aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Transforms/Vectorize/LoadStoreVectorizer.cpp
blob: fa2459d1ca02879af30315654d58499b80ccb170 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
//===- LoadStoreVectorizer.cpp - GPU Load & Store Vectorizer --------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass merges loads/stores to/from sequential memory addresses into vector
// loads/stores.  Although there's nothing GPU-specific in here, this pass is
// motivated by the microarchitectural quirks of nVidia and AMD GPUs.
//
// (For simplicity below we talk about loads only, but everything also applies
// to stores.)
//
// This pass is intended to be run late in the pipeline, after other
// vectorization opportunities have been exploited.  So the assumption here is
// that immediately following our new vector load we'll need to extract out the
// individual elements of the load, so we can operate on them individually.
//
// On CPUs this transformation is usually not beneficial, because extracting the
// elements of a vector register is expensive on most architectures.  It's
// usually better just to load each element individually into its own scalar
// register.
//
// However, nVidia and AMD GPUs don't have proper vector registers.  Instead, a
// "vector load" loads directly into a series of scalar registers.  In effect,
// extracting the elements of the vector is free.  It's therefore always
// beneficial to vectorize a sequence of loads on these architectures.
//
// Vectorizing (perhaps a better name might be "coalescing") loads can have
// large performance impacts on GPU kernels, and opportunities for vectorizing
// are common in GPU code.  This pass tries very hard to find such
// opportunities; its runtime is quadratic in the number of loads in a BB.
//
// Some CPU architectures, such as ARM, have instructions that load into
// multiple scalar registers, similar to a GPU vectorized load.  In theory ARM
// could use this pass (with some modifications), but currently it implements
// its own pass to do something similar to what we do here.
//
// Overview of the algorithm and terminology in this pass:
//
//  - Break up each basic block into pseudo-BBs, composed of instructions which
//    are guaranteed to transfer control to their successors.
//  - Within a single pseudo-BB, find all loads, and group them into
//    "equivalence classes" according to getUnderlyingObject() and loaded
//    element size.  Do the same for stores.
//  - For each equivalence class, greedily build "chains".  Each chain has a
//    leader instruction, and every other member of the chain has a known
//    constant offset from the first instr in the chain.
//  - Break up chains so that they contain only contiguous accesses of legal
//    size with no intervening may-alias instrs.
//  - Convert each chain to vector instructions.
//
// The O(n^2) behavior of this pass comes from initially building the chains.
// In the worst case we have to compare each new instruction to all of those
// that came before. To limit this, we only calculate the offset to the leaders
// of the N most recently-used chains.

#include "llvm/Transforms/Vectorize/LoadStoreVectorizer.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Sequence.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/MemoryLocation.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Alignment.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/ModRef.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/Local.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <cstdlib>
#include <iterator>
#include <numeric>
#include <optional>
#include <tuple>
#include <type_traits>
#include <utility>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "load-store-vectorizer"

STATISTIC(NumVectorInstructions, "Number of vector accesses generated");
STATISTIC(NumScalarsVectorized, "Number of scalar accesses vectorized");

namespace {

// Equivalence class key, the initial tuple by which we group loads/stores.
// Loads/stores with different EqClassKeys are never merged.
//
// (We could in theory remove element-size from the this tuple.  We'd just need
// to fix up the vector packing/unpacking code.)
using EqClassKey =
    std::tuple<const Value * /* result of getUnderlyingObject() */,
               unsigned /* AddrSpace */,
               unsigned /* Load/Store element size bits */,
               char /* IsLoad; char b/c bool can't be a DenseMap key */
               >;
[[maybe_unused]] llvm::raw_ostream &operator<<(llvm::raw_ostream &OS,
                                               const EqClassKey &K) {
  const auto &[UnderlyingObject, AddrSpace, ElementSize, IsLoad] = K;
  return OS << (IsLoad ? "load" : "store") << " of " << *UnderlyingObject
            << " of element size " << ElementSize << " bits in addrspace "
            << AddrSpace;
}

// A Chain is a set of instructions such that:
//  - All instructions have the same equivalence class, so in particular all are
//    loads, or all are stores.
//  - We know the address accessed by the i'th chain elem relative to the
//    chain's leader instruction, which is the first instr of the chain in BB
//    order.
//
// Chains have two canonical orderings:
//  - BB order, sorted by Instr->comesBefore.
//  - Offset order, sorted by OffsetFromLeader.
// This pass switches back and forth between these orders.
struct ChainElem {
  Instruction *Inst;
  APInt OffsetFromLeader;
};
using Chain = SmallVector<ChainElem, 1>;

void sortChainInBBOrder(Chain &C) {
  sort(C, [](auto &A, auto &B) { return A.Inst->comesBefore(B.Inst); });
}

void sortChainInOffsetOrder(Chain &C) {
  sort(C, [](const auto &A, const auto &B) {
    if (A.OffsetFromLeader != B.OffsetFromLeader)
      return A.OffsetFromLeader.slt(B.OffsetFromLeader);
    return A.Inst->comesBefore(B.Inst); // stable tiebreaker
  });
}

[[maybe_unused]] void dumpChain(ArrayRef<ChainElem> C) {
  for (const auto &E : C) {
    dbgs() << "  " << *E.Inst << " (offset " << E.OffsetFromLeader << ")\n";
  }
}

using EquivalenceClassMap =
    MapVector<EqClassKey, SmallVector<Instruction *, 8>>;

// FIXME: Assuming stack alignment of 4 is always good enough
constexpr unsigned StackAdjustedAlignment = 4;

Instruction *propagateMetadata(Instruction *I, const Chain &C) {
  SmallVector<Value *, 8> Values;
  for (const ChainElem &E : C)
    Values.push_back(E.Inst);
  return propagateMetadata(I, Values);
}

bool isInvariantLoad(const Instruction *I) {
  const LoadInst *LI = dyn_cast<LoadInst>(I);
  return LI != nullptr && LI->hasMetadata(LLVMContext::MD_invariant_load);
}

/// Reorders the instructions that I depends on (the instructions defining its
/// operands), to ensure they dominate I.
void reorder(Instruction *I) {
  SmallPtrSet<Instruction *, 16> InstructionsToMove;
  SmallVector<Instruction *, 16> Worklist;

  Worklist.push_back(I);
  while (!Worklist.empty()) {
    Instruction *IW = Worklist.pop_back_val();
    int NumOperands = IW->getNumOperands();
    for (int i = 0; i < NumOperands; i++) {
      Instruction *IM = dyn_cast<Instruction>(IW->getOperand(i));
      if (!IM || IM->getOpcode() == Instruction::PHI)
        continue;

      // If IM is in another BB, no need to move it, because this pass only
      // vectorizes instructions within one BB.
      if (IM->getParent() != I->getParent())
        continue;

      if (!IM->comesBefore(I)) {
        InstructionsToMove.insert(IM);
        Worklist.push_back(IM);
      }
    }
  }

  // All instructions to move should follow I. Start from I, not from begin().
  for (auto BBI = I->getIterator(), E = I->getParent()->end(); BBI != E;) {
    Instruction *IM = &*(BBI++);
    if (!InstructionsToMove.count(IM))
      continue;
    IM->moveBefore(I);
  }
}

class Vectorizer {
  Function &F;
  AliasAnalysis &AA;
  AssumptionCache &AC;
  DominatorTree &DT;
  ScalarEvolution &SE;
  TargetTransformInfo &TTI;
  const DataLayout &DL;
  IRBuilder<> Builder;

  // We could erase instrs right after vectorizing them, but that can mess up
  // our BB iterators, and also can make the equivalence class keys point to
  // freed memory.  This is fixable, but it's simpler just to wait until we're
  // done with the BB and erase all at once.
  SmallVector<Instruction *, 128> ToErase;

public:
  Vectorizer(Function &F, AliasAnalysis &AA, AssumptionCache &AC,
             DominatorTree &DT, ScalarEvolution &SE, TargetTransformInfo &TTI)
      : F(F), AA(AA), AC(AC), DT(DT), SE(SE), TTI(TTI),
        DL(F.getParent()->getDataLayout()), Builder(SE.getContext()) {}

  bool run();

private:
  static const unsigned MaxDepth = 3;

