aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Target/AMDGPU/SIWholeQuadMode.cpp
blob: 5e6c34992930be8b22cfcabcc746c10e6bc72706 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
//===-- SIWholeQuadMode.cpp - enter and suspend whole quad mode -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This pass adds instructions to enable whole quad mode (strict or non-strict)
/// for pixel shaders, and strict whole wavefront mode for all programs.
///
/// The "strict" prefix indicates that inactive lanes do not take part in
/// control flow, specifically an inactive lane enabled by a strict WQM/WWM will
/// always be enabled irrespective of control flow decisions. Conversely in
/// non-strict WQM inactive lanes may control flow decisions.
///
/// Whole quad mode is required for derivative computations, but it interferes
/// with shader side effects (stores and atomics). It ensures that WQM is
/// enabled when necessary, but disabled around stores and atomics.
///
/// When necessary, this pass creates a function prolog
///
///   S_MOV_B64 LiveMask, EXEC
///   S_WQM_B64 EXEC, EXEC
///
/// to enter WQM at the top of the function and surrounds blocks of Exact
/// instructions by
///
///   S_AND_SAVEEXEC_B64 Tmp, LiveMask
///   ...
///   S_MOV_B64 EXEC, Tmp
///
/// We also compute when a sequence of instructions requires strict whole
/// wavefront mode (StrictWWM) and insert instructions to save and restore it:
///
///   S_OR_SAVEEXEC_B64 Tmp, -1
///   ...
///   S_MOV_B64 EXEC, Tmp
///
/// When a sequence of instructions requires strict whole quad mode (StrictWQM)
/// we use a similar save and restore mechanism and force whole quad mode for
/// those instructions:
///
///  S_MOV_B64 Tmp, EXEC
///  S_WQM_B64 EXEC, EXEC
///  ...
///  S_MOV_B64 EXEC, Tmp
///
/// In order to avoid excessive switching during sequences of Exact
/// instructions, the pass first analyzes which instructions must be run in WQM
/// (aka which instructions produce values that lead to derivative
/// computations).
///
/// Basic blocks are always exited in WQM as long as some successor needs WQM.
///
/// There is room for improvement given better control flow analysis:
///
///  (1) at the top level (outside of control flow statements, and as long as
///      kill hasn't been used), one SGPR can be saved by recovering WQM from
///      the LiveMask (this is implemented for the entry block).
///
///  (2) when entire regions (e.g. if-else blocks or entire loops) only
///      consist of exact and don't-care instructions, the switch only has to
///      be done at the entry and exit points rather than potentially in each
///      block of the region.
///
//===----------------------------------------------------------------------===//

#include "AMDGPU.h"
#include "GCNSubtarget.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachinePostDominators.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/raw_ostream.h"

using namespace llvm;

#define DEBUG_TYPE "si-wqm"

namespace {

enum {
  StateWQM = 0x1,
  StateStrictWWM = 0x2,
  StateStrictWQM = 0x4,
  StateExact = 0x8,
  StateStrict = StateStrictWWM | StateStrictWQM,
};

struct PrintState {
public:
  int State;

  explicit PrintState(int State) : State(State) {}
};

#ifndef NDEBUG
static raw_ostream &operator<<(raw_ostream &OS, const PrintState &PS) {

  static const std::pair<char, const char *> Mapping[] = {
      std::pair(StateWQM, "WQM"), std::pair(StateStrictWWM, "StrictWWM"),
      std::pair(StateStrictWQM, "StrictWQM"), std::pair(StateExact, "Exact")};
  char State = PS.State;
  for (auto M : Mapping) {
    if (State & M.first) {
      OS << M.second;
      State &= ~M.first;

      if (State)
        OS << '|';
    }
  }
  assert(State == 0);
  return OS;
}
#endif

struct InstrInfo {
  char Needs = 0;
  char Disabled = 0;
  char OutNeeds = 0;
};

struct BlockInfo {
  char Needs = 0;
  char InNeeds = 0;
  char OutNeeds = 0;
  char InitialState = 0;
  bool NeedsLowering = false;
};

struct WorkItem {
  MachineBasicBlock *MBB = nullptr;
  MachineInstr *MI = nullptr;

  WorkItem() = default;
  WorkItem(MachineBasicBlock *MBB) : MBB(MBB) {}
  WorkItem(MachineInstr *MI) : MI(MI) {}
};

class SIWholeQuadMode : public MachineFunctionPass {
private:
  const SIInstrInfo *TII;
  const SIRegisterInfo *TRI;
  const GCNSubtarget *ST;
  MachineRegisterInfo *MRI;
  LiveIntervals *LIS;
  MachineDominatorTree *MDT;
  MachinePostDominatorTree *PDT;

  unsigned AndOpc;
  unsigned AndTermOpc;
  unsigned AndN2Opc;
  unsigned XorOpc;
  unsigned AndSaveExecOpc;
  unsigned AndSaveExecTermOpc;
  unsigned WQMOpc;
  Register Exec;
  Register LiveMaskReg;

  DenseMap<const MachineInstr *, InstrInfo> Instructions;
  MapVector<MachineBasicBlock *, BlockInfo> Blocks;

  // Tracks state (WQM/StrictWWM/StrictWQM/Exact) after a given instruction
  DenseMap<const MachineInstr *, char> StateTransition;

  SmallVector<MachineInstr *, 2> LiveMaskQueries;
  SmallVector<MachineInstr *, 4> LowerToMovInstrs;
  SmallVector<MachineInstr *, 4> LowerToCopyInstrs;
  SmallVector<MachineInstr *, 4> KillInstrs;

  void printInfo();

  void markInstruction(MachineInstr &MI, char Flag,
                       std::vector<WorkItem> &Worklist);
  void markDefs(const MachineInstr &UseMI, LiveRange &LR, Register Reg,
                unsigned SubReg, char Flag, std::vector<WorkItem> &Worklist);
  void markOperand(const MachineInstr &MI, const MachineOperand &Op, char Flag,
                   std::vector<WorkItem> &Worklist);
  void markInstructionUses(const MachineInstr &MI, char Flag,
                           std::vector<WorkItem> &Worklist);
  char scanInstructions(MachineFunction &MF, std::vector<WorkItem> &Worklist);
  void propagateInstruction(MachineInstr &MI, std::vector<WorkItem> &Worklist);
  void propagateBlock(MachineBasicBlock &MBB, std::vector<WorkItem> &Worklist);
  char analyzeFunction(MachineFunction &MF);

  MachineBasicBlock::iterator saveSCC(MachineBasicBlock &MBB,
                                      MachineBasicBlock::iterator Before);
  MachineBasicBlock::iterator
  prepareInsertion(MachineBasicBlock &MBB, MachineBasicBlock::iterator First,
                   MachineBasicBlock::iterator Last, bool PreferLast,
                   bool SaveSCC);
  void toExact(MachineBasicBlock &MBB, MachineBasicBlock::iterator Before,
               Register SaveWQM);
  void toWQM(MachineBasicBlock &MBB, MachineBasicBlock::iterator Before,
             Register SavedWQM);
  void toStrictMode(MachineBasicBlock &MBB, MachineBasicBlock::iterator Before,
                    Register SaveOrig, char StrictStateNeeded);
  void fromStrictMode(MachineBasicBlock &MBB,
                      MachineBasicBlock::iterator Before, Register SavedOrig,
                      char NonStrictState, char CurrentStrictState);

  MachineBasicBlock *splitBlock(MachineBasicBlock *BB, MachineInstr *TermMI);

  MachineInstr *lowerKillI1(MachineBasicBlock &MBB, MachineInstr &MI,
                            bool IsWQM);
  MachineInstr *lowerKillF32(MachineBasicBlock &MBB, MachineInstr &MI);
  void lowerPseudoStrictMode(MachineBasicBlock &MBB, MachineInstr *Entry,
                             MachineInstr *Exit);

  void lowerBlock(MachineBasicBlock &MBB);
  void processBlock(MachineBasicBlock &MBB, bool IsEntry);

  void lowerLiveMaskQueries();
  void lowerCopyInstrs();
  void lowerKillInstrs(bool IsWQM);

public:
  static char ID;

  SIWholeQuadMode() :
    MachineFunctionPass(ID) { }

  bool runOnMachineFunction(MachineFunction &MF) override;

