARGETINFO_TARGET_DESC
#include "AArch64GenSubtargetInfo.inc"

static cl::opt<bool>
EnableEarlyIfConvert("aarch64-early-ifcvt", cl::desc("Enable the early if "
                     "converter pass"), cl::init(true), cl::Hidden);

// If OS supports TBI, use this flag to enable it.
static cl::opt<bool>
UseAddressTopByteIgnored("aarch64-use-tbi", cl::desc("Assume that top byte of "
                         "an address is ignored"), cl::init(false), cl::Hidden);

static cl::opt<bool>
    UseNonLazyBind("aarch64-enable-nonlazybind",
                   cl::desc("Call nonlazybind functions via direct GOT load"),
                   cl::init(false), cl::Hidden);

static cl::opt<bool> UseAA("aarch64-use-aa", cl::init(true),
                           cl::desc("Enable the use of AA during codegen."));

static cl::opt<unsigned> OverrideVectorInsertExtractBaseCost(
    "aarch64-insert-extract-base-cost",
    cl::desc("Base cost of vector insert/extract element"), cl::Hidden);

// Reserve a list of X# registers, so they are unavailable for register
// allocator, but can still be used as ABI requests, such as passing arguments
// to function call.
static cl::list<std::string>
ReservedRegsForRA("reserve-regs-for-regalloc", cl::desc("Reserve physical "
                  "registers, so they can't be used by register allocator. "
                  "Should only be used for testing register allocator."),
                  cl::CommaSeparated, cl::Hidden);

static cl::opt<bool> ForceStreamingCompatibleSVE(
    "force-streaming-compatible-sve",
    cl::desc(
        "Force the use of streaming-compatible SVE code for all functions"),
    cl::Hidden);

static cl::opt<AArch64PAuth::AuthCheckMethod>
    AuthenticatedLRCheckMethod("aarch64-authenticated-lr-check-method",
                               cl::Hidden,
                               cl::desc("Override the variant of check applied "
                                        "to authenticated LR during tail call"),
                               cl::values(AUTH_CHECK_METHOD_CL_VALUES_LR));

static cl::opt<unsigned> AArch64MinimumJumpTableEntries(
    "aarch64-min-jump-table-entries", cl::init(13), cl::Hidden,
    cl::desc("Set minimum number of entries to use a jump table on AArch64"));

unsigned AArch64Subtarget::getVectorInsertExtractBaseCost() const {
  if (OverrideVectorInsertExtractBaseCost.getNumOccurrences() > 0)
    return OverrideVectorInsertExtractBaseCost;
  return VectorInsertExtractBaseCost;
}

AArch64Subtarget &AArch64Subtarget::initializeSubtargetDependencies(
    StringRef FS, StringRef CPUString, StringRef TuneCPUString,
    bool HasMinSize) {
  // Determine default and user-specified characteristics

  if (CPUString.empty())
    CPUString = "generic";

  if (TuneCPUString.empty())
    TuneCPUString = CPUString;

  ParseSubtargetFeatures(CPUString, TuneCPUString, FS);
  initializeProperties(HasMinSize);

