aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Transforms/Vectorize/VPlanRecipes.cpp
blob: ae2fc522ba4002710054ce88c2724566fdf73596 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
//===- VPlanRecipes.cpp - Implementations for VPlan recipes ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file contains implementations for different VPlan recipes.
///
//===----------------------------------------------------------------------===//

#include "VPlan.h"
#include "VPlanAnalysis.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Analysis/IVDescriptors.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
#include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
#include <cassert>

using namespace llvm;

using VectorParts = SmallVector<Value *, 2>;

namespace llvm {
extern cl::opt<bool> EnableVPlanNativePath;
}

#define LV_NAME "loop-vectorize"
#define DEBUG_TYPE LV_NAME

bool VPRecipeBase::mayWriteToMemory() const {
  switch (getVPDefID()) {
  case VPInterleaveSC:
    return cast<VPInterleaveRecipe>(this)->getNumStoreOperands() > 0;
  case VPWidenMemoryInstructionSC: {
    return cast<VPWidenMemoryInstructionRecipe>(this)->isStore();
  }
  case VPReplicateSC:
  case VPWidenCallSC:
    return cast<Instruction>(getVPSingleValue()->getUnderlyingValue())
        ->mayWriteToMemory();
  case VPBranchOnMaskSC:
  case VPScalarIVStepsSC:
  case VPPredInstPHISC:
    return false;
  case VPBlendSC:
  case VPReductionSC:
  case VPWidenCanonicalIVSC:
  case VPWidenCastSC:
  case VPWidenGEPSC:
  case VPWidenIntOrFpInductionSC:
  case VPWidenPHISC:
  case VPWidenSC:
  case VPWidenSelectSC: {
    const Instruction *I =
        dyn_cast_or_null<Instruction>(getVPSingleValue()->getUnderlyingValue());
    (void)I;
    assert((!I || !I->mayWriteToMemory()) &&
           "underlying instruction may write to memory");
    return false;
  }
  default:
    return true;
  }
}

bool VPRecipeBase::mayReadFromMemory() const {
  switch (getVPDefID()) {
  case VPWidenMemoryInstructionSC: {
    return !cast<VPWidenMemoryInstructionRecipe>(this)->isStore();
  }
  case VPReplicateSC:
  case VPWidenCallSC:
    return cast<Instruction>(getVPSingleValue()->getUnderlyingValue())
        ->mayReadFromMemory();
  case VPBranchOnMaskSC:
  case VPScalarIVStepsSC:
  case VPPredInstPHISC:
    return false;
  case VPBlendSC:
  case VPReductionSC:
  case VPWidenCanonicalIVSC:
  case VPWidenCastSC:
  case VPWidenGEPSC:
  case VPWidenIntOrFpInductionSC:
  case VPWidenPHISC:
  case VPWidenSC:
  case VPWidenSelectSC: {
    const Instruction *I =
        dyn_cast_or_null<Instruction>(getVPSingleValue()->getUnderlyingValue());
    (void)I;
    assert((!I || !I->mayReadFromMemory()) &&
           "underlying instruction may read from memory");
    return false;
  }
  default:
    return true;
  }
}

bool VPRecipeBase::mayHaveSideEffects() const {
  switch (getVPDefID()) {
  case VPDerivedIVSC:
  case VPPredInstPHISC:
    return false;
  case VPInstructionSC:
    switch (cast<VPInstruction>(this)->getOpcode()) {
    case Instruction::Or:
    case Instruction::ICmp:
    case Instruction::Select:
    case VPInstruction::Not:
    case VPInstruction::CalculateTripCountMinusVF:
    case VPInstruction::CanonicalIVIncrementForPart:
      return false;
    default:
      return true;
    }
  case VPWidenCallSC:
    return cast<Instruction>(getVPSingleValue()->getUnderlyingValue())
        ->mayHaveSideEffects();
  case VPBlendSC:
  case VPReductionSC:
  case VPScalarIVStepsSC:
  case VPWidenCanonicalIVSC:
  case VPWidenCastSC:
  case VPWidenGEPSC:
  case VPWidenIntOrFpInductionSC:
  case VPWidenPHISC:
  case VPWidenPointerInductionSC:
  case VPWidenSC:
  case VPWidenSelectSC: {
    const Instruction *I =
        dyn_cast_or_null<Instruction>(getVPSingleValue()->getUnderlyingValue());
    (void)I;
    assert((!I || !I->mayHaveSideEffects()) &&
           "underlying instruction has side-effects");
    return false;
  }
  case VPInterleaveSC:
    return mayWriteToMemory();
  case VPWidenMemoryInstructionSC:
    assert(cast<VPWidenMemoryInstructionRecipe>(this)
                   ->getIngredient()
                   .mayHaveSideEffects() == mayWriteToMemory() &&
           "mayHaveSideffects result for ingredient differs from this "
           "implementation");
    return mayWriteToMemory();
  case VPReplicateSC: {
    auto *R = cast<VPReplicateRecipe>(this);
    return R->getUnderlyingInstr()->mayHaveSideEffects();
  }
  default:
    return true;
  }
}

void VPLiveOut::fixPhi(VPlan &Plan, VPTransformState &State) {
  auto Lane = VPLane::getLastLaneForVF(State.VF);
  VPValue *ExitValue = getOperand(0);
  if (vputils::isUniformAfterVectorization(ExitValue))
    Lane = VPLane::getFirstLane();
  VPBasicBlock *MiddleVPBB =
      cast<VPBasicBlock>(Plan.getVectorLoopRegion()->getSingleSuccessor());
  assert(MiddleVPBB->getNumSuccessors() == 0 &&
         "the middle block must not have any successors");
  BasicBlock *MiddleBB = State.CFG.VPBB2IRBB[MiddleVPBB];
  Phi->addIncoming(State.get(ExitValue, VPIteration(State.UF - 1, Lane)),
                   MiddleBB);
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void VPLiveOut::print(raw_ostream &O, VPSlotTracker &SlotTracker) const {
  O << "Live-out ";
  getPhi()->printAsOperand(O);
  O << " = ";
  getOperand(0)->printAsOperand(O, SlotTracker);
  O << "\n";
}
#endif

void VPRecipeBase::insertBefore(VPRecipeBase *InsertPos) {
  assert(!Parent && "Recipe already in some VPBasicBlock");
  assert(InsertPos->getParent() &&
         "Insertion position not in any VPBasicBlock");
  Parent = InsertPos->getParent();
  Parent->getRecipeList().insert(InsertPos->getIterator(), this);
}

void VPRecipeBase::insertBefore(VPBasicBlock &BB,
                                iplist<VPRecipeBase>::iterator I) {
  assert(!Parent && "Recipe already in some VPBasicBlock");
  assert(I == BB.end() || I->getParent() == &BB);
  Parent = &BB;
  BB.getRecipeList().insert(I, this);
}

void VPRecipeBase::insertAfter(VPRecipeBase *InsertPos) {
  assert(!Parent && "Recipe already in some VPBasicBlock");
  assert(InsertPos->getParent() &&
         "Insertion position not in any VPBasicBlock");
  Parent = InsertPos->getParent();
  Parent->getRecipeList().insertAfter(InsertPos->getIterator(), this);
}

void VPRecipeBase::removeFromParent() {
  assert(getParent() && "Recipe not in any VPBasicBlock");
  getParent()->getRecipeList().remove(getIterator());
  Parent = nullptr;
}

iplist<VPRecipeBase>::iterator VPRecipeBase::eraseFromParent() {
  assert(getParent() && "Recipe not in any VPBasicBlock");
  return getParent()->getRecipeList().erase(getIterator());
}

void VPRecipeBase::moveAfter(VPRecipeBase *InsertPos) {
  removeFromParent();
  insertAfter(InsertPos);
}

void VPRecipeBase::moveBefore(VPBasicBlock &BB,
                              iplist<VPRecipeBase>::iterator I) {
  removeFromParent();
  insertBefore(BB, I);
}

FastMathFlags VPRecipeWithIRFlags::getFastMathFlags() const {
  assert(OpType == OperationType::FPMathOp &&
         "recipe doesn't have fast math flags");
  FastMathFlags Res;
  Res.setAllowReassoc(FMFs.AllowReassoc);
  Res.setNoNaNs(FMFs.NoNaNs);
  Res.setNoInfs(FMFs.NoInfs);
  Res.setNoSignedZeros(FMFs.NoSignedZeros);
  Res.setAllowReciprocal(FMFs.AllowReciprocal);
  Res.setAllowContract(FMFs.AllowContract);
  Res.setApproxFunc(FMFs.ApproxFunc);
  return Res;
}

VPInstruction::VPInstruction(unsigned Opcode, CmpInst::Predicate Pred,
                             VPValue *A, VPValue *B, DebugLoc DL,
                             const Twine &Name)
    : VPRecipeWithIRFlags(VPDef::VPInstructionSC, ArrayRef<VPValue *>({A, B}),
                          Pred, DL),
      Opcode(Opcode), Name(Name.str()) {
  assert(Opcode == Instruction::ICmp &&
         "only ICmp predicates supported at the moment");
}

