aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Target/AMDGPU/Disassembler/AMDGPUDisassembler.cpp
blob: 7939d0036568d4b1ca5792129b8b89bf56c03c35 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
//===- AMDGPUDisassembler.cpp - Disassembler for AMDGPU ISA ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
//===----------------------------------------------------------------------===//
//
/// \file
///
/// This file contains definition for AMDGPU ISA disassembler
//
//===----------------------------------------------------------------------===//

// ToDo: What to do with instruction suffixes (v_mov_b32 vs v_mov_b32_e32)?

#include "Disassembler/AMDGPUDisassembler.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "SIDefines.h"
#include "SIRegisterInfo.h"
#include "TargetInfo/AMDGPUTargetInfo.h"
#include "Utils/AMDGPUBaseInfo.h"
#include "llvm-c/DisassemblerTypes.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCDecoderOps.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/TargetRegistry.h"
#include "llvm/Support/AMDHSAKernelDescriptor.h"

using namespace llvm;

#define DEBUG_TYPE "amdgpu-disassembler"

#define SGPR_MAX                                                               \
  (isGFX10Plus() ? AMDGPU::EncValues::SGPR_MAX_GFX10                           \
                 : AMDGPU::EncValues::SGPR_MAX_SI)

using DecodeStatus = llvm::MCDisassembler::DecodeStatus;

AMDGPUDisassembler::AMDGPUDisassembler(const MCSubtargetInfo &STI,
                                       MCContext &Ctx, MCInstrInfo const *MCII)
    : MCDisassembler(STI, Ctx), MCII(MCII), MRI(*Ctx.getRegisterInfo()),
      MAI(*Ctx.getAsmInfo()), TargetMaxInstBytes(MAI.getMaxInstLength(&STI)) {
  // ToDo: AMDGPUDisassembler supports only VI ISA.
  if (!STI.hasFeature(AMDGPU::FeatureGCN3Encoding) && !isGFX10Plus())
    report_fatal_error("Disassembly not yet supported for subtarget");
}

inline static MCDisassembler::DecodeStatus
addOperand(MCInst &Inst, const MCOperand& Opnd) {
  Inst.addOperand(Opnd);
  return Opnd.isValid() ?
    MCDisassembler::Success :
    MCDisassembler::Fail;
}

static int insertNamedMCOperand(MCInst &MI, const MCOperand &Op,
                                uint16_t NameIdx) {
  int OpIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), NameIdx);
  if (OpIdx != -1) {
    auto I = MI.begin();
    std::advance(I, OpIdx);
    MI.insert(I, Op);
  }
  return OpIdx;
}

static DecodeStatus decodeSOPPBrTarget(MCInst &Inst, unsigned Imm,
                                       uint64_t Addr,
                                       const MCDisassembler *Decoder) {
  auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);

  // Our branches take a simm16, but we need two extra bits to account for the
  // factor of 4.
  APInt SignedOffset(18, Imm * 4, true);
  int64_t Offset = (SignedOffset.sext(64) + 4 + Addr).getSExtValue();

  if (DAsm->tryAddingSymbolicOperand(Inst, Offset, Addr, true, 2, 2, 0))
    return MCDisassembler::Success;
  return addOperand(Inst, MCOperand::createImm(Imm));
}

static DecodeStatus decodeSMEMOffset(MCInst &Inst, unsigned Imm, uint64_t Addr,
                                     const MCDisassembler *Decoder) {
  auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
  int64_t Offset;
  if (DAsm->isGFX12Plus()) { // GFX12 supports 24-bit signed offsets.
    Offset = SignExtend64<24>(Imm);
  } else if (DAsm->isVI()) { // VI supports 20-bit unsigned offsets.
    Offset = Imm & 0xFFFFF;
  } else { // GFX9+ supports 21-bit signed offsets.
    Offset = SignExtend64<21>(Imm);
  }
  return addOperand(Inst, MCOperand::createImm(Offset));
}

static DecodeStatus decodeBoolReg(MCInst &Inst, unsigned Val, uint64_t Addr,
                                  const MCDisassembler *Decoder) {
  auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
  return addOperand(Inst, DAsm->decodeBoolReg(Val));
}

static DecodeStatus decodeSplitBarrier(MCInst &Inst, unsigned Val,
                                       uint64_t Addr,
                                       const MCDisassembler *Decoder) {
  auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
  return addOperand(Inst, DAsm->decodeSplitBarrier(Val));
}

#define DECODE_OPERAND(StaticDecoderName, DecoderName)                         \
  static DecodeStatus StaticDecoderName(MCInst &Inst, unsigned Imm,            \
                                        uint64_t /*Addr*/,                     \
                                        const MCDisassembler *Decoder) {       \
    auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
    return addOperand(Inst, DAsm->DecoderName(Imm));                           \
  }

// Decoder for registers, decode directly using RegClassID. Imm(8-bit) is
// number of register. Used by VGPR only and AGPR only operands.
#define DECODE_OPERAND_REG_8(RegClass)                                         \
  static DecodeStatus Decode##RegClass##RegisterClass(                         \
      MCInst &Inst, unsigned Imm, uint64_t /*Addr*/,                           \
      const MCDisassembler *Decoder) {                                         \
    assert(Imm < (1 << 8) && "8-bit encoding");                                \
    auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
    return addOperand(                                                         \
        Inst, DAsm->createRegOperand(AMDGPU::RegClass##RegClassID, Imm));      \
  }

#define DECODE_SrcOp(Name, EncSize, OpWidth, EncImm, MandatoryLiteral,         \
                     ImmWidth)                                                 \
  static DecodeStatus Name(MCInst &Inst, unsigned Imm, uint64_t /*Addr*/,      \
                           const MCDisassembler *Decoder) {                    \
    assert(Imm < (1 << EncSize) && #EncSize "-bit encoding");                  \
    auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
    return addOperand(Inst,                                                    \
                      DAsm->decodeSrcOp(AMDGPUDisassembler::OpWidth, EncImm,   \
                                        MandatoryLiteral, ImmWidth));          \
  }

// Decoder for registers. Imm(7-bit) is number of register, uses decodeSrcOp to
// get register class. Used by SGPR only operands.
#define DECODE_OPERAND_REG_7(RegClass, OpWidth)                                \
  DECODE_SrcOp(Decode##RegClass##RegisterClass, 7, OpWidth, Imm, false, 0)

// Decoder for registers. Imm(10-bit): Imm{7-0} is number of register,
// Imm{9} is acc(agpr or vgpr) Imm{8} should be 0 (see VOP3Pe_SMFMAC).
// Set Imm{8} to 1 (IS_VGPR) to decode using 'enum10' from decodeSrcOp.
// Used by AV_ register classes (AGPR or VGPR only register operands).
#define DECODE_OPERAND_REG_AV10(RegClass, OpWidth)                             \
  DECODE_SrcOp(Decode##RegClass##RegisterClass, 10, OpWidth,                   \
               Imm | AMDGPU::EncValues::IS_VGPR, false, 0)

// Decoder for Src(9-bit encoding) registers only.
#define DECODE_OPERAND_SRC_REG_9(RegClass, OpWidth)                            \
  DECODE_SrcOp(decodeOperand_##RegClass, 9, OpWidth, Imm, false, 0)

// Decoder for Src(9-bit encoding) AGPR, register number encoded in 9bits, set
// Imm{9} to 1 (set acc) and decode using 'enum10' from decodeSrcOp, registers
// only.
#define DECODE_OPERAND_SRC_REG_A9(RegClass, OpWidth)                           \
  DECODE_SrcOp(decodeOperand_##RegClass, 9, OpWidth, Imm | 512, false, 0)

// Decoder for 'enum10' from decodeSrcOp, Imm{0-8} is 9-bit Src encoding
// Imm{9} is acc, registers only.
#define DECODE_SRC_OPERAND_REG_AV10(RegClass, OpWidth)                         \
  DECODE_SrcOp(decodeOperand_##RegClass, 10, OpWidth, Imm, false, 0)

// Decoder for RegisterOperands using 9-bit Src encoding. Operand can be
// register from RegClass or immediate. Registers that don't belong to RegClass
// will be decoded and InstPrinter will report warning. Immediate will be
// decoded into constant of size ImmWidth, should match width of immediate used
// by OperandType (important for floating point types).
#define DECODE_OPERAND_SRC_REG_OR_IMM_9(RegClass, OpWidth, ImmWidth)           \
  DECODE_SrcOp(decodeOperand_##RegClass##_Imm##ImmWidth, 9, OpWidth, Imm,      \
               false, ImmWidth)

// Decoder for Src(9-bit encoding) AGPR or immediate. Set Imm{9} to 1 (set acc)
// and decode using 'enum10' from decodeSrcOp.
#define DECODE_OPERAND_SRC_REG_OR_IMM_A9(RegClass, OpWidth, ImmWidth)          \
  DECODE_SrcOp(decodeOperand_##RegClass##_Imm##ImmWidth, 9, OpWidth,           \
               Imm | 512, false, ImmWidth)

#define DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(RegClass, OpWidth, ImmWidth)  \
  DECODE_SrcOp(decodeOperand_##RegClass##_Deferred##_Imm##ImmWidth, 9,         \
               OpWidth, Imm, true, ImmWidth)

// Default decoders generated by tablegen: 'Decode<RegClass>RegisterClass'
// when RegisterClass is used as an operand. Most often used for destination
// operands.

DECODE_OPERAND_REG_8(VGPR_32)
DECODE_OPERAND_REG_8(VGPR_32_Lo128)
DECODE_OPERAND_REG_8(VReg_64)
DECODE_OPERAND_REG_8(VReg_96)
DECODE_OPERAND_REG_8(VReg_128)
DECODE_OPERAND_REG_8(VReg_256)
DECODE_OPERAND_REG_8(VReg_288)
DECODE_OPERAND_REG_8(VReg_352)
DECODE_OPERAND_REG_8(VReg_384)
DECODE_OPERAND_REG_8(VReg_512)
DECODE_OPERAND_REG_8(VReg_1024)

DECODE_OPERAND_REG_7(SReg_32, OPW32)
DECODE_OPERAND_REG_7(SReg_32_XEXEC, OPW32)
DECODE_OPERAND_REG_7(SReg_32_XM0_XEXEC, OPW32)
DECODE_OPERAND_REG_7(SReg_32_XEXEC_HI, OPW32)
DECODE_OPERAND_REG_7(SReg_64, OPW64)
DECODE_OPERAND_REG_7(SReg_64_XEXEC, OPW64)
DECODE_OPERAND_REG_7(SReg_96, OPW96)
DECODE_OPERAND_REG_7(SReg_128, OPW128)
DECODE_OPERAND_REG_7(SReg_256, OPW256)
DECODE_OPERAND_REG_7(SReg_512, OPW512)

DECODE_OPERAND_REG_8(AGPR_32)
DECODE_OPERAND_REG_8(AReg_64)
DECODE_OPERAND_REG_8(AReg_128)
DECODE_OPERAND_REG_8(AReg_256)
DECODE_OPERAND_REG_8(AReg_512)
DECODE_OPERAND_REG_8(AReg_1024)

DECODE_OPERAND_REG_AV10(AVDst_128, OPW128)
DECODE_OPERAND_REG_AV10(AVDst_512, OPW512)

// Decoders for register only source RegisterOperands that use use 9-bit Src
// encoding: 'decodeOperand_<RegClass>'.

DECODE_OPERAND_SRC_REG_9(VGPR_32, OPW32)
DECODE_OPERAND_SRC_REG_9(VReg_64, OPW64)
DECODE_OPERAND_SRC_REG_9(VReg_128, OPW128)
DECODE_OPERAND_SRC_REG_9(VReg_256, OPW256)
DECODE_OPERAND_SRC_REG_9(VRegOrLds_32, OPW32)

DECODE_OPERAND_SRC_REG_A9(AGPR_32, OPW32)

DECODE_SRC_OPERAND_REG_AV10(AV_32, OPW32)
DECODE_SRC_OPERAND_REG_AV10(AV_64, OPW64)
DECODE_SRC_OPERAND_REG_AV10(AV_128, OPW128)

// Decoders for register or immediate RegisterOperands that use 9-bit Src
// encoding: 'decodeOperand_<RegClass>_Imm<ImmWidth>'.

