aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Target/RISCV/RISCVTargetMachine.cpp
blob: b4b81b545a54bbd4d5f3e441c287ea710a9c8366 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
//===-- RISCVTargetMachine.cpp - Define TargetMachine for RISC-V ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Implements the info about RISC-V target spec.
//
//===----------------------------------------------------------------------===//

#include "RISCVTargetMachine.h"
#include "MCTargetDesc/RISCVBaseInfo.h"
#include "RISCV.h"
#include "RISCVMachineFunctionInfo.h"
#include "RISCVMacroFusion.h"
#include "RISCVTargetObjectFile.h"
#include "RISCVTargetTransformInfo.h"
#include "TargetInfo/RISCVTargetInfo.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/CodeGen/GlobalISel/IRTranslator.h"
#include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
#include "llvm/CodeGen/GlobalISel/Legalizer.h"
#include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
#include "llvm/CodeGen/MIRParser/MIParser.h"
#include "llvm/CodeGen/MIRYamlMapping.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/RegAllocRegistry.h"
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/InitializePasses.h"
#include "llvm/MC/TargetRegistry.h"
#include "llvm/Support/FormattedStream.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Transforms/IPO.h"
#include "llvm/Transforms/Scalar.h"
#include <optional>
using namespace llvm;

static cl::opt<bool> EnableRedundantCopyElimination(
    "riscv-enable-copyelim",
    cl::desc("Enable the redundant copy elimination pass"), cl::init(true),
    cl::Hidden);

// FIXME: Unify control over GlobalMerge.
static cl::opt<cl::boolOrDefault>
    EnableGlobalMerge("riscv-enable-global-merge", cl::Hidden,
                      cl::desc("Enable the global merge pass"));

static cl::opt<bool>
    EnableMachineCombiner("riscv-enable-machine-combiner",
                          cl::desc("Enable the machine combiner pass"),
                          cl::init(true), cl::Hidden);

static cl::opt<unsigned> RVVVectorBitsMaxOpt(
    "riscv-v-vector-bits-max",
    cl::desc("Assume V extension vector registers are at most this big, "
             "with zero meaning no maximum size is assumed."),
    cl::init(0), cl::Hidden);

static cl::opt<int> RVVVectorBitsMinOpt(
    "riscv-v-vector-bits-min",
    cl::desc("Assume V extension vector registers are at least this big, "
             "with zero meaning no minimum size is assumed. A value of -1 "
             "means use Zvl*b extension. This is primarily used to enable "
             "autovectorization with fixed width vectors."),
    cl::init(-1), cl::Hidden);

static cl::opt<bool> EnableRISCVCopyPropagation(
    "riscv-enable-copy-propagation",
    cl::desc("Enable the copy propagation with RISC-V copy instr"),
    cl::init(true), cl::Hidden);

static cl::opt<bool> EnableRISCVDeadRegisterElimination(
    "riscv-enable-dead-defs", cl::Hidden,
    cl::desc("Enable the pass that removes dead"
             " definitons and replaces stores to"
             " them with stores to x0"),
    cl::init(true));

static cl::opt<bool>
    EnableSinkFold("riscv-enable-sink-fold",
                   cl::desc("Enable sinking and folding of instruction copies"),
                   cl::init(false), cl::Hidden);

static cl::opt<bool>
    EnableLoopDataPrefetch("riscv-enable-loop-data-prefetch", cl::Hidden,
                           cl::desc("Enable the loop data prefetch pass"),
                           cl::init(true));

static cl::opt<bool>
    EnableSplitRegAlloc("riscv-split-regalloc", cl::Hidden,
                        cl::desc("Enable Split RegisterAlloc for RVV"),
                        cl::init(true));

static cl::opt<bool> EnableMISchedLoadClustering(
    "riscv-misched-load-clustering", cl::Hidden,
    cl::desc("Enable load clustering in the machine scheduler"),
    cl::init(false));

extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeRISCVTarget() {
  RegisterTargetMachine<RISCVTargetMachine> X(getTheRISCV32Target());
  RegisterTargetMachine<RISCVTargetMachine> Y(getTheRISCV64Target());
  auto *PR = PassRegistry::getPassRegistry();
  initializeGlobalISel(*PR);
  initializeRISCVO0PreLegalizerCombinerPass(*PR);
  initializeRISCVPreLegalizerCombinerPass(*PR);
  initializeRISCVPostLegalizerCombinerPass(*PR);
  initializeKCFIPass(*PR);
  initializeRISCVDeadRegisterDefinitionsPass(*PR);
  initializeRISCVMakeCompressibleOptPass(*PR);
  initializeRISCVGatherScatterLoweringPass(*PR);
  initializeRISCVCodeGenPreparePass(*PR);
  initializeRISCVPostRAExpandPseudoPass(*PR);
  initializeRISCVMergeBaseOffsetOptPass(*PR);
  initializeRISCVOptWInstrsPass(*PR);
  initializeRISCVPreRAExpandPseudoPass(*PR);
  initializeRISCVExpandPseudoPass(*PR);
  initializeRISCVFoldMasksPass(*PR);
  initializeRISCVInsertVSETVLIPass(*PR);
  initializeRISCVInsertReadWriteCSRPass(*PR);
  initializeRISCVInsertWriteVXRMPass(*PR);
  initializeRISCVDAGToDAGISelPass(*PR);
  initializeRISCVInitUndefPass(*PR);
  initializeRISCVMoveMergePass(*PR);
  initializeRISCVPushPopOptPass(*PR);
}

static StringRef computeDataLayout(const Triple &TT,
                                   const TargetOptions &Options) {
  StringRef ABIName = Options.MCOptions.getABIName();
  if (TT.isArch64Bit()) {
    if (ABIName == "lp64e")
      return "e-m:e-p:64:64-i64:64-i128:128-n32:64-S64";

    return "e-m:e-p:64:64-i64:64-i128:128-n32:64-S128";
  }
  assert(TT.isArch32Bit() && "only RV32 and RV64 are currently supported");

  if (ABIName == "ilp32e")
    return "e-m:e-p:32:32-i64:64-n32-S32";

  return "e-m:e-p:32:32-i64:64-n32-S128";
}

static Reloc::Model getEffectiveRelocModel(const Triple &TT,
                                           std::optional<Reloc::Model> RM) {
  return RM.value_or(Reloc::Static);
}

RISCVTargetMachine::RISCVTargetMachine(const Target &T, const Triple &TT,
                                       StringRef CPU, StringRef FS,
                                       const TargetOptions &Options,
                                       std::optional<Reloc::Model> RM,
                                       std::optional<CodeModel::Model> CM,
                                       CodeGenOptLevel OL, bool JIT)
    : LLVMTargetMachine(T, computeDataLayout(TT, Options), TT, CPU, FS, Options,
                        getEffectiveRelocModel(TT, RM),
                        getEffectiveCodeModel(CM, CodeModel::Small), OL),
      TLOF(std::make_unique<RISCVELFTargetObjectFile>()) {
  initAsmInfo();

  // RISC-V supports the MachineOutliner.
  setMachineOutliner(true);
  setSupportsDefaultOutlining(true);

  if (TT.isOSFuchsia() && !TT.isArch64Bit())
    report_fatal_error("Fuchsia is only supported for 64-bit");
}

const RISCVSubtarget *
RISCVTargetMachine::getSubtargetImpl(const Function &F) const {
  Attribute CPUAttr = F.getFnAttribute("target-cpu");
  Attribute TuneAttr = F.getFnAttribute("tune-cpu");
  Attribute FSAttr = F.getFnAttribute("target-features");

  std::string CPU =
      CPUAttr.isValid() ? CPUAttr.getValueAsString().str() : TargetCPU;
  std::string TuneCPU =
      TuneAttr.isValid() ? TuneAttr.getValueAsString().str() : CPU;
  std::string FS =
      FSAttr.isValid() ? FSAttr.getValueAsString().str() : TargetFS;

  unsigned RVVBitsMin = RVVVectorBitsMinOpt;
  unsigned RVVBitsMax = RVVVectorBitsMaxOpt;

