aboutsummaryrefslogtreecommitdiff
path: root/sys/arm64/arm64/machdep.c
blob: d566a8e2298cd61f484effa3a41bdd0bfd26068e (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
/*-
 * Copyright (c) 2014 Andrew Turner
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 */

#include "opt_acpi.h"
#include "opt_kstack_pages.h"
#include "opt_platform.h"
#include "opt_ddb.h"

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/asan.h>
#include <sys/buf.h>
#include <sys/bus.h>
#include <sys/cons.h>
#include <sys/cpu.h>
#include <sys/csan.h>
#include <sys/devmap.h>
#include <sys/efi.h>
#include <sys/exec.h>
#include <sys/imgact.h>
#include <sys/kdb.h>
#include <sys/kernel.h>
#include <sys/ktr.h>
#include <sys/limits.h>
#include <sys/linker.h>
#include <sys/msan.h>
#include <sys/msgbuf.h>
#include <sys/pcpu.h>
#include <sys/physmem.h>
#include <sys/proc.h>
#include <sys/ptrace.h>
#include <sys/reboot.h>
#include <sys/reg.h>
#include <sys/rwlock.h>
#include <sys/sched.h>
#include <sys/signalvar.h>
#include <sys/syscallsubr.h>
#include <sys/sysent.h>
#include <sys/sysproto.h>
#include <sys/ucontext.h>
#include <sys/vdso.h>
#include <sys/vmmeter.h>

#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/vm_kern.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
#include <vm/vm_phys.h>
#include <vm/pmap.h>
#include <vm/vm_map.h>
#include <vm/vm_pager.h>

#include <machine/armreg.h>
#include <machine/cpu.h>
#include <machine/debug_monitor.h>
#include <machine/hypervisor.h>
#include <machine/kdb.h>
#include <machine/machdep.h>
#include <machine/metadata.h>
#include <machine/md_var.h>
#include <machine/pcb.h>
#include <machine/undefined.h>
#include <machine/vmparam.h>

#ifdef VFP
#include <machine/vfp.h>
#endif

#ifdef DEV_ACPI
#include <contrib/dev/acpica/include/acpi.h>
#include <machine/acpica_machdep.h>
#endif

#ifdef FDT
#include <dev/fdt/fdt_common.h>
#include <dev/ofw/openfirm.h>
#endif

#include <dev/smbios/smbios.h>

_Static_assert(sizeof(struct pcb) == 1248, "struct pcb is incorrect size");
_Static_assert(offsetof(struct pcb, pcb_fpusaved) == 136,
    "pcb_fpusaved changed offset");
_Static_assert(offsetof(struct pcb, pcb_fpustate) == 192,
    "pcb_fpustate changed offset");

enum arm64_bus arm64_bus_method = ARM64_BUS_NONE;

/*
 * XXX: The .bss is assumed to be in the boot CPU NUMA domain. If not we
 * could relocate this, but will need to keep the same virtual address as
 * it's reverenced by the EARLY_COUNTER macro.
 */
struct pcpu pcpu0;

#if defined(PERTHREAD_SSP)
/*
 * The boot SSP canary. Will be replaced with a per-thread canary when
 * scheduling has started.
 */
uintptr_t boot_canary = 0x49a2d892bc05a0b1ul;
#endif

static struct trapframe proc0_tf;

int early_boot = 1;
int cold = 1;
static int boot_el;
static uint64_t hcr_el2;

struct kva_md_info kmi;

int64_t dczva_line_size;	/* The size of cache line the dc zva zeroes */
int has_pan;

#if defined(SOCDEV_PA)
/*
 * This is the virtual address used to access SOCDEV_PA. As it's set before
 * .bss is cleared we need to ensure it's preserved. To do this use
 * __read_mostly as it's only ever set once but read in the putc functions.
 */
uintptr_t socdev_va __read_mostly;
#endif

/*
 * Physical address of the EFI System Table. Stashed from the metadata hints
 * passed into the kernel and used by the EFI code to call runtime services.
 */
vm_paddr_t efi_systbl_phys;
static struct efi_map_header *efihdr;

/* pagezero_* implementations are provided in support.S */
void pagezero_simple(void *);
void pagezero_cache(void *);

/* pagezero_simple is default pagezero */
void (*pagezero)(void *p) = pagezero_simple;

int (*apei_nmi)(void);