  return *this;
}

void AArch64Subtarget::initializeProperties(bool HasMinSize) {
  // Initialize CPU specific properties. We should add a tablegen feature for
  // this in the future so we can specify it together with the subtarget
  // features.
  switch (ARMProcFamily) {
  case Others:
    break;
  case Carmel:
    CacheLineSize = 64;
    break;
  case CortexA35:
  case CortexA53:
  case CortexA55:
    PrefFunctionAlignment = Align(16);
    PrefLoopAlignment = Align(16);
    MaxBytesForLoopAlignment = 8;
    break;
  case CortexA57:
    MaxInterleaveFactor = 4;
    PrefFunctionAlignment = Align(16);
    PrefLoopAlignment = Align(16);
    MaxBytesForLoopAlignment = 8;
    break;
  case CortexA65:
    PrefFunctionAlignment = Align(8);
    break;
  case CortexA72:
  case CortexA73:
  case CortexA75:
    PrefFunctionAlignment = Align(16);
    PrefLoopAlignment = Align(16);
    MaxBytesForLoopAlignment = 8;
    break;
  case CortexA76:
  case CortexA77:
  case CortexA78:
  case CortexA78C:
  case CortexR82:
  case CortexX1:
  case CortexX1C:
    PrefFunctionAlignment = Align(16);
    PrefLoopAlignment = Align(32);
    MaxBytesForLoopAlignment = 16;
    break;
  case CortexA510:
  case CortexA520:
    PrefFunctionAlignment = Align(16);
    VScaleForTuning = 1;
    PrefLoopAlignment = Align(16);
    MaxBytesForLoopAlignment = 8;
    break;
  case CortexA710:
  case CortexA715:
  case CortexA720:
  case CortexX2:
  case CortexX3:
  case CortexX4:
    PrefFunctionAlignment = Align(16);
    VScaleForTuning = 1;
    PrefLoopAlignment = Align(32);
    MaxBytesForLoopAlignment = 16;
    break;
  case A64FX:
    CacheLineSize = 256;
    PrefFunctionAlignment = Align(8);
    PrefLoopAlignment = Align(4);
    MaxInterleaveFactor = 4;
    PrefetchDistance = 128;
    MinPrefetchStride = 1024;
    MaxPrefetchIterationsAhead = 4;
    VScaleForTuning = 4;
    break;
  case AppleA7:
  case AppleA10:
  case AppleA11:
  case AppleA12:
  case AppleA13:
  case AppleA14:
  case AppleA15:
  case AppleA16:
  case AppleA17:
    CacheLineSize = 64;
    PrefetchDistance = 280;
    MinPrefetchStride = 2048;
    MaxPrefetchIterationsAhead = 3;
    switch (ARMProcFamily) {
    case AppleA14:
    case AppleA15:
    case AppleA16:
    case AppleA17:
      MaxInterleaveFactor = 4;
      break;
    default:
      break;
    }
    break;
  case ExynosM3:
    MaxInterleaveFactor = 4;
    MaxJumpTableSize = 20;
    PrefFunctionAlignment = Align(32);
    PrefLoopAlignment = Align(16);
    break;
  case Falkor:
    MaxInterleaveFactor = 4;
    // FIXME: remove this to enable 64-bit SLP if performance looks good.
    MinVectorRegisterBitWidth = 128;
    CacheLineSize = 128;
    PrefetchDistance = 820;
    MinPrefetchStride = 2048;
    MaxPrefetchIterationsAhead = 8;
    break;
  case Kryo:
    MaxInterleaveFactor = 4;
    VectorInsertExtractBaseCost = 2;
    CacheLineSize = 128;
    PrefetchDistance = 740;
    MinPrefetchStride = 1024;
    MaxPrefetchIterationsAhead = 11;
    // FIXME: remove this to enable 64-bit SLP if performance looks good.
    MinVectorRegisterBitWidth = 128;
    break;
  case NeoverseE1:
    PrefFunctionAlignment = Align(8);
    break;
  case NeoverseN1:
    PrefFunctionAlignment = Align(16);
    PrefLoopAlignment = Align(32);
    MaxBytesForLoopAlignment = 16;
    break;
  case NeoverseN2:
  case NeoverseV2:
    PrefFunctionAlignment = Align(16);
    PrefLoopAlignment = Align(32);
    MaxBytesForLoopAlignment = 16;
    VScaleForTuning = 1;
    break;
  case NeoverseV1:
    PrefFunctionAlignment = Align(16);
    PrefLoopAlignment = Align(32);
    MaxBytesForLoopAlignment = 16;
    VScaleForTuning = 2;
    DefaultSVETFOpts = TailFoldingOpts::Simple;
    break;
  case Neoverse512TVB:
    PrefFunctionAlignment = Align(16);
    VScaleForTuning = 1;
    MaxInterleaveFactor = 4;
    break;
  case Saphira:
    MaxInterleaveFactor = 4;
    // FIXME: remove this to enable 64-bit SLP if performance looks good.
    MinVectorRegisterBitWidth = 128;
    break;
  case ThunderX2T99:
    CacheLineSize = 64;
    PrefFunctionAlignment = Align(8);
    PrefLoopAlignment = Align(4);
    MaxInterleaveFactor = 4;
    PrefetchDistance = 128;
    MinPrefetchStride = 1024;
    MaxPrefetchIterationsAhead = 4;
    // FIXME: remove this to enable 64-bit SLP if performance looks good.
    MinVectorRegisterBitWidth = 128;
    break;
  case ThunderX:
  case ThunderXT88:
  case ThunderXT81:
  case ThunderXT83:
    CacheLineSize = 128;
    PrefFunctionAlignment = Align(8);
    PrefLoopAlignment = Align(4);
    // FIXME: remove this to enable 64-bit SLP if performance looks good.
    MinVectorRegisterBitWidth = 128;
    break;
  case TSV110:
    CacheLineSize = 64;
    PrefFunctionAlignment = Align(16);
    PrefLoopAlignment = Align(4);
    break;
  case ThunderX3T110:
    CacheLineSize = 64;
    PrefFunctionAlignment = Align(16);
    PrefLoopAlignment = Align(4);
    MaxInterleaveFactor = 4;
    PrefetchDistance = 128;
    MinPrefetchStride = 1024;
    MaxPrefetchIterationsAhead = 4;
    // FIXME: remove this to enable 64-bit SLP if performance looks good.
    MinVectorRegisterBitWidth = 128;
    break;
  case Ampere1:
  case Ampere1A:
  case Ampere1B:
    CacheLineSize = 64;
    PrefFunctionAlignment = Align(64);
    PrefLoopAlignment = Align(64);
    MaxInterleaveFactor = 4;
    break;
  }