  StringRef getPassName() const override { return "SI Whole Quad Mode"; }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<LiveIntervals>();
    AU.addPreserved<SlotIndexes>();
    AU.addPreserved<LiveIntervals>();
    AU.addPreserved<MachineDominatorTree>();
    AU.addPreserved<MachinePostDominatorTree>();
    MachineFunctionPass::getAnalysisUsage(AU);
  }

  MachineFunctionProperties getClearedProperties() const override {
    return MachineFunctionProperties().set(
        MachineFunctionProperties::Property::IsSSA);
  }
};

} // end anonymous namespace

char SIWholeQuadMode::ID = 0;

INITIALIZE_PASS_BEGIN(SIWholeQuadMode, DEBUG_TYPE, "SI Whole Quad Mode", false,
                      false)
INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree)
INITIALIZE_PASS_END(SIWholeQuadMode, DEBUG_TYPE, "SI Whole Quad Mode", false,
                    false)

char &llvm::SIWholeQuadModeID = SIWholeQuadMode::ID;

FunctionPass *llvm::createSIWholeQuadModePass() {
  return new SIWholeQuadMode;
}

#ifndef NDEBUG
LLVM_DUMP_METHOD void SIWholeQuadMode::printInfo() {
  for (const auto &BII : Blocks) {
    dbgs() << "\n"
           << printMBBReference(*BII.first) << ":\n"
           << "  InNeeds = " << PrintState(BII.second.InNeeds)
           << ", Needs = " << PrintState(BII.second.Needs)
           << ", OutNeeds = " << PrintState(BII.second.OutNeeds) << "\n\n";

    for (const MachineInstr &MI : *BII.first) {
      auto III = Instructions.find(&MI);
      if (III == Instructions.end())
        continue;

      dbgs() << "  " << MI << "    Needs = " << PrintState(III->second.Needs)
             << ", OutNeeds = " << PrintState(III->second.OutNeeds) << '\n';
    }
  }
}
#endif

void SIWholeQuadMode::markInstruction(MachineInstr &MI, char Flag,
                                      std::vector<WorkItem> &Worklist) {
  InstrInfo &II = Instructions[&MI];

  assert(!(Flag & StateExact) && Flag != 0);

  // Remove any disabled states from the flag. The user that required it gets
  // an undefined value in the helper lanes. For example, this can happen if
  // the result of an atomic is used by instruction that requires WQM, where
  // ignoring the request for WQM is correct as per the relevant specs.
  Flag &= ~II.Disabled;

  // Ignore if the flag is already encompassed by the existing needs, or we
  // just disabled everything.
  if ((II.Needs & Flag) == Flag)
    return;

  LLVM_DEBUG(dbgs() << "markInstruction " << PrintState(Flag) << ": " << MI);
  II.Needs |= Flag;
  Worklist.push_back(&MI);
}

/// Mark all relevant definitions of register \p Reg in usage \p UseMI.
void SIWholeQuadMode::markDefs(const MachineInstr &UseMI, LiveRange &LR,
                               Register Reg, unsigned SubReg, char Flag,
                               std::vector<WorkItem> &Worklist) {
  LLVM_DEBUG(dbgs() << "markDefs " << PrintState(Flag) << ": " << UseMI);

  LiveQueryResult UseLRQ = LR.Query(LIS->getInstructionIndex(UseMI));
  const VNInfo *Value = UseLRQ.valueIn();
  if (!Value)
    return;

  // Note: this code assumes that lane masks on AMDGPU completely
  // cover registers.
  const LaneBitmask UseLanes =
      SubReg ? TRI->getSubRegIndexLaneMask(SubReg)
             : (Reg.isVirtual() ? MRI->getMaxLaneMaskForVReg(Reg)
                                : LaneBitmask::getNone());

  // Perform a depth-first iteration of the LiveRange graph marking defs.
  // Stop processing of a given branch when all use lanes have been defined.
  // The first definition stops processing for a physical register.
  struct PhiEntry {
    const VNInfo *Phi;
    unsigned PredIdx;
    LaneBitmask DefinedLanes;

    PhiEntry(const VNInfo *Phi, unsigned PredIdx, LaneBitmask DefinedLanes)
        : Phi(Phi), PredIdx(PredIdx), DefinedLanes(DefinedLanes) {}
  };
  using VisitKey = std::pair<const VNInfo *, LaneBitmask>;
  SmallVector<PhiEntry, 2> PhiStack;
  SmallSet<VisitKey, 4> Visited;
  LaneBitmask DefinedLanes;
  unsigned NextPredIdx = 0; // Only used for processing phi nodes
  do {
    const VNInfo *NextValue = nullptr;
    const VisitKey Key(Value, DefinedLanes);

    if (Visited.insert(Key).second) {
      // On first visit to a phi then start processing first predecessor
      NextPredIdx = 0;
    }

    if (Value->isPHIDef()) {
      // Each predecessor node in the phi must be processed as a subgraph
      const MachineBasicBlock *MBB = LIS->getMBBFromIndex(Value->def);
      assert(MBB && "Phi-def has no defining MBB");

      // Find next predecessor to process
      unsigned Idx = NextPredIdx;
      auto PI = MBB->pred_begin() + Idx;
      auto PE = MBB->pred_end();
      for (; PI != PE && !NextValue; ++PI, ++Idx) {
        if (const VNInfo *VN = LR.getVNInfoBefore(LIS->getMBBEndIdx(*PI))) {
          if (!Visited.count(VisitKey(VN, DefinedLanes)))
            NextValue = VN;
        }
      }

      // If there are more predecessors to process; add phi to stack
      if (PI != PE)
        PhiStack.emplace_back(Value, Idx, DefinedLanes);
    } else {
      MachineInstr *MI = LIS->getInstructionFromIndex(Value->def);
      assert(MI && "Def has no defining instruction");

      if (Reg.isVirtual()) {
        // Iterate over all operands to find relevant definitions
        bool HasDef = false;
        for (const MachineOperand &Op : MI->all_defs()) {
          if (Op.getReg() != Reg)
            continue;

          // Compute lanes defined and overlap with use
          LaneBitmask OpLanes =
              Op.isUndef() ? LaneBitmask::getAll()
                           : TRI->getSubRegIndexLaneMask(Op.getSubReg());
          LaneBitmask Overlap = (UseLanes & OpLanes);

          // Record if this instruction defined any of use
          HasDef |= Overlap.any();

          // Mark any lanes defined
          DefinedLanes |= OpLanes;
        }

        // Check if all lanes of use have been defined
        if ((DefinedLanes & UseLanes) != UseLanes) {
          // Definition not complete; need to process input value
          LiveQueryResult LRQ = LR.Query(LIS->getInstructionIndex(*MI));
          if (const VNInfo *VN = LRQ.valueIn()) {
            if (!Visited.count(VisitKey(VN, DefinedLanes)))
              NextValue = VN;
          }
        }

        // Only mark the instruction if it defines some part of the use
        if (HasDef)
          markInstruction(*MI, Flag, Worklist);
      } else {
        // For physical registers simply mark the defining instruction
        markInstruction(*MI, Flag, Worklist);
      }
    }

    if (!NextValue && !PhiStack.empty()) {
      // Reach end of chain; revert to processing last phi
      PhiEntry &Entry = PhiStack.back();
      NextValue = Entry.Phi;
      NextPredIdx = Entry.PredIdx;
      DefinedLanes = Entry.DefinedLanes;
      PhiStack.pop_back();
    }

    Value = NextValue;
  } while (Value);
}

void SIWholeQuadMode::markOperand(const MachineInstr &MI,
                                  const MachineOperand &Op, char Flag,
                                  std::vector<WorkItem> &Worklist) {
  assert(Op.isReg());
  Register Reg = Op.getReg();

  // Ignore some hardware registers
  switch (Reg) {
  case AMDGPU::EXEC:
  case AMDGPU::EXEC_LO:
    return;
  default:
    break;
  }