#if defined(PERTHREAD_SSP_WARNING)
static void
print_ssp_warning(void *data __unused)
{
	printf("WARNING: Per-thread SSP is enabled but the compiler is too old to support it\n");
}
SYSINIT(ssp_warn, SI_SUB_COPYRIGHT, SI_ORDER_ANY, print_ssp_warning, NULL);
SYSINIT(ssp_warn2, SI_SUB_LAST, SI_ORDER_ANY, print_ssp_warning, NULL);
#endif

static void
pan_setup(void)
{
	uint64_t id_aa64mfr1;

	id_aa64mfr1 = READ_SPECIALREG(id_aa64mmfr1_el1);
	if (ID_AA64MMFR1_PAN_VAL(id_aa64mfr1) != ID_AA64MMFR1_PAN_NONE)
		has_pan = 1;
}

void
pan_enable(void)
{

	/*
	 * The LLVM integrated assembler doesn't understand the PAN
	 * PSTATE field. Because of this we need to manually create
	 * the instruction in an asm block. This is equivalent to:
	 * msr pan, #1
	 *
	 * This sets the PAN bit, stopping the kernel from accessing
	 * memory when userspace can also access it unless the kernel
	 * uses the userspace load/store instructions.
	 */
	if (has_pan) {
		WRITE_SPECIALREG(sctlr_el1,
		    READ_SPECIALREG(sctlr_el1) & ~SCTLR_SPAN);
		__asm __volatile(".inst 0xd500409f | (0x1 << 8)");
	}
}

bool
has_hyp(void)
{

	/*
	 * XXX The E2H check is wrong, but it's close enough for now.  Needs to
	 * be re-evaluated once we're running regularly in EL2.
	 */
	return (boot_el == CURRENTEL_EL_EL2 && (hcr_el2 & HCR_E2H) == 0);
}

bool
in_vhe(void)
{
	/* If we are currently in EL2 then must be in VHE */
	return ((READ_SPECIALREG(CurrentEL) & CURRENTEL_EL_MASK) ==
	    CURRENTEL_EL_EL2);
}

static void
cpu_startup(void *dummy)
{
	vm_paddr_t size;
	int i;

	printf("real memory  = %ju (%ju MB)\n", ptoa((uintmax_t)realmem),
	    ptoa((uintmax_t)realmem) / 1024 / 1024);

	if (bootverbose) {
		printf("Physical memory chunk(s):\n");
		for (i = 0; phys_avail[i + 1] != 0; i += 2) {
			size = phys_avail[i + 1] - phys_avail[i];
			printf("%#016jx - %#016jx, %ju bytes (%ju pages)\n",
			    (uintmax_t)phys_avail[i],
			    (uintmax_t)phys_avail[i + 1] - 1,
			    (uintmax_t)size, (uintmax_t)size / PAGE_SIZE);
		}
	}

	printf("avail memory = %ju (%ju MB)\n",
	    ptoa((uintmax_t)vm_free_count()),
	    ptoa((uintmax_t)vm_free_count()) / 1024 / 1024);

	undef_init();
	install_cpu_errata();

	vm_ksubmap_init(&kmi);
	bufinit();
	vm_pager_bufferinit();
}

SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);

static void
late_ifunc_resolve(void *dummy __unused)
{
	link_elf_late_ireloc();
}
SYSINIT(late_ifunc_resolve, SI_SUB_CPU, SI_ORDER_ANY, late_ifunc_resolve, NULL);

int
cpu_idle_wakeup(int cpu)
{

	return (0);
}

void
cpu_idle(int busy)
{

	spinlock_enter();
	if (!busy)
		cpu_idleclock();
	if (!sched_runnable())
		__asm __volatile(
		    "dsb sy \n"
		    "wfi    \n");
	if (!busy)
		cpu_activeclock();
	spinlock_exit();
}

void
cpu_halt(void)
{

	/* We should have shutdown by now, if not enter a low power sleep */
	intr_disable();
	while (1) {
		__asm __volatile("wfi");
	}
}

/*
 * Flush the D-cache for non-DMA I/O so that the I-cache can
 * be made coherent later.
 */
void
cpu_flush_dcache(void *ptr, size_t len)
{