  /// Runs the vectorizer on a "pseudo basic block", which is a range of
  /// instructions [Begin, End) within one BB all of which have
  /// isGuaranteedToTransferExecutionToSuccessor(I) == true.
  bool runOnPseudoBB(BasicBlock::iterator Begin, BasicBlock::iterator End);

  /// Runs the vectorizer on one equivalence class, i.e. one set of loads/stores
  /// in the same BB with the same value for getUnderlyingObject() etc.
  bool runOnEquivalenceClass(const EqClassKey &EqClassKey,
                             ArrayRef<Instruction *> EqClass);

  /// Runs the vectorizer on one chain, i.e. a subset of an equivalence class
  /// where all instructions access a known, constant offset from the first
  /// instruction.
  bool runOnChain(Chain &C);

  /// Splits the chain into subchains of instructions which read/write a
  /// contiguous block of memory.  Discards any length-1 subchains (because
  /// there's nothing to vectorize in there).
  std::vector<Chain> splitChainByContiguity(Chain &C);

  /// Splits the chain into subchains where it's safe to hoist loads up to the
  /// beginning of the sub-chain and it's safe to sink loads up to the end of
  /// the sub-chain.  Discards any length-1 subchains.
  std::vector<Chain> splitChainByMayAliasInstrs(Chain &C);

  /// Splits the chain into subchains that make legal, aligned accesses.
  /// Discards any length-1 subchains.
  std::vector<Chain> splitChainByAlignment(Chain &C);

  /// Converts the instrs in the chain into a single vectorized load or store.
  /// Adds the old scalar loads/stores to ToErase.
  bool vectorizeChain(Chain &C);

  /// Tries to compute the offset in bytes PtrB - PtrA.
  std::optional<APInt> getConstantOffset(Value *PtrA, Value *PtrB,
                                         Instruction *ContextInst,
                                         unsigned Depth = 0);
  std::optional<APInt> getConstantOffsetComplexAddrs(Value *PtrA, Value *PtrB,
                                                     Instruction *ContextInst,
                                                     unsigned Depth);
  std::optional<APInt> getConstantOffsetSelects(Value *PtrA, Value *PtrB,
                                                Instruction *ContextInst,
                                                unsigned Depth);

  /// Gets the element type of the vector that the chain will load or store.
  /// This is nontrivial because the chain may contain elements of different
  /// types; e.g. it's legal to have a chain that contains both i32 and float.
  Type *getChainElemTy(const Chain &C);

  /// Determines whether ChainElem can be moved up (if IsLoad) or down (if
  /// !IsLoad) to ChainBegin -- i.e. there are no intervening may-alias
  /// instructions.
  ///
  /// The map ChainElemOffsets must contain all of the elements in
  /// [ChainBegin, ChainElem] and their offsets from some arbitrary base
  /// address.  It's ok if it contains additional entries.
  template <bool IsLoadChain>
  bool isSafeToMove(
      Instruction *ChainElem, Instruction *ChainBegin,
      const DenseMap<Instruction *, APInt /*OffsetFromLeader*/> &ChainOffsets);

  /// Collects loads and stores grouped by "equivalence class", where:
  ///   - all elements in an eq class are a load or all are a store,
  ///   - they all load/store the same element size (it's OK to have e.g. i8 and
  ///     <4 x i8> in the same class, but not i32 and <4 x i8>), and
  ///   - they all have the same value for getUnderlyingObject().
  EquivalenceClassMap collectEquivalenceClasses(BasicBlock::iterator Begin,
                                                BasicBlock::iterator End);

  /// Partitions Instrs into "chains" where every instruction has a known
  /// constant offset from the first instr in the chain.
  ///
  /// Postcondition: For all i, ret[i][0].second == 0, because the first instr
  /// in the chain is the leader, and an instr touches distance 0 from itself.
  std::vector<Chain> gatherChains(ArrayRef<Instruction *> Instrs);
};

class LoadStoreVectorizerLegacyPass : public FunctionPass {
public:
  static char ID;

  LoadStoreVectorizerLegacyPass() : FunctionPass(ID) {
    initializeLoadStoreVectorizerLegacyPassPass(
        *PassRegistry::getPassRegistry());
  }

  bool runOnFunction(Function &F) override;

  StringRef getPassName() const override {
    return "GPU Load and Store Vectorizer";
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<AAResultsWrapperPass>();
    AU.addRequired<AssumptionCacheTracker>();
    AU.addRequired<ScalarEvolutionWrapperPass>();
    AU.addRequired<DominatorTreeWrapperPass>();
    AU.addRequired<TargetTransformInfoWrapperPass>();
    AU.setPreservesCFG();
  }
};

} // end anonymous namespace

char LoadStoreVectorizerLegacyPass::ID = 0;

INITIALIZE_PASS_BEGIN(LoadStoreVectorizerLegacyPass, DEBUG_TYPE,
                      "Vectorize load and Store instructions", false, false)
INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker);
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_END(LoadStoreVectorizerLegacyPass, DEBUG_TYPE,
                    "Vectorize load and store instructions", false, false)

Pass *llvm::createLoadStoreVectorizerPass() {
  return new LoadStoreVectorizerLegacyPass();
}

bool LoadStoreVectorizerLegacyPass::runOnFunction(Function &F) {
  // Don't vectorize when the attribute NoImplicitFloat is used.
  if (skipFunction(F) || F.hasFnAttribute(Attribute::NoImplicitFloat))
    return false;

  AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
  DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
  ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
  TargetTransformInfo &TTI =
      getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);

  AssumptionCache &AC =
      getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);

  return Vectorizer(F, AA, AC, DT, SE, TTI).run();
}

PreservedAnalyses LoadStoreVectorizerPass::run(Function &F,
                                               FunctionAnalysisManager &AM) {
  // Don't vectorize when the attribute NoImplicitFloat is used.
  if (F.hasFnAttribute(Attribute::NoImplicitFloat))
    return PreservedAnalyses::all();

  AliasAnalysis &AA = AM.getResult<AAManager>(F);
  DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F);
  ScalarEvolution &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
  TargetTransformInfo &TTI = AM.getResult<TargetIRAnalysis>(F);
  AssumptionCache &AC = AM.getResult<AssumptionAnalysis>(F);

  bool Changed = Vectorizer(F, AA, AC, DT, SE, TTI).run();
  PreservedAnalyses PA;
  PA.preserveSet<CFGAnalyses>();
  return Changed ? PA : PreservedAnalyses::all();
}

bool Vectorizer::run() {
  bool Changed = false;
  // Break up the BB if there are any instrs which aren't guaranteed to transfer
  // execution to their successor.
  //
  // Consider, for example:
  //
  //   def assert_arr_len(int n) { if (n < 2) exit(); }
  //
  //   load arr[0]
  //   call assert_array_len(arr.length)
  //   load arr[1]
  //
  // Even though assert_arr_len does not read or write any memory, we can't
  // speculate the second load before the call.  More info at
  // https://github.com/llvm/llvm-project/issues/52950.
  for (BasicBlock *BB : post_order(&F)) {
    // BB must at least have a terminator.
    assert(!BB->empty());