  Attribute VScaleRangeAttr = F.getFnAttribute(Attribute::VScaleRange);
  if (VScaleRangeAttr.isValid()) {
    if (!RVVVectorBitsMinOpt.getNumOccurrences())
      RVVBitsMin = VScaleRangeAttr.getVScaleRangeMin() * RISCV::RVVBitsPerBlock;
    std::optional<unsigned> VScaleMax = VScaleRangeAttr.getVScaleRangeMax();
    if (VScaleMax.has_value() && !RVVVectorBitsMaxOpt.getNumOccurrences())
      RVVBitsMax = *VScaleMax * RISCV::RVVBitsPerBlock;
  }

  if (RVVBitsMin != -1U) {
    // FIXME: Change to >= 32 when VLEN = 32 is supported.
    assert((RVVBitsMin == 0 || (RVVBitsMin >= 64 && RVVBitsMin <= 65536 &&
                                isPowerOf2_32(RVVBitsMin))) &&
           "V or Zve* extension requires vector length to be in the range of "
           "64 to 65536 and a power 2!");
    assert((RVVBitsMax >= RVVBitsMin || RVVBitsMax == 0) &&
           "Minimum V extension vector length should not be larger than its "
           "maximum!");
  }
  assert((RVVBitsMax == 0 || (RVVBitsMax >= 64 && RVVBitsMax <= 65536 &&
                              isPowerOf2_32(RVVBitsMax))) &&
         "V or Zve* extension requires vector length to be in the range of "
         "64 to 65536 and a power 2!");

  if (RVVBitsMin != -1U) {
    if (RVVBitsMax != 0) {
      RVVBitsMin = std::min(RVVBitsMin, RVVBitsMax);
      RVVBitsMax = std::max(RVVBitsMin, RVVBitsMax);
    }

    RVVBitsMin = llvm::bit_floor(
        (RVVBitsMin < 64 || RVVBitsMin > 65536) ? 0 : RVVBitsMin);
  }
  RVVBitsMax =
      llvm::bit_floor((RVVBitsMax < 64 || RVVBitsMax > 65536) ? 0 : RVVBitsMax);

  SmallString<512> Key;
  raw_svector_ostream(Key) << "RVVMin" << RVVBitsMin << "RVVMax" << RVVBitsMax
                           << CPU << TuneCPU << FS;
  auto &I = SubtargetMap[Key];
  if (!I) {
    // This needs to be done before we create a new subtarget since any
    // creation will depend on the TM and the code generation flags on the
    // function that reside in TargetOptions.
    resetTargetOptions(F);
    auto ABIName = Options.MCOptions.getABIName();
    if (const MDString *ModuleTargetABI = dyn_cast_or_null<MDString>(
            F.getParent()->getModuleFlag("target-abi"))) {
      auto TargetABI = RISCVABI::getTargetABI(ABIName);
      if (TargetABI != RISCVABI::ABI_Unknown &&
          ModuleTargetABI->getString() != ABIName) {
        report_fatal_error("-target-abi option != target-abi module flag");
      }
      ABIName = ModuleTargetABI->getString();
    }
    I = std::make_unique<RISCVSubtarget>(
        TargetTriple, CPU, TuneCPU, FS, ABIName, RVVBitsMin, RVVBitsMax, *this);
  }
  return I.get();
}

MachineFunctionInfo *RISCVTargetMachine::createMachineFunctionInfo(
    BumpPtrAllocator &Allocator, const Function &F,
    const TargetSubtargetInfo *STI) const {
  return RISCVMachineFunctionInfo::create<RISCVMachineFunctionInfo>(Allocator,
                                                                    F, STI);
}

TargetTransformInfo
RISCVTargetMachine::getTargetTransformInfo(const Function &F) const {
  return TargetTransformInfo(RISCVTTIImpl(this, F));
}

// A RISC-V hart has a single byte-addressable address space of 2^XLEN bytes
// for all memory accesses, so it is reasonable to assume that an
// implementation has no-op address space casts. If an implementation makes a
// change to this, they can override it here.
bool RISCVTargetMachine::isNoopAddrSpaceCast(unsigned SrcAS,
                                             unsigned DstAS) const {
  return true;
}

namespace {

class RVVRegisterRegAlloc : public RegisterRegAllocBase<RVVRegisterRegAlloc> {
public:
  RVVRegisterRegAlloc(const char *N, const char *D, FunctionPassCtor C)
      : RegisterRegAllocBase(N, D, C) {}
};