VPInstruction::VPInstruction(unsigned Opcode,
                             std::initializer_list<VPValue *> Operands,
                             FastMathFlags FMFs, DebugLoc DL, const Twine &Name)
    : VPRecipeWithIRFlags(VPDef::VPInstructionSC, Operands, FMFs, DL),
      Opcode(Opcode), Name(Name.str()) {
  // Make sure the VPInstruction is a floating-point operation.
  assert(isFPMathOp() && "this op can't take fast-math flags");
}

Value *VPInstruction::generateInstruction(VPTransformState &State,
                                          unsigned Part) {
  IRBuilderBase &Builder = State.Builder;
  Builder.SetCurrentDebugLocation(getDebugLoc());

  if (Instruction::isBinaryOp(getOpcode())) {
    if (Part != 0 && vputils::onlyFirstPartUsed(this))
      return State.get(this, 0);

    Value *A = State.get(getOperand(0), Part);
    Value *B = State.get(getOperand(1), Part);
    auto *Res =
        Builder.CreateBinOp((Instruction::BinaryOps)getOpcode(), A, B, Name);
    if (auto *I = dyn_cast<Instruction>(Res))
      setFlags(I);
    return Res;
  }

  switch (getOpcode()) {
  case VPInstruction::Not: {
    Value *A = State.get(getOperand(0), Part);
    return Builder.CreateNot(A, Name);
  }
  case Instruction::ICmp: {
    Value *A = State.get(getOperand(0), Part);
    Value *B = State.get(getOperand(1), Part);
    return Builder.CreateCmp(getPredicate(), A, B, Name);
  }
  case Instruction::Select: {
    Value *Cond = State.get(getOperand(0), Part);
    Value *Op1 = State.get(getOperand(1), Part);
    Value *Op2 = State.get(getOperand(2), Part);
    return Builder.CreateSelect(Cond, Op1, Op2, Name);
  }
  case VPInstruction::ActiveLaneMask: {
    // Get first lane of vector induction variable.
    Value *VIVElem0 = State.get(getOperand(0), VPIteration(Part, 0));
    // Get the original loop tripcount.
    Value *ScalarTC = State.get(getOperand(1), VPIteration(Part, 0));

    auto *Int1Ty = Type::getInt1Ty(Builder.getContext());
    auto *PredTy = VectorType::get(Int1Ty, State.VF);
    return Builder.CreateIntrinsic(Intrinsic::get_active_lane_mask,
                                   {PredTy, ScalarTC->getType()},
                                   {VIVElem0, ScalarTC}, nullptr, Name);
  }
  case VPInstruction::FirstOrderRecurrenceSplice: {
    // Generate code to combine the previous and current values in vector v3.
    //
    //   vector.ph:
    //     v_init = vector(..., ..., ..., a[-1])
    //     br vector.body
    //
    //   vector.body
    //     i = phi [0, vector.ph], [i+4, vector.body]
    //     v1 = phi [v_init, vector.ph], [v2, vector.body]
    //     v2 = a[i, i+1, i+2, i+3];
    //     v3 = vector(v1(3), v2(0, 1, 2))

    // For the first part, use the recurrence phi (v1), otherwise v2.
    auto *V1 = State.get(getOperand(0), 0);
    Value *PartMinus1 = Part == 0 ? V1 : State.get(getOperand(1), Part - 1);
    if (!PartMinus1->getType()->isVectorTy())
      return PartMinus1;
    Value *V2 = State.get(getOperand(1), Part);
    return Builder.CreateVectorSplice(PartMinus1, V2, -1, Name);
  }
  case VPInstruction::CalculateTripCountMinusVF: {
    Value *ScalarTC = State.get(getOperand(0), {0, 0});
    Value *Step =
        createStepForVF(Builder, ScalarTC->getType(), State.VF, State.UF);
    Value *Sub = Builder.CreateSub(ScalarTC, Step);
    Value *Cmp = Builder.CreateICmp(CmpInst::Predicate::ICMP_UGT, ScalarTC, Step);
    Value *Zero = ConstantInt::get(ScalarTC->getType(), 0);
    return Builder.CreateSelect(Cmp, Sub, Zero);
  }
  case VPInstruction::CanonicalIVIncrementForPart: {
    auto *IV = State.get(getOperand(0), VPIteration(0, 0));
    if (Part == 0)
      return IV;

    // The canonical IV is incremented by the vectorization factor (num of SIMD
    // elements) times the unroll part.
    Value *Step = createStepForVF(Builder, IV->getType(), State.VF, Part);
    return Builder.CreateAdd(IV, Step, Name, hasNoUnsignedWrap(),
                             hasNoSignedWrap());
  }
  case VPInstruction::BranchOnCond: {
    if (Part != 0)
      return nullptr;

    Value *Cond = State.get(getOperand(0), VPIteration(Part, 0));
    VPRegionBlock *ParentRegion = getParent()->getParent();
    VPBasicBlock *Header = ParentRegion->getEntryBasicBlock();

    // Replace the temporary unreachable terminator with a new conditional
    // branch, hooking it up to backward destination for exiting blocks now and
    // to forward destination(s) later when they are created.
    BranchInst *CondBr =
        Builder.CreateCondBr(Cond, Builder.GetInsertBlock(), nullptr);

    if (getParent()->isExiting())
      CondBr->setSuccessor(1, State.CFG.VPBB2IRBB[Header]);

    CondBr->setSuccessor(0, nullptr);
    Builder.GetInsertBlock()->getTerminator()->eraseFromParent();
    return CondBr;
  }
  case VPInstruction::BranchOnCount: {
    if (Part != 0)
      return nullptr;
    // First create the compare.
    Value *IV = State.get(getOperand(0), Part);
    Value *TC = State.get(getOperand(1), Part);
    Value *Cond = Builder.CreateICmpEQ(IV, TC);

    // Now create the branch.
    auto *Plan = getParent()->getPlan();
    VPRegionBlock *TopRegion = Plan->getVectorLoopRegion();
    VPBasicBlock *Header = TopRegion->getEntry()->getEntryBasicBlock();

    // Replace the temporary unreachable terminator with a new conditional
    // branch, hooking it up to backward destination (the header) now and to the
    // forward destination (the exit/middle block) later when it is created.
    // Note that CreateCondBr expects a valid BB as first argument, so we need
    // to set it to nullptr later.
    BranchInst *CondBr = Builder.CreateCondBr(Cond, Builder.GetInsertBlock(),
                                              State.CFG.VPBB2IRBB[Header]);
    CondBr->setSuccessor(0, nullptr);
    Builder.GetInsertBlock()->getTerminator()->eraseFromParent();
    return CondBr;
  }
  case VPInstruction::ComputeReductionResult: {
    if (Part != 0)
      return State.get(this, 0);

    // FIXME: The cross-recipe dependency on VPReductionPHIRecipe is temporary
    // and will be removed by breaking up the recipe further.
    auto *PhiR = cast<VPReductionPHIRecipe>(getOperand(0));
    auto *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue());
    // Get its reduction variable descriptor.
    const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor();

    RecurKind RK = RdxDesc.getRecurrenceKind();

    State.setDebugLocFrom(getDebugLoc());

    VPValue *LoopExitingDef = getOperand(1);
    Type *PhiTy = OrigPhi->getType();
    VectorParts RdxParts(State.UF);
    for (unsigned Part = 0; Part < State.UF; ++Part)
      RdxParts[Part] = State.get(LoopExitingDef, Part);

    // If the vector reduction can be performed in a smaller type, we truncate
    // then extend the loop exit value to enable InstCombine to evaluate the
    // entire expression in the smaller type.
    // TODO: Handle this in truncateToMinBW.
    if (State.VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) {
      Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), State.VF);
      for (unsigned Part = 0; Part < State.UF; ++Part)
        RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
    }
    // Reduce all of the unrolled parts into a single vector.
    Value *ReducedPartRdx = RdxParts[0];
    unsigned Op = RecurrenceDescriptor::getOpcode(RK);

    if (PhiR->isOrdered()) {
      ReducedPartRdx = RdxParts[State.UF - 1];
    } else {
      // Floating-point operations should have some FMF to enable the reduction.
      IRBuilderBase::FastMathFlagGuard FMFG(Builder);
      Builder.setFastMathFlags(RdxDesc.getFastMathFlags());
      for (unsigned Part = 1; Part < State.UF; ++Part) {
        Value *RdxPart = RdxParts[Part];
        if (Op != Instruction::ICmp && Op != Instruction::FCmp)
          ReducedPartRdx = Builder.CreateBinOp(
              (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx");
        else if (RecurrenceDescriptor::isAnyOfRecurrenceKind(RK)) {
          TrackingVH<Value> ReductionStartValue =
              RdxDesc.getRecurrenceStartValue();
          ReducedPartRdx = createAnyOfOp(Builder, ReductionStartValue, RK,
                                         ReducedPartRdx, RdxPart);
        } else
          ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart);
      }
    }

    // Create the reduction after the loop. Note that inloop reductions create
    // the target reduction in the loop using a Reduction recipe.
    if (State.VF.isVector() && !PhiR->isInLoop()) {
      ReducedPartRdx =
          createTargetReduction(Builder, RdxDesc, ReducedPartRdx, OrigPhi);
      // If the reduction can be performed in a smaller type, we need to extend
      // the reduction to the wider type before we branch to the original loop.
      if (PhiTy != RdxDesc.getRecurrenceType())
        ReducedPartRdx = RdxDesc.isSigned()
                             ? Builder.CreateSExt(ReducedPartRdx, PhiTy)
                             : Builder.CreateZExt(ReducedPartRdx, PhiTy);
    }