    SmallVector<BasicBlock::iterator, 8> Barriers;
    Barriers.push_back(BB->begin());
    for (Instruction &I : *BB)
      if (!isGuaranteedToTransferExecutionToSuccessor(&I))
        Barriers.push_back(I.getIterator());
    Barriers.push_back(BB->end());

    for (auto It = Barriers.begin(), End = std::prev(Barriers.end()); It != End;
         ++It)
      Changed |= runOnPseudoBB(*It, *std::next(It));

    for (Instruction *I : ToErase) {
      auto *PtrOperand = getLoadStorePointerOperand(I);
      if (I->use_empty())
        I->eraseFromParent();
      RecursivelyDeleteTriviallyDeadInstructions(PtrOperand);
    }
    ToErase.clear();
  }

  return Changed;
}

bool Vectorizer::runOnPseudoBB(BasicBlock::iterator Begin,
                               BasicBlock::iterator End) {
  LLVM_DEBUG({
    dbgs() << "LSV: Running on pseudo-BB [" << *Begin << " ... ";
    if (End != Begin->getParent()->end())
      dbgs() << *End;
    else
      dbgs() << "<BB end>";
    dbgs() << ")\n";
  });

  bool Changed = false;
  for (const auto &[EqClassKey, EqClass] :
       collectEquivalenceClasses(Begin, End))
    Changed |= runOnEquivalenceClass(EqClassKey, EqClass);

  return Changed;
}

bool Vectorizer::runOnEquivalenceClass(const EqClassKey &EqClassKey,
                                       ArrayRef<Instruction *> EqClass) {
  bool Changed = false;

  LLVM_DEBUG({
    dbgs() << "LSV: Running on equivalence class of size " << EqClass.size()
           << " keyed on " << EqClassKey << ":\n";
    for (Instruction *I : EqClass)
      dbgs() << "  " << *I << "\n";
  });

  std::vector<Chain> Chains = gatherChains(EqClass);
  LLVM_DEBUG(dbgs() << "LSV: Got " << Chains.size()
                    << " nontrivial chains.\n";);
  for (Chain &C : Chains)
    Changed |= runOnChain(C);
  return Changed;
}

bool Vectorizer::runOnChain(Chain &C) {
  LLVM_DEBUG({
    dbgs() << "LSV: Running on chain with " << C.size() << " instructions:\n";
    dumpChain(C);
  });

  // Split up the chain into increasingly smaller chains, until we can finally
  // vectorize the chains.
  //
  // (Don't be scared by the depth of the loop nest here.  These operations are
  // all at worst O(n lg n) in the number of instructions, and splitting chains
  // doesn't change the number of instrs.  So the whole loop nest is O(n lg n).)
  bool Changed = false;
  for (auto &C : splitChainByMayAliasInstrs(C))
    for (auto &C : splitChainByContiguity(C))
      for (auto &C : splitChainByAlignment(C))
        Changed |= vectorizeChain(C);
  return Changed;
}

std::vector<Chain> Vectorizer::splitChainByMayAliasInstrs(Chain &C) {
  if (C.empty())
    return {};

  sortChainInBBOrder(C);

  LLVM_DEBUG({
    dbgs() << "LSV: splitChainByMayAliasInstrs considering chain:\n";
    dumpChain(C);
  });

  // We know that elements in the chain with nonverlapping offsets can't
  // alias, but AA may not be smart enough to figure this out.  Use a
  // hashtable.
  DenseMap<Instruction *, APInt /*OffsetFromLeader*/> ChainOffsets;
  for (const auto &E : C)
    ChainOffsets.insert({&*E.Inst, E.OffsetFromLeader});

  // Loads get hoisted up to the first load in the chain.  Stores get sunk
  // down to the last store in the chain.  Our algorithm for loads is:
  //
  //  - Take the first element of the chain.  This is the start of a new chain.
  //  - Take the next element of `Chain` and check for may-alias instructions
  //    up to the start of NewChain.  If no may-alias instrs, add it to
  //    NewChain.  Otherwise, start a new NewChain.
  //
  // For stores it's the same except in the reverse direction.
  //
  // We expect IsLoad to be an std::bool_constant.
  auto Impl = [&](auto IsLoad) {
    // MSVC is unhappy if IsLoad is a capture, so pass it as an arg.
    auto [ChainBegin, ChainEnd] = [&](auto IsLoad) {
      if constexpr (IsLoad())
        return std::make_pair(C.begin(), C.end());
      else
        return std::make_pair(C.rbegin(), C.rend());
    }(IsLoad);
    assert(ChainBegin != ChainEnd);

    std::vector<Chain> Chains;
    SmallVector<ChainElem, 1> NewChain;
    NewChain.push_back(*ChainBegin);
    for (auto ChainIt = std::next(ChainBegin); ChainIt != ChainEnd; ++ChainIt) {
      if (isSafeToMove<IsLoad>(ChainIt->Inst, NewChain.front().Inst,
                               ChainOffsets)) {
        LLVM_DEBUG(dbgs() << "LSV: No intervening may-alias instrs; can merge "
                          << *ChainIt->Inst << " into " << *ChainBegin->Inst
                          << "\n");
        NewChain.push_back(*ChainIt);
      } else {
        LLVM_DEBUG(
            dbgs() << "LSV: Found intervening may-alias instrs; cannot merge "
                   << *ChainIt->Inst << " into " << *ChainBegin->Inst << "\n");
        if (NewChain.size() > 1) {
          LLVM_DEBUG({
            dbgs() << "LSV: got nontrivial chain without aliasing instrs:\n";
            dumpChain(NewChain);
          });
          Chains.push_back(std::move(NewChain));
        }

        // Start a new chain.
        NewChain = SmallVector<ChainElem, 1>({*ChainIt});
      }
    }
    if (NewChain.size() > 1) {
      LLVM_DEBUG({
        dbgs() << "LSV: got nontrivial chain without aliasing instrs:\n";
        dumpChain(NewChain);
      });
      Chains.push_back(std::move(NewChain));
    }
    return Chains;
  };

  if (isa<LoadInst>(C[0].Inst))
    return Impl(/*IsLoad=*/std::bool_constant<true>());

  assert(isa<StoreInst>(C[0].Inst));
  return Impl(/*IsLoad=*/std::bool_constant<false>());
}

std::vector<Chain> Vectorizer::splitChainByContiguity(Chain &C) {
  if (C.empty())
    return {};

  sortChainInOffsetOrder(C);

  LLVM_DEBUG({
    dbgs() << "LSV: splitChainByContiguity considering chain:\n";
    dumpChain(C);
  });

  std::vector<Chain> Ret;
  Ret.push_back({C.front()});

  for (auto It = std::next(C.begin()), End = C.end(); It != End; ++It) {
    // `prev` accesses offsets [PrevDistFromBase, PrevReadEnd).
    auto &CurChain = Ret.back();
    const ChainElem &Prev = CurChain.back();
    unsigned SzBits = DL.getTypeSizeInBits(getLoadStoreType(&*Prev.Inst));
    assert(SzBits % 8 == 0 && "Non-byte sizes should have been filtered out by "
                              "collectEquivalenceClass");
    APInt PrevReadEnd = Prev.OffsetFromLeader + SzBits / 8;

    // Add this instruction to the end of the current chain, or start a new one.
    bool AreContiguous = It->OffsetFromLeader == PrevReadEnd;
    LLVM_DEBUG(dbgs() << "LSV: Instructions are "
                      << (AreContiguous ? "" : "not ") << "contiguous: "
                      << *Prev.Inst << " (ends at offset " << PrevReadEnd
                      << ") -> " << *It->Inst << " (starts at offset "
                      << It->OffsetFromLeader << ")\n");
    if (AreContiguous)
      CurChain.push_back(*It);
    else
      Ret.push_back({*It});
  }

  // Filter out length-1 chains, these are uninteresting.
  llvm::erase_if(Ret, [](const auto &Chain) { return Chain.size() <= 1; });
  return Ret;
}