	/* ARM64TODO TBD */
}

/* Get current clock frequency for the given CPU ID. */
int
cpu_est_clockrate(int cpu_id, uint64_t *rate)
{
	struct pcpu *pc;

	pc = pcpu_find(cpu_id);
	if (pc == NULL || rate == NULL)
		return (EINVAL);

	if (pc->pc_clock == 0)
		return (EOPNOTSUPP);

	*rate = pc->pc_clock;
	return (0);
}

void
cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
{

	pcpu->pc_acpi_id = 0xffffffff;
	pcpu->pc_mpidr = UINT64_MAX;
}

void
spinlock_enter(void)
{
	struct thread *td;
	register_t daif;

	td = curthread;
	if (td->td_md.md_spinlock_count == 0) {
		daif = intr_disable();
		td->td_md.md_spinlock_count = 1;
		td->td_md.md_saved_daif = daif;
		critical_enter();
	} else
		td->td_md.md_spinlock_count++;
}

void
spinlock_exit(void)
{
	struct thread *td;
	register_t daif;

	td = curthread;
	daif = td->td_md.md_saved_daif;
	td->td_md.md_spinlock_count--;
	if (td->td_md.md_spinlock_count == 0) {
		critical_exit();
		intr_restore(daif);
	}
}

/*
 * Construct a PCB from a trapframe. This is called from kdb_trap() where
 * we want to start a backtrace from the function that caused us to enter
 * the debugger. We have the context in the trapframe, but base the trace
 * on the PCB. The PCB doesn't have to be perfect, as long as it contains
 * enough for a backtrace.
 */
void
makectx(struct trapframe *tf, struct pcb *pcb)
{
	int i;

	/* NB: pcb_x[PCB_LR] is the PC, see PC_REGS() in db_machdep.h */
	for (i = 0; i < nitems(pcb->pcb_x); i++) {
		if (i == PCB_LR)
			pcb->pcb_x[i] = tf->tf_elr;
		else
			pcb->pcb_x[i] = tf->tf_x[i + PCB_X_START];
	}

	pcb->pcb_sp = tf->tf_sp;
}

static void
init_proc0(vm_offset_t kstack)
{
	struct pcpu *pcpup;

	pcpup = cpuid_to_pcpu[0];
	MPASS(pcpup != NULL);

	proc_linkup0(&proc0, &thread0);
	thread0.td_kstack = kstack;
	thread0.td_kstack_pages = KSTACK_PAGES;
#if defined(PERTHREAD_SSP)
	thread0.td_md.md_canary = boot_canary;
#endif
	thread0.td_pcb = (struct pcb *)(thread0.td_kstack +
	    thread0.td_kstack_pages * PAGE_SIZE) - 1;
	thread0.td_pcb->pcb_flags = 0;
	thread0.td_pcb->pcb_fpflags = 0;
	thread0.td_pcb->pcb_fpusaved = &thread0.td_pcb->pcb_fpustate;
	thread0.td_pcb->pcb_vfpcpu = UINT_MAX;
	thread0.td_frame = &proc0_tf;
	ptrauth_thread0(&thread0);
	pcpup->pc_curpcb = thread0.td_pcb;

	/*
	 * Unmask SError exceptions. They are used to signal a RAS failure,
	 * or other hardware error.
	 */
	serror_enable();
}

/*
 * Get an address to be used to write to kernel data that may be mapped
 * read-only, e.g. to patch kernel code.
 */
bool
arm64_get_writable_addr(void *addr, void **out)
{
	vm_paddr_t pa;

	/* Check if the page is writable */
	if (PAR_SUCCESS(arm64_address_translate_s1e1w((vm_offset_t)addr))) {
		*out = addr;
		return (true);
	}

	/*
	 * Find the physical address of the given page.
	 */
	if (!pmap_klookup((vm_offset_t)addr, &pa)) {
		return (false);
	}

	/*
	 * If it is within the DMAP region and is writable use that.
	 */
	if (PHYS_IN_DMAP(pa)) {
		addr = (void *)PHYS_TO_DMAP(pa);
		if (PAR_SUCCESS(arm64_address_translate_s1e1w(
		    (vm_offset_t)addr))) {
			*out = addr;
			return (true);
		}
	}

	return (false);
}

typedef void (*efi_map_entry_cb)(struct efi_md *, void *argp);

static void
foreach_efi_map_entry(struct efi_map_header *efihdr, efi_map_entry_cb cb, void *argp)
{
	struct efi_md *map, *p;
	size_t efisz;
	int ndesc, i;