  if (AArch64MinimumJumpTableEntries.getNumOccurrences() > 0 || !HasMinSize)
    MinimumJumpTableEntries = AArch64MinimumJumpTableEntries;
}

AArch64Subtarget::AArch64Subtarget(const Triple &TT, StringRef CPU,
                                   StringRef TuneCPU, StringRef FS,
                                   const TargetMachine &TM, bool LittleEndian,
                                   unsigned MinSVEVectorSizeInBitsOverride,
                                   unsigned MaxSVEVectorSizeInBitsOverride,
                                   bool StreamingSVEMode,
                                   bool StreamingCompatibleSVEMode,
                                   bool HasMinSize)
    : AArch64GenSubtargetInfo(TT, CPU, TuneCPU, FS),
      ReserveXRegister(AArch64::GPR64commonRegClass.getNumRegs()),
      ReserveXRegisterForRA(AArch64::GPR64commonRegClass.getNumRegs()),
      CustomCallSavedXRegs(AArch64::GPR64commonRegClass.getNumRegs()),
      IsLittle(LittleEndian), StreamingSVEMode(StreamingSVEMode),
      StreamingCompatibleSVEMode(StreamingCompatibleSVEMode),
      MinSVEVectorSizeInBits(MinSVEVectorSizeInBitsOverride),
      MaxSVEVectorSizeInBits(MaxSVEVectorSizeInBitsOverride), TargetTriple(TT),
      InstrInfo(initializeSubtargetDependencies(FS, CPU, TuneCPU, HasMinSize)),
      TLInfo(TM, *this) {
  if (AArch64::isX18ReservedByDefault(TT))
    ReserveXRegister.set(18);

  CallLoweringInfo.reset(new AArch64CallLowering(*getTargetLowering()));
  InlineAsmLoweringInfo.reset(new InlineAsmLowering(getTargetLowering()));
  Legalizer.reset(new AArch64LegalizerInfo(*this));

  auto *RBI = new AArch64RegisterBankInfo(*getRegisterInfo());

  // FIXME: At this point, we can't rely on Subtarget having RBI.
  // It's awkward to mix passing RBI and the Subtarget; should we pass
  // TII/TRI as well?
  InstSelector.reset(createAArch64InstructionSelector(
      *static_cast<const AArch64TargetMachine *>(&TM), *this, *RBI));