Type *Vectorizer::getChainElemTy(const Chain &C) {
  assert(!C.empty());
  // The rules are:
  //  - If there are any pointer types in the chain, use an integer type.
  //  - Prefer an integer type if it appears in the chain.
  //  - Otherwise, use the first type in the chain.
  //
  // The rule about pointer types is a simplification when we merge e.g.  a load
  // of a ptr and a double.  There's no direct conversion from a ptr to a
  // double; it requires a ptrtoint followed by a bitcast.
  //
  // It's unclear to me if the other rules have any practical effect, but we do
  // it to match this pass's previous behavior.
  if (any_of(C, [](const ChainElem &E) {
        return getLoadStoreType(E.Inst)->getScalarType()->isPointerTy();
      })) {
    return Type::getIntNTy(
        F.getContext(),
        DL.getTypeSizeInBits(getLoadStoreType(C[0].Inst)->getScalarType()));
  }

  for (const ChainElem &E : C)
    if (Type *T = getLoadStoreType(E.Inst)->getScalarType(); T->isIntegerTy())
      return T;
  return getLoadStoreType(C[0].Inst)->getScalarType();
}

std::vector<Chain> Vectorizer::splitChainByAlignment(Chain &C) {
  // We use a simple greedy algorithm.
  //  - Given a chain of length N, find all prefixes that
  //    (a) are not longer than the max register length, and
  //    (b) are a power of 2.
  //  - Starting from the longest prefix, try to create a vector of that length.
  //  - If one of them works, great.  Repeat the algorithm on any remaining
  //    elements in the chain.
  //  - If none of them work, discard the first element and repeat on a chain
  //    of length N-1.
  if (C.empty())
    return {};

  sortChainInOffsetOrder(C);

  LLVM_DEBUG({
    dbgs() << "LSV: splitChainByAlignment considering chain:\n";
    dumpChain(C);
  });

  bool IsLoadChain = isa<LoadInst>(C[0].Inst);
  auto getVectorFactor = [&](unsigned VF, unsigned LoadStoreSize,
                             unsigned ChainSizeBytes, VectorType *VecTy) {
    return IsLoadChain ? TTI.getLoadVectorFactor(VF, LoadStoreSize,
                                                 ChainSizeBytes, VecTy)
                       : TTI.getStoreVectorFactor(VF, LoadStoreSize,
                                                  ChainSizeBytes, VecTy);
  };

#ifndef NDEBUG
  for (const auto &E : C) {
    Type *Ty = getLoadStoreType(E.Inst)->getScalarType();
    assert(isPowerOf2_32(DL.getTypeSizeInBits(Ty)) &&
           "Should have filtered out non-power-of-two elements in "
           "collectEquivalenceClasses.");
  }
#endif

  unsigned AS = getLoadStoreAddressSpace(C[0].Inst);
  unsigned VecRegBytes = TTI.getLoadStoreVecRegBitWidth(AS) / 8;

  std::vector<Chain> Ret;
  for (unsigned CBegin = 0; CBegin < C.size(); ++CBegin) {
    // Find candidate chains of size not greater than the largest vector reg.
    // These chains are over the closed interval [CBegin, CEnd].
    SmallVector<std::pair<unsigned /*CEnd*/, unsigned /*SizeBytes*/>, 8>
        CandidateChains;
    for (unsigned CEnd = CBegin + 1, Size = C.size(); CEnd < Size; ++CEnd) {
      APInt Sz = C[CEnd].OffsetFromLeader +
                 DL.getTypeStoreSize(getLoadStoreType(C[CEnd].Inst)) -
                 C[CBegin].OffsetFromLeader;
      if (Sz.sgt(VecRegBytes))
        break;
      CandidateChains.push_back(
          {CEnd, static_cast<unsigned>(Sz.getLimitedValue())});
    }

    // Consider the longest chain first.
    for (auto It = CandidateChains.rbegin(), End = CandidateChains.rend();
         It != End; ++It) {
      auto [CEnd, SizeBytes] = *It;
      LLVM_DEBUG(
          dbgs() << "LSV: splitChainByAlignment considering candidate chain ["
                 << *C[CBegin].Inst << " ... " << *C[CEnd].Inst << "]\n");

      Type *VecElemTy = getChainElemTy(C);
      // Note, VecElemTy is a power of 2, but might be less than one byte.  For
      // example, we can vectorize 2 x <2 x i4> to <4 x i4>, and in this case
      // VecElemTy would be i4.
      unsigned VecElemBits = DL.getTypeSizeInBits(VecElemTy);

      // SizeBytes and VecElemBits are powers of 2, so they divide evenly.
      assert((8 * SizeBytes) % VecElemBits == 0);
      unsigned NumVecElems = 8 * SizeBytes / VecElemBits;
      FixedVectorType *VecTy = FixedVectorType::get(VecElemTy, NumVecElems);
      unsigned VF = 8 * VecRegBytes / VecElemBits;

      // Check that TTI is happy with this vectorization factor.
      unsigned TargetVF = getVectorFactor(VF, VecElemBits,
                                          VecElemBits * NumVecElems / 8, VecTy);
      if (TargetVF != VF && TargetVF < NumVecElems) {
        LLVM_DEBUG(
            dbgs() << "LSV: splitChainByAlignment discarding candidate chain "
                      "because TargetVF="
                   << TargetVF << " != VF=" << VF
                   << " and TargetVF < NumVecElems=" << NumVecElems << "\n");
        continue;
      }

      // Is a load/store with this alignment allowed by TTI and at least as fast
      // as an unvectorized load/store?
      //
      // TTI and F are passed as explicit captures to WAR an MSVC misparse (??).
      auto IsAllowedAndFast = [&, SizeBytes = SizeBytes, &TTI = TTI,
                               &F = F](Align Alignment) {
        if (Alignment.value() % SizeBytes == 0)
          return true;
        unsigned VectorizedSpeed = 0;
        bool AllowsMisaligned = TTI.allowsMisalignedMemoryAccesses(
            F.getContext(), SizeBytes * 8, AS, Alignment, &VectorizedSpeed);
        if (!AllowsMisaligned) {
          LLVM_DEBUG(dbgs()
                     << "LSV: Access of " << SizeBytes << "B in addrspace "
                     << AS << " with alignment " << Alignment.value()
                     << " is misaligned, and therefore can't be vectorized.\n");
          return false;
        }

        unsigned ElementwiseSpeed = 0;
        (TTI).allowsMisalignedMemoryAccesses((F).getContext(), VecElemBits, AS,
                                             Alignment, &ElementwiseSpeed);
        if (VectorizedSpeed < ElementwiseSpeed) {
          LLVM_DEBUG(dbgs()
                     << "LSV: Access of " << SizeBytes << "B in addrspace "
                     << AS << " with alignment " << Alignment.value()
                     << " has relative speed " << VectorizedSpeed
                     << ", which is lower than the elementwise speed of "
                     << ElementwiseSpeed
                     << ".  Therefore this access won't be vectorized.\n");
          return false;
        }
        return true;
      };

      // If we're loading/storing from an alloca, align it if possible.
      //
      // FIXME: We eagerly upgrade the alignment, regardless of whether TTI
      // tells us this is beneficial.  This feels a bit odd, but it matches
      // existing tests.  This isn't *so* bad, because at most we align to 4
      // bytes (current value of StackAdjustedAlignment).
      //
      // FIXME: We will upgrade the alignment of the alloca even if it turns out
      // we can't vectorize for some other reason.
      Value *PtrOperand = getLoadStorePointerOperand(C[CBegin].Inst);
      bool IsAllocaAccess = AS == DL.getAllocaAddrSpace() &&
                            isa<AllocaInst>(PtrOperand->stripPointerCasts());
      Align Alignment = getLoadStoreAlignment(C[CBegin].Inst);
      Align PrefAlign = Align(StackAdjustedAlignment);
      if (IsAllocaAccess && Alignment.value() % SizeBytes != 0 &&
          IsAllowedAndFast(PrefAlign)) {
        Align NewAlign = getOrEnforceKnownAlignment(
            PtrOperand, PrefAlign, DL, C[CBegin].Inst, nullptr, &DT);
        if (NewAlign >= Alignment) {
          LLVM_DEBUG(dbgs()
                     << "LSV: splitByChain upgrading alloca alignment from "
                     << Alignment.value() << " to " << NewAlign.value()
                     << "\n");
          Alignment = NewAlign;
        }
      }

      if (!IsAllowedAndFast(Alignment)) {
        LLVM_DEBUG(
            dbgs() << "LSV: splitChainByAlignment discarding candidate chain "
                      "because its alignment is not AllowedAndFast: "
                   << Alignment.value() << "\n");
        continue;
      }

      if ((IsLoadChain &&
           !TTI.isLegalToVectorizeLoadChain(SizeBytes, Alignment, AS)) ||
          (!IsLoadChain &&
           !TTI.isLegalToVectorizeStoreChain(SizeBytes, Alignment, AS))) {
        LLVM_DEBUG(
            dbgs() << "LSV: splitChainByAlignment discarding candidate chain "
                      "because !isLegalToVectorizeLoad/StoreChain.");
        continue;
      }