	/*
	 * Memory map data provided by UEFI via the GetMemoryMap
	 * Boot Services API.
	 */
	efisz = (sizeof(struct efi_map_header) + 0xf) & ~0xf;
	map = (struct efi_md *)((uint8_t *)efihdr + efisz);

	if (efihdr->descriptor_size == 0)
		return;
	ndesc = efihdr->memory_size / efihdr->descriptor_size;

	for (i = 0, p = map; i < ndesc; i++,
	    p = efi_next_descriptor(p, efihdr->descriptor_size)) {
		cb(p, argp);
	}
}

/*
 * Handle the EFI memory map list.
 *
 * We will make two passes at this, the first (exclude == false) to populate
 * physmem with valid physical memory ranges from recognized map entry types.
 * In the second pass we will exclude memory ranges from physmem which must not
 * be used for general allocations, either because they are used by runtime
 * firmware or otherwise reserved.
 *
 * Adding the runtime-reserved memory ranges to physmem and excluding them
 * later ensures that they are included in the DMAP, but excluded from
 * phys_avail[].
 *
 * Entry types not explicitly listed here are ignored and not mapped.
 */
static void
handle_efi_map_entry(struct efi_md *p, void *argp)
{
	bool exclude = *(bool *)argp;

	switch (p->md_type) {
	case EFI_MD_TYPE_RECLAIM:
		/*
		 * The recomended location for ACPI tables. Map into the
		 * DMAP so we can access them from userspace via /dev/mem.
		 */
	case EFI_MD_TYPE_RT_CODE:
		/*
		 * Some UEFI implementations put the system table in the
		 * runtime code section. Include it in the DMAP, but will
		 * be excluded from phys_avail.
		 */
	case EFI_MD_TYPE_RT_DATA:
		/*
		 * Runtime data will be excluded after the DMAP
		 * region is created to stop it from being added
		 * to phys_avail.
		 */
		if (exclude) {
			physmem_exclude_region(p->md_phys,
			    p->md_pages * EFI_PAGE_SIZE, EXFLAG_NOALLOC);
			break;
		}
		/* FALLTHROUGH */
	case EFI_MD_TYPE_CODE:
	case EFI_MD_TYPE_DATA:
	case EFI_MD_TYPE_BS_CODE:
	case EFI_MD_TYPE_BS_DATA:
	case EFI_MD_TYPE_FREE:
		/*
		 * We're allowed to use any entry with these types.
		 */
		if (!exclude)
			physmem_hardware_region(p->md_phys,
			    p->md_pages * EFI_PAGE_SIZE);
		break;
	default:
		/* Other types shall not be handled by physmem. */
		break;
	}
}

static void
add_efi_map_entries(struct efi_map_header *efihdr)
{
	bool exclude = false;
	foreach_efi_map_entry(efihdr, handle_efi_map_entry, &exclude);
}

static void
exclude_efi_map_entries(struct efi_map_header *efihdr)
{
	bool exclude = true;
	foreach_efi_map_entry(efihdr, handle_efi_map_entry, &exclude);
}

static void
print_efi_map_entry(struct efi_md *p, void *argp __unused)
{
	const char *type;
	static const char *types[] = {
		"Reserved",
		"LoaderCode",
		"LoaderData",
		"BootServicesCode",
		"BootServicesData",
		"RuntimeServicesCode",
		"RuntimeServicesData",
		"ConventionalMemory",
		"UnusableMemory",
		"ACPIReclaimMemory",
		"ACPIMemoryNVS",
		"MemoryMappedIO",
		"MemoryMappedIOPortSpace",
		"PalCode",
		"PersistentMemory"
	};