DECODE_OPERAND_SRC_REG_OR_IMM_9(SReg_64, OPW64, 64)
DECODE_OPERAND_SRC_REG_OR_IMM_9(SReg_32, OPW32, 32)
DECODE_OPERAND_SRC_REG_OR_IMM_9(SReg_32, OPW32, 16)
DECODE_OPERAND_SRC_REG_OR_IMM_9(SRegOrLds_32, OPW32, 32)
DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32_Lo128, OPW16, 16)
DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32, OPW32, 16)
DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32, OPW32, 32)
DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_64, OPW64, 64)
DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_64, OPW64, 32)
DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_64, OPW64, 64)
DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_128, OPW128, 32)
DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_256, OPW256, 64)
DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_512, OPW512, 32)
DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_1024, OPW1024, 32)

DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_64, OPW64, 64)
DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_128, OPW128, 32)
DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_256, OPW256, 64)
DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_512, OPW512, 32)
DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_1024, OPW1024, 32)

DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32_Lo128, OPW16, 16)
DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32, OPW16, 16)
DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32, OPW32, 32)
DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(SReg_32, OPW32, 32)

static DecodeStatus DecodeVGPR_16RegisterClass(MCInst &Inst, unsigned Imm,
                                               uint64_t /*Addr*/,
                                               const MCDisassembler *Decoder) {
  assert(isUInt<10>(Imm) && "10-bit encoding expected");
  assert((Imm & (1 << 8)) == 0 && "Imm{8} should not be used");

  bool IsHi = Imm & (1 << 9);
  unsigned RegIdx = Imm & 0xff;
  auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
  return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi));
}

static DecodeStatus
DecodeVGPR_16_Lo128RegisterClass(MCInst &Inst, unsigned Imm, uint64_t /*Addr*/,
                                 const MCDisassembler *Decoder) {
  assert(isUInt<8>(Imm) && "8-bit encoding expected");

  bool IsHi = Imm & (1 << 7);
  unsigned RegIdx = Imm & 0x7f;
  auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
  return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi));
}

static DecodeStatus decodeOperand_VSrcT16_Lo128(MCInst &Inst, unsigned Imm,
                                                uint64_t /*Addr*/,
                                                const MCDisassembler *Decoder) {
  assert(isUInt<9>(Imm) && "9-bit encoding expected");

  const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
  bool IsVGPR = Imm & (1 << 8);
  if (IsVGPR) {
    bool IsHi = Imm & (1 << 7);
    unsigned RegIdx = Imm & 0x7f;
    return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi));
  }
  return addOperand(Inst, DAsm->decodeNonVGPRSrcOp(AMDGPUDisassembler::OPW16,
                                                   Imm & 0xFF, false, 16));
}

static DecodeStatus decodeOperand_VSrcT16(MCInst &Inst, unsigned Imm,
                                          uint64_t /*Addr*/,
                                          const MCDisassembler *Decoder) {
  assert(isUInt<10>(Imm) && "10-bit encoding expected");

  const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
  bool IsVGPR = Imm & (1 << 8);
  if (IsVGPR) {
    bool IsHi = Imm & (1 << 9);
    unsigned RegIdx = Imm & 0xff;
    return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi));
  }
  return addOperand(Inst, DAsm->decodeNonVGPRSrcOp(AMDGPUDisassembler::OPW16,
                                                   Imm & 0xFF, false, 16));
}

static DecodeStatus decodeOperand_KImmFP(MCInst &Inst, unsigned Imm,
                                         uint64_t Addr,
                                         const MCDisassembler *Decoder) {
  const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
  return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm));
}

static DecodeStatus decodeOperandVOPDDstY(MCInst &Inst, unsigned Val,
                                          uint64_t Addr, const void *Decoder) {
  const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
  return addOperand(Inst, DAsm->decodeVOPDDstYOp(Inst, Val));
}

static bool IsAGPROperand(const MCInst &Inst, int OpIdx,
                          const MCRegisterInfo *MRI) {
  if (OpIdx < 0)
    return false;

  const MCOperand &Op = Inst.getOperand(OpIdx);
  if (!Op.isReg())
    return false;

  unsigned Sub = MRI->getSubReg(Op.getReg(), AMDGPU::sub0);
  auto Reg = Sub ? Sub : Op.getReg();
  return Reg >= AMDGPU::AGPR0 && Reg <= AMDGPU::AGPR255;
}

static DecodeStatus decodeOperand_AVLdSt_Any(MCInst &Inst, unsigned Imm,
                                             AMDGPUDisassembler::OpWidthTy Opw,
                                             const MCDisassembler *Decoder) {
  auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
  if (!DAsm->isGFX90A()) {
    Imm &= 511;
  } else {
    // If atomic has both vdata and vdst their register classes are tied.
    // The bit is decoded along with the vdst, first operand. We need to
    // change register class to AGPR if vdst was AGPR.
    // If a DS instruction has both data0 and data1 their register classes
    // are also tied.
    unsigned Opc = Inst.getOpcode();
    uint64_t TSFlags = DAsm->getMCII()->get(Opc).TSFlags;
    uint16_t DataNameIdx = (TSFlags & SIInstrFlags::DS) ? AMDGPU::OpName::data0
                                                        : AMDGPU::OpName::vdata;
    const MCRegisterInfo *MRI = DAsm->getContext().getRegisterInfo();
    int DataIdx = AMDGPU::getNamedOperandIdx(Opc, DataNameIdx);
    if ((int)Inst.getNumOperands() == DataIdx) {
      int DstIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst);
      if (IsAGPROperand(Inst, DstIdx, MRI))
        Imm |= 512;
    }

    if (TSFlags & SIInstrFlags::DS) {
      int Data2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data1);
      if ((int)Inst.getNumOperands() == Data2Idx &&
          IsAGPROperand(Inst, DataIdx, MRI))
        Imm |= 512;
    }
  }
  return addOperand(Inst, DAsm->decodeSrcOp(Opw, Imm | 256));
}

static DecodeStatus decodeOperand_VSrc_f64(MCInst &Inst, unsigned Imm,
                                           uint64_t Addr,
                                           const MCDisassembler *Decoder) {
  assert(Imm < (1 << 9) && "9-bit encoding");
  auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
  return addOperand(
      Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW64, Imm, false, 64, true));
}

static DecodeStatus
DecodeAVLdSt_32RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
                             const MCDisassembler *Decoder) {
  return decodeOperand_AVLdSt_Any(Inst, Imm,
                                  AMDGPUDisassembler::OPW32, Decoder);
}

static DecodeStatus
DecodeAVLdSt_64RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
                             const MCDisassembler *Decoder) {
  return decodeOperand_AVLdSt_Any(Inst, Imm,
                                  AMDGPUDisassembler::OPW64, Decoder);
}

static DecodeStatus
DecodeAVLdSt_96RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
                             const MCDisassembler *Decoder) {
  return decodeOperand_AVLdSt_Any(Inst, Imm,
                                  AMDGPUDisassembler::OPW96, Decoder);
}

static DecodeStatus
DecodeAVLdSt_128RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
                              const MCDisassembler *Decoder) {
  return decodeOperand_AVLdSt_Any(Inst, Imm,
                                  AMDGPUDisassembler::OPW128, Decoder);
}

static DecodeStatus
DecodeAVLdSt_160RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
                              const MCDisassembler *Decoder) {
  return decodeOperand_AVLdSt_Any(Inst, Imm, AMDGPUDisassembler::OPW160,
                                  Decoder);
}

#define DECODE_SDWA(DecName) \
DECODE_OPERAND(decodeSDWA##DecName, decodeSDWA##DecName)

DECODE_SDWA(Src32)
DECODE_SDWA(Src16)
DECODE_SDWA(VopcDst)

#include "AMDGPUGenDisassemblerTables.inc"

//===----------------------------------------------------------------------===//
//
//===----------------------------------------------------------------------===//

template <typename T> static inline T eatBytes(ArrayRef<uint8_t>& Bytes) {
  assert(Bytes.size() >= sizeof(T));
  const auto Res =
      support::endian::read<T, llvm::endianness::little>(Bytes.data());
  Bytes = Bytes.slice(sizeof(T));
  return Res;
}

static inline DecoderUInt128 eat12Bytes(ArrayRef<uint8_t> &Bytes) {
  assert(Bytes.size() >= 12);
  uint64_t Lo =
      support::endian::read<uint64_t, llvm::endianness::little>(Bytes.data());
  Bytes = Bytes.slice(8);
  uint64_t Hi =
      support::endian::read<uint32_t, llvm::endianness::little>(Bytes.data());
  Bytes = Bytes.slice(4);
  return DecoderUInt128(Lo, Hi);
}

// The disassembler is greedy, so we need to check FI operand value to
// not parse a dpp if the correct literal is not set. For dpp16 the
// autogenerated decoder checks the dpp literal
static bool isValidDPP8(const MCInst &MI) {
  using namespace llvm::AMDGPU::DPP;
  int FiIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::fi);
  assert(FiIdx != -1);
  if ((unsigned)FiIdx >= MI.getNumOperands())
    return false;
  unsigned Fi = MI.getOperand(FiIdx).getImm();
  return Fi == DPP8_FI_0 || Fi == DPP8_FI_1;
}

DecodeStatus AMDGPUDisassembler::getInstruction(MCInst &MI, uint64_t &Size,
                                                ArrayRef<uint8_t> Bytes_,
                                                uint64_t Address,
                                                raw_ostream &CS) const {
  bool IsSDWA = false;

  unsigned MaxInstBytesNum = std::min((size_t)TargetMaxInstBytes, Bytes_.size());
  Bytes = Bytes_.slice(0, MaxInstBytesNum);

  DecodeStatus Res = MCDisassembler::Fail;
  do {
    // ToDo: better to switch encoding length using some bit predicate
    // but it is unknown yet, so try all we can

    // Try to decode DPP and SDWA first to solve conflict with VOP1 and VOP2
    // encodings
    if (isGFX11Plus() && Bytes.size() >= 12 ) {
      DecoderUInt128 DecW = eat12Bytes(Bytes);
      Res =
          tryDecodeInst(DecoderTableDPP8GFX1196, DecoderTableDPP8GFX11_FAKE1696,
                        MI, DecW, Address, CS);
      if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
        break;
      MI = MCInst(); // clear
      Res =
          tryDecodeInst(DecoderTableDPP8GFX1296, DecoderTableDPP8GFX12_FAKE1696,
                        MI, DecW, Address, CS);
      if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
        break;
      MI = MCInst(); // clear

      const auto convertVOPDPP = [&]() {
        if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3P) {
          convertVOP3PDPPInst(MI);
        } else if (AMDGPU::isVOPC64DPP(MI.getOpcode())) {
          convertVOPCDPPInst(MI); // Special VOP3 case
        } else {
          assert(MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3);
          convertVOP3DPPInst(MI); // Regular VOP3 case
        }
      };
      Res = tryDecodeInst(DecoderTableDPPGFX1196, DecoderTableDPPGFX11_FAKE1696,
                          MI, DecW, Address, CS);
      if (Res) {
        convertVOPDPP();
        break;
      }
      Res = tryDecodeInst(DecoderTableDPPGFX1296, DecoderTableDPPGFX12_FAKE1696,
                          MI, DecW, Address, CS);
      if (Res) {
        convertVOPDPP();
        break;
      }
      Res = tryDecodeInst(DecoderTableGFX1196, MI, DecW, Address, CS);
      if (Res)
        break;

      Res = tryDecodeInst(DecoderTableGFX1296, MI, DecW, Address, CS);
      if (Res)
        break;
    }
    // Reinitialize Bytes
    Bytes = Bytes_.slice(0, MaxInstBytesNum);

    if (Bytes.size() >= 8) {
      const uint64_t QW = eatBytes<uint64_t>(Bytes);

      if (STI.hasFeature(AMDGPU::FeatureGFX10_BEncoding)) {
        Res = tryDecodeInst(DecoderTableGFX10_B64, MI, QW, Address, CS);
        if (Res) {
          if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dpp8)
              == -1)
            break;
          if (convertDPP8Inst(MI) == MCDisassembler::Success)
            break;
          MI = MCInst(); // clear
        }
      }