    // If there were stores of the reduction value to a uniform memory address
    // inside the loop, create the final store here.
    if (StoreInst *SI = RdxDesc.IntermediateStore) {
      auto *NewSI = Builder.CreateAlignedStore(
          ReducedPartRdx, SI->getPointerOperand(), SI->getAlign());
      propagateMetadata(NewSI, SI);
    }

    return ReducedPartRdx;
  }
  default:
    llvm_unreachable("Unsupported opcode for instruction");
  }
}

#if !defined(NDEBUG)
bool VPInstruction::isFPMathOp() const {
  // Inspired by FPMathOperator::classof. Notable differences are that we don't
  // support Call, PHI and Select opcodes here yet.
  return Opcode == Instruction::FAdd || Opcode == Instruction::FMul ||
         Opcode == Instruction::FNeg || Opcode == Instruction::FSub ||
         Opcode == Instruction::FDiv || Opcode == Instruction::FRem ||
         Opcode == Instruction::FCmp || Opcode == Instruction::Select;
}
#endif

void VPInstruction::execute(VPTransformState &State) {
  assert(!State.Instance && "VPInstruction executing an Instance");
  IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder);
  assert((hasFastMathFlags() == isFPMathOp() ||
          getOpcode() == Instruction::Select) &&
         "Recipe not a FPMathOp but has fast-math flags?");
  if (hasFastMathFlags())
    State.Builder.setFastMathFlags(getFastMathFlags());
  for (unsigned Part = 0; Part < State.UF; ++Part) {
    Value *GeneratedValue = generateInstruction(State, Part);
    if (!hasResult())
      continue;
    assert(GeneratedValue && "generateInstruction must produce a value");
    State.set(this, GeneratedValue, Part);
  }
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void VPInstruction::dump() const {
  VPSlotTracker SlotTracker(getParent()->getPlan());
  print(dbgs(), "", SlotTracker);
}

void VPInstruction::print(raw_ostream &O, const Twine &Indent,
                          VPSlotTracker &SlotTracker) const {
  O << Indent << "EMIT ";

  if (hasResult()) {
    printAsOperand(O, SlotTracker);
    O << " = ";
  }

  switch (getOpcode()) {
  case VPInstruction::Not:
    O << "not";
    break;
  case VPInstruction::SLPLoad:
    O << "combined load";
    break;
  case VPInstruction::SLPStore:
    O << "combined store";
    break;
  case VPInstruction::ActiveLaneMask:
    O << "active lane mask";
    break;
  case VPInstruction::FirstOrderRecurrenceSplice:
    O << "first-order splice";
    break;
  case VPInstruction::BranchOnCond:
    O << "branch-on-cond";
    break;
  case VPInstruction::CalculateTripCountMinusVF:
    O << "TC > VF ? TC - VF : 0";
    break;
  case VPInstruction::CanonicalIVIncrementForPart:
    O << "VF * Part +";
    break;
  case VPInstruction::BranchOnCount:
    O << "branch-on-count";
    break;
  case VPInstruction::ComputeReductionResult:
    O << "compute-reduction-result";
    break;
  default:
    O << Instruction::getOpcodeName(getOpcode());
  }

  printFlags(O);
  printOperands(O, SlotTracker);

  if (auto DL = getDebugLoc()) {
    O << ", !dbg ";
    DL.print(O);
  }
}
#endif

void VPWidenCallRecipe::execute(VPTransformState &State) {
  assert(State.VF.isVector() && "not widening");
  auto &CI = *cast<CallInst>(getUnderlyingInstr());
  assert(!isa<DbgInfoIntrinsic>(CI) &&
         "DbgInfoIntrinsic should have been dropped during VPlan construction");
  State.setDebugLocFrom(getDebugLoc());

  bool UseIntrinsic = VectorIntrinsicID != Intrinsic::not_intrinsic;
  FunctionType *VFTy = nullptr;
  if (Variant)
    VFTy = Variant->getFunctionType();
  for (unsigned Part = 0; Part < State.UF; ++Part) {
    SmallVector<Type *, 2> TysForDecl;
    // Add return type if intrinsic is overloaded on it.
    if (UseIntrinsic &&
        isVectorIntrinsicWithOverloadTypeAtArg(VectorIntrinsicID, -1))
      TysForDecl.push_back(
          VectorType::get(CI.getType()->getScalarType(), State.VF));
    SmallVector<Value *, 4> Args;
    for (const auto &I : enumerate(operands())) {
      // Some intrinsics have a scalar argument - don't replace it with a
      // vector.
      Value *Arg;
      if (UseIntrinsic &&
          isVectorIntrinsicWithScalarOpAtArg(VectorIntrinsicID, I.index()))
        Arg = State.get(I.value(), VPIteration(0, 0));
      // Some vectorized function variants may also take a scalar argument,
      // e.g. linear parameters for pointers. This needs to be the scalar value
      // from the start of the respective part when interleaving.
      else if (VFTy && !VFTy->getParamType(I.index())->isVectorTy())
        Arg = State.get(I.value(), VPIteration(Part, 0));
      else
        Arg = State.get(I.value(), Part);
      if (UseIntrinsic &&
          isVectorIntrinsicWithOverloadTypeAtArg(VectorIntrinsicID, I.index()))
        TysForDecl.push_back(Arg->getType());
      Args.push_back(Arg);
    }

    Function *VectorF;
    if (UseIntrinsic) {
      // Use vector version of the intrinsic.
      Module *M = State.Builder.GetInsertBlock()->getModule();
      VectorF = Intrinsic::getDeclaration(M, VectorIntrinsicID, TysForDecl);
      assert(VectorF && "Can't retrieve vector intrinsic.");
    } else {
#ifndef NDEBUG
      assert(Variant != nullptr && "Can't create vector function.");
#endif
      VectorF = Variant;
    }

    SmallVector<OperandBundleDef, 1> OpBundles;
    CI.getOperandBundlesAsDefs(OpBundles);
    CallInst *V = State.Builder.CreateCall(VectorF, Args, OpBundles);

    if (isa<FPMathOperator>(V))
      V->copyFastMathFlags(&CI);

    State.set(this, V, Part);
    State.addMetadata(V, &CI);
  }
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void VPWidenCallRecipe::print(raw_ostream &O, const Twine &Indent,
                              VPSlotTracker &SlotTracker) const {
  O << Indent << "WIDEN-CALL ";

  auto *CI = cast<CallInst>(getUnderlyingInstr());
  if (CI->getType()->isVoidTy())
    O << "void ";
  else {
    printAsOperand(O, SlotTracker);
    O << " = ";
  }

  O << "call @" << CI->getCalledFunction()->getName() << "(";
  printOperands(O, SlotTracker);
  O << ")";

  if (VectorIntrinsicID)
    O << " (using vector intrinsic)";
  else {
    O << " (using library function";
    if (Variant->hasName())
      O << ": " << Variant->getName();
    O << ")";
  }
}

void VPWidenSelectRecipe::print(raw_ostream &O, const Twine &Indent,
                                VPSlotTracker &SlotTracker) const {
  O << Indent << "WIDEN-SELECT ";
  printAsOperand(O, SlotTracker);
  O << " = select ";
  getOperand(0)->printAsOperand(O, SlotTracker);
  O << ", ";
  getOperand(1)->printAsOperand(O, SlotTracker);
  O << ", ";
  getOperand(2)->printAsOperand(O, SlotTracker);
  O << (isInvariantCond() ? " (condition is loop invariant)" : "");
}
#endif

void VPWidenSelectRecipe::execute(VPTransformState &State) {
  State.setDebugLocFrom(getDebugLoc());

  // The condition can be loop invariant but still defined inside the
  // loop. This means that we can't just use the original 'cond' value.
  // We have to take the 'vectorized' value and pick the first lane.
  // Instcombine will make this a no-op.
  auto *InvarCond =
      isInvariantCond() ? State.get(getCond(), VPIteration(0, 0)) : nullptr;

  for (unsigned Part = 0; Part < State.UF; ++Part) {
    Value *Cond = InvarCond ? InvarCond : State.get(getCond(), Part);
    Value *Op0 = State.get(getOperand(1), Part);
    Value *Op1 = State.get(getOperand(2), Part);
    Value *Sel = State.Builder.CreateSelect(Cond, Op0, Op1);
    State.set(this, Sel, Part);
    State.addMetadata(Sel, dyn_cast_or_null<Instruction>(getUnderlyingValue()));
  }
}