  RegBankInfo.reset(RBI);

  auto TRI = getRegisterInfo();
  StringSet<> ReservedRegNames;
  ReservedRegNames.insert(ReservedRegsForRA.begin(), ReservedRegsForRA.end());
  for (unsigned i = 0; i < 29; ++i) {
    if (ReservedRegNames.count(TRI->getName(AArch64::X0 + i)))
      ReserveXRegisterForRA.set(i);
  }
  // X30 is named LR, so we can't use TRI->getName to check X30.
  if (ReservedRegNames.count("X30") || ReservedRegNames.count("LR"))
    ReserveXRegisterForRA.set(30);
  // X29 is named FP, so we can't use TRI->getName to check X29.
  if (ReservedRegNames.count("X29") || ReservedRegNames.count("FP"))
    ReserveXRegisterForRA.set(29);

  AddressCheckPSV.reset(new AddressCheckPseudoSourceValue(TM));
}

const CallLowering *AArch64Subtarget::getCallLowering() const {
  return CallLoweringInfo.get();
}

const InlineAsmLowering *AArch64Subtarget::getInlineAsmLowering() const {
  return InlineAsmLoweringInfo.get();
}

InstructionSelector *AArch64Subtarget::getInstructionSelector() const {
  return InstSelector.get();
}

const LegalizerInfo *AArch64Subtarget::getLegalizerInfo() const {
  return Legalizer.get();
}

const RegisterBankInfo *AArch64Subtarget::getRegBankInfo() const {
  return RegBankInfo.get();
}

/// Find the target operand flags that describe how a global value should be
/// referenced for the current subtarget.
unsigned
AArch64Subtarget::ClassifyGlobalReference(const GlobalValue *GV,
                                          const TargetMachine &TM) const {
  // MachO large model always goes via a GOT, simply to get a single 8-byte
  // absolute relocation on all global addresses.
  if (TM.getCodeModel() == CodeModel::Large && isTargetMachO())
    return AArch64II::MO_GOT;

  // All globals dynamically protected by MTE must have their address tags
  // synthesized. This is done by having the loader stash the tag in the GOT
  // entry. Force all tagged globals (even ones with internal linkage) through
  // the GOT.
  if (GV->isTagged())
    return AArch64II::MO_GOT;

  if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) {
    if (GV->hasDLLImportStorageClass()) {
      return AArch64II::MO_GOT | AArch64II::MO_DLLIMPORT;
    }
    if (getTargetTriple().isOSWindows())
      return AArch64II::MO_GOT | AArch64II::MO_COFFSTUB;
    return AArch64II::MO_GOT;
  }

  // The small code model's direct accesses use ADRP, which cannot
  // necessarily produce the value 0 (if the code is above 4GB).
  // Same for the tiny code model, where we have a pc relative LDR.
  if ((useSmallAddressing() || TM.getCodeModel() == CodeModel::Tiny) &&
      GV->hasExternalWeakLinkage())
    return AArch64II::MO_GOT;

  // References to tagged globals are marked with MO_NC | MO_TAGGED to indicate
  // that their nominal addresses are tagged and outside of the code model. In
  // AArch64ExpandPseudo::expandMI we emit an additional instruction to set the
  // tag if necessary based on MO_TAGGED.
  if (AllowTaggedGlobals && !isa<FunctionType>(GV->getValueType()))
    return AArch64II::MO_NC | AArch64II::MO_TAGGED;

  return AArch64II::MO_NO_FLAG;
}

unsigned AArch64Subtarget::classifyGlobalFunctionReference(
    const GlobalValue *GV, const TargetMachine &TM) const {
  // MachO large model always goes via a GOT, because we don't have the
  // relocations available to do anything else..
  if (TM.getCodeModel() == CodeModel::Large && isTargetMachO() &&
      !GV->hasInternalLinkage())
    return AArch64II::MO_GOT;