      Res = tryDecodeInst(DecoderTableDPP864, MI, QW, Address, CS);
      if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
        break;
      MI = MCInst(); // clear

      Res = tryDecodeInst(DecoderTableDPP8GFX1164,
                          DecoderTableDPP8GFX11_FAKE1664, MI, QW, Address, CS);
      if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
        break;
      MI = MCInst(); // clear

      Res = tryDecodeInst(DecoderTableDPP8GFX1264,
                          DecoderTableDPP8GFX12_FAKE1664, MI, QW, Address, CS);
      if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
        break;
      MI = MCInst(); // clear

      Res = tryDecodeInst(DecoderTableDPP64, MI, QW, Address, CS);
      if (Res) break;

      Res = tryDecodeInst(DecoderTableDPPGFX1164, DecoderTableDPPGFX11_FAKE1664,
                          MI, QW, Address, CS);
      if (Res) {
        if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOPC)
          convertVOPCDPPInst(MI);
        break;
      }

      Res = tryDecodeInst(DecoderTableDPPGFX1264, DecoderTableDPPGFX12_FAKE1664,
                          MI, QW, Address, CS);
      if (Res) {
        if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOPC)
          convertVOPCDPPInst(MI);
        break;
      }

      Res = tryDecodeInst(DecoderTableSDWA64, MI, QW, Address, CS);
      if (Res) { IsSDWA = true;  break; }

      Res = tryDecodeInst(DecoderTableSDWA964, MI, QW, Address, CS);
      if (Res) { IsSDWA = true;  break; }

      Res = tryDecodeInst(DecoderTableSDWA1064, MI, QW, Address, CS);
      if (Res) { IsSDWA = true;  break; }

      if (STI.hasFeature(AMDGPU::FeatureUnpackedD16VMem)) {
        Res = tryDecodeInst(DecoderTableGFX80_UNPACKED64, MI, QW, Address, CS);
        if (Res)
          break;
      }

      // Some GFX9 subtargets repurposed the v_mad_mix_f32, v_mad_mixlo_f16 and
      // v_mad_mixhi_f16 for FMA variants. Try to decode using this special
      // table first so we print the correct name.
      if (STI.hasFeature(AMDGPU::FeatureFmaMixInsts)) {
        Res = tryDecodeInst(DecoderTableGFX9_DL64, MI, QW, Address, CS);
        if (Res)
          break;
      }
    }

    // Reinitialize Bytes as DPP64 could have eaten too much
    Bytes = Bytes_.slice(0, MaxInstBytesNum);

    // Try decode 32-bit instruction
    if (Bytes.size() < 4) break;
    const uint32_t DW = eatBytes<uint32_t>(Bytes);
    Res = tryDecodeInst(DecoderTableGFX832, MI, DW, Address, CS);
    if (Res) break;

    Res = tryDecodeInst(DecoderTableAMDGPU32, MI, DW, Address, CS);
    if (Res) break;

    Res = tryDecodeInst(DecoderTableGFX932, MI, DW, Address, CS);
    if (Res) break;

    if (STI.hasFeature(AMDGPU::FeatureGFX90AInsts)) {
      Res = tryDecodeInst(DecoderTableGFX90A32, MI, DW, Address, CS);
      if (Res)
        break;
    }

    if (STI.hasFeature(AMDGPU::FeatureGFX10_BEncoding)) {
      Res = tryDecodeInst(DecoderTableGFX10_B32, MI, DW, Address, CS);
      if (Res) break;
    }

    Res = tryDecodeInst(DecoderTableGFX1032, MI, DW, Address, CS);
    if (Res) break;

    Res = tryDecodeInst(DecoderTableGFX1132, DecoderTableGFX11_FAKE1632, MI, DW,
                        Address, CS);
    if (Res) break;

    Res = tryDecodeInst(DecoderTableGFX1232, DecoderTableGFX12_FAKE1632, MI, DW,
                        Address, CS);
    if (Res)
      break;

    if (Bytes.size() < 4) break;
    const uint64_t QW = ((uint64_t)eatBytes<uint32_t>(Bytes) << 32) | DW;

    if (STI.hasFeature(AMDGPU::FeatureGFX940Insts)) {
      Res = tryDecodeInst(DecoderTableGFX94064, MI, QW, Address, CS);
      if (Res)
        break;
    }

    if (STI.hasFeature(AMDGPU::FeatureGFX90AInsts)) {
      Res = tryDecodeInst(DecoderTableGFX90A64, MI, QW, Address, CS);
      if (Res)
        break;
    }

    Res = tryDecodeInst(DecoderTableGFX864, MI, QW, Address, CS);
    if (Res) break;

    Res = tryDecodeInst(DecoderTableAMDGPU64, MI, QW, Address, CS);
    if (Res) break;

    Res = tryDecodeInst(DecoderTableGFX964, MI, QW, Address, CS);
    if (Res) break;

    Res = tryDecodeInst(DecoderTableGFX1064, MI, QW, Address, CS);
    if (Res) break;

    Res = tryDecodeInst(DecoderTableGFX1264, DecoderTableGFX12_FAKE1664, MI, QW,
                        Address, CS);
    if (Res)
      break;

    Res = tryDecodeInst(DecoderTableGFX1164, DecoderTableGFX11_FAKE1664, MI, QW,
                        Address, CS);
    if (Res)
      break;

    Res = tryDecodeInst(DecoderTableWMMAGFX1164, MI, QW, Address, CS);
  } while (false);

  if (Res && AMDGPU::isMAC(MI.getOpcode())) {
    // Insert dummy unused src2_modifiers.
    insertNamedMCOperand(MI, MCOperand::createImm(0),
                         AMDGPU::OpName::src2_modifiers);
  }

  if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::DS) &&
      !AMDGPU::hasGDS(STI)) {
    insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::gds);
  }

  if (Res && (MCII->get(MI.getOpcode()).TSFlags &
          (SIInstrFlags::MUBUF | SIInstrFlags::FLAT | SIInstrFlags::SMRD))) {
    int CPolPos = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
                                             AMDGPU::OpName::cpol);
    if (CPolPos != -1) {
      unsigned CPol =
          (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::IsAtomicRet) ?
              AMDGPU::CPol::GLC : 0;
      if (MI.getNumOperands() <= (unsigned)CPolPos) {
        insertNamedMCOperand(MI, MCOperand::createImm(CPol),
                             AMDGPU::OpName::cpol);
      } else if (CPol) {
        MI.getOperand(CPolPos).setImm(MI.getOperand(CPolPos).getImm() | CPol);
      }
    }
  }

  if (Res && (MCII->get(MI.getOpcode()).TSFlags &
              (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF)) &&
             (STI.hasFeature(AMDGPU::FeatureGFX90AInsts))) {
    // GFX90A lost TFE, its place is occupied by ACC.
    int TFEOpIdx =
        AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::tfe);
    if (TFEOpIdx != -1) {
      auto TFEIter = MI.begin();
      std::advance(TFEIter, TFEOpIdx);
      MI.insert(TFEIter, MCOperand::createImm(0));
    }
  }

  if (Res && (MCII->get(MI.getOpcode()).TSFlags &
              (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF))) {
    int SWZOpIdx =
        AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::swz);
    if (SWZOpIdx != -1) {
      auto SWZIter = MI.begin();
      std::advance(SWZIter, SWZOpIdx);
      MI.insert(SWZIter, MCOperand::createImm(0));
    }
  }

  if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::MIMG)) {
    int VAddr0Idx =
        AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
    int RsrcIdx =
        AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc);
    unsigned NSAArgs = RsrcIdx - VAddr0Idx - 1;
    if (VAddr0Idx >= 0 && NSAArgs > 0) {
      unsigned NSAWords = (NSAArgs + 3) / 4;
      if (Bytes.size() < 4 * NSAWords) {
        Res = MCDisassembler::Fail;
      } else {
        for (unsigned i = 0; i < NSAArgs; ++i) {
          const unsigned VAddrIdx = VAddr0Idx + 1 + i;
          auto VAddrRCID =
              MCII->get(MI.getOpcode()).operands()[VAddrIdx].RegClass;
          MI.insert(MI.begin() + VAddrIdx,
                    createRegOperand(VAddrRCID, Bytes[i]));
        }
        Bytes = Bytes.slice(4 * NSAWords);
      }
    }

    if (Res)
      Res = convertMIMGInst(MI);
  }

  if (Res && (MCII->get(MI.getOpcode()).TSFlags &
              (SIInstrFlags::VIMAGE | SIInstrFlags::VSAMPLE)))
    Res = convertMIMGInst(MI);

  if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::EXP))
    Res = convertEXPInst(MI);

  if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VINTERP))
    Res = convertVINTERPInst(MI);

  if (Res && IsSDWA)
    Res = convertSDWAInst(MI);

  int VDstIn_Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
                                              AMDGPU::OpName::vdst_in);
  if (VDstIn_Idx != -1) {
    int Tied = MCII->get(MI.getOpcode()).getOperandConstraint(VDstIn_Idx,
                           MCOI::OperandConstraint::TIED_TO);
    if (Tied != -1 && (MI.getNumOperands() <= (unsigned)VDstIn_Idx ||
         !MI.getOperand(VDstIn_Idx).isReg() ||
         MI.getOperand(VDstIn_Idx).getReg() != MI.getOperand(Tied).getReg())) {
      if (MI.getNumOperands() > (unsigned)VDstIn_Idx)
        MI.erase(&MI.getOperand(VDstIn_Idx));
      insertNamedMCOperand(MI,
        MCOperand::createReg(MI.getOperand(Tied).getReg()),
        AMDGPU::OpName::vdst_in);
    }
  }

  int ImmLitIdx =
      AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::imm);
  bool IsSOPK = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::SOPK;
  if (Res && ImmLitIdx != -1 && !IsSOPK)
    Res = convertFMAanyK(MI, ImmLitIdx);

  // if the opcode was not recognized we'll assume a Size of 4 bytes
  // (unless there are fewer bytes left)
  Size = Res ? (MaxInstBytesNum - Bytes.size())
             : std::min((size_t)4, Bytes_.size());
  return Res;
}

DecodeStatus AMDGPUDisassembler::convertEXPInst(MCInst &MI) const {
  if (STI.hasFeature(AMDGPU::FeatureGFX11Insts)) {
    // The MCInst still has these fields even though they are no longer encoded
    // in the GFX11 instruction.
    insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vm);
    insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::compr);
  }
  return MCDisassembler::Success;
}

DecodeStatus AMDGPUDisassembler::convertVINTERPInst(MCInst &MI) const {
  if (MI.getOpcode() == AMDGPU::V_INTERP_P10_F16_F32_inreg_gfx11 ||
      MI.getOpcode() == AMDGPU::V_INTERP_P10_F16_F32_inreg_gfx12 ||
      MI.getOpcode() == AMDGPU::V_INTERP_P10_RTZ_F16_F32_inreg_gfx11 ||
      MI.getOpcode() == AMDGPU::V_INTERP_P10_RTZ_F16_F32_inreg_gfx12 ||
      MI.getOpcode() == AMDGPU::V_INTERP_P2_F16_F32_inreg_gfx11 ||
      MI.getOpcode() == AMDGPU::V_INTERP_P2_F16_F32_inreg_gfx12 ||
      MI.getOpcode() == AMDGPU::V_INTERP_P2_RTZ_F16_F32_inreg_gfx11 ||
      MI.getOpcode() == AMDGPU::V_INTERP_P2_RTZ_F16_F32_inreg_gfx12) {
    // The MCInst has this field that is not directly encoded in the
    // instruction.
    insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::op_sel);
  }
  return MCDisassembler::Success;
}