VPRecipeWithIRFlags::FastMathFlagsTy::FastMathFlagsTy(
    const FastMathFlags &FMF) {
  AllowReassoc = FMF.allowReassoc();
  NoNaNs = FMF.noNaNs();
  NoInfs = FMF.noInfs();
  NoSignedZeros = FMF.noSignedZeros();
  AllowReciprocal = FMF.allowReciprocal();
  AllowContract = FMF.allowContract();
  ApproxFunc = FMF.approxFunc();
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void VPRecipeWithIRFlags::printFlags(raw_ostream &O) const {
  switch (OpType) {
  case OperationType::Cmp:
    O << " " << CmpInst::getPredicateName(getPredicate());
    break;
  case OperationType::DisjointOp:
    if (DisjointFlags.IsDisjoint)
      O << " disjoint";
    break;
  case OperationType::PossiblyExactOp:
    if (ExactFlags.IsExact)
      O << " exact";
    break;
  case OperationType::OverflowingBinOp:
    if (WrapFlags.HasNUW)
      O << " nuw";
    if (WrapFlags.HasNSW)
      O << " nsw";
    break;
  case OperationType::FPMathOp:
    getFastMathFlags().print(O);
    break;
  case OperationType::GEPOp:
    if (GEPFlags.IsInBounds)
      O << " inbounds";
    break;
  case OperationType::NonNegOp:
    if (NonNegFlags.NonNeg)
      O << " nneg";
    break;
  case OperationType::Other:
    break;
  }
  if (getNumOperands() > 0)
    O << " ";
}
#endif

void VPWidenRecipe::execute(VPTransformState &State) {
  State.setDebugLocFrom(getDebugLoc());
  auto &Builder = State.Builder;
  switch (Opcode) {
  case Instruction::Call:
  case Instruction::Br:
  case Instruction::PHI:
  case Instruction::GetElementPtr:
  case Instruction::Select:
    llvm_unreachable("This instruction is handled by a different recipe.");
  case Instruction::UDiv:
  case Instruction::SDiv:
  case Instruction::SRem:
  case Instruction::URem:
  case Instruction::Add:
  case Instruction::FAdd:
  case Instruction::Sub:
  case Instruction::FSub:
  case Instruction::FNeg:
  case Instruction::Mul:
  case Instruction::FMul:
  case Instruction::FDiv:
  case Instruction::FRem:
  case Instruction::Shl:
  case Instruction::LShr:
  case Instruction::AShr:
  case Instruction::And:
  case Instruction::Or:
  case Instruction::Xor: {
    // Just widen unops and binops.
    for (unsigned Part = 0; Part < State.UF; ++Part) {
      SmallVector<Value *, 2> Ops;
      for (VPValue *VPOp : operands())
        Ops.push_back(State.get(VPOp, Part));

      Value *V = Builder.CreateNAryOp(Opcode, Ops);

      if (auto *VecOp = dyn_cast<Instruction>(V))
        setFlags(VecOp);

      // Use this vector value for all users of the original instruction.
      State.set(this, V, Part);
      State.addMetadata(V, dyn_cast_or_null<Instruction>(getUnderlyingValue()));
    }

    break;
  }
  case Instruction::Freeze: {
    for (unsigned Part = 0; Part < State.UF; ++Part) {
      Value *Op = State.get(getOperand(0), Part);

      Value *Freeze = Builder.CreateFreeze(Op);
      State.set(this, Freeze, Part);
    }
    break;
  }
  case Instruction::ICmp:
  case Instruction::FCmp: {
    // Widen compares. Generate vector compares.
    bool FCmp = Opcode == Instruction::FCmp;
    for (unsigned Part = 0; Part < State.UF; ++Part) {
      Value *A = State.get(getOperand(0), Part);
      Value *B = State.get(getOperand(1), Part);
      Value *C = nullptr;
      if (FCmp) {
        // Propagate fast math flags.
        IRBuilder<>::FastMathFlagGuard FMFG(Builder);
        if (auto *I = dyn_cast_or_null<Instruction>(getUnderlyingValue()))
          Builder.setFastMathFlags(I->getFastMathFlags());
        C = Builder.CreateFCmp(getPredicate(), A, B);
      } else {
        C = Builder.CreateICmp(getPredicate(), A, B);
      }
      State.set(this, C, Part);
      State.addMetadata(C, dyn_cast_or_null<Instruction>(getUnderlyingValue()));
    }

    break;
  }
  default:
    // This instruction is not vectorized by simple widening.
    LLVM_DEBUG(dbgs() << "LV: Found an unhandled opcode : "
                      << Instruction::getOpcodeName(Opcode));
    llvm_unreachable("Unhandled instruction!");
  } // end of switch.

#if !defined(NDEBUG)
  // Verify that VPlan type inference results agree with the type of the
  // generated values.
  for (unsigned Part = 0; Part < State.UF; ++Part) {
    assert(VectorType::get(State.TypeAnalysis.inferScalarType(this),
                           State.VF) == State.get(this, Part)->getType() &&
           "inferred type and type from generated instructions do not match");
  }
#endif
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void VPWidenRecipe::print(raw_ostream &O, const Twine &Indent,
                          VPSlotTracker &SlotTracker) const {
  O << Indent << "WIDEN ";
  printAsOperand(O, SlotTracker);
  O << " = " << Instruction::getOpcodeName(Opcode);
  printFlags(O);
  printOperands(O, SlotTracker);
}
#endif

void VPWidenCastRecipe::execute(VPTransformState &State) {
  State.setDebugLocFrom(getDebugLoc());
  auto &Builder = State.Builder;
  /// Vectorize casts.
  assert(State.VF.isVector() && "Not vectorizing?");
  Type *DestTy = VectorType::get(getResultType(), State.VF);
  VPValue *Op = getOperand(0);
  for (unsigned Part = 0; Part < State.UF; ++Part) {
    if (Part > 0 && Op->isLiveIn()) {
      // FIXME: Remove once explicit unrolling is implemented using VPlan.
      State.set(this, State.get(this, 0), Part);
      continue;
    }
    Value *A = State.get(Op, Part);
    Value *Cast = Builder.CreateCast(Instruction::CastOps(Opcode), A, DestTy);
    State.set(this, Cast, Part);
    State.addMetadata(Cast, cast_or_null<Instruction>(getUnderlyingValue()));
  }
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void VPWidenCastRecipe::print(raw_ostream &O, const Twine &Indent,
                              VPSlotTracker &SlotTracker) const {
  O << Indent << "WIDEN-CAST ";
  printAsOperand(O, SlotTracker);
  O << " = " << Instruction::getOpcodeName(Opcode) << " ";
  printFlags(O);
  printOperands(O, SlotTracker);
  O << " to " << *getResultType();
}
#endif

/// This function adds
/// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...)
/// to each vector element of Val. The sequence starts at StartIndex.
/// \p Opcode is relevant for FP induction variable.
static Value *getStepVector(Value *Val, Value *StartIdx, Value *Step,
                            Instruction::BinaryOps BinOp, ElementCount VF,
                            IRBuilderBase &Builder) {
  assert(VF.isVector() && "only vector VFs are supported");

  // Create and check the types.
  auto *ValVTy = cast<VectorType>(Val->getType());
  ElementCount VLen = ValVTy->getElementCount();

  Type *STy = Val->getType()->getScalarType();
  assert((STy->isIntegerTy() || STy->isFloatingPointTy()) &&
         "Induction Step must be an integer or FP");
  assert(Step->getType() == STy && "Step has wrong type");

  SmallVector<Constant *, 8> Indices;

  // Create a vector of consecutive numbers from zero to VF.
  VectorType *InitVecValVTy = ValVTy;
  if (STy->isFloatingPointTy()) {
    Type *InitVecValSTy =
        IntegerType::get(STy->getContext(), STy->getScalarSizeInBits());
    InitVecValVTy = VectorType::get(InitVecValSTy, VLen);
  }
  Value *InitVec = Builder.CreateStepVector(InitVecValVTy);

  // Splat the StartIdx
  Value *StartIdxSplat = Builder.CreateVectorSplat(VLen, StartIdx);

  if (STy->isIntegerTy()) {
    InitVec = Builder.CreateAdd(InitVec, StartIdxSplat);
    Step = Builder.CreateVectorSplat(VLen, Step);
    assert(Step->getType() == Val->getType() && "Invalid step vec");
    // FIXME: The newly created binary instructions should contain nsw/nuw
    // flags, which can be found from the original scalar operations.
    Step = Builder.CreateMul(InitVec, Step);
    return Builder.CreateAdd(Val, Step, "induction");
  }

  // Floating point induction.
  assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) &&
         "Binary Opcode should be specified for FP induction");
  InitVec = Builder.CreateUIToFP(InitVec, ValVTy);
  InitVec = Builder.CreateFAdd(InitVec, StartIdxSplat);

  Step = Builder.CreateVectorSplat(VLen, Step);
  Value *MulOp = Builder.CreateFMul(InitVec, Step);
  return Builder.CreateBinOp(BinOp, Val, MulOp, "induction");
}

/// A helper function that returns an integer or floating-point constant with
/// value C.
static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) {
  return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C)
                           : ConstantFP::get(Ty, C);
}

static Value *getRuntimeVFAsFloat(IRBuilderBase &B, Type *FTy,
                                  ElementCount VF) {
  assert(FTy->isFloatingPointTy() && "Expected floating point type!");
  Type *IntTy = IntegerType::get(FTy->getContext(), FTy->getScalarSizeInBits());
  Value *RuntimeVF = getRuntimeVF(B, IntTy, VF);
  return B.CreateUIToFP(RuntimeVF, FTy);
}

void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) {
  assert(!State.Instance && "Int or FP induction being replicated.");