static bool onlyAllocateRVVReg(const TargetRegisterInfo &TRI,
                               const TargetRegisterClass &RC) {
  return RISCV::VRRegClass.hasSubClassEq(&RC) ||
         RISCV::VRM2RegClass.hasSubClassEq(&RC) ||
         RISCV::VRM4RegClass.hasSubClassEq(&RC) ||
         RISCV::VRM8RegClass.hasSubClassEq(&RC) ||
         RISCV::VRN2M1RegClass.hasSubClassEq(&RC) ||
         RISCV::VRN2M2RegClass.hasSubClassEq(&RC) ||
         RISCV::VRN2M4RegClass.hasSubClassEq(&RC) ||
         RISCV::VRN3M1RegClass.hasSubClassEq(&RC) ||
         RISCV::VRN3M2RegClass.hasSubClassEq(&RC) ||
         RISCV::VRN4M1RegClass.hasSubClassEq(&RC) ||
         RISCV::VRN4M2RegClass.hasSubClassEq(&RC) ||
         RISCV::VRN5M1RegClass.hasSubClassEq(&RC) ||
         RISCV::VRN6M1RegClass.hasSubClassEq(&RC) ||
         RISCV::VRN7M1RegClass.hasSubClassEq(&RC) ||
         RISCV::VRN8M1RegClass.hasSubClassEq(&RC);
}

static FunctionPass *useDefaultRegisterAllocator() { return nullptr; }

static llvm::once_flag InitializeDefaultRVVRegisterAllocatorFlag;

/// -riscv-rvv-regalloc=<fast|basic|greedy> command line option.
/// This option could designate the rvv register allocator only.
/// For example: -riscv-rvv-regalloc=basic
static cl::opt<RVVRegisterRegAlloc::FunctionPassCtor, false,
               RegisterPassParser<RVVRegisterRegAlloc>>
    RVVRegAlloc("riscv-rvv-regalloc", cl::Hidden,
                cl::init(&useDefaultRegisterAllocator),
                cl::desc("Register allocator to use for RVV register."));

static void initializeDefaultRVVRegisterAllocatorOnce() {
  RegisterRegAlloc::FunctionPassCtor Ctor = RVVRegisterRegAlloc::getDefault();

  if (!Ctor) {
    Ctor = RVVRegAlloc;
    RVVRegisterRegAlloc::setDefault(RVVRegAlloc);
  }
}

static FunctionPass *createBasicRVVRegisterAllocator() {
  return createBasicRegisterAllocator(onlyAllocateRVVReg);
}

static FunctionPass *createGreedyRVVRegisterAllocator() {
  return createGreedyRegisterAllocator(onlyAllocateRVVReg);
}

static FunctionPass *createFastRVVRegisterAllocator() {
  return createFastRegisterAllocator(onlyAllocateRVVReg, false);
}

static RVVRegisterRegAlloc basicRegAllocRVVReg("basic",
                                               "basic register allocator",
                                               createBasicRVVRegisterAllocator);
static RVVRegisterRegAlloc
    greedyRegAllocRVVReg("greedy", "greedy register allocator",
                         createGreedyRVVRegisterAllocator);

static RVVRegisterRegAlloc fastRegAllocRVVReg("fast", "fast register allocator",
                                              createFastRVVRegisterAllocator);

class RISCVPassConfig : public TargetPassConfig {
public:
  RISCVPassConfig(RISCVTargetMachine &TM, PassManagerBase &PM)
      : TargetPassConfig(TM, PM) {
    if (TM.getOptLevel() != CodeGenOptLevel::None)
      substitutePass(&PostRASchedulerID, &PostMachineSchedulerID);
    setEnableSinkAndFold(EnableSinkFold);
  }

  RISCVTargetMachine &getRISCVTargetMachine() const {
    return getTM<RISCVTargetMachine>();
  }

  ScheduleDAGInstrs *
  createMachineScheduler(MachineSchedContext *C) const override {
    const RISCVSubtarget &ST = C->MF->getSubtarget<RISCVSubtarget>();
    ScheduleDAGMILive *DAG = nullptr;
    if (EnableMISchedLoadClustering) {
      DAG = createGenericSchedLive(C);
      DAG->addMutation(createLoadClusterDAGMutation(
          DAG->TII, DAG->TRI, /*ReorderWhileClustering=*/true));
    }
    if (ST.hasMacroFusion()) {
      DAG = DAG ? DAG : createGenericSchedLive(C);
      DAG->addMutation(createRISCVMacroFusionDAGMutation());
    }
    return DAG;
  }