DecodeStatus AMDGPUDisassembler::convertSDWAInst(MCInst &MI) const {
  if (STI.hasFeature(AMDGPU::FeatureGFX9) ||
      STI.hasFeature(AMDGPU::FeatureGFX10)) {
    if (AMDGPU::hasNamedOperand(MI.getOpcode(), AMDGPU::OpName::sdst))
      // VOPC - insert clamp
      insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::clamp);
  } else if (STI.hasFeature(AMDGPU::FeatureVolcanicIslands)) {
    int SDst = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst);
    if (SDst != -1) {
      // VOPC - insert VCC register as sdst
      insertNamedMCOperand(MI, createRegOperand(AMDGPU::VCC),
                           AMDGPU::OpName::sdst);
    } else {
      // VOP1/2 - insert omod if present in instruction
      insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::omod);
    }
  }
  return MCDisassembler::Success;
}

struct VOPModifiers {
  unsigned OpSel = 0;
  unsigned OpSelHi = 0;
  unsigned NegLo = 0;
  unsigned NegHi = 0;
};

// Reconstruct values of VOP3/VOP3P operands such as op_sel.
// Note that these values do not affect disassembler output,
// so this is only necessary for consistency with src_modifiers.
static VOPModifiers collectVOPModifiers(const MCInst &MI,
                                        bool IsVOP3P = false) {
  VOPModifiers Modifiers;
  unsigned Opc = MI.getOpcode();
  const int ModOps[] = {AMDGPU::OpName::src0_modifiers,
                        AMDGPU::OpName::src1_modifiers,
                        AMDGPU::OpName::src2_modifiers};
  for (int J = 0; J < 3; ++J) {
    int OpIdx = AMDGPU::getNamedOperandIdx(Opc, ModOps[J]);
    if (OpIdx == -1)
      continue;

    unsigned Val = MI.getOperand(OpIdx).getImm();

    Modifiers.OpSel |= !!(Val & SISrcMods::OP_SEL_0) << J;
    if (IsVOP3P) {
      Modifiers.OpSelHi |= !!(Val & SISrcMods::OP_SEL_1) << J;
      Modifiers.NegLo |= !!(Val & SISrcMods::NEG) << J;
      Modifiers.NegHi |= !!(Val & SISrcMods::NEG_HI) << J;
    } else if (J == 0) {
      Modifiers.OpSel |= !!(Val & SISrcMods::DST_OP_SEL) << 3;
    }
  }

  return Modifiers;
}

// MAC opcodes have special old and src2 operands.
// src2 is tied to dst, while old is not tied (but assumed to be).
bool AMDGPUDisassembler::isMacDPP(MCInst &MI) const {
  constexpr int DST_IDX = 0;
  auto Opcode = MI.getOpcode();
  const auto &Desc = MCII->get(Opcode);
  auto OldIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::old);

  if (OldIdx != -1 && Desc.getOperandConstraint(
                          OldIdx, MCOI::OperandConstraint::TIED_TO) == -1) {
    assert(AMDGPU::hasNamedOperand(Opcode, AMDGPU::OpName::src2));
    assert(Desc.getOperandConstraint(
               AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2),
               MCOI::OperandConstraint::TIED_TO) == DST_IDX);
    (void)DST_IDX;
    return true;
  }

  return false;
}

// Create dummy old operand and insert dummy unused src2_modifiers
void AMDGPUDisassembler::convertMacDPPInst(MCInst &MI) const {
  assert(MI.getNumOperands() + 1 < MCII->get(MI.getOpcode()).getNumOperands());
  insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old);
  insertNamedMCOperand(MI, MCOperand::createImm(0),
                       AMDGPU::OpName::src2_modifiers);
}

// We must check FI == literal to reject not genuine dpp8 insts, and we must
// first add optional MI operands to check FI
DecodeStatus AMDGPUDisassembler::convertDPP8Inst(MCInst &MI) const {
  unsigned Opc = MI.getOpcode();
  if (MCII->get(Opc).TSFlags & SIInstrFlags::VOP3P) {
    convertVOP3PDPPInst(MI);
  } else if ((MCII->get(Opc).TSFlags & SIInstrFlags::VOPC) ||
             AMDGPU::isVOPC64DPP(Opc)) {
    convertVOPCDPPInst(MI);
  } else {
    if (isMacDPP(MI))
      convertMacDPPInst(MI);

    unsigned DescNumOps = MCII->get(Opc).getNumOperands();
    if (MI.getNumOperands() < DescNumOps &&
        AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) {
      auto Mods = collectVOPModifiers(MI);
      insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
                           AMDGPU::OpName::op_sel);
    } else {
      // Insert dummy unused src modifiers.
      if (MI.getNumOperands() < DescNumOps &&
          AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers))
        insertNamedMCOperand(MI, MCOperand::createImm(0),
                             AMDGPU::OpName::src0_modifiers);

      if (MI.getNumOperands() < DescNumOps &&
          AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers))
        insertNamedMCOperand(MI, MCOperand::createImm(0),
                             AMDGPU::OpName::src1_modifiers);
    }
  }
  return isValidDPP8(MI) ? MCDisassembler::Success : MCDisassembler::SoftFail;
}

DecodeStatus AMDGPUDisassembler::convertVOP3DPPInst(MCInst &MI) const {
  if (isMacDPP(MI))
    convertMacDPPInst(MI);

  unsigned Opc = MI.getOpcode();
  unsigned DescNumOps = MCII->get(Opc).getNumOperands();
  if (MI.getNumOperands() < DescNumOps &&
      AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) {
    auto Mods = collectVOPModifiers(MI);
    insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
                         AMDGPU::OpName::op_sel);
  }
  return MCDisassembler::Success;
}

// Note that before gfx10, the MIMG encoding provided no information about
// VADDR size. Consequently, decoded instructions always show address as if it
// has 1 dword, which could be not really so.
DecodeStatus AMDGPUDisassembler::convertMIMGInst(MCInst &MI) const {
  auto TSFlags = MCII->get(MI.getOpcode()).TSFlags;

  int VDstIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
                                           AMDGPU::OpName::vdst);

  int VDataIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
                                            AMDGPU::OpName::vdata);
  int VAddr0Idx =
      AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
  int RsrcOpName = TSFlags & SIInstrFlags::MIMG ? AMDGPU::OpName::srsrc
                                                : AMDGPU::OpName::rsrc;
  int RsrcIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), RsrcOpName);
  int DMaskIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
                                            AMDGPU::OpName::dmask);

  int TFEIdx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
                                            AMDGPU::OpName::tfe);
  int D16Idx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
                                            AMDGPU::OpName::d16);

  const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(MI.getOpcode());
  const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
      AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode);

  assert(VDataIdx != -1);
  if (BaseOpcode->BVH) {
    // Add A16 operand for intersect_ray instructions
    addOperand(MI, MCOperand::createImm(BaseOpcode->A16));
    return MCDisassembler::Success;
  }

  bool IsAtomic = (VDstIdx != -1);
  bool IsGather4 = TSFlags & SIInstrFlags::Gather4;
  bool IsVSample = TSFlags & SIInstrFlags::VSAMPLE;
  bool IsNSA = false;
  bool IsPartialNSA = false;
  unsigned AddrSize = Info->VAddrDwords;

  if (isGFX10Plus()) {
    unsigned DimIdx =
        AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dim);
    int A16Idx =
        AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16);
    const AMDGPU::MIMGDimInfo *Dim =
        AMDGPU::getMIMGDimInfoByEncoding(MI.getOperand(DimIdx).getImm());
    const bool IsA16 = (A16Idx != -1 && MI.getOperand(A16Idx).getImm());

    AddrSize =
        AMDGPU::getAddrSizeMIMGOp(BaseOpcode, Dim, IsA16, AMDGPU::hasG16(STI));

    // VSAMPLE insts that do not use vaddr3 behave the same as NSA forms.
    // VIMAGE insts other than BVH never use vaddr4.
    IsNSA = Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA ||
            Info->MIMGEncoding == AMDGPU::MIMGEncGfx11NSA ||
            Info->MIMGEncoding == AMDGPU::MIMGEncGfx12;
    if (!IsNSA) {
      if (!IsVSample && AddrSize > 12)
        AddrSize = 16;
    } else {
      if (AddrSize > Info->VAddrDwords) {
        if (!STI.hasFeature(AMDGPU::FeaturePartialNSAEncoding)) {
          // The NSA encoding does not contain enough operands for the
          // combination of base opcode / dimension. Should this be an error?
          return MCDisassembler::Success;
        }
        IsPartialNSA = true;
      }
    }
  }

  unsigned DMask = MI.getOperand(DMaskIdx).getImm() & 0xf;
  unsigned DstSize = IsGather4 ? 4 : std::max(llvm::popcount(DMask), 1);

  bool D16 = D16Idx >= 0 && MI.getOperand(D16Idx).getImm();
  if (D16 && AMDGPU::hasPackedD16(STI)) {
    DstSize = (DstSize + 1) / 2;
  }

  if (TFEIdx != -1 && MI.getOperand(TFEIdx).getImm())
    DstSize += 1;

  if (DstSize == Info->VDataDwords && AddrSize == Info->VAddrDwords)
    return MCDisassembler::Success;

  int NewOpcode =
      AMDGPU::getMIMGOpcode(Info->BaseOpcode, Info->MIMGEncoding, DstSize, AddrSize);
  if (NewOpcode == -1)
    return MCDisassembler::Success;

  // Widen the register to the correct number of enabled channels.
  unsigned NewVdata = AMDGPU::NoRegister;
  if (DstSize != Info->VDataDwords) {
    auto DataRCID = MCII->get(NewOpcode).operands()[VDataIdx].RegClass;

    // Get first subregister of VData
    unsigned Vdata0 = MI.getOperand(VDataIdx).getReg();
    unsigned VdataSub0 = MRI.getSubReg(Vdata0, AMDGPU::sub0);
    Vdata0 = (VdataSub0 != 0)? VdataSub0 : Vdata0;

    NewVdata = MRI.getMatchingSuperReg(Vdata0, AMDGPU::sub0,
                                       &MRI.getRegClass(DataRCID));
    if (NewVdata == AMDGPU::NoRegister) {
      // It's possible to encode this such that the low register + enabled
      // components exceeds the register count.
      return MCDisassembler::Success;
    }
  }

  // If not using NSA on GFX10+, widen vaddr0 address register to correct size.
  // If using partial NSA on GFX11+ widen last address register.
  int VAddrSAIdx = IsPartialNSA ? (RsrcIdx - 1) : VAddr0Idx;
  unsigned NewVAddrSA = AMDGPU::NoRegister;
  if (STI.hasFeature(AMDGPU::FeatureNSAEncoding) && (!IsNSA || IsPartialNSA) &&
      AddrSize != Info->VAddrDwords) {
    unsigned VAddrSA = MI.getOperand(VAddrSAIdx).getReg();
    unsigned VAddrSubSA = MRI.getSubReg(VAddrSA, AMDGPU::sub0);
    VAddrSA = VAddrSubSA ? VAddrSubSA : VAddrSA;

    auto AddrRCID = MCII->get(NewOpcode).operands()[VAddrSAIdx].RegClass;
    NewVAddrSA = MRI.getMatchingSuperReg(VAddrSA, AMDGPU::sub0,
                                        &MRI.getRegClass(AddrRCID));
    if (!NewVAddrSA)
      return MCDisassembler::Success;
  }