      // Hooray, we can vectorize this chain!
      Chain &NewChain = Ret.emplace_back();
      for (unsigned I = CBegin; I <= CEnd; ++I)
        NewChain.push_back(C[I]);
      CBegin = CEnd; // Skip over the instructions we've added to the chain.
      break;
    }
  }
  return Ret;
}

bool Vectorizer::vectorizeChain(Chain &C) {
  if (C.size() < 2)
    return false;

  sortChainInOffsetOrder(C);

  LLVM_DEBUG({
    dbgs() << "LSV: Vectorizing chain of " << C.size() << " instructions:\n";
    dumpChain(C);
  });

  Type *VecElemTy = getChainElemTy(C);
  bool IsLoadChain = isa<LoadInst>(C[0].Inst);
  unsigned AS = getLoadStoreAddressSpace(C[0].Inst);
  unsigned ChainBytes = std::accumulate(
      C.begin(), C.end(), 0u, [&](unsigned Bytes, const ChainElem &E) {
        return Bytes + DL.getTypeStoreSize(getLoadStoreType(E.Inst));
      });
  assert(ChainBytes % DL.getTypeStoreSize(VecElemTy) == 0);
  // VecTy is a power of 2 and 1 byte at smallest, but VecElemTy may be smaller
  // than 1 byte (e.g. VecTy == <32 x i1>).
  Type *VecTy = FixedVectorType::get(
      VecElemTy, 8 * ChainBytes / DL.getTypeSizeInBits(VecElemTy));

  Align Alignment = getLoadStoreAlignment(C[0].Inst);
  // If this is a load/store of an alloca, we might have upgraded the alloca's
  // alignment earlier.  Get the new alignment.
  if (AS == DL.getAllocaAddrSpace()) {
    Alignment = std::max(
        Alignment,
        getOrEnforceKnownAlignment(getLoadStorePointerOperand(C[0].Inst),
                                   MaybeAlign(), DL, C[0].Inst, nullptr, &DT));
  }

  // All elements of the chain must have the same scalar-type size.
#ifndef NDEBUG
  for (const ChainElem &E : C)
    assert(DL.getTypeStoreSize(getLoadStoreType(E.Inst)->getScalarType()) ==
           DL.getTypeStoreSize(VecElemTy));
#endif

  Instruction *VecInst;
  if (IsLoadChain) {
    // Loads get hoisted to the location of the first load in the chain.  We may
    // also need to hoist the (transitive) operands of the loads.
    Builder.SetInsertPoint(
        std::min_element(C.begin(), C.end(), [](const auto &A, const auto &B) {
          return A.Inst->comesBefore(B.Inst);
        })->Inst);

    // Chain is in offset order, so C[0] is the instr with the lowest offset,
    // i.e. the root of the vector.
    VecInst = Builder.CreateAlignedLoad(VecTy,
                                        getLoadStorePointerOperand(C[0].Inst),
                                        Alignment);

    unsigned VecIdx = 0;
    for (const ChainElem &E : C) {
      Instruction *I = E.Inst;
      Value *V;
      Type *T = getLoadStoreType(I);
      if (auto *VT = dyn_cast<FixedVectorType>(T)) {
        auto Mask = llvm::to_vector<8>(
            llvm::seq<int>(VecIdx, VecIdx + VT->getNumElements()));
        V = Builder.CreateShuffleVector(VecInst, Mask, I->getName());
        VecIdx += VT->getNumElements();
      } else {
        V = Builder.CreateExtractElement(VecInst, Builder.getInt32(VecIdx),
                                         I->getName());
        ++VecIdx;
      }
      if (V->getType() != I->getType())
        V = Builder.CreateBitOrPointerCast(V, I->getType());
      I->replaceAllUsesWith(V);
    }

    // Finally, we need to reorder the instrs in the BB so that the (transitive)
    // operands of VecInst appear before it.  To see why, suppose we have
    // vectorized the following code:
    //
    //   ptr1  = gep a, 1
    //   load1 = load i32 ptr1
    //   ptr0  = gep a, 0
    //   load0 = load i32 ptr0
    //
    // We will put the vectorized load at the location of the earliest load in
    // the BB, i.e. load1.  We get:
    //
    //   ptr1  = gep a, 1
    //   loadv = load <2 x i32> ptr0
    //   load0 = extractelement loadv, 0
    //   load1 = extractelement loadv, 1
    //   ptr0 = gep a, 0
    //
    // Notice that loadv uses ptr0, which is defined *after* it!
    reorder(VecInst);
  } else {
    // Stores get sunk to the location of the last store in the chain.
    Builder.SetInsertPoint(
        std::max_element(C.begin(), C.end(), [](auto &A, auto &B) {
          return A.Inst->comesBefore(B.Inst);
        })->Inst);

    // Build the vector to store.
    Value *Vec = PoisonValue::get(VecTy);
    unsigned VecIdx = 0;
    auto InsertElem = [&](Value *V) {
      if (V->getType() != VecElemTy)
        V = Builder.CreateBitOrPointerCast(V, VecElemTy);
      Vec = Builder.CreateInsertElement(Vec, V, Builder.getInt32(VecIdx++));
    };
    for (const ChainElem &E : C) {
      auto I = cast<StoreInst>(E.Inst);
      if (FixedVectorType *VT =
              dyn_cast<FixedVectorType>(getLoadStoreType(I))) {
        for (int J = 0, JE = VT->getNumElements(); J < JE; ++J) {
          InsertElem(Builder.CreateExtractElement(I->getValueOperand(),
                                                  Builder.getInt32(J)));
        }
      } else {
        InsertElem(I->getValueOperand());
      }
    }

    // Chain is in offset order, so C[0] is the instr with the lowest offset,
    // i.e. the root of the vector.
    VecInst = Builder.CreateAlignedStore(
        Vec,
        getLoadStorePointerOperand(C[0].Inst),
        Alignment);
  }

  propagateMetadata(VecInst, C);

  for (const ChainElem &E : C)
    ToErase.push_back(E.Inst);

  ++NumVectorInstructions;
  NumScalarsVectorized += C.size();
  return true;
}

template <bool IsLoadChain>
bool Vectorizer::isSafeToMove(
    Instruction *ChainElem, Instruction *ChainBegin,
    const DenseMap<Instruction *, APInt /*OffsetFromLeader*/> &ChainOffsets) {
  LLVM_DEBUG(dbgs() << "LSV: isSafeToMove(" << *ChainElem << " -> "
                    << *ChainBegin << ")\n");

  assert(isa<LoadInst>(ChainElem) == IsLoadChain);
  if (ChainElem == ChainBegin)
    return true;

  // Invariant loads can always be reordered; by definition they are not
  // clobbered by stores.
  if (isInvariantLoad(ChainElem))
    return true;

  auto BBIt = std::next([&] {
    if constexpr (IsLoadChain)
      return BasicBlock::reverse_iterator(ChainElem);
    else
      return BasicBlock::iterator(ChainElem);
  }());
  auto BBItEnd = std::next([&] {
    if constexpr (IsLoadChain)
      return BasicBlock::reverse_iterator(ChainBegin);
    else
      return BasicBlock::iterator(ChainBegin);
  }());

  const APInt &ChainElemOffset = ChainOffsets.at(ChainElem);
  const unsigned ChainElemSize =
      DL.getTypeStoreSize(getLoadStoreType(ChainElem));

  for (; BBIt != BBItEnd; ++BBIt) {
    Instruction *I = &*BBIt;

    if (!I->mayReadOrWriteMemory())
      continue;