  Value *Start = getStartValue()->getLiveInIRValue();
  const InductionDescriptor &ID = getInductionDescriptor();
  TruncInst *Trunc = getTruncInst();
  IRBuilderBase &Builder = State.Builder;
  assert(IV->getType() == ID.getStartValue()->getType() && "Types must match");
  assert(State.VF.isVector() && "must have vector VF");

  // The value from the original loop to which we are mapping the new induction
  // variable.
  Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV;

  // Fast-math-flags propagate from the original induction instruction.
  IRBuilder<>::FastMathFlagGuard FMFG(Builder);
  if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp()))
    Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags());

  // Now do the actual transformations, and start with fetching the step value.
  Value *Step = State.get(getStepValue(), VPIteration(0, 0));

  assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
         "Expected either an induction phi-node or a truncate of it!");

  // Construct the initial value of the vector IV in the vector loop preheader
  auto CurrIP = Builder.saveIP();
  BasicBlock *VectorPH = State.CFG.getPreheaderBBFor(this);
  Builder.SetInsertPoint(VectorPH->getTerminator());
  if (isa<TruncInst>(EntryVal)) {
    assert(Start->getType()->isIntegerTy() &&
           "Truncation requires an integer type");
    auto *TruncType = cast<IntegerType>(EntryVal->getType());
    Step = Builder.CreateTrunc(Step, TruncType);
    Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType);
  }

  Value *Zero = getSignedIntOrFpConstant(Start->getType(), 0);
  Value *SplatStart = Builder.CreateVectorSplat(State.VF, Start);
  Value *SteppedStart = getStepVector(
      SplatStart, Zero, Step, ID.getInductionOpcode(), State.VF, State.Builder);

  // We create vector phi nodes for both integer and floating-point induction
  // variables. Here, we determine the kind of arithmetic we will perform.
  Instruction::BinaryOps AddOp;
  Instruction::BinaryOps MulOp;
  if (Step->getType()->isIntegerTy()) {
    AddOp = Instruction::Add;
    MulOp = Instruction::Mul;
  } else {
    AddOp = ID.getInductionOpcode();
    MulOp = Instruction::FMul;
  }

  // Multiply the vectorization factor by the step using integer or
  // floating-point arithmetic as appropriate.
  Type *StepType = Step->getType();
  Value *RuntimeVF;
  if (Step->getType()->isFloatingPointTy())
    RuntimeVF = getRuntimeVFAsFloat(Builder, StepType, State.VF);
  else
    RuntimeVF = getRuntimeVF(Builder, StepType, State.VF);
  Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF);

  // Create a vector splat to use in the induction update.
  //
  // FIXME: If the step is non-constant, we create the vector splat with
  //        IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't
  //        handle a constant vector splat.
  Value *SplatVF = isa<Constant>(Mul)
                       ? ConstantVector::getSplat(State.VF, cast<Constant>(Mul))
                       : Builder.CreateVectorSplat(State.VF, Mul);
  Builder.restoreIP(CurrIP);

  // We may need to add the step a number of times, depending on the unroll
  // factor. The last of those goes into the PHI.
  PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind");
  VecInd->insertBefore(State.CFG.PrevBB->getFirstInsertionPt());
  VecInd->setDebugLoc(EntryVal->getDebugLoc());
  Instruction *LastInduction = VecInd;
  for (unsigned Part = 0; Part < State.UF; ++Part) {
    State.set(this, LastInduction, Part);

    if (isa<TruncInst>(EntryVal))
      State.addMetadata(LastInduction, EntryVal);

    LastInduction = cast<Instruction>(
        Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"));
    LastInduction->setDebugLoc(EntryVal->getDebugLoc());
  }

  LastInduction->setName("vec.ind.next");
  VecInd->addIncoming(SteppedStart, VectorPH);
  // Add induction update using an incorrect block temporarily. The phi node
  // will be fixed after VPlan execution. Note that at this point the latch
  // block cannot be used, as it does not exist yet.
  // TODO: Model increment value in VPlan, by turning the recipe into a
  // multi-def and a subclass of VPHeaderPHIRecipe.
  VecInd->addIncoming(LastInduction, VectorPH);
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void VPWidenIntOrFpInductionRecipe::print(raw_ostream &O, const Twine &Indent,
                                          VPSlotTracker &SlotTracker) const {
  O << Indent << "WIDEN-INDUCTION";
  if (getTruncInst()) {
    O << "\\l\"";
    O << " +\n" << Indent << "\"  " << VPlanIngredient(IV) << "\\l\"";
    O << " +\n" << Indent << "\"  ";
    getVPValue(0)->printAsOperand(O, SlotTracker);
  } else
    O << " " << VPlanIngredient(IV);

  O << ", ";
  getStepValue()->printAsOperand(O, SlotTracker);
}
#endif

bool VPWidenIntOrFpInductionRecipe::isCanonical() const {
  // The step may be defined by a recipe in the preheader (e.g. if it requires
  // SCEV expansion), but for the canonical induction the step is required to be
  // 1, which is represented as live-in.
  if (getStepValue()->getDefiningRecipe())
    return false;
  auto *StepC = dyn_cast<ConstantInt>(getStepValue()->getLiveInIRValue());
  auto *StartC = dyn_cast<ConstantInt>(getStartValue()->getLiveInIRValue());
  return StartC && StartC->isZero() && StepC && StepC->isOne();
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void VPDerivedIVRecipe::print(raw_ostream &O, const Twine &Indent,
                              VPSlotTracker &SlotTracker) const {
  O << Indent;
  printAsOperand(O, SlotTracker);
  O << Indent << "= DERIVED-IV ";
  getStartValue()->printAsOperand(O, SlotTracker);
  O << " + ";
  getCanonicalIV()->printAsOperand(O, SlotTracker);
  O << " * ";
  getStepValue()->printAsOperand(O, SlotTracker);

  if (TruncResultTy)
    O << " (truncated to " << *TruncResultTy << ")";
}
#endif

void VPScalarIVStepsRecipe::execute(VPTransformState &State) {
  // Fast-math-flags propagate from the original induction instruction.
  IRBuilder<>::FastMathFlagGuard FMFG(State.Builder);
  if (hasFastMathFlags())
    State.Builder.setFastMathFlags(getFastMathFlags());

  /// Compute scalar induction steps. \p ScalarIV is the scalar induction
  /// variable on which to base the steps, \p Step is the size of the step.

  Value *BaseIV = State.get(getOperand(0), VPIteration(0, 0));
  Value *Step = State.get(getStepValue(), VPIteration(0, 0));
  IRBuilderBase &Builder = State.Builder;

  // Ensure step has the same type as that of scalar IV.
  Type *BaseIVTy = BaseIV->getType()->getScalarType();
  if (BaseIVTy != Step->getType()) {
    // TODO: Also use VPDerivedIVRecipe when only the step needs truncating, to
    // avoid separate truncate here.
    assert(Step->getType()->isIntegerTy() &&
           "Truncation requires an integer step");
    Step = State.Builder.CreateTrunc(Step, BaseIVTy);
  }

  // We build scalar steps for both integer and floating-point induction
  // variables. Here, we determine the kind of arithmetic we will perform.
  Instruction::BinaryOps AddOp;
  Instruction::BinaryOps MulOp;
  if (BaseIVTy->isIntegerTy()) {
    AddOp = Instruction::Add;
    MulOp = Instruction::Mul;
  } else {
    AddOp = InductionOpcode;
    MulOp = Instruction::FMul;
  }

  // Determine the number of scalars we need to generate for each unroll
  // iteration.
  bool FirstLaneOnly = vputils::onlyFirstLaneUsed(this);
  // Compute the scalar steps and save the results in State.
  Type *IntStepTy =
      IntegerType::get(BaseIVTy->getContext(), BaseIVTy->getScalarSizeInBits());
  Type *VecIVTy = nullptr;
  Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr;
  if (!FirstLaneOnly && State.VF.isScalable()) {
    VecIVTy = VectorType::get(BaseIVTy, State.VF);
    UnitStepVec =
        Builder.CreateStepVector(VectorType::get(IntStepTy, State.VF));
    SplatStep = Builder.CreateVectorSplat(State.VF, Step);
    SplatIV = Builder.CreateVectorSplat(State.VF, BaseIV);
  }

  unsigned StartPart = 0;
  unsigned EndPart = State.UF;
  unsigned StartLane = 0;
  unsigned EndLane = FirstLaneOnly ? 1 : State.VF.getKnownMinValue();
  if (State.Instance) {
    StartPart = State.Instance->Part;
    EndPart = StartPart + 1;
    StartLane = State.Instance->Lane.getKnownLane();
    EndLane = StartLane + 1;
  }
  for (unsigned Part = StartPart; Part < EndPart; ++Part) {
    Value *StartIdx0 = createStepForVF(Builder, IntStepTy, State.VF, Part);

    if (!FirstLaneOnly && State.VF.isScalable()) {
      auto *SplatStartIdx = Builder.CreateVectorSplat(State.VF, StartIdx0);
      auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec);
      if (BaseIVTy->isFloatingPointTy())
        InitVec = Builder.CreateSIToFP(InitVec, VecIVTy);
      auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep);
      auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul);
      State.set(this, Add, Part);
      // It's useful to record the lane values too for the known minimum number
      // of elements so we do those below. This improves the code quality when
      // trying to extract the first element, for example.
    }