  MI.setOpcode(NewOpcode);

  if (NewVdata != AMDGPU::NoRegister) {
    MI.getOperand(VDataIdx) = MCOperand::createReg(NewVdata);

    if (IsAtomic) {
      // Atomic operations have an additional operand (a copy of data)
      MI.getOperand(VDstIdx) = MCOperand::createReg(NewVdata);
    }
  }

  if (NewVAddrSA) {
    MI.getOperand(VAddrSAIdx) = MCOperand::createReg(NewVAddrSA);
  } else if (IsNSA) {
    assert(AddrSize <= Info->VAddrDwords);
    MI.erase(MI.begin() + VAddr0Idx + AddrSize,
             MI.begin() + VAddr0Idx + Info->VAddrDwords);
  }

  return MCDisassembler::Success;
}

// Opsel and neg bits are used in src_modifiers and standalone operands. Autogen
// decoder only adds to src_modifiers, so manually add the bits to the other
// operands.
DecodeStatus AMDGPUDisassembler::convertVOP3PDPPInst(MCInst &MI) const {
  unsigned Opc = MI.getOpcode();
  unsigned DescNumOps = MCII->get(Opc).getNumOperands();
  auto Mods = collectVOPModifiers(MI, true);

  if (MI.getNumOperands() < DescNumOps &&
      AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::vdst_in))
    insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vdst_in);

  if (MI.getNumOperands() < DescNumOps &&
      AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel))
    insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
                         AMDGPU::OpName::op_sel);
  if (MI.getNumOperands() < DescNumOps &&
      AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel_hi))
    insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSelHi),
                         AMDGPU::OpName::op_sel_hi);
  if (MI.getNumOperands() < DescNumOps &&
      AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_lo))
    insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegLo),
                         AMDGPU::OpName::neg_lo);
  if (MI.getNumOperands() < DescNumOps &&
      AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_hi))
    insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegHi),
                         AMDGPU::OpName::neg_hi);

  return MCDisassembler::Success;
}

// Create dummy old operand and insert optional operands
DecodeStatus AMDGPUDisassembler::convertVOPCDPPInst(MCInst &MI) const {
  unsigned Opc = MI.getOpcode();
  unsigned DescNumOps = MCII->get(Opc).getNumOperands();

  if (MI.getNumOperands() < DescNumOps &&
      AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::old))
    insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old);

  if (MI.getNumOperands() < DescNumOps &&
      AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers))
    insertNamedMCOperand(MI, MCOperand::createImm(0),
                         AMDGPU::OpName::src0_modifiers);

  if (MI.getNumOperands() < DescNumOps &&
      AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers))
    insertNamedMCOperand(MI, MCOperand::createImm(0),
                         AMDGPU::OpName::src1_modifiers);
  return MCDisassembler::Success;
}

DecodeStatus AMDGPUDisassembler::convertFMAanyK(MCInst &MI,
                                                int ImmLitIdx) const {
  assert(HasLiteral && "Should have decoded a literal");
  const MCInstrDesc &Desc = MCII->get(MI.getOpcode());
  unsigned DescNumOps = Desc.getNumOperands();
  insertNamedMCOperand(MI, MCOperand::createImm(Literal),
                       AMDGPU::OpName::immDeferred);
  assert(DescNumOps == MI.getNumOperands());
  for (unsigned I = 0; I < DescNumOps; ++I) {
    auto &Op = MI.getOperand(I);
    auto OpType = Desc.operands()[I].OperandType;
    bool IsDeferredOp = (OpType == AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED ||
                         OpType == AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED);
    if (Op.isImm() && Op.getImm() == AMDGPU::EncValues::LITERAL_CONST &&
        IsDeferredOp)
      Op.setImm(Literal);
  }
  return MCDisassembler::Success;
}

const char* AMDGPUDisassembler::getRegClassName(unsigned RegClassID) const {
  return getContext().getRegisterInfo()->
    getRegClassName(&AMDGPUMCRegisterClasses[RegClassID]);
}

inline
MCOperand AMDGPUDisassembler::errOperand(unsigned V,
                                         const Twine& ErrMsg) const {
  *CommentStream << "Error: " + ErrMsg;

  // ToDo: add support for error operands to MCInst.h
  // return MCOperand::createError(V);
  return MCOperand();
}

inline
MCOperand AMDGPUDisassembler::createRegOperand(unsigned int RegId) const {
  return MCOperand::createReg(AMDGPU::getMCReg(RegId, STI));
}

inline
MCOperand AMDGPUDisassembler::createRegOperand(unsigned RegClassID,
                                               unsigned Val) const {
  const auto& RegCl = AMDGPUMCRegisterClasses[RegClassID];
  if (Val >= RegCl.getNumRegs())
    return errOperand(Val, Twine(getRegClassName(RegClassID)) +
                           ": unknown register " + Twine(Val));
  return createRegOperand(RegCl.getRegister(Val));
}

inline
MCOperand AMDGPUDisassembler::createSRegOperand(unsigned SRegClassID,
                                                unsigned Val) const {
  // ToDo: SI/CI have 104 SGPRs, VI - 102
  // Valery: here we accepting as much as we can, let assembler sort it out
  int shift = 0;
  switch (SRegClassID) {
  case AMDGPU::SGPR_32RegClassID:
  case AMDGPU::TTMP_32RegClassID:
    break;
  case AMDGPU::SGPR_64RegClassID:
  case AMDGPU::TTMP_64RegClassID:
    shift = 1;
    break;
  case AMDGPU::SGPR_96RegClassID:
  case AMDGPU::TTMP_96RegClassID:
  case AMDGPU::SGPR_128RegClassID:
  case AMDGPU::TTMP_128RegClassID:
  // ToDo: unclear if s[100:104] is available on VI. Can we use VCC as SGPR in
  // this bundle?
  case AMDGPU::SGPR_256RegClassID:
  case AMDGPU::TTMP_256RegClassID:
    // ToDo: unclear if s[96:104] is available on VI. Can we use VCC as SGPR in
  // this bundle?
  case AMDGPU::SGPR_288RegClassID:
  case AMDGPU::TTMP_288RegClassID:
  case AMDGPU::SGPR_320RegClassID:
  case AMDGPU::TTMP_320RegClassID:
  case AMDGPU::SGPR_352RegClassID:
  case AMDGPU::TTMP_352RegClassID:
  case AMDGPU::SGPR_384RegClassID:
  case AMDGPU::TTMP_384RegClassID:
  case AMDGPU::SGPR_512RegClassID:
  case AMDGPU::TTMP_512RegClassID:
    shift = 2;
    break;
  // ToDo: unclear if s[88:104] is available on VI. Can we use VCC as SGPR in
  // this bundle?
  default:
    llvm_unreachable("unhandled register class");
  }

  if (Val % (1 << shift)) {
    *CommentStream << "Warning: " << getRegClassName(SRegClassID)
                   << ": scalar reg isn't aligned " << Val;
  }

  return createRegOperand(SRegClassID, Val >> shift);
}

MCOperand AMDGPUDisassembler::createVGPR16Operand(unsigned RegIdx,
                                                  bool IsHi) const {
  unsigned RCID =
      IsHi ? AMDGPU::VGPR_HI16RegClassID : AMDGPU::VGPR_LO16RegClassID;
  return createRegOperand(RCID, RegIdx);
}

// Decode Literals for insts which always have a literal in the encoding
MCOperand
AMDGPUDisassembler::decodeMandatoryLiteralConstant(unsigned Val) const {
  if (HasLiteral) {
    assert(
        AMDGPU::hasVOPD(STI) &&
        "Should only decode multiple kimm with VOPD, check VSrc operand types");
    if (Literal != Val)
      return errOperand(Val, "More than one unique literal is illegal");
  }
  HasLiteral = true;
  Literal = Val;
  return MCOperand::createImm(Literal);
}

MCOperand AMDGPUDisassembler::decodeLiteralConstant(bool ExtendFP64) const {
  // For now all literal constants are supposed to be unsigned integer
  // ToDo: deal with signed/unsigned 64-bit integer constants
  // ToDo: deal with float/double constants
  if (!HasLiteral) {
    if (Bytes.size() < 4) {
      return errOperand(0, "cannot read literal, inst bytes left " +
                        Twine(Bytes.size()));
    }
    HasLiteral = true;
    Literal = Literal64 = eatBytes<uint32_t>(Bytes);
    if (ExtendFP64)
      Literal64 <<= 32;
  }
  return MCOperand::createImm(ExtendFP64 ? Literal64 : Literal);
}

MCOperand AMDGPUDisassembler::decodeIntImmed(unsigned Imm) {
  using namespace AMDGPU::EncValues;

  assert(Imm >= INLINE_INTEGER_C_MIN && Imm <= INLINE_INTEGER_C_MAX);
  return MCOperand::createImm((Imm <= INLINE_INTEGER_C_POSITIVE_MAX) ?
    (static_cast<int64_t>(Imm) - INLINE_INTEGER_C_MIN) :
    (INLINE_INTEGER_C_POSITIVE_MAX - static_cast<int64_t>(Imm)));
      // Cast prevents negative overflow.
}

static int64_t getInlineImmVal32(unsigned Imm) {
  switch (Imm) {
  case 240:
    return llvm::bit_cast<uint32_t>(0.5f);
  case 241:
    return llvm::bit_cast<uint32_t>(-0.5f);
  case 242:
    return llvm::bit_cast<uint32_t>(1.0f);
  case 243:
    return llvm::bit_cast<uint32_t>(-1.0f);
  case 244:
    return llvm::bit_cast<uint32_t>(2.0f);
  case 245:
    return llvm::bit_cast<uint32_t>(-2.0f);
  case 246:
    return llvm::bit_cast<uint32_t>(4.0f);
  case 247:
    return llvm::bit_cast<uint32_t>(-4.0f);
  case 248: // 1 / (2 * PI)
    return 0x3e22f983;
  default:
    llvm_unreachable("invalid fp inline imm");
  }
}

static int64_t getInlineImmVal64(unsigned Imm) {
  switch (Imm) {
  case 240:
    return llvm::bit_cast<uint64_t>(0.5);
  case 241:
    return llvm::bit_cast<uint64_t>(-0.5);
  case 242:
    return llvm::bit_cast<uint64_t>(1.0);
  case 243:
    return llvm::bit_cast<uint64_t>(-1.0);
  case 244:
    return llvm::bit_cast<uint64_t>(2.0);
  case 245:
    return llvm::bit_cast<uint64_t>(-2.0);
  case 246:
    return llvm::bit_cast<uint64_t>(4.0);
  case 247:
    return llvm::bit_cast<uint64_t>(-4.0);
  case 248: // 1 / (2 * PI)
    return 0x3fc45f306dc9c882;
  default:
    llvm_unreachable("invalid fp inline imm");
  }
}

static int64_t getInlineImmVal16(unsigned Imm) {
  switch (Imm) {
  case 240:
    return 0x3800;
  case 241:
    return 0xB800;
  case 242:
    return 0x3C00;
  case 243:
    return 0xBC00;
  case 244:
    return 0x4000;
  case 245:
    return 0xC000;
  case 246:
    return 0x4400;
  case 247:
    return 0xC400;
  case 248: // 1 / (2 * PI)
    return 0x3118;
  default:
    llvm_unreachable("invalid fp inline imm");
  }
}

MCOperand AMDGPUDisassembler::decodeFPImmed(unsigned ImmWidth, unsigned Imm) {
  assert(Imm >= AMDGPU::EncValues::INLINE_FLOATING_C_MIN
      && Imm <= AMDGPU::EncValues::INLINE_FLOATING_C_MAX);