    // Loads can be reordered with other loads.
    if (IsLoadChain && isa<LoadInst>(I))
      continue;

    // Stores can be sunk below invariant loads.
    if (!IsLoadChain && isInvariantLoad(I))
      continue;

    // If I is in the chain, we can tell whether it aliases ChainIt by checking
    // what offset ChainIt accesses.  This may be better than AA is able to do.
    //
    // We should really only have duplicate offsets for stores (the duplicate
    // loads should be CSE'ed), but in case we have a duplicate load, we'll
    // split the chain so we don't have to handle this case specially.
    if (auto OffsetIt = ChainOffsets.find(I); OffsetIt != ChainOffsets.end()) {
      // I and ChainElem overlap if:
      //   - I and ChainElem have the same offset, OR
      //   - I's offset is less than ChainElem's, but I touches past the
      //     beginning of ChainElem, OR
      //   - ChainElem's offset is less than I's, but ChainElem touches past the
      //     beginning of I.
      const APInt &IOffset = OffsetIt->second;
      unsigned IElemSize = DL.getTypeStoreSize(getLoadStoreType(I));
      if (IOffset == ChainElemOffset ||
          (IOffset.sle(ChainElemOffset) &&
           (IOffset + IElemSize).sgt(ChainElemOffset)) ||
          (ChainElemOffset.sle(IOffset) &&
           (ChainElemOffset + ChainElemSize).sgt(OffsetIt->second))) {
        LLVM_DEBUG({
          // Double check that AA also sees this alias.  If not, we probably
          // have a bug.
          ModRefInfo MR = AA.getModRefInfo(I, MemoryLocation::get(ChainElem));
          assert(IsLoadChain ? isModSet(MR) : isModOrRefSet(MR));
          dbgs() << "LSV: Found alias in chain: " << *I << "\n";
        });
        return false; // We found an aliasing instruction; bail.
      }

      continue; // We're confident there's no alias.
    }

    LLVM_DEBUG(dbgs() << "LSV: Querying AA for " << *I << "\n");
    ModRefInfo MR = AA.getModRefInfo(I, MemoryLocation::get(ChainElem));
    if (IsLoadChain ? isModSet(MR) : isModOrRefSet(MR)) {
      LLVM_DEBUG(dbgs() << "LSV: Found alias in chain:\n"
                        << "  Aliasing instruction:\n"
                        << "    " << *I << '\n'
                        << "  Aliased instruction and pointer:\n"
                        << "    " << *ChainElem << '\n'
                        << "    " << *getLoadStorePointerOperand(ChainElem)
                        << '\n');

      return false;
    }
  }
  return true;
}

static bool checkNoWrapFlags(Instruction *I, bool Signed) {
  BinaryOperator *BinOpI = cast<BinaryOperator>(I);
  return (Signed && BinOpI->hasNoSignedWrap()) ||
         (!Signed && BinOpI->hasNoUnsignedWrap());
}

static bool checkIfSafeAddSequence(const APInt &IdxDiff, Instruction *AddOpA,
                                   unsigned MatchingOpIdxA, Instruction *AddOpB,
                                   unsigned MatchingOpIdxB, bool Signed) {
  LLVM_DEBUG(dbgs() << "LSV: checkIfSafeAddSequence IdxDiff=" << IdxDiff
                    << ", AddOpA=" << *AddOpA << ", MatchingOpIdxA="
                    << MatchingOpIdxA << ", AddOpB=" << *AddOpB
                    << ", MatchingOpIdxB=" << MatchingOpIdxB
                    << ", Signed=" << Signed << "\n");
  // If both OpA and OpB are adds with NSW/NUW and with one of the operands
  // being the same, we can guarantee that the transformation is safe if we can
  // prove that OpA won't overflow when Ret added to the other operand of OpA.
  // For example:
  //  %tmp7 = add nsw i32 %tmp2, %v0
  //  %tmp8 = sext i32 %tmp7 to i64
  //  ...
  //  %tmp11 = add nsw i32 %v0, 1
  //  %tmp12 = add nsw i32 %tmp2, %tmp11
  //  %tmp13 = sext i32 %tmp12 to i64
  //
  //  Both %tmp7 and %tmp12 have the nsw flag and the first operand is %tmp2.
  //  It's guaranteed that adding 1 to %tmp7 won't overflow because %tmp11 adds
  //  1 to %v0 and both %tmp11 and %tmp12 have the nsw flag.
  assert(AddOpA->getOpcode() == Instruction::Add &&
         AddOpB->getOpcode() == Instruction::Add &&
         checkNoWrapFlags(AddOpA, Signed) && checkNoWrapFlags(AddOpB, Signed));
  if (AddOpA->getOperand(MatchingOpIdxA) ==
      AddOpB->getOperand(MatchingOpIdxB)) {
    Value *OtherOperandA = AddOpA->getOperand(MatchingOpIdxA == 1 ? 0 : 1);
    Value *OtherOperandB = AddOpB->getOperand(MatchingOpIdxB == 1 ? 0 : 1);
    Instruction *OtherInstrA = dyn_cast<Instruction>(OtherOperandA);
    Instruction *OtherInstrB = dyn_cast<Instruction>(OtherOperandB);
    // Match `x +nsw/nuw y` and `x +nsw/nuw (y +nsw/nuw IdxDiff)`.
    if (OtherInstrB && OtherInstrB->getOpcode() == Instruction::Add &&
        checkNoWrapFlags(OtherInstrB, Signed) &&
        isa<ConstantInt>(OtherInstrB->getOperand(1))) {
      int64_t CstVal =
          cast<ConstantInt>(OtherInstrB->getOperand(1))->getSExtValue();
      if (OtherInstrB->getOperand(0) == OtherOperandA &&
          IdxDiff.getSExtValue() == CstVal)
        return true;
    }
    // Match `x +nsw/nuw (y +nsw/nuw -Idx)` and `x +nsw/nuw (y +nsw/nuw x)`.
    if (OtherInstrA && OtherInstrA->getOpcode() == Instruction::Add &&
        checkNoWrapFlags(OtherInstrA, Signed) &&
        isa<ConstantInt>(OtherInstrA->getOperand(1))) {
      int64_t CstVal =
          cast<ConstantInt>(OtherInstrA->getOperand(1))->getSExtValue();
      if (OtherInstrA->getOperand(0) == OtherOperandB &&
          IdxDiff.getSExtValue() == -CstVal)
        return true;
    }
    // Match `x +nsw/nuw (y +nsw/nuw c)` and
    // `x +nsw/nuw (y +nsw/nuw (c + IdxDiff))`.
    if (OtherInstrA && OtherInstrB &&
        OtherInstrA->getOpcode() == Instruction::Add &&
        OtherInstrB->getOpcode() == Instruction::Add &&
        checkNoWrapFlags(OtherInstrA, Signed) &&
        checkNoWrapFlags(OtherInstrB, Signed) &&
        isa<ConstantInt>(OtherInstrA->getOperand(1)) &&
        isa<ConstantInt>(OtherInstrB->getOperand(1))) {
      int64_t CstValA =
          cast<ConstantInt>(OtherInstrA->getOperand(1))->getSExtValue();
      int64_t CstValB =
          cast<ConstantInt>(OtherInstrB->getOperand(1))->getSExtValue();
      if (OtherInstrA->getOperand(0) == OtherInstrB->getOperand(0) &&
          IdxDiff.getSExtValue() == (CstValB - CstValA))
        return true;
    }
  }
  return false;
}

std::optional<APInt> Vectorizer::getConstantOffsetComplexAddrs(
    Value *PtrA, Value *PtrB, Instruction *ContextInst, unsigned Depth) {
  LLVM_DEBUG(dbgs() << "LSV: getConstantOffsetComplexAddrs PtrA=" << *PtrA
                    << " PtrB=" << *PtrB << " ContextInst=" << *ContextInst
                    << " Depth=" << Depth << "\n");
  auto *GEPA = dyn_cast<GetElementPtrInst>(PtrA);
  auto *GEPB = dyn_cast<GetElementPtrInst>(PtrB);
  if (!GEPA || !GEPB)
    return getConstantOffsetSelects(PtrA, PtrB, ContextInst, Depth);