    if (BaseIVTy->isFloatingPointTy())
      StartIdx0 = Builder.CreateSIToFP(StartIdx0, BaseIVTy);

    for (unsigned Lane = StartLane; Lane < EndLane; ++Lane) {
      Value *StartIdx = Builder.CreateBinOp(
          AddOp, StartIdx0, getSignedIntOrFpConstant(BaseIVTy, Lane));
      // The step returned by `createStepForVF` is a runtime-evaluated value
      // when VF is scalable. Otherwise, it should be folded into a Constant.
      assert((State.VF.isScalable() || isa<Constant>(StartIdx)) &&
             "Expected StartIdx to be folded to a constant when VF is not "
             "scalable");
      auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step);
      auto *Add = Builder.CreateBinOp(AddOp, BaseIV, Mul);
      State.set(this, Add, VPIteration(Part, Lane));
    }
  }
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void VPScalarIVStepsRecipe::print(raw_ostream &O, const Twine &Indent,
                                  VPSlotTracker &SlotTracker) const {
  O << Indent;
  printAsOperand(O, SlotTracker);
  O << " = SCALAR-STEPS ";
  printOperands(O, SlotTracker);
}
#endif

void VPWidenGEPRecipe::execute(VPTransformState &State) {
  assert(State.VF.isVector() && "not widening");
  auto *GEP = cast<GetElementPtrInst>(getUnderlyingInstr());
  // Construct a vector GEP by widening the operands of the scalar GEP as
  // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP
  // results in a vector of pointers when at least one operand of the GEP
  // is vector-typed. Thus, to keep the representation compact, we only use
  // vector-typed operands for loop-varying values.

  if (areAllOperandsInvariant()) {
    // If we are vectorizing, but the GEP has only loop-invariant operands,
    // the GEP we build (by only using vector-typed operands for
    // loop-varying values) would be a scalar pointer. Thus, to ensure we
    // produce a vector of pointers, we need to either arbitrarily pick an
    // operand to broadcast, or broadcast a clone of the original GEP.
    // Here, we broadcast a clone of the original.
    //
    // TODO: If at some point we decide to scalarize instructions having
    //       loop-invariant operands, this special case will no longer be
    //       required. We would add the scalarization decision to
    //       collectLoopScalars() and teach getVectorValue() to broadcast
    //       the lane-zero scalar value.
    SmallVector<Value *> Ops;
    for (unsigned I = 0, E = getNumOperands(); I != E; I++)
      Ops.push_back(State.get(getOperand(I), VPIteration(0, 0)));

    auto *NewGEP =
        State.Builder.CreateGEP(GEP->getSourceElementType(), Ops[0],
                                ArrayRef(Ops).drop_front(), "", isInBounds());
    for (unsigned Part = 0; Part < State.UF; ++Part) {
      Value *EntryPart = State.Builder.CreateVectorSplat(State.VF, NewGEP);
      State.set(this, EntryPart, Part);
      State.addMetadata(EntryPart, GEP);
    }
  } else {
    // If the GEP has at least one loop-varying operand, we are sure to
    // produce a vector of pointers. But if we are only unrolling, we want
    // to produce a scalar GEP for each unroll part. Thus, the GEP we
    // produce with the code below will be scalar (if VF == 1) or vector
    // (otherwise). Note that for the unroll-only case, we still maintain
    // values in the vector mapping with initVector, as we do for other
    // instructions.
    for (unsigned Part = 0; Part < State.UF; ++Part) {
      // The pointer operand of the new GEP. If it's loop-invariant, we
      // won't broadcast it.
      auto *Ptr = isPointerLoopInvariant()
                      ? State.get(getOperand(0), VPIteration(0, 0))
                      : State.get(getOperand(0), Part);

      // Collect all the indices for the new GEP. If any index is
      // loop-invariant, we won't broadcast it.
      SmallVector<Value *, 4> Indices;
      for (unsigned I = 1, E = getNumOperands(); I < E; I++) {
        VPValue *Operand = getOperand(I);
        if (isIndexLoopInvariant(I - 1))
          Indices.push_back(State.get(Operand, VPIteration(0, 0)));
        else
          Indices.push_back(State.get(Operand, Part));
      }

      // Create the new GEP. Note that this GEP may be a scalar if VF == 1,
      // but it should be a vector, otherwise.
      auto *NewGEP = State.Builder.CreateGEP(GEP->getSourceElementType(), Ptr,
                                             Indices, "", isInBounds());
      assert((State.VF.isScalar() || NewGEP->getType()->isVectorTy()) &&
             "NewGEP is not a pointer vector");
      State.set(this, NewGEP, Part);
      State.addMetadata(NewGEP, GEP);
    }
  }
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void VPWidenGEPRecipe::print(raw_ostream &O, const Twine &Indent,
                             VPSlotTracker &SlotTracker) const {
  O << Indent << "WIDEN-GEP ";
  O << (isPointerLoopInvariant() ? "Inv" : "Var");
  for (size_t I = 0; I < getNumOperands() - 1; ++I)
    O << "[" << (isIndexLoopInvariant(I) ? "Inv" : "Var") << "]";

  O << " ";
  printAsOperand(O, SlotTracker);
  O << " = getelementptr";
  printFlags(O);
  printOperands(O, SlotTracker);
}
#endif

void VPVectorPointerRecipe ::execute(VPTransformState &State) {
  auto &Builder = State.Builder;
  State.setDebugLocFrom(getDebugLoc());
  for (unsigned Part = 0; Part < State.UF; ++Part) {
    // Calculate the pointer for the specific unroll-part.
    Value *PartPtr = nullptr;
    // Use i32 for the gep index type when the value is constant,
    // or query DataLayout for a more suitable index type otherwise.
    const DataLayout &DL =
        Builder.GetInsertBlock()->getModule()->getDataLayout();
    Type *IndexTy = State.VF.isScalable() && (IsReverse || Part > 0)
                        ? DL.getIndexType(IndexedTy->getPointerTo())
                        : Builder.getInt32Ty();
    Value *Ptr = State.get(getOperand(0), VPIteration(0, 0));
    bool InBounds = isInBounds();
    if (IsReverse) {
      // If the address is consecutive but reversed, then the
      // wide store needs to start at the last vector element.
      // RunTimeVF =  VScale * VF.getKnownMinValue()
      // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue()
      Value *RunTimeVF = getRuntimeVF(Builder, IndexTy, State.VF);
      // NumElt = -Part * RunTimeVF
      Value *NumElt = Builder.CreateMul(
          ConstantInt::get(IndexTy, -(int64_t)Part), RunTimeVF);
      // LastLane = 1 - RunTimeVF
      Value *LastLane =
          Builder.CreateSub(ConstantInt::get(IndexTy, 1), RunTimeVF);
      PartPtr = Builder.CreateGEP(IndexedTy, Ptr, NumElt, "", InBounds);
      PartPtr = Builder.CreateGEP(IndexedTy, PartPtr, LastLane, "", InBounds);
    } else {
      Value *Increment = createStepForVF(Builder, IndexTy, State.VF, Part);
      PartPtr = Builder.CreateGEP(IndexedTy, Ptr, Increment, "", InBounds);
    }

    State.set(this, PartPtr, Part);
  }
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void VPVectorPointerRecipe::print(raw_ostream &O, const Twine &Indent,
                                  VPSlotTracker &SlotTracker) const {
  O << Indent;
  printAsOperand(O, SlotTracker);
  O << " = vector-pointer ";
  if (IsReverse)
    O << "(reverse) ";

  printOperands(O, SlotTracker);
}
#endif

void VPBlendRecipe::execute(VPTransformState &State) {
  State.setDebugLocFrom(getDebugLoc());
  // We know that all PHIs in non-header blocks are converted into
  // selects, so we don't have to worry about the insertion order and we
  // can just use the builder.
  // At this point we generate the predication tree. There may be
  // duplications since this is a simple recursive scan, but future
  // optimizations will clean it up.

  unsigned NumIncoming = getNumIncomingValues();