  LLVM_DEBUG(dbgs() << "markOperand " << PrintState(Flag) << ": " << Op
                    << " for " << MI);
  if (Reg.isVirtual()) {
    LiveRange &LR = LIS->getInterval(Reg);
    markDefs(MI, LR, Reg, Op.getSubReg(), Flag, Worklist);
  } else {
    // Handle physical registers that we need to track; this is mostly relevant
    // for VCC, which can appear as the (implicit) input of a uniform branch,
    // e.g. when a loop counter is stored in a VGPR.
    for (MCRegUnit Unit : TRI->regunits(Reg.asMCReg())) {
      LiveRange &LR = LIS->getRegUnit(Unit);
      const VNInfo *Value = LR.Query(LIS->getInstructionIndex(MI)).valueIn();
      if (!Value)
        continue;

      markDefs(MI, LR, Unit, AMDGPU::NoSubRegister, Flag, Worklist);
    }
  }
}

/// Mark all instructions defining the uses in \p MI with \p Flag.
void SIWholeQuadMode::markInstructionUses(const MachineInstr &MI, char Flag,
                                          std::vector<WorkItem> &Worklist) {
  LLVM_DEBUG(dbgs() << "markInstructionUses " << PrintState(Flag) << ": "
                    << MI);

  for (const MachineOperand &Use : MI.all_uses())
    markOperand(MI, Use, Flag, Worklist);
}

// Scan instructions to determine which ones require an Exact execmask and
// which ones seed WQM requirements.
char SIWholeQuadMode::scanInstructions(MachineFunction &MF,
                                       std::vector<WorkItem> &Worklist) {
  char GlobalFlags = 0;
  bool WQMOutputs = MF.getFunction().hasFnAttribute("amdgpu-ps-wqm-outputs");
  SmallVector<MachineInstr *, 4> SetInactiveInstrs;
  SmallVector<MachineInstr *, 4> SoftWQMInstrs;
  bool HasImplicitDerivatives =
      MF.getFunction().getCallingConv() == CallingConv::AMDGPU_PS;

  // We need to visit the basic blocks in reverse post-order so that we visit
  // defs before uses, in particular so that we don't accidentally mark an
  // instruction as needing e.g. WQM before visiting it and realizing it needs
  // WQM disabled.
  ReversePostOrderTraversal<MachineFunction *> RPOT(&MF);
  for (MachineBasicBlock *MBB : RPOT) {
    BlockInfo &BBI = Blocks[MBB];

    for (MachineInstr &MI : *MBB) {
      InstrInfo &III = Instructions[&MI];
      unsigned Opcode = MI.getOpcode();
      char Flags = 0;

      if (TII->isWQM(Opcode)) {
        // If LOD is not supported WQM is not needed.
        if (!ST->hasExtendedImageInsts())
          continue;
        // Only generate implicit WQM if implicit derivatives are required.
        // This avoids inserting unintended WQM if a shader type without
        // implicit derivatives uses an image sampling instruction.
        if (!HasImplicitDerivatives)
          continue;
        // Sampling instructions don't need to produce results for all pixels
        // in a quad, they just require all inputs of a quad to have been
        // computed for derivatives.
        markInstructionUses(MI, StateWQM, Worklist);
        GlobalFlags |= StateWQM;
        continue;
      } else if (Opcode == AMDGPU::WQM) {
        // The WQM intrinsic requires its output to have all the helper lanes
        // correct, so we need it to be in WQM.
        Flags = StateWQM;
        LowerToCopyInstrs.push_back(&MI);
      } else if (Opcode == AMDGPU::SOFT_WQM) {
        LowerToCopyInstrs.push_back(&MI);
        SoftWQMInstrs.push_back(&MI);
        continue;
      } else if (Opcode == AMDGPU::STRICT_WWM) {
        // The STRICT_WWM intrinsic doesn't make the same guarantee, and plus
        // it needs to be executed in WQM or Exact so that its copy doesn't
        // clobber inactive lanes.
        markInstructionUses(MI, StateStrictWWM, Worklist);
        GlobalFlags |= StateStrictWWM;
        LowerToMovInstrs.push_back(&MI);
        continue;
      } else if (Opcode == AMDGPU::STRICT_WQM ||
                 TII->isDualSourceBlendEXP(MI)) {
        // STRICT_WQM is similar to STRICTWWM, but instead of enabling all
        // threads of the wave like STRICTWWM, STRICT_WQM enables all threads in
        // quads that have at least one active thread.
        markInstructionUses(MI, StateStrictWQM, Worklist);
        GlobalFlags |= StateStrictWQM;

        if (Opcode == AMDGPU::STRICT_WQM) {
          LowerToMovInstrs.push_back(&MI);
        } else {
          // Dual source blend export acts as implicit strict-wqm, its sources
          // need to be shuffled in strict wqm, but the export itself needs to
          // run in exact mode.
          BBI.Needs |= StateExact;
          if (!(BBI.InNeeds & StateExact)) {
            BBI.InNeeds |= StateExact;
            Worklist.push_back(MBB);
          }
          GlobalFlags |= StateExact;
          III.Disabled = StateWQM | StateStrict;
        }
        continue;
      } else if (Opcode == AMDGPU::LDS_PARAM_LOAD ||
                 Opcode == AMDGPU::DS_PARAM_LOAD ||
                 Opcode == AMDGPU::LDS_DIRECT_LOAD ||
                 Opcode == AMDGPU::DS_DIRECT_LOAD) {
        // Mark these STRICTWQM, but only for the instruction, not its operands.
        // This avoid unnecessarily marking M0 as requiring WQM.
        InstrInfo &II = Instructions[&MI];
        II.Needs |= StateStrictWQM;
        GlobalFlags |= StateStrictWQM;
        continue;
      } else if (Opcode == AMDGPU::V_SET_INACTIVE_B32 ||
                 Opcode == AMDGPU::V_SET_INACTIVE_B64) {
        III.Disabled = StateStrict;
        MachineOperand &Inactive = MI.getOperand(2);
        if (Inactive.isReg()) {
          if (Inactive.isUndef()) {
            LowerToCopyInstrs.push_back(&MI);
          } else {
            markOperand(MI, Inactive, StateStrictWWM, Worklist);
          }
        }
        SetInactiveInstrs.push_back(&MI);
        continue;
      } else if (TII->isDisableWQM(MI)) {
        BBI.Needs |= StateExact;
        if (!(BBI.InNeeds & StateExact)) {
          BBI.InNeeds |= StateExact;
          Worklist.push_back(MBB);
        }
        GlobalFlags |= StateExact;
        III.Disabled = StateWQM | StateStrict;
        continue;
      } else {
        if (Opcode == AMDGPU::SI_PS_LIVE || Opcode == AMDGPU::SI_LIVE_MASK) {
          LiveMaskQueries.push_back(&MI);
        } else if (Opcode == AMDGPU::SI_KILL_I1_TERMINATOR ||
                   Opcode == AMDGPU::SI_KILL_F32_COND_IMM_TERMINATOR ||
                   Opcode == AMDGPU::SI_DEMOTE_I1) {
          KillInstrs.push_back(&MI);
          BBI.NeedsLowering = true;
        } else if (WQMOutputs) {
          // The function is in machine SSA form, which means that physical
          // VGPRs correspond to shader inputs and outputs. Inputs are
          // only used, outputs are only defined.
          // FIXME: is this still valid?
          for (const MachineOperand &MO : MI.defs()) {
            if (!MO.isReg())
              continue;

            Register Reg = MO.getReg();

            if (!Reg.isVirtual() &&
                TRI->hasVectorRegisters(TRI->getPhysRegBaseClass(Reg))) {
              Flags = StateWQM;
              break;
            }
          }
        }

        if (!Flags)
          continue;
      }

      markInstruction(MI, Flags, Worklist);
      GlobalFlags |= Flags;
    }
  }

  // Mark sure that any SET_INACTIVE instructions are computed in WQM if WQM is
  // ever used anywhere in the function. This implements the corresponding
  // semantics of @llvm.amdgcn.set.inactive.
  // Similarly for SOFT_WQM instructions, implementing @llvm.amdgcn.softwqm.
  if (GlobalFlags & StateWQM) {
    for (MachineInstr *MI : SetInactiveInstrs)
      markInstruction(*MI, StateWQM, Worklist);
    for (MachineInstr *MI : SoftWQMInstrs)
      markInstruction(*MI, StateWQM, Worklist);
  }

  return GlobalFlags;
}

void SIWholeQuadMode::propagateInstruction(MachineInstr &MI,
                                           std::vector<WorkItem>& Worklist) {
  MachineBasicBlock *MBB = MI.getParent();
  InstrInfo II = Instructions[&MI]; // take a copy to prevent dangling references
  BlockInfo &BI = Blocks[MBB];