  // Look through GEPs after checking they're the same except for the last
  // index.
  if (GEPA->getNumOperands() != GEPB->getNumOperands() ||
      GEPA->getPointerOperand() != GEPB->getPointerOperand())
    return std::nullopt;
  gep_type_iterator GTIA = gep_type_begin(GEPA);
  gep_type_iterator GTIB = gep_type_begin(GEPB);
  for (unsigned I = 0, E = GEPA->getNumIndices() - 1; I < E; ++I) {
    if (GTIA.getOperand() != GTIB.getOperand())
      return std::nullopt;
    ++GTIA;
    ++GTIB;
  }

  Instruction *OpA = dyn_cast<Instruction>(GTIA.getOperand());
  Instruction *OpB = dyn_cast<Instruction>(GTIB.getOperand());
  if (!OpA || !OpB || OpA->getOpcode() != OpB->getOpcode() ||
      OpA->getType() != OpB->getType())
    return std::nullopt;

  uint64_t Stride = DL.getTypeAllocSize(GTIA.getIndexedType());

  // Only look through a ZExt/SExt.
  if (!isa<SExtInst>(OpA) && !isa<ZExtInst>(OpA))
    return std::nullopt;

  bool Signed = isa<SExtInst>(OpA);

  // At this point A could be a function parameter, i.e. not an instruction
  Value *ValA = OpA->getOperand(0);
  OpB = dyn_cast<Instruction>(OpB->getOperand(0));
  if (!OpB || ValA->getType() != OpB->getType())
    return std::nullopt;

  const SCEV *OffsetSCEVA = SE.getSCEV(ValA);
  const SCEV *OffsetSCEVB = SE.getSCEV(OpB);
  const SCEV *IdxDiffSCEV = SE.getMinusSCEV(OffsetSCEVB, OffsetSCEVA);
  if (IdxDiffSCEV == SE.getCouldNotCompute())
    return std::nullopt;

  ConstantRange IdxDiffRange = SE.getSignedRange(IdxDiffSCEV);
  if (!IdxDiffRange.isSingleElement())
    return std::nullopt;
  APInt IdxDiff = *IdxDiffRange.getSingleElement();

  LLVM_DEBUG(dbgs() << "LSV: getConstantOffsetComplexAddrs IdxDiff=" << IdxDiff
                    << "\n");

  // Now we need to prove that adding IdxDiff to ValA won't overflow.
  bool Safe = false;

  // First attempt: if OpB is an add with NSW/NUW, and OpB is IdxDiff added to
  // ValA, we're okay.
  if (OpB->getOpcode() == Instruction::Add &&
      isa<ConstantInt>(OpB->getOperand(1)) &&
      IdxDiff.sle(cast<ConstantInt>(OpB->getOperand(1))->getSExtValue()) &&
      checkNoWrapFlags(OpB, Signed))
    Safe = true;

  // Second attempt: check if we have eligible add NSW/NUW instruction
  // sequences.
  OpA = dyn_cast<Instruction>(ValA);
  if (!Safe && OpA && OpA->getOpcode() == Instruction::Add &&
      OpB->getOpcode() == Instruction::Add && checkNoWrapFlags(OpA, Signed) &&
      checkNoWrapFlags(OpB, Signed)) {
    // In the checks below a matching operand in OpA and OpB is an operand which
    // is the same in those two instructions.  Below we account for possible
    // orders of the operands of these add instructions.
    for (unsigned MatchingOpIdxA : {0, 1})
      for (unsigned MatchingOpIdxB : {0, 1})
        if (!Safe)
          Safe = checkIfSafeAddSequence(IdxDiff, OpA, MatchingOpIdxA, OpB,
                                        MatchingOpIdxB, Signed);
  }

  unsigned BitWidth = ValA->getType()->getScalarSizeInBits();

  // Third attempt:
  //
  // Assuming IdxDiff is positive: If all set bits of IdxDiff or any higher
  // order bit other than the sign bit are known to be zero in ValA, we can add
  // Diff to it while guaranteeing no overflow of any sort.
  //
  // If IdxDiff is negative, do the same, but swap ValA and ValB.
  if (!Safe) {
    // When computing known bits, use the GEPs as context instructions, since
    // they likely are in the same BB as the load/store.
    KnownBits Known(BitWidth);
    computeKnownBits((IdxDiff.sge(0) ? ValA : OpB), Known, DL, 0, &AC,
                     ContextInst, &DT);
    APInt BitsAllowedToBeSet = Known.Zero.zext(IdxDiff.getBitWidth());
    if (Signed)
      BitsAllowedToBeSet.clearBit(BitWidth - 1);
    if (BitsAllowedToBeSet.ult(IdxDiff.abs()))
      return std::nullopt;
    Safe = true;
  }

  if (Safe)
    return IdxDiff * Stride;
  return std::nullopt;
}

std::optional<APInt> Vectorizer::getConstantOffsetSelects(
    Value *PtrA, Value *PtrB, Instruction *ContextInst, unsigned Depth) {
  if (Depth++ == MaxDepth)
    return std::nullopt;

  if (auto *SelectA = dyn_cast<SelectInst>(PtrA)) {
    if (auto *SelectB = dyn_cast<SelectInst>(PtrB)) {
      if (SelectA->getCondition() != SelectB->getCondition())
        return std::nullopt;
      LLVM_DEBUG(dbgs() << "LSV: getConstantOffsetSelects, PtrA=" << *PtrA
                        << ", PtrB=" << *PtrB << ", ContextInst="
                        << *ContextInst << ", Depth=" << Depth << "\n");
      std::optional<APInt> TrueDiff = getConstantOffset(
          SelectA->getTrueValue(), SelectB->getTrueValue(), ContextInst, Depth);
      if (!TrueDiff.has_value())
        return std::nullopt;
      std::optional<APInt> FalseDiff =
          getConstantOffset(SelectA->getFalseValue(), SelectB->getFalseValue(),
                            ContextInst, Depth);
      if (TrueDiff == FalseDiff)
        return TrueDiff;
    }
  }
  return std::nullopt;
}

EquivalenceClassMap
Vectorizer::collectEquivalenceClasses(BasicBlock::iterator Begin,
                                      BasicBlock::iterator End) {
  EquivalenceClassMap Ret;

  auto getUnderlyingObject = [](const Value *Ptr) -> const Value * {
    const Value *ObjPtr = llvm::getUnderlyingObject(Ptr);
    if (const auto *Sel = dyn_cast<SelectInst>(ObjPtr)) {
      // The select's themselves are distinct instructions even if they share
      // the same condition and evaluate to consecutive pointers for true and
      // false values of the condition. Therefore using the select's themselves
      // for grouping instructions would put consecutive accesses into different
      // lists and they won't be even checked for being consecutive, and won't
      // be vectorized.
      return Sel->getCondition();
    }
    return ObjPtr;
  };

  for (Instruction &I : make_range(Begin, End)) {
    auto *LI = dyn_cast<LoadInst>(&I);
    auto *SI = dyn_cast<StoreInst>(&I);
    if (!LI && !SI)
      continue;

    if ((LI && !LI->isSimple()) || (SI && !SI->isSimple()))
      continue;

    if ((LI && !TTI.isLegalToVectorizeLoad(LI)) ||
        (SI && !TTI.isLegalToVectorizeStore(SI)))
      continue;

    Type *Ty = getLoadStoreType(&I);
    if (!VectorType::isValidElementType(Ty->getScalarType()))
      continue;

    // Skip weird non-byte sizes. They probably aren't worth the effort of
    // handling correctly.
    unsigned TySize = DL.getTypeSizeInBits(Ty);
    if ((TySize % 8) != 0)
      continue;