  // Generate a sequence of selects of the form:
  // SELECT(Mask3, In3,
  //        SELECT(Mask2, In2,
  //               SELECT(Mask1, In1,
  //                      In0)))
  // Note that Mask0 is never used: lanes for which no path reaches this phi and
  // are essentially undef are taken from In0.
 VectorParts Entry(State.UF);
  for (unsigned In = 0; In < NumIncoming; ++In) {
    for (unsigned Part = 0; Part < State.UF; ++Part) {
      // We might have single edge PHIs (blocks) - use an identity
      // 'select' for the first PHI operand.
      Value *In0 = State.get(getIncomingValue(In), Part);
      if (In == 0)
        Entry[Part] = In0; // Initialize with the first incoming value.
      else {
        // Select between the current value and the previous incoming edge
        // based on the incoming mask.
        Value *Cond = State.get(getMask(In), Part);
        Entry[Part] =
            State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi");
      }
    }
  }
  for (unsigned Part = 0; Part < State.UF; ++Part)
    State.set(this, Entry[Part], Part);
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void VPBlendRecipe::print(raw_ostream &O, const Twine &Indent,
                          VPSlotTracker &SlotTracker) const {
  O << Indent << "BLEND ";
  printAsOperand(O, SlotTracker);
  O << " =";
  if (getNumIncomingValues() == 1) {
    // Not a User of any mask: not really blending, this is a
    // single-predecessor phi.
    O << " ";
    getIncomingValue(0)->printAsOperand(O, SlotTracker);
  } else {
    for (unsigned I = 0, E = getNumIncomingValues(); I < E; ++I) {
      O << " ";
      getIncomingValue(I)->printAsOperand(O, SlotTracker);
      O << "/";
      getMask(I)->printAsOperand(O, SlotTracker);
    }
  }
}

void VPReductionRecipe::print(raw_ostream &O, const Twine &Indent,
                              VPSlotTracker &SlotTracker) const {
  O << Indent << "REDUCE ";
  printAsOperand(O, SlotTracker);
  O << " = ";
  getChainOp()->printAsOperand(O, SlotTracker);
  O << " +";
  if (isa<FPMathOperator>(getUnderlyingInstr()))
    O << getUnderlyingInstr()->getFastMathFlags();
  O << " reduce." << Instruction::getOpcodeName(RdxDesc.getOpcode()) << " (";
  getVecOp()->printAsOperand(O, SlotTracker);
  if (getCondOp()) {
    O << ", ";
    getCondOp()->printAsOperand(O, SlotTracker);
  }
  O << ")";
  if (RdxDesc.IntermediateStore)
    O << " (with final reduction value stored in invariant address sank "
         "outside of loop)";
}
#endif

bool VPReplicateRecipe::shouldPack() const {
  // Find if the recipe is used by a widened recipe via an intervening
  // VPPredInstPHIRecipe. In this case, also pack the scalar values in a vector.
  return any_of(users(), [](const VPUser *U) {
    if (auto *PredR = dyn_cast<VPPredInstPHIRecipe>(U))
      return any_of(PredR->users(), [PredR](const VPUser *U) {
        return !U->usesScalars(PredR);
      });
    return false;
  });
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void VPReplicateRecipe::print(raw_ostream &O, const Twine &Indent,
                              VPSlotTracker &SlotTracker) const {
  O << Indent << (IsUniform ? "CLONE " : "REPLICATE ");

  if (!getUnderlyingInstr()->getType()->isVoidTy()) {
    printAsOperand(O, SlotTracker);
    O << " = ";
  }
  if (auto *CB = dyn_cast<CallBase>(getUnderlyingInstr())) {
    O << "call";
    printFlags(O);
    O << "@" << CB->getCalledFunction()->getName() << "(";
    interleaveComma(make_range(op_begin(), op_begin() + (getNumOperands() - 1)),
                    O, [&O, &SlotTracker](VPValue *Op) {
                      Op->printAsOperand(O, SlotTracker);
                    });
    O << ")";
  } else {
    O << Instruction::getOpcodeName(getUnderlyingInstr()->getOpcode());
    printFlags(O);
    printOperands(O, SlotTracker);
  }

  if (shouldPack())
    O << " (S->V)";
}
#endif

void VPBranchOnMaskRecipe::execute(VPTransformState &State) {
  assert(State.Instance && "Branch on Mask works only on single instance.");

  unsigned Part = State.Instance->Part;
  unsigned Lane = State.Instance->Lane.getKnownLane();

  Value *ConditionBit = nullptr;
  VPValue *BlockInMask = getMask();
  if (BlockInMask) {
    ConditionBit = State.get(BlockInMask, Part);
    if (ConditionBit->getType()->isVectorTy())
      ConditionBit = State.Builder.CreateExtractElement(
          ConditionBit, State.Builder.getInt32(Lane));
  } else // Block in mask is all-one.
    ConditionBit = State.Builder.getTrue();

  // Replace the temporary unreachable terminator with a new conditional branch,
  // whose two destinations will be set later when they are created.
  auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
  assert(isa<UnreachableInst>(CurrentTerminator) &&
         "Expected to replace unreachable terminator with conditional branch.");
  auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit);
  CondBr->setSuccessor(0, nullptr);
  ReplaceInstWithInst(CurrentTerminator, CondBr);
}

void VPPredInstPHIRecipe::execute(VPTransformState &State) {
  assert(State.Instance && "Predicated instruction PHI works per instance.");
  Instruction *ScalarPredInst =
      cast<Instruction>(State.get(getOperand(0), *State.Instance));
  BasicBlock *PredicatedBB = ScalarPredInst->getParent();
  BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor();
  assert(PredicatingBB && "Predicated block has no single predecessor.");
  assert(isa<VPReplicateRecipe>(getOperand(0)) &&
         "operand must be VPReplicateRecipe");

  // By current pack/unpack logic we need to generate only a single phi node: if
  // a vector value for the predicated instruction exists at this point it means
  // the instruction has vector users only, and a phi for the vector value is
  // needed. In this case the recipe of the predicated instruction is marked to
  // also do that packing, thereby "hoisting" the insert-element sequence.
  // Otherwise, a phi node for the scalar value is needed.
  unsigned Part = State.Instance->Part;
  if (State.hasVectorValue(getOperand(0), Part)) {
    Value *VectorValue = State.get(getOperand(0), Part);
    InsertElementInst *IEI = cast<InsertElementInst>(VectorValue);
    PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2);
    VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector.
    VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element.
    if (State.hasVectorValue(this, Part))
      State.reset(this, VPhi, Part);
    else
      State.set(this, VPhi, Part);
    // NOTE: Currently we need to update the value of the operand, so the next
    // predicated iteration inserts its generated value in the correct vector.
    State.reset(getOperand(0), VPhi, Part);
  } else {
    Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType();
    PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
    Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()),
                     PredicatingBB);
    Phi->addIncoming(ScalarPredInst, PredicatedBB);
    if (State.hasScalarValue(this, *State.Instance))
      State.reset(this, Phi, *State.Instance);
    else
      State.set(this, Phi, *State.Instance);
    // NOTE: Currently we need to update the value of the operand, so the next
    // predicated iteration inserts its generated value in the correct vector.
    State.reset(getOperand(0), Phi, *State.Instance);
  }
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void VPPredInstPHIRecipe::print(raw_ostream &O, const Twine &Indent,
                                VPSlotTracker &SlotTracker) const {
  O << Indent << "PHI-PREDICATED-INSTRUCTION ";
  printAsOperand(O, SlotTracker);
  O << " = ";
  printOperands(O, SlotTracker);
}

void VPWidenMemoryInstructionRecipe::print(raw_ostream &O, const Twine &Indent,
                                           VPSlotTracker &SlotTracker) const {
  O << Indent << "WIDEN ";

  if (!isStore()) {
    getVPSingleValue()->printAsOperand(O, SlotTracker);
    O << " = ";
  }
  O << Instruction::getOpcodeName(Ingredient.getOpcode()) << " ";

  printOperands(O, SlotTracker);
}
#endif

void VPCanonicalIVPHIRecipe::execute(VPTransformState &State) {
  Value *Start = getStartValue()->getLiveInIRValue();
  PHINode *EntryPart = PHINode::Create(Start->getType(), 2, "index");
  EntryPart->insertBefore(State.CFG.PrevBB->getFirstInsertionPt());

  BasicBlock *VectorPH = State.CFG.getPreheaderBBFor(this);
  EntryPart->addIncoming(Start, VectorPH);
  EntryPart->setDebugLoc(getDebugLoc());
  for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part)
    State.set(this, EntryPart, Part);
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void VPCanonicalIVPHIRecipe::print(raw_ostream &O, const Twine &Indent,
                                   VPSlotTracker &SlotTracker) const {
  O << Indent << "EMIT ";
  printAsOperand(O, SlotTracker);
  O << " = CANONICAL-INDUCTION ";
  printOperands(O, SlotTracker);
}
#endif

bool VPCanonicalIVPHIRecipe::isCanonical(
    InductionDescriptor::InductionKind Kind, VPValue *Start, VPValue *Step,
    Type *Ty) const {
  // The types must match and it must be an integer induction.
  if (Ty != getScalarType() || Kind != InductionDescriptor::IK_IntInduction)
    return false;
  // Start must match the start value of this canonical induction.
  if (Start != getStartValue())
    return false;

  // If the step is defined by a recipe, it is not a ConstantInt.
  if (Step->getDefiningRecipe())
    return false;

  ConstantInt *StepC = dyn_cast<ConstantInt>(Step->getLiveInIRValue());
  return StepC && StepC->isOne();
}

bool VPWidenPointerInductionRecipe::onlyScalarsGenerated(ElementCount VF) {
  return IsScalarAfterVectorization &&
         (!VF.isScalable() || vputils::onlyFirstLaneUsed(this));
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void VPWidenPointerInductionRecipe::print(raw_ostream &O, const Twine &Indent,
                                          VPSlotTracker &SlotTracker) const {
  O << Indent << "EMIT ";
  printAsOperand(O, SlotTracker);
  O << " = WIDEN-POINTER-INDUCTION ";
  getStartValue()->printAsOperand(O, SlotTracker);
  O << ", " << *IndDesc.getStep();
}
#endif

void VPExpandSCEVRecipe::execute(VPTransformState &State) {
  assert(!State.Instance && "cannot be used in per-lane");
  const DataLayout &DL = State.CFG.PrevBB->getModule()->getDataLayout();
  SCEVExpander Exp(SE, DL, "induction");