  ScheduleDAGInstrs *
  createPostMachineScheduler(MachineSchedContext *C) const override {
    const RISCVSubtarget &ST = C->MF->getSubtarget<RISCVSubtarget>();
    if (ST.hasMacroFusion()) {
      ScheduleDAGMI *DAG = createGenericSchedPostRA(C);
      DAG->addMutation(createRISCVMacroFusionDAGMutation());
      return DAG;
    }
    return nullptr;
  }

  void addIRPasses() override;
  bool addPreISel() override;
  bool addInstSelector() override;
  bool addIRTranslator() override;
  void addPreLegalizeMachineIR() override;
  bool addLegalizeMachineIR() override;
  void addPreRegBankSelect() override;
  bool addRegBankSelect() override;
  bool addGlobalInstructionSelect() override;
  void addPreEmitPass() override;
  void addPreEmitPass2() override;
  void addPreSched2() override;
  void addMachineSSAOptimization() override;
  FunctionPass *createRVVRegAllocPass(bool Optimized);
  bool addRegAssignAndRewriteFast() override;
  bool addRegAssignAndRewriteOptimized() override;
  void addPreRegAlloc() override;
  void addPostRegAlloc() override;
  void addOptimizedRegAlloc() override;
  void addFastRegAlloc() override;
};
} // namespace

TargetPassConfig *RISCVTargetMachine::createPassConfig(PassManagerBase &PM) {
  return new RISCVPassConfig(*this, PM);
}

FunctionPass *RISCVPassConfig::createRVVRegAllocPass(bool Optimized) {
  // Initialize the global default.
  llvm::call_once(InitializeDefaultRVVRegisterAllocatorFlag,
                  initializeDefaultRVVRegisterAllocatorOnce);

  RegisterRegAlloc::FunctionPassCtor Ctor = RVVRegisterRegAlloc::getDefault();
  if (Ctor != useDefaultRegisterAllocator)
    return Ctor();

  if (Optimized)
    return createGreedyRVVRegisterAllocator();

  return createFastRVVRegisterAllocator();
}

bool RISCVPassConfig::addRegAssignAndRewriteFast() {
  if (EnableSplitRegAlloc)
    addPass(createRVVRegAllocPass(false));
  return TargetPassConfig::addRegAssignAndRewriteFast();
}

bool RISCVPassConfig::addRegAssignAndRewriteOptimized() {
  if (EnableSplitRegAlloc) {
    addPass(createRVVRegAllocPass(true));
    addPass(createVirtRegRewriter(false));
  }
  return TargetPassConfig::addRegAssignAndRewriteOptimized();
}

void RISCVPassConfig::addIRPasses() {
  addPass(createAtomicExpandPass());

  if (getOptLevel() != CodeGenOptLevel::None) {
    if (EnableLoopDataPrefetch)
      addPass(createLoopDataPrefetchPass());

    addPass(createRISCVGatherScatterLoweringPass());
    addPass(createInterleavedAccessPass());
    addPass(createRISCVCodeGenPreparePass());
  }

  TargetPassConfig::addIRPasses();
}

bool RISCVPassConfig::addPreISel() {
  if (TM->getOptLevel() != CodeGenOptLevel::None) {
    // Add a barrier before instruction selection so that we will not get
    // deleted block address after enabling default outlining. See D99707 for
    // more details.
    addPass(createBarrierNoopPass());
  }

  if (EnableGlobalMerge == cl::BOU_TRUE) {
    addPass(createGlobalMergePass(TM, /* MaxOffset */ 2047,
                                  /* OnlyOptimizeForSize */ false,
                                  /* MergeExternalByDefault */ true));
  }

  return false;
}

bool RISCVPassConfig::addInstSelector() {
  addPass(createRISCVISelDag(getRISCVTargetMachine(), getOptLevel()));

  return false;
}

bool RISCVPassConfig::addIRTranslator() {
  addPass(new IRTranslator(getOptLevel()));
  return false;
}

void RISCVPassConfig::addPreLegalizeMachineIR() {
  if (getOptLevel() == CodeGenOptLevel::None) {
    addPass(createRISCVO0PreLegalizerCombiner());
  } else {
    addPass(createRISCVPreLegalizerCombiner());
  }
}

bool RISCVPassConfig::addLegalizeMachineIR() {
  addPass(new Legalizer());
  return false;
}

void RISCVPassConfig::addPreRegBankSelect() {
  if (getOptLevel() != CodeGenOptLevel::None)
    addPass(createRISCVPostLegalizerCombiner());
}

bool RISCVPassConfig::addRegBankSelect() {
  addPass(new RegBankSelect());
  return false;
}

bool RISCVPassConfig::addGlobalInstructionSelect() {
  addPass(new InstructionSelect(getOptLevel()));
  return false;
}

void RISCVPassConfig::addPreSched2() {
  addPass(createRISCVPostRAExpandPseudoPass());