  // Control flow-type instructions and stores to temporary memory that are
  // followed by WQM computations must themselves be in WQM.
  if ((II.OutNeeds & StateWQM) && !(II.Disabled & StateWQM) &&
      (MI.isTerminator() || (TII->usesVM_CNT(MI) && MI.mayStore()))) {
    Instructions[&MI].Needs = StateWQM;
    II.Needs = StateWQM;
  }

  // Propagate to block level
  if (II.Needs & StateWQM) {
    BI.Needs |= StateWQM;
    if (!(BI.InNeeds & StateWQM)) {
      BI.InNeeds |= StateWQM;
      Worklist.push_back(MBB);
    }
  }

  // Propagate backwards within block
  if (MachineInstr *PrevMI = MI.getPrevNode()) {
    char InNeeds = (II.Needs & ~StateStrict) | II.OutNeeds;
    if (!PrevMI->isPHI()) {
      InstrInfo &PrevII = Instructions[PrevMI];
      if ((PrevII.OutNeeds | InNeeds) != PrevII.OutNeeds) {
        PrevII.OutNeeds |= InNeeds;
        Worklist.push_back(PrevMI);
      }
    }
  }

  // Propagate WQM flag to instruction inputs
  assert(!(II.Needs & StateExact));

  if (II.Needs != 0)
    markInstructionUses(MI, II.Needs, Worklist);

  // Ensure we process a block containing StrictWWM/StrictWQM, even if it does
  // not require any WQM transitions.
  if (II.Needs & StateStrictWWM)
    BI.Needs |= StateStrictWWM;
  if (II.Needs & StateStrictWQM)
    BI.Needs |= StateStrictWQM;
}

void SIWholeQuadMode::propagateBlock(MachineBasicBlock &MBB,
                                     std::vector<WorkItem>& Worklist) {
  BlockInfo BI = Blocks[&MBB]; // Make a copy to prevent dangling references.

  // Propagate through instructions
  if (!MBB.empty()) {
    MachineInstr *LastMI = &*MBB.rbegin();
    InstrInfo &LastII = Instructions[LastMI];
    if ((LastII.OutNeeds | BI.OutNeeds) != LastII.OutNeeds) {
      LastII.OutNeeds |= BI.OutNeeds;
      Worklist.push_back(LastMI);
    }
  }

  // Predecessor blocks must provide for our WQM/Exact needs.
  for (MachineBasicBlock *Pred : MBB.predecessors()) {
    BlockInfo &PredBI = Blocks[Pred];
    if ((PredBI.OutNeeds | BI.InNeeds) == PredBI.OutNeeds)
      continue;

    PredBI.OutNeeds |= BI.InNeeds;
    PredBI.InNeeds |= BI.InNeeds;
    Worklist.push_back(Pred);
  }

  // All successors must be prepared to accept the same set of WQM/Exact data.
  for (MachineBasicBlock *Succ : MBB.successors()) {
    BlockInfo &SuccBI = Blocks[Succ];
    if ((SuccBI.InNeeds | BI.OutNeeds) == SuccBI.InNeeds)
      continue;

    SuccBI.InNeeds |= BI.OutNeeds;
    Worklist.push_back(Succ);
  }
}

char SIWholeQuadMode::analyzeFunction(MachineFunction &MF) {
  std::vector<WorkItem> Worklist;
  char GlobalFlags = scanInstructions(MF, Worklist);

  while (!Worklist.empty()) {
    WorkItem WI = Worklist.back();
    Worklist.pop_back();

    if (WI.MI)
      propagateInstruction(*WI.MI, Worklist);
    else
      propagateBlock(*WI.MBB, Worklist);
  }

  return GlobalFlags;
}

MachineBasicBlock::iterator
SIWholeQuadMode::saveSCC(MachineBasicBlock &MBB,
                         MachineBasicBlock::iterator Before) {
  Register SaveReg = MRI->createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);

  MachineInstr *Save =
      BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::COPY), SaveReg)
          .addReg(AMDGPU::SCC);
  MachineInstr *Restore =
      BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::COPY), AMDGPU::SCC)
          .addReg(SaveReg);

  LIS->InsertMachineInstrInMaps(*Save);
  LIS->InsertMachineInstrInMaps(*Restore);
  LIS->createAndComputeVirtRegInterval(SaveReg);

  return Restore;
}

MachineBasicBlock *SIWholeQuadMode::splitBlock(MachineBasicBlock *BB,
                                               MachineInstr *TermMI) {
  LLVM_DEBUG(dbgs() << "Split block " << printMBBReference(*BB) << " @ "
                    << *TermMI << "\n");

  MachineBasicBlock *SplitBB =
      BB->splitAt(*TermMI, /*UpdateLiveIns*/ true, LIS);

  // Convert last instruction in block to a terminator.
  // Note: this only covers the expected patterns
  unsigned NewOpcode = 0;
  switch (TermMI->getOpcode()) {
  case AMDGPU::S_AND_B32:
    NewOpcode = AMDGPU::S_AND_B32_term;
    break;
  case AMDGPU::S_AND_B64:
    NewOpcode = AMDGPU::S_AND_B64_term;
    break;
  case AMDGPU::S_MOV_B32:
    NewOpcode = AMDGPU::S_MOV_B32_term;
    break;
  case AMDGPU::S_MOV_B64:
    NewOpcode = AMDGPU::S_MOV_B64_term;
    break;
  default:
    break;
  }
  if (NewOpcode)
    TermMI->setDesc(TII->get(NewOpcode));

  if (SplitBB != BB) {
    // Update dominator trees
    using DomTreeT = DomTreeBase<MachineBasicBlock>;
    SmallVector<DomTreeT::UpdateType, 16> DTUpdates;
    for (MachineBasicBlock *Succ : SplitBB->successors()) {
      DTUpdates.push_back({DomTreeT::Insert, SplitBB, Succ});
      DTUpdates.push_back({DomTreeT::Delete, BB, Succ});
    }
    DTUpdates.push_back({DomTreeT::Insert, BB, SplitBB});
    if (MDT)
      MDT->getBase().applyUpdates(DTUpdates);
    if (PDT)
      PDT->getBase().applyUpdates(DTUpdates);

    // Link blocks
    MachineInstr *MI =
        BuildMI(*BB, BB->end(), DebugLoc(), TII->get(AMDGPU::S_BRANCH))
            .addMBB(SplitBB);
    LIS->InsertMachineInstrInMaps(*MI);
  }

  return SplitBB;
}

MachineInstr *SIWholeQuadMode::lowerKillF32(MachineBasicBlock &MBB,
                                            MachineInstr &MI) {
  const DebugLoc &DL = MI.getDebugLoc();
  unsigned Opcode = 0;

  assert(MI.getOperand(0).isReg());

  // Comparison is for live lanes; however here we compute the inverse
  // (killed lanes).  This is because VCMP will always generate 0 bits
  // for inactive lanes so a mask of live lanes would not be correct
  // inside control flow.
  // Invert the comparison by swapping the operands and adjusting
  // the comparison codes.

  switch (MI.getOperand(2).getImm()) {
  case ISD::SETUEQ:
    Opcode = AMDGPU::V_CMP_LG_F32_e64;
    break;
  case ISD::SETUGT:
    Opcode = AMDGPU::V_CMP_GE_F32_e64;
    break;
  case ISD::SETUGE:
    Opcode = AMDGPU::V_CMP_GT_F32_e64;
    break;
  case ISD::SETULT:
    Opcode = AMDGPU::V_CMP_LE_F32_e64;
    break;
  case ISD::SETULE:
    Opcode = AMDGPU::V_CMP_LT_F32_e64;
    break;
  case ISD::SETUNE:
    Opcode = AMDGPU::V_CMP_EQ_F32_e64;
    break;
  case ISD::SETO:
    Opcode = AMDGPU::V_CMP_O_F32_e64;
    break;
  case ISD::SETUO:
    Opcode = AMDGPU::V_CMP_U_F32_e64;
    break;
  case ISD::SETOEQ:
  case ISD::SETEQ:
    Opcode = AMDGPU::V_CMP_NEQ_F32_e64;
    break;
  case ISD::SETOGT:
  case ISD::SETGT:
    Opcode = AMDGPU::V_CMP_NLT_F32_e64;
    break;
  case ISD::SETOGE:
  case ISD::SETGE:
    Opcode = AMDGPU::V_CMP_NLE_F32_e64;
    break;
  case ISD::SETOLT:
  case ISD::SETLT:
    Opcode = AMDGPU::V_CMP_NGT_F32_e64;
    break;
  case ISD::SETOLE:
  case ISD::SETLE:
    Opcode = AMDGPU::V_CMP_NGE_F32_e64;
    break;
  case ISD::SETONE:
  case ISD::SETNE:
    Opcode = AMDGPU::V_CMP_NLG_F32_e64;
    break;
  default:
    llvm_unreachable("invalid ISD:SET cond code");
  }