  // ToDo: case 248: 1/(2*PI) - is allowed only on VI
  // ImmWidth 0 is a default case where operand should not allow immediates.
  // Imm value is still decoded into 32 bit immediate operand, inst printer will
  // use it to print verbose error message.
  switch (ImmWidth) {
  case 0:
  case 32:
    return MCOperand::createImm(getInlineImmVal32(Imm));
  case 64:
    return MCOperand::createImm(getInlineImmVal64(Imm));
  case 16:
    return MCOperand::createImm(getInlineImmVal16(Imm));
  default:
    llvm_unreachable("implement me");
  }
}

unsigned AMDGPUDisassembler::getVgprClassId(const OpWidthTy Width) const {
  using namespace AMDGPU;

  assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
  switch (Width) {
  default: // fall
  case OPW32:
  case OPW16:
  case OPWV216:
    return VGPR_32RegClassID;
  case OPW64:
  case OPWV232: return VReg_64RegClassID;
  case OPW96: return VReg_96RegClassID;
  case OPW128: return VReg_128RegClassID;
  case OPW160: return VReg_160RegClassID;
  case OPW256: return VReg_256RegClassID;
  case OPW288: return VReg_288RegClassID;
  case OPW320: return VReg_320RegClassID;
  case OPW352: return VReg_352RegClassID;
  case OPW384: return VReg_384RegClassID;
  case OPW512: return VReg_512RegClassID;
  case OPW1024: return VReg_1024RegClassID;
  }
}

unsigned AMDGPUDisassembler::getAgprClassId(const OpWidthTy Width) const {
  using namespace AMDGPU;

  assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
  switch (Width) {
  default: // fall
  case OPW32:
  case OPW16:
  case OPWV216:
    return AGPR_32RegClassID;
  case OPW64:
  case OPWV232: return AReg_64RegClassID;
  case OPW96: return AReg_96RegClassID;
  case OPW128: return AReg_128RegClassID;
  case OPW160: return AReg_160RegClassID;
  case OPW256: return AReg_256RegClassID;
  case OPW288: return AReg_288RegClassID;
  case OPW320: return AReg_320RegClassID;
  case OPW352: return AReg_352RegClassID;
  case OPW384: return AReg_384RegClassID;
  case OPW512: return AReg_512RegClassID;
  case OPW1024: return AReg_1024RegClassID;
  }
}


unsigned AMDGPUDisassembler::getSgprClassId(const OpWidthTy Width) const {
  using namespace AMDGPU;

  assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
  switch (Width) {
  default: // fall
  case OPW32:
  case OPW16:
  case OPWV216:
    return SGPR_32RegClassID;
  case OPW64:
  case OPWV232: return SGPR_64RegClassID;
  case OPW96: return SGPR_96RegClassID;
  case OPW128: return SGPR_128RegClassID;
  case OPW160: return SGPR_160RegClassID;
  case OPW256: return SGPR_256RegClassID;
  case OPW288: return SGPR_288RegClassID;
  case OPW320: return SGPR_320RegClassID;
  case OPW352: return SGPR_352RegClassID;
  case OPW384: return SGPR_384RegClassID;
  case OPW512: return SGPR_512RegClassID;
  }
}

unsigned AMDGPUDisassembler::getTtmpClassId(const OpWidthTy Width) const {
  using namespace AMDGPU;

  assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
  switch (Width) {
  default: // fall
  case OPW32:
  case OPW16:
  case OPWV216:
    return TTMP_32RegClassID;
  case OPW64:
  case OPWV232: return TTMP_64RegClassID;
  case OPW128: return TTMP_128RegClassID;
  case OPW256: return TTMP_256RegClassID;
  case OPW288: return TTMP_288RegClassID;
  case OPW320: return TTMP_320RegClassID;
  case OPW352: return TTMP_352RegClassID;
  case OPW384: return TTMP_384RegClassID;
  case OPW512: return TTMP_512RegClassID;
  }
}

int AMDGPUDisassembler::getTTmpIdx(unsigned Val) const {
  using namespace AMDGPU::EncValues;

  unsigned TTmpMin = isGFX9Plus() ? TTMP_GFX9PLUS_MIN : TTMP_VI_MIN;
  unsigned TTmpMax = isGFX9Plus() ? TTMP_GFX9PLUS_MAX : TTMP_VI_MAX;

  return (TTmpMin <= Val && Val <= TTmpMax)? Val - TTmpMin : -1;
}

MCOperand AMDGPUDisassembler::decodeSrcOp(const OpWidthTy Width, unsigned Val,
                                          bool MandatoryLiteral,
                                          unsigned ImmWidth, bool IsFP) const {
  using namespace AMDGPU::EncValues;

  assert(Val < 1024); // enum10

  bool IsAGPR = Val & 512;
  Val &= 511;

  if (VGPR_MIN <= Val && Val <= VGPR_MAX) {
    return createRegOperand(IsAGPR ? getAgprClassId(Width)
                                   : getVgprClassId(Width), Val - VGPR_MIN);
  }
  return decodeNonVGPRSrcOp(Width, Val & 0xFF, MandatoryLiteral, ImmWidth,
                            IsFP);
}

MCOperand AMDGPUDisassembler::decodeNonVGPRSrcOp(const OpWidthTy Width,
                                                 unsigned Val,
                                                 bool MandatoryLiteral,
                                                 unsigned ImmWidth,
                                                 bool IsFP) const {
  // Cases when Val{8} is 1 (vgpr, agpr or true 16 vgpr) should have been
  // decoded earlier.
  assert(Val < (1 << 8) && "9-bit Src encoding when Val{8} is 0");
  using namespace AMDGPU::EncValues;

  if (Val <= SGPR_MAX) {
    // "SGPR_MIN <= Val" is always true and causes compilation warning.
    static_assert(SGPR_MIN == 0);
    return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN);
  }

  int TTmpIdx = getTTmpIdx(Val);
  if (TTmpIdx >= 0) {
    return createSRegOperand(getTtmpClassId(Width), TTmpIdx);
  }

  if (INLINE_INTEGER_C_MIN <= Val && Val <= INLINE_INTEGER_C_MAX)
    return decodeIntImmed(Val);

  if (INLINE_FLOATING_C_MIN <= Val && Val <= INLINE_FLOATING_C_MAX)
    return decodeFPImmed(ImmWidth, Val);

  if (Val == LITERAL_CONST) {
    if (MandatoryLiteral)
      // Keep a sentinel value for deferred setting
      return MCOperand::createImm(LITERAL_CONST);
    else
      return decodeLiteralConstant(IsFP && ImmWidth == 64);
  }

  switch (Width) {
  case OPW32:
  case OPW16:
  case OPWV216:
    return decodeSpecialReg32(Val);
  case OPW64:
  case OPWV232:
    return decodeSpecialReg64(Val);
  default:
    llvm_unreachable("unexpected immediate type");
  }
}

// Bit 0 of DstY isn't stored in the instruction, because it's always the
// opposite of bit 0 of DstX.
MCOperand AMDGPUDisassembler::decodeVOPDDstYOp(MCInst &Inst,
                                               unsigned Val) const {
  int VDstXInd =
      AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::vdstX);
  assert(VDstXInd != -1);
  assert(Inst.getOperand(VDstXInd).isReg());
  unsigned XDstReg = MRI.getEncodingValue(Inst.getOperand(VDstXInd).getReg());
  Val |= ~XDstReg & 1;
  auto Width = llvm::AMDGPUDisassembler::OPW32;
  return createRegOperand(getVgprClassId(Width), Val);
}

MCOperand AMDGPUDisassembler::decodeSpecialReg32(unsigned Val) const {
  using namespace AMDGPU;

  switch (Val) {
  // clang-format off
  case 102: return createRegOperand(FLAT_SCR_LO);
  case 103: return createRegOperand(FLAT_SCR_HI);
  case 104: return createRegOperand(XNACK_MASK_LO);
  case 105: return createRegOperand(XNACK_MASK_HI);
  case 106: return createRegOperand(VCC_LO);
  case 107: return createRegOperand(VCC_HI);
  case 108: return createRegOperand(TBA_LO);
  case 109: return createRegOperand(TBA_HI);
  case 110: return createRegOperand(TMA_LO);
  case 111: return createRegOperand(TMA_HI);
  case 124:
    return isGFX11Plus() ? createRegOperand(SGPR_NULL) : createRegOperand(M0);
  case 125:
    return isGFX11Plus() ? createRegOperand(M0) : createRegOperand(SGPR_NULL);
  case 126: return createRegOperand(EXEC_LO);
  case 127: return createRegOperand(EXEC_HI);
  case 235: return createRegOperand(SRC_SHARED_BASE_LO);
  case 236: return createRegOperand(SRC_SHARED_LIMIT_LO);
  case 237: return createRegOperand(SRC_PRIVATE_BASE_LO);
  case 238: return createRegOperand(SRC_PRIVATE_LIMIT_LO);
  case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
  case 251: return createRegOperand(SRC_VCCZ);
  case 252: return createRegOperand(SRC_EXECZ);
  case 253: return createRegOperand(SRC_SCC);
  case 254: return createRegOperand(LDS_DIRECT);
  default: break;
    // clang-format on
  }
  return errOperand(Val, "unknown operand encoding " + Twine(Val));
}

MCOperand AMDGPUDisassembler::decodeSpecialReg64(unsigned Val) const {
  using namespace AMDGPU;

  switch (Val) {
  case 102: return createRegOperand(FLAT_SCR);
  case 104: return createRegOperand(XNACK_MASK);
  case 106: return createRegOperand(VCC);
  case 108: return createRegOperand(TBA);
  case 110: return createRegOperand(TMA);
  case 124:
    if (isGFX11Plus())
      return createRegOperand(SGPR_NULL);
    break;
  case 125:
    if (!isGFX11Plus())
      return createRegOperand(SGPR_NULL);
    break;
  case 126: return createRegOperand(EXEC);
  case 235: return createRegOperand(SRC_SHARED_BASE);
  case 236: return createRegOperand(SRC_SHARED_LIMIT);
  case 237: return createRegOperand(SRC_PRIVATE_BASE);
  case 238: return createRegOperand(SRC_PRIVATE_LIMIT);
  case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
  case 251: return createRegOperand(SRC_VCCZ);
  case 252: return createRegOperand(SRC_EXECZ);
  case 253: return createRegOperand(SRC_SCC);
  default: break;
  }
  return errOperand(Val, "unknown operand encoding " + Twine(Val));
}

MCOperand AMDGPUDisassembler::decodeSDWASrc(const OpWidthTy Width,
                                            const unsigned Val,
                                            unsigned ImmWidth) const {
  using namespace AMDGPU::SDWA;
  using namespace AMDGPU::EncValues;

  if (STI.hasFeature(AMDGPU::FeatureGFX9) ||
      STI.hasFeature(AMDGPU::FeatureGFX10)) {
    // XXX: cast to int is needed to avoid stupid warning:
    // compare with unsigned is always true
    if (int(SDWA9EncValues::SRC_VGPR_MIN) <= int(Val) &&
        Val <= SDWA9EncValues::SRC_VGPR_MAX) {
      return createRegOperand(getVgprClassId(Width),
                              Val - SDWA9EncValues::SRC_VGPR_MIN);
    }
    if (SDWA9EncValues::SRC_SGPR_MIN <= Val &&
        Val <= (isGFX10Plus() ? SDWA9EncValues::SRC_SGPR_MAX_GFX10
                              : SDWA9EncValues::SRC_SGPR_MAX_SI)) {
      return createSRegOperand(getSgprClassId(Width),
                               Val - SDWA9EncValues::SRC_SGPR_MIN);
    }
    if (SDWA9EncValues::SRC_TTMP_MIN <= Val &&
        Val <= SDWA9EncValues::SRC_TTMP_MAX) {
      return createSRegOperand(getTtmpClassId(Width),
                               Val - SDWA9EncValues::SRC_TTMP_MIN);
    }

    const unsigned SVal = Val - SDWA9EncValues::SRC_SGPR_MIN;

    if (INLINE_INTEGER_C_MIN <= SVal && SVal <= INLINE_INTEGER_C_MAX)
      return decodeIntImmed(SVal);

    if (INLINE_FLOATING_C_MIN <= SVal && SVal <= INLINE_FLOATING_C_MAX)
      return decodeFPImmed(ImmWidth, SVal);

    return decodeSpecialReg32(SVal);
  } else if (STI.hasFeature(AMDGPU::FeatureVolcanicIslands)) {
    return createRegOperand(getVgprClassId(Width), Val);
  }
  llvm_unreachable("unsupported target");
}

MCOperand AMDGPUDisassembler::decodeSDWASrc16(unsigned Val) const {
  return decodeSDWASrc(OPW16, Val, 16);
}

MCOperand AMDGPUDisassembler::decodeSDWASrc32(unsigned Val) const {
  return decodeSDWASrc(OPW32, Val, 32);
}