  Value *Res = Exp.expandCodeFor(Expr, Expr->getType(),
                                 &*State.Builder.GetInsertPoint());
  assert(!State.ExpandedSCEVs.contains(Expr) &&
         "Same SCEV expanded multiple times");
  State.ExpandedSCEVs[Expr] = Res;
  for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part)
    State.set(this, Res, {Part, 0});
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void VPExpandSCEVRecipe::print(raw_ostream &O, const Twine &Indent,
                               VPSlotTracker &SlotTracker) const {
  O << Indent << "EMIT ";
  getVPSingleValue()->printAsOperand(O, SlotTracker);
  O << " = EXPAND SCEV " << *Expr;
}
#endif

void VPWidenCanonicalIVRecipe::execute(VPTransformState &State) {
  Value *CanonicalIV = State.get(getOperand(0), 0);
  Type *STy = CanonicalIV->getType();
  IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
  ElementCount VF = State.VF;
  Value *VStart = VF.isScalar()
                      ? CanonicalIV
                      : Builder.CreateVectorSplat(VF, CanonicalIV, "broadcast");
  for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) {
    Value *VStep = createStepForVF(Builder, STy, VF, Part);
    if (VF.isVector()) {
      VStep = Builder.CreateVectorSplat(VF, VStep);
      VStep =
          Builder.CreateAdd(VStep, Builder.CreateStepVector(VStep->getType()));
    }
    Value *CanonicalVectorIV = Builder.CreateAdd(VStart, VStep, "vec.iv");
    State.set(this, CanonicalVectorIV, Part);
  }
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void VPWidenCanonicalIVRecipe::print(raw_ostream &O, const Twine &Indent,
                                     VPSlotTracker &SlotTracker) const {
  O << Indent << "EMIT ";
  printAsOperand(O, SlotTracker);
  O << " = WIDEN-CANONICAL-INDUCTION ";
  printOperands(O, SlotTracker);
}
#endif

void VPFirstOrderRecurrencePHIRecipe::execute(VPTransformState &State) {
  auto &Builder = State.Builder;
  // Create a vector from the initial value.
  auto *VectorInit = getStartValue()->getLiveInIRValue();

  Type *VecTy = State.VF.isScalar()
                    ? VectorInit->getType()
                    : VectorType::get(VectorInit->getType(), State.VF);

  BasicBlock *VectorPH = State.CFG.getPreheaderBBFor(this);
  if (State.VF.isVector()) {
    auto *IdxTy = Builder.getInt32Ty();
    auto *One = ConstantInt::get(IdxTy, 1);
    IRBuilder<>::InsertPointGuard Guard(Builder);
    Builder.SetInsertPoint(VectorPH->getTerminator());
    auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, State.VF);
    auto *LastIdx = Builder.CreateSub(RuntimeVF, One);
    VectorInit = Builder.CreateInsertElement(
        PoisonValue::get(VecTy), VectorInit, LastIdx, "vector.recur.init");
  }

  // Create a phi node for the new recurrence.
  PHINode *EntryPart = PHINode::Create(VecTy, 2, "vector.recur");
  EntryPart->insertBefore(State.CFG.PrevBB->getFirstInsertionPt());
  EntryPart->addIncoming(VectorInit, VectorPH);
  State.set(this, EntryPart, 0);
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void VPFirstOrderRecurrencePHIRecipe::print(raw_ostream &O, const Twine &Indent,
                                            VPSlotTracker &SlotTracker) const {
  O << Indent << "FIRST-ORDER-RECURRENCE-PHI ";
  printAsOperand(O, SlotTracker);
  O << " = phi ";
  printOperands(O, SlotTracker);
}
#endif

void VPReductionPHIRecipe::execute(VPTransformState &State) {
  auto &Builder = State.Builder;

  // Reductions do not have to start at zero. They can start with
  // any loop invariant values.
  VPValue *StartVPV = getStartValue();
  Value *StartV = StartVPV->getLiveInIRValue();

  // In order to support recurrences we need to be able to vectorize Phi nodes.
  // Phi nodes have cycles, so we need to vectorize them in two stages. This is
  // stage #1: We create a new vector PHI node with no incoming edges. We'll use
  // this value when we vectorize all of the instructions that use the PHI.
  bool ScalarPHI = State.VF.isScalar() || IsInLoop;
  Type *VecTy = ScalarPHI ? StartV->getType()
                          : VectorType::get(StartV->getType(), State.VF);

  BasicBlock *HeaderBB = State.CFG.PrevBB;
  assert(State.CurrentVectorLoop->getHeader() == HeaderBB &&
         "recipe must be in the vector loop header");
  unsigned LastPartForNewPhi = isOrdered() ? 1 : State.UF;
  for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) {
    Instruction *EntryPart = PHINode::Create(VecTy, 2, "vec.phi");
    EntryPart->insertBefore(HeaderBB->getFirstInsertionPt());
    State.set(this, EntryPart, Part);
  }

  BasicBlock *VectorPH = State.CFG.getPreheaderBBFor(this);

  Value *Iden = nullptr;
  RecurKind RK = RdxDesc.getRecurrenceKind();
  if (RecurrenceDescriptor::isMinMaxRecurrenceKind(RK) ||
      RecurrenceDescriptor::isAnyOfRecurrenceKind(RK)) {
    // MinMax and AnyOf reductions have the start value as their identity.
    if (ScalarPHI) {
      Iden = StartV;
    } else {
      IRBuilderBase::InsertPointGuard IPBuilder(Builder);
      Builder.SetInsertPoint(VectorPH->getTerminator());
      StartV = Iden =
          Builder.CreateVectorSplat(State.VF, StartV, "minmax.ident");
    }
  } else {
    Iden = RdxDesc.getRecurrenceIdentity(RK, VecTy->getScalarType(),
                                         RdxDesc.getFastMathFlags());

    if (!ScalarPHI) {
      Iden = Builder.CreateVectorSplat(State.VF, Iden);
      IRBuilderBase::InsertPointGuard IPBuilder(Builder);
      Builder.SetInsertPoint(VectorPH->getTerminator());
      Constant *Zero = Builder.getInt32(0);
      StartV = Builder.CreateInsertElement(Iden, StartV, Zero);
    }
  }

  for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) {
    Value *EntryPart = State.get(this, Part);
    // Make sure to add the reduction start value only to the
    // first unroll part.
    Value *StartVal = (Part == 0) ? StartV : Iden;
    cast<PHINode>(EntryPart)->addIncoming(StartVal, VectorPH);
  }
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void VPReductionPHIRecipe::print(raw_ostream &O, const Twine &Indent,
                                 VPSlotTracker &SlotTracker) const {
  O << Indent << "WIDEN-REDUCTION-PHI ";

  printAsOperand(O, SlotTracker);
  O << " = phi ";
  printOperands(O, SlotTracker);
}
#endif

void VPWidenPHIRecipe::execute(VPTransformState &State) {
  assert(EnableVPlanNativePath &&
         "Non-native vplans are not expected to have VPWidenPHIRecipes.");

  Value *Op0 = State.get(getOperand(0), 0);
  Type *VecTy = Op0->getType();
  Value *VecPhi = State.Builder.CreatePHI(VecTy, 2, "vec.phi");
  State.set(this, VecPhi, 0);
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void VPWidenPHIRecipe::print(raw_ostream &O, const Twine &Indent,
                             VPSlotTracker &SlotTracker) const {
  O << Indent << "WIDEN-PHI ";

  auto *OriginalPhi = cast<PHINode>(getUnderlyingValue());
  // Unless all incoming values are modeled in VPlan  print the original PHI
  // directly.
  // TODO: Remove once all VPWidenPHIRecipe instances keep all relevant incoming
  // values as VPValues.
  if (getNumOperands() != OriginalPhi->getNumOperands()) {
    O << VPlanIngredient(OriginalPhi);
    return;
  }

  printAsOperand(O, SlotTracker);
  O << " = phi ";
  printOperands(O, SlotTracker);
}
#endif

// TODO: It would be good to use the existing VPWidenPHIRecipe instead and
// remove VPActiveLaneMaskPHIRecipe.
void VPActiveLaneMaskPHIRecipe::execute(VPTransformState &State) {
  BasicBlock *VectorPH = State.CFG.getPreheaderBBFor(this);
  for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) {
    Value *StartMask = State.get(getOperand(0), Part);
    PHINode *EntryPart =
        State.Builder.CreatePHI(StartMask->getType(), 2, "active.lane.mask");
    EntryPart->addIncoming(StartMask, VectorPH);
    EntryPart->setDebugLoc(getDebugLoc());
    State.set(this, EntryPart, Part);
  }
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void VPActiveLaneMaskPHIRecipe::print(raw_ostream &O, const Twine &Indent,
                                      VPSlotTracker &SlotTracker) const {
  O << Indent << "ACTIVE-LANE-MASK-PHI ";

  printAsOperand(O, SlotTracker);
  O << " = phi ";
  printOperands(O, SlotTracker);
}
#endif