  // Pick opcode based on comparison type.
  MachineInstr *VcmpMI;
  const MachineOperand &Op0 = MI.getOperand(0);
  const MachineOperand &Op1 = MI.getOperand(1);

  // VCC represents lanes killed.
  Register VCC = ST->isWave32() ? AMDGPU::VCC_LO : AMDGPU::VCC;

  if (TRI->isVGPR(*MRI, Op0.getReg())) {
    Opcode = AMDGPU::getVOPe32(Opcode);
    VcmpMI = BuildMI(MBB, &MI, DL, TII->get(Opcode)).add(Op1).add(Op0);
  } else {
    VcmpMI = BuildMI(MBB, &MI, DL, TII->get(Opcode))
                 .addReg(VCC, RegState::Define)
                 .addImm(0) // src0 modifiers
                 .add(Op1)
                 .addImm(0) // src1 modifiers
                 .add(Op0)
                 .addImm(0); // omod
  }

  MachineInstr *MaskUpdateMI =
      BuildMI(MBB, MI, DL, TII->get(AndN2Opc), LiveMaskReg)
          .addReg(LiveMaskReg)
          .addReg(VCC);

  // State of SCC represents whether any lanes are live in mask,
  // if SCC is 0 then no lanes will be alive anymore.
  MachineInstr *EarlyTermMI =
      BuildMI(MBB, MI, DL, TII->get(AMDGPU::SI_EARLY_TERMINATE_SCC0));

  MachineInstr *ExecMaskMI =
      BuildMI(MBB, MI, DL, TII->get(AndN2Opc), Exec).addReg(Exec).addReg(VCC);

  assert(MBB.succ_size() == 1);
  MachineInstr *NewTerm = BuildMI(MBB, MI, DL, TII->get(AMDGPU::S_BRANCH))
                              .addMBB(*MBB.succ_begin());

  // Update live intervals
  LIS->ReplaceMachineInstrInMaps(MI, *VcmpMI);
  MBB.remove(&MI);

  LIS->InsertMachineInstrInMaps(*MaskUpdateMI);
  LIS->InsertMachineInstrInMaps(*ExecMaskMI);
  LIS->InsertMachineInstrInMaps(*EarlyTermMI);
  LIS->InsertMachineInstrInMaps(*NewTerm);

  return NewTerm;
}

MachineInstr *SIWholeQuadMode::lowerKillI1(MachineBasicBlock &MBB,
                                           MachineInstr &MI, bool IsWQM) {
  const DebugLoc &DL = MI.getDebugLoc();
  MachineInstr *MaskUpdateMI = nullptr;

  const bool IsDemote = IsWQM && (MI.getOpcode() == AMDGPU::SI_DEMOTE_I1);
  const MachineOperand &Op = MI.getOperand(0);
  int64_t KillVal = MI.getOperand(1).getImm();
  MachineInstr *ComputeKilledMaskMI = nullptr;
  Register CndReg = !Op.isImm() ? Op.getReg() : Register();
  Register TmpReg;

  // Is this a static or dynamic kill?
  if (Op.isImm()) {
    if (Op.getImm() == KillVal) {
      // Static: all active lanes are killed
      MaskUpdateMI = BuildMI(MBB, MI, DL, TII->get(AndN2Opc), LiveMaskReg)
                         .addReg(LiveMaskReg)
                         .addReg(Exec);
    } else {
      // Static: kill does nothing
      MachineInstr *NewTerm = nullptr;
      if (MI.getOpcode() == AMDGPU::SI_DEMOTE_I1) {
        LIS->RemoveMachineInstrFromMaps(MI);
      } else {
        assert(MBB.succ_size() == 1);
        NewTerm = BuildMI(MBB, MI, DL, TII->get(AMDGPU::S_BRANCH))
                      .addMBB(*MBB.succ_begin());
        LIS->ReplaceMachineInstrInMaps(MI, *NewTerm);
      }
      MBB.remove(&MI);
      return NewTerm;
    }
  } else {
    if (!KillVal) {
      // Op represents live lanes after kill,
      // so exec mask needs to be factored in.
      TmpReg = MRI->createVirtualRegister(TRI->getBoolRC());
      ComputeKilledMaskMI =
          BuildMI(MBB, MI, DL, TII->get(XorOpc), TmpReg).add(Op).addReg(Exec);
      MaskUpdateMI = BuildMI(MBB, MI, DL, TII->get(AndN2Opc), LiveMaskReg)
                         .addReg(LiveMaskReg)
                         .addReg(TmpReg);
    } else {
      // Op represents lanes to kill
      MaskUpdateMI = BuildMI(MBB, MI, DL, TII->get(AndN2Opc), LiveMaskReg)
                         .addReg(LiveMaskReg)
                         .add(Op);
    }
  }

  // State of SCC represents whether any lanes are live in mask,
  // if SCC is 0 then no lanes will be alive anymore.
  MachineInstr *EarlyTermMI =
      BuildMI(MBB, MI, DL, TII->get(AMDGPU::SI_EARLY_TERMINATE_SCC0));

  // In the case we got this far some lanes are still live,
  // update EXEC to deactivate lanes as appropriate.
  MachineInstr *NewTerm;
  MachineInstr *WQMMaskMI = nullptr;
  Register LiveMaskWQM;
  if (IsDemote) {
    // Demote - deactivate quads with only helper lanes
    LiveMaskWQM = MRI->createVirtualRegister(TRI->getBoolRC());
    WQMMaskMI =
        BuildMI(MBB, MI, DL, TII->get(WQMOpc), LiveMaskWQM).addReg(LiveMaskReg);
    NewTerm = BuildMI(MBB, MI, DL, TII->get(AndOpc), Exec)
                  .addReg(Exec)
                  .addReg(LiveMaskWQM);
  } else {
    // Kill - deactivate lanes no longer in live mask
    if (Op.isImm()) {
      unsigned MovOpc = ST->isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64;
      NewTerm = BuildMI(MBB, &MI, DL, TII->get(MovOpc), Exec).addImm(0);
    } else if (!IsWQM) {
      NewTerm = BuildMI(MBB, &MI, DL, TII->get(AndOpc), Exec)
                    .addReg(Exec)
                    .addReg(LiveMaskReg);
    } else {
      unsigned Opcode = KillVal ? AndN2Opc : AndOpc;
      NewTerm =
          BuildMI(MBB, &MI, DL, TII->get(Opcode), Exec).addReg(Exec).add(Op);
    }
  }

  // Update live intervals
  LIS->RemoveMachineInstrFromMaps(MI);
  MBB.remove(&MI);
  assert(EarlyTermMI);
  assert(MaskUpdateMI);
  assert(NewTerm);
  if (ComputeKilledMaskMI)
    LIS->InsertMachineInstrInMaps(*ComputeKilledMaskMI);
  LIS->InsertMachineInstrInMaps(*MaskUpdateMI);
  LIS->InsertMachineInstrInMaps(*EarlyTermMI);
  if (WQMMaskMI)
    LIS->InsertMachineInstrInMaps(*WQMMaskMI);
  LIS->InsertMachineInstrInMaps(*NewTerm);

  if (CndReg) {
    LIS->removeInterval(CndReg);
    LIS->createAndComputeVirtRegInterval(CndReg);
  }
  if (TmpReg)
    LIS->createAndComputeVirtRegInterval(TmpReg);
  if (LiveMaskWQM)
    LIS->createAndComputeVirtRegInterval(LiveMaskWQM);

  return NewTerm;
}

// Convert a strict mode transition to a pseudo transition.
// This still pre-allocates registers to prevent clobbering,
// but avoids any EXEC mask changes.
void SIWholeQuadMode::lowerPseudoStrictMode(MachineBasicBlock &MBB,
                                            MachineInstr *Entry,
                                            MachineInstr *Exit) {
  assert(Entry->getOpcode() == AMDGPU::ENTER_STRICT_WQM);
  assert(Exit->getOpcode() == AMDGPU::EXIT_STRICT_WQM);