  // NonLazyBind goes via GOT unless we know it's available locally.
  auto *F = dyn_cast<Function>(GV);
  if (UseNonLazyBind && F && F->hasFnAttribute(Attribute::NonLazyBind) &&
      !TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
    return AArch64II::MO_GOT;

  if (getTargetTriple().isOSWindows()) {
    if (isWindowsArm64EC() && GV->getValueType()->isFunctionTy()) {
      if (GV->hasDLLImportStorageClass()) {
        // On Arm64EC, if we're calling a symbol from the import table
        // directly, use MO_ARM64EC_CALLMANGLE.
        return AArch64II::MO_GOT | AArch64II::MO_DLLIMPORT |
               AArch64II::MO_ARM64EC_CALLMANGLE;
      }
      if (GV->hasExternalLinkage()) {
        // If we're calling a symbol directly, use the mangled form in the
        // call instruction.
        return AArch64II::MO_ARM64EC_CALLMANGLE;
      }
    }

    // Use ClassifyGlobalReference for setting MO_DLLIMPORT/MO_COFFSTUB.
    return ClassifyGlobalReference(GV, TM);
  }

  return AArch64II::MO_NO_FLAG;
}

void AArch64Subtarget::overrideSchedPolicy(MachineSchedPolicy &Policy,
                                           unsigned NumRegionInstrs) const {
  // LNT run (at least on Cyclone) showed reasonably significant gains for
  // bi-directional scheduling. 253.perlbmk.
  Policy.OnlyTopDown = false;
  Policy.OnlyBottomUp = false;
  // Enabling or Disabling the latency heuristic is a close call: It seems to
  // help nearly no benchmark on out-of-order architectures, on the other hand
  // it regresses register pressure on a few benchmarking.
  Policy.DisableLatencyHeuristic = DisableLatencySchedHeuristic;
}

bool AArch64Subtarget::enableEarlyIfConversion() const {
  return EnableEarlyIfConvert;
}

bool AArch64Subtarget::supportsAddressTopByteIgnored() const {
  if (!UseAddressTopByteIgnored)
    return false;

  if (TargetTriple.isDriverKit())
    return true;
  if (TargetTriple.isiOS()) {
    return TargetTriple.getiOSVersion() >= VersionTuple(8);
  }

  return false;
}

std::unique_ptr<PBQPRAConstraint>
AArch64Subtarget::getCustomPBQPConstraints() const {
  return balanceFPOps() ? std::make_unique<A57ChainingConstraint>() : nullptr;
}

void AArch64Subtarget::mirFileLoaded(MachineFunction &MF) const {
  // We usually compute max call frame size after ISel. Do the computation now
  // if the .mir file didn't specify it. Note that this will probably give you
  // bogus values after PEI has eliminated the callframe setup/destroy pseudo
  // instructions, specify explicitly if you need it to be correct.
  MachineFrameInfo &MFI = MF.getFrameInfo();
  if (!MFI.isMaxCallFrameSizeComputed())
    MFI.computeMaxCallFrameSize(MF);
}

bool AArch64Subtarget::useAA() const { return UseAA; }

bool AArch64Subtarget::isStreamingCompatible() const {
  return StreamingCompatibleSVEMode || ForceStreamingCompatibleSVE;
}

bool AArch64Subtarget::isNeonAvailable() const {
  return hasNEON() &&
         (hasSMEFA64() || (!isStreaming() && !isStreamingCompatible()));
}

bool AArch64Subtarget::isSVEAvailable() const {
  return hasSVE() &&
         (hasSMEFA64() || (!isStreaming() && !isStreamingCompatible()));
}

// If return address signing is enabled, tail calls are emitted as follows:
//
// ```
//   <authenticate LR>
//   <check LR>
//   TCRETURN          ; the callee may sign and spill the LR in its prologue
// ```
//
// LR may require explicit checking because if FEAT_FPAC is not implemented
// and LR was tampered with, then `<authenticate LR>` will not generate an
// exception on its own. Later, if the callee spills the signed LR value and
// neither FEAT_PAuth2 nor FEAT_EPAC are implemented, the valid PAC replaces
// the higher bits of LR thus hiding the authentication failure.
AArch64PAuth::AuthCheckMethod
AArch64Subtarget::getAuthenticatedLRCheckMethod() const {
  if (AuthenticatedLRCheckMethod.getNumOccurrences())
    return AuthenticatedLRCheckMethod;

  // At now, use None by default because checks may introduce an unexpected
  // performance regression or incompatibility with execute-only mappings.
  return AArch64PAuth::AuthCheckMethod::None;
}