    // Skip vectors of pointers. The vectorizeLoadChain/vectorizeStoreChain
    // functions are currently using an integer type for the vectorized
    // load/store, and does not support casting between the integer type and a
    // vector of pointers (e.g. i64 to <2 x i16*>)
    if (Ty->isVectorTy() && Ty->isPtrOrPtrVectorTy())
      continue;

    Value *Ptr = getLoadStorePointerOperand(&I);
    unsigned AS = Ptr->getType()->getPointerAddressSpace();
    unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS);

    unsigned VF = VecRegSize / TySize;
    VectorType *VecTy = dyn_cast<VectorType>(Ty);

    // Only handle power-of-two sized elements.
    if ((!VecTy && !isPowerOf2_32(DL.getTypeSizeInBits(Ty))) ||
        (VecTy && !isPowerOf2_32(DL.getTypeSizeInBits(VecTy->getScalarType()))))
      continue;

    // No point in looking at these if they're too big to vectorize.
    if (TySize > VecRegSize / 2 ||
        (VecTy && TTI.getLoadVectorFactor(VF, TySize, TySize / 8, VecTy) == 0))
      continue;

    Ret[{getUnderlyingObject(Ptr), AS,
         DL.getTypeSizeInBits(getLoadStoreType(&I)->getScalarType()),
         /*IsLoad=*/LI != nullptr}]
        .push_back(&I);
  }

  return Ret;
}

std::vector<Chain> Vectorizer::gatherChains(ArrayRef<Instruction *> Instrs) {
  if (Instrs.empty())
    return {};

  unsigned AS = getLoadStoreAddressSpace(Instrs[0]);
  unsigned ASPtrBits = DL.getIndexSizeInBits(AS);

#ifndef NDEBUG
  // Check that Instrs is in BB order and all have the same addr space.
  for (size_t I = 1; I < Instrs.size(); ++I) {
    assert(Instrs[I - 1]->comesBefore(Instrs[I]));
    assert(getLoadStoreAddressSpace(Instrs[I]) == AS);
  }
#endif

  // Machinery to build an MRU-hashtable of Chains.
  //
  // (Ideally this could be done with MapVector, but as currently implemented,
  // moving an element to the front of a MapVector is O(n).)
  struct InstrListElem : ilist_node<InstrListElem>,
                         std::pair<Instruction *, Chain> {
    explicit InstrListElem(Instruction *I)
        : std::pair<Instruction *, Chain>(I, {}) {}
  };
  struct InstrListElemDenseMapInfo {
    using PtrInfo = DenseMapInfo<InstrListElem *>;
    using IInfo = DenseMapInfo<Instruction *>;
    static InstrListElem *getEmptyKey() { return PtrInfo::getEmptyKey(); }
    static InstrListElem *getTombstoneKey() {
      return PtrInfo::getTombstoneKey();
    }
    static unsigned getHashValue(const InstrListElem *E) {
      return IInfo::getHashValue(E->first);
    }
    static bool isEqual(const InstrListElem *A, const InstrListElem *B) {
      if (A == getEmptyKey() || B == getEmptyKey())
        return A == getEmptyKey() && B == getEmptyKey();
      if (A == getTombstoneKey() || B == getTombstoneKey())
        return A == getTombstoneKey() && B == getTombstoneKey();
      return IInfo::isEqual(A->first, B->first);
    }
  };
  SpecificBumpPtrAllocator<InstrListElem> Allocator;
  simple_ilist<InstrListElem> MRU;
  DenseSet<InstrListElem *, InstrListElemDenseMapInfo> Chains;

  // Compare each instruction in `instrs` to leader of the N most recently-used
  // chains.  This limits the O(n^2) behavior of this pass while also allowing
  // us to build arbitrarily long chains.
  for (Instruction *I : Instrs) {
    constexpr int MaxChainsToTry = 64;

    bool MatchFound = false;
    auto ChainIter = MRU.begin();
    for (size_t J = 0; J < MaxChainsToTry && ChainIter != MRU.end();
         ++J, ++ChainIter) {
      std::optional<APInt> Offset = getConstantOffset(
          getLoadStorePointerOperand(ChainIter->first),
          getLoadStorePointerOperand(I),
          /*ContextInst=*/
          (ChainIter->first->comesBefore(I) ? I : ChainIter->first));
      if (Offset.has_value()) {
        // `Offset` might not have the expected number of bits, if e.g. AS has a
        // different number of bits than opaque pointers.
        ChainIter->second.push_back(ChainElem{I, Offset.value()});
        // Move ChainIter to the front of the MRU list.
        MRU.remove(*ChainIter);
        MRU.push_front(*ChainIter);
        MatchFound = true;
        break;
      }
    }

    if (!MatchFound) {
      APInt ZeroOffset(ASPtrBits, 0);
      InstrListElem *E = new (Allocator.Allocate()) InstrListElem(I);
      E->second.push_back(ChainElem{I, ZeroOffset});
      MRU.push_front(*E);
      Chains.insert(E);
    }
  }

  std::vector<Chain> Ret;
  Ret.reserve(Chains.size());
  // Iterate over MRU rather than Chains so the order is deterministic.
  for (auto &E : MRU)
    if (E.second.size() > 1)
      Ret.push_back(std::move(E.second));
  return Ret;
}

std::optional<APInt> Vectorizer::getConstantOffset(Value *PtrA, Value *PtrB,
                                                   Instruction *ContextInst,
                                                   unsigned Depth) {
  LLVM_DEBUG(dbgs() << "LSV: getConstantOffset, PtrA=" << *PtrA
                    << ", PtrB=" << *PtrB << ", ContextInst= " << *ContextInst
                    << ", Depth=" << Depth << "\n");
  // We'll ultimately return a value of this bit width, even if computations
  // happen in a different width.
  unsigned OrigBitWidth = DL.getIndexTypeSizeInBits(PtrA->getType());
  APInt OffsetA(OrigBitWidth, 0);
  APInt OffsetB(OrigBitWidth, 0);
  PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA);
  PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB);
  unsigned NewPtrBitWidth = DL.getTypeStoreSizeInBits(PtrA->getType());
  if (NewPtrBitWidth != DL.getTypeStoreSizeInBits(PtrB->getType()))
    return std::nullopt;

  // If we have to shrink the pointer, stripAndAccumulateInBoundsConstantOffsets
  // should properly handle a possible overflow and the value should fit into
  // the smallest data type used in the cast/gep chain.
  assert(OffsetA.getSignificantBits() <= NewPtrBitWidth &&
         OffsetB.getSignificantBits() <= NewPtrBitWidth);

  OffsetA = OffsetA.sextOrTrunc(NewPtrBitWidth);
  OffsetB = OffsetB.sextOrTrunc(NewPtrBitWidth);
  if (PtrA == PtrB)
    return (OffsetB - OffsetA).sextOrTrunc(OrigBitWidth);

  // Try to compute B - A.
  const SCEV *DistScev = SE.getMinusSCEV(SE.getSCEV(PtrB), SE.getSCEV(PtrA));
  if (DistScev != SE.getCouldNotCompute()) {
    LLVM_DEBUG(dbgs() << "LSV: SCEV PtrB - PtrA =" << *DistScev << "\n");
    ConstantRange DistRange = SE.getSignedRange(DistScev);
    if (DistRange.isSingleElement()) {
      // Handle index width (the width of Dist) != pointer width (the width of
      // the Offset*s at this point).
      APInt Dist = DistRange.getSingleElement()->sextOrTrunc(NewPtrBitWidth);
      return (OffsetB - OffsetA + Dist).sextOrTrunc(OrigBitWidth);
    }
  }
  std::optional<APInt> Diff =
      getConstantOffsetComplexAddrs(PtrA, PtrB, ContextInst, Depth);
  if (Diff.has_value())
    return (OffsetB - OffsetA + Diff->sext(OffsetB.getBitWidth()))
        .sextOrTrunc(OrigBitWidth);
  return std::nullopt;
}