  Register SaveOrig = Entry->getOperand(0).getReg();

  MachineInstr *NewEntry =
    BuildMI(MBB, Entry, DebugLoc(), TII->get(AMDGPU::ENTER_PSEUDO_WM));
  MachineInstr *NewExit =
    BuildMI(MBB, Exit, DebugLoc(), TII->get(AMDGPU::EXIT_PSEUDO_WM));

  LIS->ReplaceMachineInstrInMaps(*Exit, *NewExit);
  Exit->eraseFromParent();

  LIS->ReplaceMachineInstrInMaps(*Entry, *NewEntry);
  Entry->eraseFromParent();

  LIS->removeInterval(SaveOrig);
}

// Replace (or supplement) instructions accessing live mask.
// This can only happen once all the live mask registers have been created
// and the execute state (WQM/StrictWWM/Exact) of instructions is known.
void SIWholeQuadMode::lowerBlock(MachineBasicBlock &MBB) {
  auto BII = Blocks.find(&MBB);
  if (BII == Blocks.end())
    return;

  const BlockInfo &BI = BII->second;
  if (!BI.NeedsLowering)
    return;

  LLVM_DEBUG(dbgs() << "\nLowering block " << printMBBReference(MBB) << ":\n");

  SmallVector<MachineInstr *, 4> SplitPoints;
  char State = BI.InitialState;
  MachineInstr *StrictEntry = nullptr;

  for (MachineInstr &MI : llvm::make_early_inc_range(
           llvm::make_range(MBB.getFirstNonPHI(), MBB.end()))) {
    char PreviousState = State;

    if (StateTransition.count(&MI))
      State = StateTransition[&MI];

    MachineInstr *SplitPoint = nullptr;
    switch (MI.getOpcode()) {
    case AMDGPU::SI_DEMOTE_I1:
    case AMDGPU::SI_KILL_I1_TERMINATOR:
      SplitPoint = lowerKillI1(MBB, MI, State == StateWQM);
      break;
    case AMDGPU::SI_KILL_F32_COND_IMM_TERMINATOR:
      SplitPoint = lowerKillF32(MBB, MI);
      break;
    case AMDGPU::ENTER_STRICT_WQM:
      StrictEntry = PreviousState == StateWQM ? &MI : nullptr;
      break;
    case AMDGPU::EXIT_STRICT_WQM:
      if (State == StateWQM && StrictEntry) {
        // Transition WQM -> StrictWQM -> WQM detected.
        lowerPseudoStrictMode(MBB, StrictEntry, &MI);
      }
      StrictEntry = nullptr;
      break;
    case AMDGPU::ENTER_STRICT_WWM:
    case AMDGPU::EXIT_STRICT_WWM:
      StrictEntry = nullptr;
      break;
    default:
      break;
    }
    if (SplitPoint)
      SplitPoints.push_back(SplitPoint);
  }

  // Perform splitting after instruction scan to simplify iteration.
  if (!SplitPoints.empty()) {
    MachineBasicBlock *BB = &MBB;
    for (MachineInstr *MI : SplitPoints) {
      BB = splitBlock(BB, MI);
    }
  }
}

// Return an iterator in the (inclusive) range [First, Last] at which
// instructions can be safely inserted, keeping in mind that some of the
// instructions we want to add necessarily clobber SCC.
MachineBasicBlock::iterator SIWholeQuadMode::prepareInsertion(
    MachineBasicBlock &MBB, MachineBasicBlock::iterator First,
    MachineBasicBlock::iterator Last, bool PreferLast, bool SaveSCC) {
  if (!SaveSCC)
    return PreferLast ? Last : First;

  LiveRange &LR =
      LIS->getRegUnit(*TRI->regunits(MCRegister::from(AMDGPU::SCC)).begin());
  auto MBBE = MBB.end();
  SlotIndex FirstIdx = First != MBBE ? LIS->getInstructionIndex(*First)
                                     : LIS->getMBBEndIdx(&MBB);
  SlotIndex LastIdx =
      Last != MBBE ? LIS->getInstructionIndex(*Last) : LIS->getMBBEndIdx(&MBB);
  SlotIndex Idx = PreferLast ? LastIdx : FirstIdx;
  const LiveRange::Segment *S;

  for (;;) {
    S = LR.getSegmentContaining(Idx);
    if (!S)
      break;

    if (PreferLast) {
      SlotIndex Next = S->start.getBaseIndex();
      if (Next < FirstIdx)
        break;
      Idx = Next;
    } else {
      MachineInstr *EndMI = LIS->getInstructionFromIndex(S->end.getBaseIndex());
      assert(EndMI && "Segment does not end on valid instruction");
      auto NextI = std::next(EndMI->getIterator());
      if (NextI == MBB.end())
        break;
      SlotIndex Next = LIS->getInstructionIndex(*NextI);
      if (Next > LastIdx)
        break;
      Idx = Next;
    }
  }

  MachineBasicBlock::iterator MBBI;

  if (MachineInstr *MI = LIS->getInstructionFromIndex(Idx))
    MBBI = MI;
  else {
    assert(Idx == LIS->getMBBEndIdx(&MBB));
    MBBI = MBB.end();
  }

  // Move insertion point past any operations modifying EXEC.
  // This assumes that the value of SCC defined by any of these operations
  // does not need to be preserved.
  while (MBBI != Last) {
    bool IsExecDef = false;
    for (const MachineOperand &MO : MBBI->all_defs()) {
      IsExecDef |=
          MO.getReg() == AMDGPU::EXEC_LO || MO.getReg() == AMDGPU::EXEC;
    }
    if (!IsExecDef)
      break;
    MBBI++;
    S = nullptr;
  }

  if (S)
    MBBI = saveSCC(MBB, MBBI);

  return MBBI;
}

void SIWholeQuadMode::toExact(MachineBasicBlock &MBB,
                              MachineBasicBlock::iterator Before,
                              Register SaveWQM) {
  bool IsTerminator = Before == MBB.end();
  if (!IsTerminator) {
    auto FirstTerm = MBB.getFirstTerminator();
    if (FirstTerm != MBB.end()) {
      SlotIndex FirstTermIdx = LIS->getInstructionIndex(*FirstTerm);
      SlotIndex BeforeIdx = LIS->getInstructionIndex(*Before);
      IsTerminator = BeforeIdx > FirstTermIdx;
    }
  }

  MachineInstr *MI;

  if (SaveWQM) {
    unsigned Opcode = IsTerminator ? AndSaveExecTermOpc : AndSaveExecOpc;
    MI = BuildMI(MBB, Before, DebugLoc(), TII->get(Opcode), SaveWQM)
             .addReg(LiveMaskReg);
  } else {
    unsigned Opcode = IsTerminator ? AndTermOpc : AndOpc;
    MI = BuildMI(MBB, Before, DebugLoc(), TII->get(Opcode), Exec)
             .addReg(Exec)
             .addReg(LiveMaskReg);
  }

  LIS->InsertMachineInstrInMaps(*MI);
  StateTransition[MI] = StateExact;
}

void SIWholeQuadMode::toWQM(MachineBasicBlock &MBB,
                            MachineBasicBlock::iterator Before,
                            Register SavedWQM) {
  MachineInstr *MI;

  if (SavedWQM) {
    MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::COPY), Exec)
             .addReg(SavedWQM);
  } else {
    MI = BuildMI(MBB, Before, DebugLoc(), TII->get(WQMOpc), Exec).addReg(Exec);
  }