MCOperand AMDGPUDisassembler::decodeSDWAVopcDst(unsigned Val) const {
  using namespace AMDGPU::SDWA;

  assert((STI.hasFeature(AMDGPU::FeatureGFX9) ||
          STI.hasFeature(AMDGPU::FeatureGFX10)) &&
         "SDWAVopcDst should be present only on GFX9+");

  bool IsWave64 = STI.hasFeature(AMDGPU::FeatureWavefrontSize64);

  if (Val & SDWA9EncValues::VOPC_DST_VCC_MASK) {
    Val &= SDWA9EncValues::VOPC_DST_SGPR_MASK;

    int TTmpIdx = getTTmpIdx(Val);
    if (TTmpIdx >= 0) {
      auto TTmpClsId = getTtmpClassId(IsWave64 ? OPW64 : OPW32);
      return createSRegOperand(TTmpClsId, TTmpIdx);
    } else if (Val > SGPR_MAX) {
      return IsWave64 ? decodeSpecialReg64(Val)
                      : decodeSpecialReg32(Val);
    } else {
      return createSRegOperand(getSgprClassId(IsWave64 ? OPW64 : OPW32), Val);
    }
  } else {
    return createRegOperand(IsWave64 ? AMDGPU::VCC : AMDGPU::VCC_LO);
  }
}

MCOperand AMDGPUDisassembler::decodeBoolReg(unsigned Val) const {
  return STI.hasFeature(AMDGPU::FeatureWavefrontSize64)
             ? decodeSrcOp(OPW64, Val)
             : decodeSrcOp(OPW32, Val);
}

MCOperand AMDGPUDisassembler::decodeSplitBarrier(unsigned Val) const {
  return decodeSrcOp(OPW32, Val);
}

bool AMDGPUDisassembler::isVI() const {
  return STI.hasFeature(AMDGPU::FeatureVolcanicIslands);
}

bool AMDGPUDisassembler::isGFX9() const { return AMDGPU::isGFX9(STI); }

bool AMDGPUDisassembler::isGFX90A() const {
  return STI.hasFeature(AMDGPU::FeatureGFX90AInsts);
}

bool AMDGPUDisassembler::isGFX9Plus() const { return AMDGPU::isGFX9Plus(STI); }

bool AMDGPUDisassembler::isGFX10() const { return AMDGPU::isGFX10(STI); }

bool AMDGPUDisassembler::isGFX10Plus() const {
  return AMDGPU::isGFX10Plus(STI);
}

bool AMDGPUDisassembler::isGFX11() const {
  return STI.hasFeature(AMDGPU::FeatureGFX11);
}

bool AMDGPUDisassembler::isGFX11Plus() const {
  return AMDGPU::isGFX11Plus(STI);
}

bool AMDGPUDisassembler::isGFX12Plus() const {
  return AMDGPU::isGFX12Plus(STI);
}

bool AMDGPUDisassembler::hasArchitectedFlatScratch() const {
  return STI.hasFeature(AMDGPU::FeatureArchitectedFlatScratch);
}

bool AMDGPUDisassembler::hasKernargPreload() const {
  return AMDGPU::hasKernargPreload(STI);
}

//===----------------------------------------------------------------------===//
// AMDGPU specific symbol handling
//===----------------------------------------------------------------------===//
#define GET_FIELD(MASK) (AMDHSA_BITS_GET(FourByteBuffer, MASK))
#define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
  do {                                                                         \
    KdStream << Indent << DIRECTIVE " " << GET_FIELD(MASK) << '\n';            \
  } while (0)
#define PRINT_PSEUDO_DIRECTIVE_COMMENT(DIRECTIVE, MASK)                        \
  do {                                                                         \
    KdStream << Indent << MAI.getCommentString() << ' ' << DIRECTIVE " "       \
             << GET_FIELD(MASK) << '\n';                                       \
  } while (0)

// NOLINTNEXTLINE(readability-identifier-naming)
MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC1(
    uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
  using namespace amdhsa;
  StringRef Indent = "\t";

  // We cannot accurately backward compute #VGPRs used from
  // GRANULATED_WORKITEM_VGPR_COUNT. But we are concerned with getting the same
  // value of GRANULATED_WORKITEM_VGPR_COUNT in the reassembled binary. So we
  // simply calculate the inverse of what the assembler does.

  uint32_t GranulatedWorkitemVGPRCount =
      GET_FIELD(COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT);

  uint32_t NextFreeVGPR =
      (GranulatedWorkitemVGPRCount + 1) *
      AMDGPU::IsaInfo::getVGPREncodingGranule(&STI, EnableWavefrontSize32);

  KdStream << Indent << ".amdhsa_next_free_vgpr " << NextFreeVGPR << '\n';

  // We cannot backward compute values used to calculate
  // GRANULATED_WAVEFRONT_SGPR_COUNT. Hence the original values for following
  // directives can't be computed:
  // .amdhsa_reserve_vcc
  // .amdhsa_reserve_flat_scratch
  // .amdhsa_reserve_xnack_mask
  // They take their respective default values if not specified in the assembly.
  //
  // GRANULATED_WAVEFRONT_SGPR_COUNT
  //    = f(NEXT_FREE_SGPR + VCC + FLAT_SCRATCH + XNACK_MASK)
  //
  // We compute the inverse as though all directives apart from NEXT_FREE_SGPR
  // are set to 0. So while disassembling we consider that:
  //
  // GRANULATED_WAVEFRONT_SGPR_COUNT
  //    = f(NEXT_FREE_SGPR + 0 + 0 + 0)
  //
  // The disassembler cannot recover the original values of those 3 directives.

  uint32_t GranulatedWavefrontSGPRCount =
      GET_FIELD(COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT);

  if (isGFX10Plus() && GranulatedWavefrontSGPRCount)
    return MCDisassembler::Fail;

  uint32_t NextFreeSGPR = (GranulatedWavefrontSGPRCount + 1) *
                          AMDGPU::IsaInfo::getSGPREncodingGranule(&STI);

  KdStream << Indent << ".amdhsa_reserve_vcc " << 0 << '\n';
  if (!hasArchitectedFlatScratch())
    KdStream << Indent << ".amdhsa_reserve_flat_scratch " << 0 << '\n';
  KdStream << Indent << ".amdhsa_reserve_xnack_mask " << 0 << '\n';
  KdStream << Indent << ".amdhsa_next_free_sgpr " << NextFreeSGPR << "\n";

  if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIORITY)
    return MCDisassembler::Fail;

  PRINT_DIRECTIVE(".amdhsa_float_round_mode_32",
                  COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_32);
  PRINT_DIRECTIVE(".amdhsa_float_round_mode_16_64",
                  COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_16_64);
  PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_32",
                  COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_32);
  PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_16_64",
                  COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64);

  if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIV)
    return MCDisassembler::Fail;

  if (!isGFX12Plus())
    PRINT_DIRECTIVE(".amdhsa_dx10_clamp",
                    COMPUTE_PGM_RSRC1_GFX6_GFX11_ENABLE_DX10_CLAMP);

  if (FourByteBuffer & COMPUTE_PGM_RSRC1_DEBUG_MODE)
    return MCDisassembler::Fail;

  if (!isGFX12Plus())
    PRINT_DIRECTIVE(".amdhsa_ieee_mode",
                    COMPUTE_PGM_RSRC1_GFX6_GFX11_ENABLE_IEEE_MODE);

  if (FourByteBuffer & COMPUTE_PGM_RSRC1_BULKY)
    return MCDisassembler::Fail;

  if (FourByteBuffer & COMPUTE_PGM_RSRC1_CDBG_USER)
    return MCDisassembler::Fail;

  if (isGFX9Plus())
    PRINT_DIRECTIVE(".amdhsa_fp16_overflow", COMPUTE_PGM_RSRC1_GFX9_PLUS_FP16_OVFL);

  if (!isGFX9Plus())
    if (FourByteBuffer & COMPUTE_PGM_RSRC1_GFX6_GFX8_RESERVED0)
      return MCDisassembler::Fail;
  if (FourByteBuffer & COMPUTE_PGM_RSRC1_RESERVED1)
    return MCDisassembler::Fail;
  if (!isGFX10Plus())
    if (FourByteBuffer & COMPUTE_PGM_RSRC1_GFX6_GFX9_RESERVED2)
      return MCDisassembler::Fail;

  if (isGFX10Plus()) {
    PRINT_DIRECTIVE(".amdhsa_workgroup_processor_mode",
                    COMPUTE_PGM_RSRC1_GFX10_PLUS_WGP_MODE);
    PRINT_DIRECTIVE(".amdhsa_memory_ordered", COMPUTE_PGM_RSRC1_GFX10_PLUS_MEM_ORDERED);
    PRINT_DIRECTIVE(".amdhsa_forward_progress", COMPUTE_PGM_RSRC1_GFX10_PLUS_FWD_PROGRESS);
  }

  if (isGFX12Plus())
    PRINT_DIRECTIVE(".amdhsa_round_robin_scheduling",
                    COMPUTE_PGM_RSRC1_GFX12_PLUS_ENABLE_WG_RR_EN);

  return MCDisassembler::Success;
}

// NOLINTNEXTLINE(readability-identifier-naming)
MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC2(
    uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
  using namespace amdhsa;
  StringRef Indent = "\t";
  if (hasArchitectedFlatScratch())
    PRINT_DIRECTIVE(".amdhsa_enable_private_segment",
                    COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
  else
    PRINT_DIRECTIVE(".amdhsa_system_sgpr_private_segment_wavefront_offset",
                    COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
  PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_x",
                  COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X);
  PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_y",
                  COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Y);
  PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_z",
                  COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Z);
  PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_info",
                  COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_INFO);
  PRINT_DIRECTIVE(".amdhsa_system_vgpr_workitem_id",
                  COMPUTE_PGM_RSRC2_ENABLE_VGPR_WORKITEM_ID);

  if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_ADDRESS_WATCH)
    return MCDisassembler::Fail;

  if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_MEMORY)
    return MCDisassembler::Fail;

  if (FourByteBuffer & COMPUTE_PGM_RSRC2_GRANULATED_LDS_SIZE)
    return MCDisassembler::Fail;

  PRINT_DIRECTIVE(
      ".amdhsa_exception_fp_ieee_invalid_op",
      COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INVALID_OPERATION);
  PRINT_DIRECTIVE(".amdhsa_exception_fp_denorm_src",
                  COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_FP_DENORMAL_SOURCE);
  PRINT_DIRECTIVE(
      ".amdhsa_exception_fp_ieee_div_zero",
      COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_DIVISION_BY_ZERO);
  PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_overflow",
                  COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_OVERFLOW);
  PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_underflow",
                  COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_UNDERFLOW);
  PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_inexact",
                  COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INEXACT);
  PRINT_DIRECTIVE(".amdhsa_exception_int_div_zero",
                  COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_INT_DIVIDE_BY_ZERO);

  if (FourByteBuffer & COMPUTE_PGM_RSRC2_RESERVED0)
    return MCDisassembler::Fail;

  return MCDisassembler::Success;
}

// NOLINTNEXTLINE(readability-identifier-naming)
MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC3(
    uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
  using namespace amdhsa;
  StringRef Indent = "\t";
  if (isGFX90A()) {
    KdStream << Indent << ".amdhsa_accum_offset "
             << (GET_FIELD(COMPUTE_PGM_RSRC3_GFX90A_ACCUM_OFFSET) + 1) * 4
             << '\n';
    if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX90A_RESERVED0)
      return MCDisassembler::Fail;
    PRINT_DIRECTIVE(".amdhsa_tg_split", COMPUTE_PGM_RSRC3_GFX90A_TG_SPLIT);
    if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX90A_RESERVED1)
      return MCDisassembler::Fail;
  } else if (isGFX10Plus()) {
    if (!EnableWavefrontSize32 || !*EnableWavefrontSize32) {
      PRINT_DIRECTIVE(".amdhsa_shared_vgpr_count",
                      COMPUTE_PGM_RSRC3_GFX10_PLUS_SHARED_VGPR_COUNT);
    } else {
      PRINT_PSEUDO_DIRECTIVE_COMMENT(
          "SHARED_VGPR_COUNT", COMPUTE_PGM_RSRC3_GFX10_PLUS_SHARED_VGPR_COUNT);
    }

    if (isGFX11Plus()) {
      PRINT_PSEUDO_DIRECTIVE_COMMENT("INST_PREF_SIZE",
                                     COMPUTE_PGM_RSRC3_GFX11_PLUS_INST_PREF_SIZE);
      PRINT_PSEUDO_DIRECTIVE_COMMENT("TRAP_ON_START",
                                     COMPUTE_PGM_RSRC3_GFX11_PLUS_TRAP_ON_START);
      PRINT_PSEUDO_DIRECTIVE_COMMENT("TRAP_ON_END",
                                     COMPUTE_PGM_RSRC3_GFX11_PLUS_TRAP_ON_END);
    } else {
      if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_RESERVED0)
        return MCDisassembler::Fail;
    }

    if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_PLUS_RESERVED1)
      return MCDisassembler::Fail;

    if (isGFX11Plus()) {
      PRINT_PSEUDO_DIRECTIVE_COMMENT("IMAGE_OP",
                                     COMPUTE_PGM_RSRC3_GFX11_PLUS_TRAP_ON_START);
    } else {
      if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_RESERVED2)
        return MCDisassembler::Fail;
    }
  } else if (FourByteBuffer) {
    return MCDisassembler::Fail;
  }
  return MCDisassembler::Success;
}
#undef PRINT_PSEUDO_DIRECTIVE_COMMENT
#undef PRINT_DIRECTIVE
#undef GET_FIELD