  // Emit KCFI checks for indirect calls.
  addPass(createKCFIPass());
}

void RISCVPassConfig::addPreEmitPass() {
  addPass(&BranchRelaxationPassID);
  addPass(createRISCVMakeCompressibleOptPass());

  // TODO: It would potentially be better to schedule copy propagation after
  // expanding pseudos (in addPreEmitPass2). However, performing copy
  // propagation after the machine outliner (which runs after addPreEmitPass)
  // currently leads to incorrect code-gen, where copies to registers within
  // outlined functions are removed erroneously.
  if (TM->getOptLevel() >= CodeGenOptLevel::Default &&
      EnableRISCVCopyPropagation)
    addPass(createMachineCopyPropagationPass(true));
}

void RISCVPassConfig::addPreEmitPass2() {
  if (TM->getOptLevel() != CodeGenOptLevel::None) {
    addPass(createRISCVMoveMergePass());
    // Schedule PushPop Optimization before expansion of Pseudo instruction,
    // ensuring return instruction is detected correctly.
    addPass(createRISCVPushPopOptimizationPass());
  }
  addPass(createRISCVExpandPseudoPass());

  // Schedule the expansion of AMOs at the last possible moment, avoiding the
  // possibility for other passes to break the requirements for forward
  // progress in the LR/SC block.
  addPass(createRISCVExpandAtomicPseudoPass());

  // KCFI indirect call checks are lowered to a bundle.
  addPass(createUnpackMachineBundles([&](const MachineFunction &MF) {
    return MF.getFunction().getParent()->getModuleFlag("kcfi");
  }));
}

void RISCVPassConfig::addMachineSSAOptimization() {
  addPass(createRISCVFoldMasksPass());

  TargetPassConfig::addMachineSSAOptimization();

  if (EnableMachineCombiner)
    addPass(&MachineCombinerID);

  if (TM->getTargetTriple().isRISCV64()) {
    addPass(createRISCVOptWInstrsPass());
  }
}

void RISCVPassConfig::addPreRegAlloc() {
  addPass(createRISCVPreRAExpandPseudoPass());
  if (TM->getOptLevel() != CodeGenOptLevel::None)
    addPass(createRISCVMergeBaseOffsetOptPass());
  addPass(createRISCVInsertVSETVLIPass());
  if (TM->getOptLevel() != CodeGenOptLevel::None &&
      EnableRISCVDeadRegisterElimination)
    addPass(createRISCVDeadRegisterDefinitionsPass());
  addPass(createRISCVInsertReadWriteCSRPass());
  addPass(createRISCVInsertWriteVXRMPass());
}

void RISCVPassConfig::addOptimizedRegAlloc() {
  insertPass(&DetectDeadLanesID, &RISCVInitUndefID);

  TargetPassConfig::addOptimizedRegAlloc();
}

void RISCVPassConfig::addFastRegAlloc() {
  addPass(createRISCVInitUndefPass());
  TargetPassConfig::addFastRegAlloc();
}


void RISCVPassConfig::addPostRegAlloc() {
  if (TM->getOptLevel() != CodeGenOptLevel::None &&
      EnableRedundantCopyElimination)
    addPass(createRISCVRedundantCopyEliminationPass());
}

yaml::MachineFunctionInfo *
RISCVTargetMachine::createDefaultFuncInfoYAML() const {
  return new yaml::RISCVMachineFunctionInfo();
}

yaml::MachineFunctionInfo *
RISCVTargetMachine::convertFuncInfoToYAML(const MachineFunction &MF) const {
  const auto *MFI = MF.getInfo<RISCVMachineFunctionInfo>();
  return new yaml::RISCVMachineFunctionInfo(*MFI);
}

bool RISCVTargetMachine::parseMachineFunctionInfo(
    const yaml::MachineFunctionInfo &MFI, PerFunctionMIParsingState &PFS,
    SMDiagnostic &Error, SMRange &SourceRange) const {
  const auto &YamlMFI =
      static_cast<const yaml::RISCVMachineFunctionInfo &>(MFI);
  PFS.MF.getInfo<RISCVMachineFunctionInfo>()->initializeBaseYamlFields(YamlMFI);
  return false;
}