  LIS->InsertMachineInstrInMaps(*MI);
  StateTransition[MI] = StateWQM;
}

void SIWholeQuadMode::toStrictMode(MachineBasicBlock &MBB,
                                   MachineBasicBlock::iterator Before,
                                   Register SaveOrig, char StrictStateNeeded) {
  MachineInstr *MI;
  assert(SaveOrig);
  assert(StrictStateNeeded == StateStrictWWM ||
         StrictStateNeeded == StateStrictWQM);

  if (StrictStateNeeded == StateStrictWWM) {
    MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::ENTER_STRICT_WWM),
                 SaveOrig)
             .addImm(-1);
  } else {
    MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::ENTER_STRICT_WQM),
                 SaveOrig)
             .addImm(-1);
  }
  LIS->InsertMachineInstrInMaps(*MI);
  StateTransition[MI] = StrictStateNeeded;

  // Mark block as needing lower so it will be checked for unnecessary transitions.
  auto BII = Blocks.find(&MBB);
  if (BII != Blocks.end())
    BII->second.NeedsLowering = true;
}

void SIWholeQuadMode::fromStrictMode(MachineBasicBlock &MBB,
                                     MachineBasicBlock::iterator Before,
                                     Register SavedOrig, char NonStrictState,
                                     char CurrentStrictState) {
  MachineInstr *MI;

  assert(SavedOrig);
  assert(CurrentStrictState == StateStrictWWM ||
         CurrentStrictState == StateStrictWQM);

  if (CurrentStrictState == StateStrictWWM) {
    MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::EXIT_STRICT_WWM),
                 Exec)
             .addReg(SavedOrig);
  } else {
    MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::EXIT_STRICT_WQM),
                 Exec)
             .addReg(SavedOrig);
  }
  LIS->InsertMachineInstrInMaps(*MI);
  StateTransition[MI] = NonStrictState;
}

void SIWholeQuadMode::processBlock(MachineBasicBlock &MBB, bool IsEntry) {
  auto BII = Blocks.find(&MBB);
  if (BII == Blocks.end())
    return;

  BlockInfo &BI = BII->second;

  // This is a non-entry block that is WQM throughout, so no need to do
  // anything.
  if (!IsEntry && BI.Needs == StateWQM && BI.OutNeeds != StateExact) {
    BI.InitialState = StateWQM;
    return;
  }

  LLVM_DEBUG(dbgs() << "\nProcessing block " << printMBBReference(MBB)
                    << ":\n");

  Register SavedWQMReg;
  Register SavedNonStrictReg;
  bool WQMFromExec = IsEntry;
  char State = (IsEntry || !(BI.InNeeds & StateWQM)) ? StateExact : StateWQM;
  char NonStrictState = 0;
  const TargetRegisterClass *BoolRC = TRI->getBoolRC();

  auto II = MBB.getFirstNonPHI(), IE = MBB.end();
  if (IsEntry) {
    // Skip the instruction that saves LiveMask
    if (II != IE && II->getOpcode() == AMDGPU::COPY &&
        II->getOperand(1).getReg() == TRI->getExec())
      ++II;
  }

  // This stores the first instruction where it's safe to switch from WQM to
  // Exact or vice versa.
  MachineBasicBlock::iterator FirstWQM = IE;

  // This stores the first instruction where it's safe to switch from Strict
  // mode to Exact/WQM or to switch to Strict mode. It must always be the same
  // as, or after, FirstWQM since if it's safe to switch to/from Strict, it must
  // be safe to switch to/from WQM as well.
  MachineBasicBlock::iterator FirstStrict = IE;

  // Record initial state is block information.
  BI.InitialState = State;

  for (;;) {
    MachineBasicBlock::iterator Next = II;
    char Needs = StateExact | StateWQM; // Strict mode is disabled by default.
    char OutNeeds = 0;

    if (FirstWQM == IE)
      FirstWQM = II;

    if (FirstStrict == IE)
      FirstStrict = II;

    // First, figure out the allowed states (Needs) based on the propagated
    // flags.
    if (II != IE) {
      MachineInstr &MI = *II;

      if (MI.isTerminator() || TII->mayReadEXEC(*MRI, MI)) {
        auto III = Instructions.find(&MI);
        if (III != Instructions.end()) {
          if (III->second.Needs & StateStrictWWM)
            Needs = StateStrictWWM;
          else if (III->second.Needs & StateStrictWQM)
            Needs = StateStrictWQM;
          else if (III->second.Needs & StateWQM)
            Needs = StateWQM;
          else
            Needs &= ~III->second.Disabled;
          OutNeeds = III->second.OutNeeds;
        }
      } else {
        // If the instruction doesn't actually need a correct EXEC, then we can
        // safely leave Strict mode enabled.
        Needs = StateExact | StateWQM | StateStrict;
      }

      // Exact mode exit can occur in terminators, but must be before branches.
      if (MI.isBranch() && OutNeeds == StateExact)
        Needs = StateExact;

      ++Next;
    } else {
      // End of basic block
      if (BI.OutNeeds & StateWQM)
        Needs = StateWQM;
      else if (BI.OutNeeds == StateExact)
        Needs = StateExact;
      else
        Needs = StateWQM | StateExact;
    }

    // Now, transition if necessary.
    if (!(Needs & State)) {
      MachineBasicBlock::iterator First;
      if (State == StateStrictWWM || Needs == StateStrictWWM ||
          State == StateStrictWQM || Needs == StateStrictWQM) {
        // We must switch to or from Strict mode.
        First = FirstStrict;
      } else {
        // We only need to switch to/from WQM, so we can use FirstWQM.
        First = FirstWQM;
      }

      // Whether we need to save SCC depends on start and end states.
      bool SaveSCC = false;
      switch (State) {
      case StateExact:
      case StateStrictWWM:
      case StateStrictWQM:
        // Exact/Strict -> Strict: save SCC
        // Exact/Strict -> WQM: save SCC if WQM mask is generated from exec
        // Exact/Strict -> Exact: no save
        SaveSCC = (Needs & StateStrict) || ((Needs & StateWQM) && WQMFromExec);
        break;
      case StateWQM:
        // WQM -> Exact/Strict: save SCC
        SaveSCC = !(Needs & StateWQM);
        break;
      default:
        llvm_unreachable("Unknown state");
        break;
      }
      MachineBasicBlock::iterator Before =
          prepareInsertion(MBB, First, II, Needs == StateWQM, SaveSCC);

      if (State & StateStrict) {
        assert(State == StateStrictWWM || State == StateStrictWQM);
        assert(SavedNonStrictReg);
        fromStrictMode(MBB, Before, SavedNonStrictReg, NonStrictState, State);

        LIS->createAndComputeVirtRegInterval(SavedNonStrictReg);
        SavedNonStrictReg = 0;
        State = NonStrictState;
      }

      if (Needs & StateStrict) {
        NonStrictState = State;
        assert(Needs == StateStrictWWM || Needs == StateStrictWQM);
        assert(!SavedNonStrictReg);
        SavedNonStrictReg = MRI->createVirtualRegister(BoolRC);

        toStrictMode(MBB, Before, SavedNonStrictReg, Needs);
        State = Needs;

      } else {
        if (State == StateWQM && (Needs & StateExact) && !(Needs & StateWQM)) {
          if (!WQMFromExec && (OutNeeds & StateWQM)) {
            assert(!SavedWQMReg);
            SavedWQMReg = MRI->createVirtualRegister(BoolRC);
          }

          toExact(MBB, Before, SavedWQMReg);
          State = StateExact;
        } else if (State == StateExact && (Needs & StateWQM) &&
                   !(Needs & StateExact)) {
          assert(WQMFromExec == (SavedWQMReg == 0));

          toWQM(MBB, Before, SavedWQMReg);

          if (SavedWQMReg) {
            LIS->createAndComputeVirtRegInterval(SavedWQMReg);
            SavedWQMReg = 0;
          }
          State = StateWQM;
        } else {
          // We can get here if we transitioned from StrictWWM to a
          // non-StrictWWM state that already matches our needs, but we
          // shouldn't need to do anything.
          assert(Needs & State);
        }
      }
    }

    if (Needs != (StateExact | StateWQM | StateStrict)) {
      if (Needs != (StateExact | StateWQM))
        FirstWQM = IE;
      FirstStrict = IE;
    }

    if (II == IE)
      break;

    II = Next;
  }
  assert(!SavedWQMReg);
  assert(!SavedNonStrictReg);
}

void SIWholeQuadMode::lowerLiveMaskQueries() {
  for (MachineInstr *MI : LiveMaskQueries) {
    const DebugLoc &DL = MI->getDebugLoc();
    Register Dest = MI->getOperand(0).getReg();