MCDisassembler::DecodeStatus
AMDGPUDisassembler::decodeKernelDescriptorDirective(
    DataExtractor::Cursor &Cursor, ArrayRef<uint8_t> Bytes,
    raw_string_ostream &KdStream) const {
#define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
  do {                                                                         \
    KdStream << Indent << DIRECTIVE " "                                        \
             << ((TwoByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n';            \
  } while (0)

  uint16_t TwoByteBuffer = 0;
  uint32_t FourByteBuffer = 0;

  StringRef ReservedBytes;
  StringRef Indent = "\t";

  assert(Bytes.size() == 64);
  DataExtractor DE(Bytes, /*IsLittleEndian=*/true, /*AddressSize=*/8);

  switch (Cursor.tell()) {
  case amdhsa::GROUP_SEGMENT_FIXED_SIZE_OFFSET:
    FourByteBuffer = DE.getU32(Cursor);
    KdStream << Indent << ".amdhsa_group_segment_fixed_size " << FourByteBuffer
             << '\n';
    return MCDisassembler::Success;

  case amdhsa::PRIVATE_SEGMENT_FIXED_SIZE_OFFSET:
    FourByteBuffer = DE.getU32(Cursor);
    KdStream << Indent << ".amdhsa_private_segment_fixed_size "
             << FourByteBuffer << '\n';
    return MCDisassembler::Success;

  case amdhsa::KERNARG_SIZE_OFFSET:
    FourByteBuffer = DE.getU32(Cursor);
    KdStream << Indent << ".amdhsa_kernarg_size "
             << FourByteBuffer << '\n';
    return MCDisassembler::Success;

  case amdhsa::RESERVED0_OFFSET:
    // 4 reserved bytes, must be 0.
    ReservedBytes = DE.getBytes(Cursor, 4);
    for (int I = 0; I < 4; ++I) {
      if (ReservedBytes[I] != 0) {
        return MCDisassembler::Fail;
      }
    }
    return MCDisassembler::Success;

  case amdhsa::KERNEL_CODE_ENTRY_BYTE_OFFSET_OFFSET:
    // KERNEL_CODE_ENTRY_BYTE_OFFSET
    // So far no directive controls this for Code Object V3, so simply skip for
    // disassembly.
    DE.skip(Cursor, 8);
    return MCDisassembler::Success;

  case amdhsa::RESERVED1_OFFSET:
    // 20 reserved bytes, must be 0.
    ReservedBytes = DE.getBytes(Cursor, 20);
    for (int I = 0; I < 20; ++I) {
      if (ReservedBytes[I] != 0) {
        return MCDisassembler::Fail;
      }
    }
    return MCDisassembler::Success;

  case amdhsa::COMPUTE_PGM_RSRC3_OFFSET:
    FourByteBuffer = DE.getU32(Cursor);
    return decodeCOMPUTE_PGM_RSRC3(FourByteBuffer, KdStream);

  case amdhsa::COMPUTE_PGM_RSRC1_OFFSET:
    FourByteBuffer = DE.getU32(Cursor);
    return decodeCOMPUTE_PGM_RSRC1(FourByteBuffer, KdStream);

  case amdhsa::COMPUTE_PGM_RSRC2_OFFSET:
    FourByteBuffer = DE.getU32(Cursor);
    return decodeCOMPUTE_PGM_RSRC2(FourByteBuffer, KdStream);

  case amdhsa::KERNEL_CODE_PROPERTIES_OFFSET:
    using namespace amdhsa;
    TwoByteBuffer = DE.getU16(Cursor);

    if (!hasArchitectedFlatScratch())
      PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_buffer",
                      KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER);
    PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_ptr",
                    KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR);
    PRINT_DIRECTIVE(".amdhsa_user_sgpr_queue_ptr",
                    KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR);
    PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_segment_ptr",
                    KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR);
    PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_id",
                    KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID);
    if (!hasArchitectedFlatScratch())
      PRINT_DIRECTIVE(".amdhsa_user_sgpr_flat_scratch_init",
                      KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT);
    PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_size",
                    KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE);

    if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED0)
      return MCDisassembler::Fail;

    // Reserved for GFX9
    if (isGFX9() &&
        (TwoByteBuffer & KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32)) {
      return MCDisassembler::Fail;
    } else if (isGFX10Plus()) {
      PRINT_DIRECTIVE(".amdhsa_wavefront_size32",
                      KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32);
    }

    if (AMDGPU::getAmdhsaCodeObjectVersion() >= AMDGPU::AMDHSA_COV5)
      PRINT_DIRECTIVE(".amdhsa_uses_dynamic_stack",
                      KERNEL_CODE_PROPERTY_USES_DYNAMIC_STACK);

    if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED1)
      return MCDisassembler::Fail;

    return MCDisassembler::Success;

  case amdhsa::KERNARG_PRELOAD_OFFSET:
    using namespace amdhsa;
    TwoByteBuffer = DE.getU16(Cursor);
    if (TwoByteBuffer & KERNARG_PRELOAD_SPEC_LENGTH) {
      PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_preload_length",
                      KERNARG_PRELOAD_SPEC_LENGTH);
    }

    if (TwoByteBuffer & KERNARG_PRELOAD_SPEC_OFFSET) {
      PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_preload_offset",
                      KERNARG_PRELOAD_SPEC_OFFSET);
    }
    return MCDisassembler::Success;

  case amdhsa::RESERVED3_OFFSET:
    // 4 bytes from here are reserved, must be 0.
    ReservedBytes = DE.getBytes(Cursor, 4);
    for (int I = 0; I < 4; ++I) {
      if (ReservedBytes[I] != 0)
        return MCDisassembler::Fail;
    }
    return MCDisassembler::Success;

  default:
    llvm_unreachable("Unhandled index. Case statements cover everything.");
    return MCDisassembler::Fail;
  }
#undef PRINT_DIRECTIVE
}

MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeKernelDescriptor(
    StringRef KdName, ArrayRef<uint8_t> Bytes, uint64_t KdAddress) const {
  // CP microcode requires the kernel descriptor to be 64 aligned.
  if (Bytes.size() != 64 || KdAddress % 64 != 0)
    return MCDisassembler::Fail;

  // FIXME: We can't actually decode "in order" as is done below, as e.g. GFX10
  // requires us to know the setting of .amdhsa_wavefront_size32 in order to
  // accurately produce .amdhsa_next_free_vgpr, and they appear in the wrong
  // order. Workaround this by first looking up .amdhsa_wavefront_size32 here
  // when required.
  if (isGFX10Plus()) {
    uint16_t KernelCodeProperties =
        support::endian::read16(&Bytes[amdhsa::KERNEL_CODE_PROPERTIES_OFFSET],
                                llvm::endianness::little);
    EnableWavefrontSize32 =
        AMDHSA_BITS_GET(KernelCodeProperties,
                        amdhsa::KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32);
  }

  std::string Kd;
  raw_string_ostream KdStream(Kd);
  KdStream << ".amdhsa_kernel " << KdName << '\n';

  DataExtractor::Cursor C(0);
  while (C && C.tell() < Bytes.size()) {
    MCDisassembler::DecodeStatus Status =
        decodeKernelDescriptorDirective(C, Bytes, KdStream);

    cantFail(C.takeError());

    if (Status == MCDisassembler::Fail)
      return MCDisassembler::Fail;
  }
  KdStream << ".end_amdhsa_kernel\n";
  outs() << KdStream.str();
  return MCDisassembler::Success;
}

std::optional<MCDisassembler::DecodeStatus>
AMDGPUDisassembler::onSymbolStart(SymbolInfoTy &Symbol, uint64_t &Size,
                                  ArrayRef<uint8_t> Bytes, uint64_t Address,
                                  raw_ostream &CStream) const {
  // Right now only kernel descriptor needs to be handled.
  // We ignore all other symbols for target specific handling.
  // TODO:
  // Fix the spurious symbol issue for AMDGPU kernels. Exists for both Code
  // Object V2 and V3 when symbols are marked protected.

  // amd_kernel_code_t for Code Object V2.
  if (Symbol.Type == ELF::STT_AMDGPU_HSA_KERNEL) {
    Size = 256;
    return MCDisassembler::Fail;
  }

  // Code Object V3 kernel descriptors.
  StringRef Name = Symbol.Name;
  if (Symbol.Type == ELF::STT_OBJECT && Name.ends_with(StringRef(".kd"))) {
    Size = 64; // Size = 64 regardless of success or failure.
    return decodeKernelDescriptor(Name.drop_back(3), Bytes, Address);
  }
  return std::nullopt;
}

//===----------------------------------------------------------------------===//
// AMDGPUSymbolizer
//===----------------------------------------------------------------------===//

// Try to find symbol name for specified label
bool AMDGPUSymbolizer::tryAddingSymbolicOperand(
    MCInst &Inst, raw_ostream & /*cStream*/, int64_t Value,
    uint64_t /*Address*/, bool IsBranch, uint64_t /*Offset*/,
    uint64_t /*OpSize*/, uint64_t /*InstSize*/) {

  if (!IsBranch) {
    return false;
  }

  auto *Symbols = static_cast<SectionSymbolsTy *>(DisInfo);
  if (!Symbols)
    return false;

  auto Result = llvm::find_if(*Symbols, [Value](const SymbolInfoTy &Val) {
    return Val.Addr == static_cast<uint64_t>(Value) &&
           Val.Type == ELF::STT_NOTYPE;
  });
  if (Result != Symbols->end()) {
    auto *Sym = Ctx.getOrCreateSymbol(Result->Name);
    const auto *Add = MCSymbolRefExpr::create(Sym, Ctx);
    Inst.addOperand(MCOperand::createExpr(Add));
    return true;
  }
  // Add to list of referenced addresses, so caller can synthesize a label.
  ReferencedAddresses.push_back(static_cast<uint64_t>(Value));
  return false;
}

void AMDGPUSymbolizer::tryAddingPcLoadReferenceComment(raw_ostream &cStream,
                                                       int64_t Value,
                                                       uint64_t Address) {
  llvm_unreachable("unimplemented");
}

//===----------------------------------------------------------------------===//
// Initialization
//===----------------------------------------------------------------------===//

static MCSymbolizer *createAMDGPUSymbolizer(const Triple &/*TT*/,
                              LLVMOpInfoCallback /*GetOpInfo*/,
                              LLVMSymbolLookupCallback /*SymbolLookUp*/,
                              void *DisInfo,
                              MCContext *Ctx,
                              std::unique_ptr<MCRelocationInfo> &&RelInfo) {
  return new AMDGPUSymbolizer(*Ctx, std::move(RelInfo), DisInfo);
}

static MCDisassembler *createAMDGPUDisassembler(const Target &T,
                                                const MCSubtargetInfo &STI,
                                                MCContext &Ctx) {
  return new AMDGPUDisassembler(STI, Ctx, T.createMCInstrInfo());
}

extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUDisassembler() {
  TargetRegistry::RegisterMCDisassembler(getTheGCNTarget(),
                                         createAMDGPUDisassembler);
  TargetRegistry::RegisterMCSymbolizer(getTheGCNTarget(),
                                       createAMDGPUSymbolizer);
}