    MachineInstr *Copy =
        BuildMI(*MI->getParent(), MI, DL, TII->get(AMDGPU::COPY), Dest)
            .addReg(LiveMaskReg);

    LIS->ReplaceMachineInstrInMaps(*MI, *Copy);
    MI->eraseFromParent();
  }
}

void SIWholeQuadMode::lowerCopyInstrs() {
  for (MachineInstr *MI : LowerToMovInstrs) {
    assert(MI->getNumExplicitOperands() == 2);

    const Register Reg = MI->getOperand(0).getReg();

    const TargetRegisterClass *regClass =
        TRI->getRegClassForOperandReg(*MRI, MI->getOperand(0));
    if (TRI->isVGPRClass(regClass)) {
      const unsigned MovOp = TII->getMovOpcode(regClass);
      MI->setDesc(TII->get(MovOp));

      // Check that it already implicitly depends on exec (like all VALU movs
      // should do).
      assert(any_of(MI->implicit_operands(), [](const MachineOperand &MO) {
        return MO.isUse() && MO.getReg() == AMDGPU::EXEC;
      }));
    } else {
      // Remove early-clobber and exec dependency from simple SGPR copies.
      // This allows some to be eliminated during/post RA.
      LLVM_DEBUG(dbgs() << "simplify SGPR copy: " << *MI);
      if (MI->getOperand(0).isEarlyClobber()) {
        LIS->removeInterval(Reg);
        MI->getOperand(0).setIsEarlyClobber(false);
        LIS->createAndComputeVirtRegInterval(Reg);
      }
      int Index = MI->findRegisterUseOperandIdx(AMDGPU::EXEC);
      while (Index >= 0) {
        MI->removeOperand(Index);
        Index = MI->findRegisterUseOperandIdx(AMDGPU::EXEC);
      }
      MI->setDesc(TII->get(AMDGPU::COPY));
      LLVM_DEBUG(dbgs() << "  -> " << *MI);
    }
  }
  for (MachineInstr *MI : LowerToCopyInstrs) {
    if (MI->getOpcode() == AMDGPU::V_SET_INACTIVE_B32 ||
        MI->getOpcode() == AMDGPU::V_SET_INACTIVE_B64) {
      assert(MI->getNumExplicitOperands() == 3);
      // the only reason we should be here is V_SET_INACTIVE has
      // an undef input so it is being replaced by a simple copy.
      // There should be a second undef source that we should remove.
      assert(MI->getOperand(2).isUndef());
      MI->removeOperand(2);
      MI->untieRegOperand(1);
    } else {
      assert(MI->getNumExplicitOperands() == 2);
    }

    unsigned CopyOp = MI->getOperand(1).isReg()
                          ? (unsigned)AMDGPU::COPY
                          : TII->getMovOpcode(TRI->getRegClassForOperandReg(
                                *MRI, MI->getOperand(0)));
    MI->setDesc(TII->get(CopyOp));
  }
}

void SIWholeQuadMode::lowerKillInstrs(bool IsWQM) {
  for (MachineInstr *MI : KillInstrs) {
    MachineBasicBlock *MBB = MI->getParent();
    MachineInstr *SplitPoint = nullptr;
    switch (MI->getOpcode()) {
    case AMDGPU::SI_DEMOTE_I1:
    case AMDGPU::SI_KILL_I1_TERMINATOR:
      SplitPoint = lowerKillI1(*MBB, *MI, IsWQM);
      break;
    case AMDGPU::SI_KILL_F32_COND_IMM_TERMINATOR:
      SplitPoint = lowerKillF32(*MBB, *MI);
      break;
    default:
      continue;
    }
    if (SplitPoint)
      splitBlock(MBB, SplitPoint);
  }
}

bool SIWholeQuadMode::runOnMachineFunction(MachineFunction &MF) {
  LLVM_DEBUG(dbgs() << "SI Whole Quad Mode on " << MF.getName()
                    << " ------------- \n");
  LLVM_DEBUG(MF.dump(););

  Instructions.clear();
  Blocks.clear();
  LiveMaskQueries.clear();
  LowerToCopyInstrs.clear();
  LowerToMovInstrs.clear();
  KillInstrs.clear();
  StateTransition.clear();

  ST = &MF.getSubtarget<GCNSubtarget>();

  TII = ST->getInstrInfo();
  TRI = &TII->getRegisterInfo();
  MRI = &MF.getRegInfo();
  LIS = &getAnalysis<LiveIntervals>();
  MDT = getAnalysisIfAvailable<MachineDominatorTree>();
  PDT = getAnalysisIfAvailable<MachinePostDominatorTree>();

  if (ST->isWave32()) {
    AndOpc = AMDGPU::S_AND_B32;
    AndTermOpc = AMDGPU::S_AND_B32_term;
    AndN2Opc = AMDGPU::S_ANDN2_B32;
    XorOpc = AMDGPU::S_XOR_B32;
    AndSaveExecOpc = AMDGPU::S_AND_SAVEEXEC_B32;
    AndSaveExecTermOpc = AMDGPU::S_AND_SAVEEXEC_B32_term;
    WQMOpc = AMDGPU::S_WQM_B32;
    Exec = AMDGPU::EXEC_LO;
  } else {
    AndOpc = AMDGPU::S_AND_B64;
    AndTermOpc = AMDGPU::S_AND_B64_term;
    AndN2Opc = AMDGPU::S_ANDN2_B64;
    XorOpc = AMDGPU::S_XOR_B64;
    AndSaveExecOpc = AMDGPU::S_AND_SAVEEXEC_B64;
    AndSaveExecTermOpc = AMDGPU::S_AND_SAVEEXEC_B64_term;
    WQMOpc = AMDGPU::S_WQM_B64;
    Exec = AMDGPU::EXEC;
  }

  const char GlobalFlags = analyzeFunction(MF);
  const bool NeedsLiveMask = !(KillInstrs.empty() && LiveMaskQueries.empty());

  LiveMaskReg = Exec;

  // Shader is simple does not need any state changes or any complex lowering
  if (!(GlobalFlags & (StateWQM | StateStrict)) && LowerToCopyInstrs.empty() &&
      LowerToMovInstrs.empty() && KillInstrs.empty()) {
    lowerLiveMaskQueries();
    return !LiveMaskQueries.empty();
  }

  MachineBasicBlock &Entry = MF.front();
  MachineBasicBlock::iterator EntryMI = Entry.getFirstNonPHI();

  // Store a copy of the original live mask when required
  if (NeedsLiveMask || (GlobalFlags & StateWQM)) {
    LiveMaskReg = MRI->createVirtualRegister(TRI->getBoolRC());
    MachineInstr *MI =
        BuildMI(Entry, EntryMI, DebugLoc(), TII->get(AMDGPU::COPY), LiveMaskReg)
            .addReg(Exec);
    LIS->InsertMachineInstrInMaps(*MI);
  }

  LLVM_DEBUG(printInfo());

  lowerLiveMaskQueries();
  lowerCopyInstrs();

  // Shader only needs WQM
  if (GlobalFlags == StateWQM) {
    auto MI = BuildMI(Entry, EntryMI, DebugLoc(), TII->get(WQMOpc), Exec)
                  .addReg(Exec);
    LIS->InsertMachineInstrInMaps(*MI);
    lowerKillInstrs(true);
  } else {
    for (auto BII : Blocks)
      processBlock(*BII.first, BII.first == &Entry);
    // Lowering blocks causes block splitting so perform as a second pass.
    for (auto BII : Blocks)
      lowerBlock(*BII.first);
  }

  // Compute live range for live mask
  if (LiveMaskReg != Exec)
    LIS->createAndComputeVirtRegInterval(LiveMaskReg);

  // Physical registers like SCC aren't tracked by default anyway, so just
  // removing the ranges we computed is the simplest option for maintaining
  // the analysis results.
  LIS->removeAllRegUnitsForPhysReg(AMDGPU::SCC);

  // If we performed any kills then recompute EXEC
  if (!KillInstrs.empty())
    LIS->removeAllRegUnitsForPhysReg(AMDGPU::EXEC);

  return true;
}