	if (p->md_type < nitems(types))
		type = types[p->md_type];
	else
		type = "<INVALID>";
	printf("%23s %012lx %012lx %08lx ", type, p->md_phys,
	    p->md_virt, p->md_pages);
	if (p->md_attr & EFI_MD_ATTR_UC)
		printf("UC ");
	if (p->md_attr & EFI_MD_ATTR_WC)
		printf("WC ");
	if (p->md_attr & EFI_MD_ATTR_WT)
		printf("WT ");
	if (p->md_attr & EFI_MD_ATTR_WB)
		printf("WB ");
	if (p->md_attr & EFI_MD_ATTR_UCE)
		printf("UCE ");
	if (p->md_attr & EFI_MD_ATTR_WP)
		printf("WP ");
	if (p->md_attr & EFI_MD_ATTR_RP)
		printf("RP ");
	if (p->md_attr & EFI_MD_ATTR_XP)
		printf("XP ");
	if (p->md_attr & EFI_MD_ATTR_NV)
		printf("NV ");
	if (p->md_attr & EFI_MD_ATTR_MORE_RELIABLE)
		printf("MORE_RELIABLE ");
	if (p->md_attr & EFI_MD_ATTR_RO)
		printf("RO ");
	if (p->md_attr & EFI_MD_ATTR_RT)
		printf("RUNTIME");
	printf("\n");
}

static void
print_efi_map_entries(struct efi_map_header *efihdr)
{

	printf("%23s %12s %12s %8s %4s\n",
	    "Type", "Physical", "Virtual", "#Pages", "Attr");
	foreach_efi_map_entry(efihdr, print_efi_map_entry, NULL);
}

/*
 * Map the passed in VA in EFI space to a void * using the efi memory table to
 * find the PA and return it in the DMAP, if it exists. We're used between the
 * calls to pmap_bootstrap() and physmem_init_kernel_globals() to parse CFG
 * tables We assume that either the entry you are mapping fits within its page,
 * or if it spills to the next page, that's contiguous in PA and in the DMAP.
 * All observed tables obey the first part of this precondition.
 */
struct early_map_data
{
	vm_offset_t va;
	vm_offset_t pa;
};

static void
efi_early_map_entry(struct efi_md *p, void *argp)
{
	struct early_map_data *emdp = argp;
	vm_offset_t s, e;

	if (emdp->pa != 0)
		return;
	if ((p->md_attr & EFI_MD_ATTR_RT) == 0)
		return;
	s = p->md_virt;
	e = p->md_virt + p->md_pages * EFI_PAGE_SIZE;
	if (emdp->va < s  || emdp->va >= e)
		return;
	emdp->pa = p->md_phys + (emdp->va - p->md_virt);
}

static void *
efi_early_map(vm_offset_t va)
{
	struct early_map_data emd = { .va = va };

	foreach_efi_map_entry(efihdr, efi_early_map_entry, &emd);
	if (emd.pa == 0)
		return NULL;
	return (void *)PHYS_TO_DMAP(emd.pa);
}


/*
 * When booted via kboot, the prior kernel will pass in reserved memory areas in
 * a EFI config table. We need to find that table and walk through it excluding
 * the memory ranges in it. btw, this is called too early for the printf to do
 * anything since msgbufp isn't initialized, let alone a console...
 */
static void
exclude_efi_memreserve(vm_offset_t efi_systbl_phys)
{
	struct efi_systbl *systbl;
	struct uuid efi_memreserve = LINUX_EFI_MEMRESERVE_TABLE;

	systbl = (struct efi_systbl *)PHYS_TO_DMAP(efi_systbl_phys);
	if (systbl == NULL) {
		printf("can't map systbl\n");
		return;
	}
	if (systbl->st_hdr.th_sig != EFI_SYSTBL_SIG) {
		printf("Bad signature for systbl %#lx\n", systbl->st_hdr.th_sig);
		return;
	}

	/*
	 * We don't yet have the pmap system booted enough to create a pmap for
	 * the efi firmware's preferred address space from the GetMemoryMap()
	 * table. The st_cfgtbl is a VA in this space, so we need to do the
	 * mapping ourselves to a kernel VA with efi_early_map. We assume that
	 * the cfgtbl entries don't span a page. Other pointers are PAs, as
	 * noted below.
	 */
	if (systbl->st_cfgtbl == 0)	/* Failsafe st_entries should == 0 in this case */
		return;
	for (int i = 0; i < systbl->st_entries; i++) {
		struct efi_cfgtbl *cfgtbl;
		struct linux_efi_memreserve *mr;

		cfgtbl = efi_early_map(systbl->st_cfgtbl + i * sizeof(*cfgtbl));
		if (cfgtbl == NULL)
			panic("Can't map the config table entry %d\n", i);
		if (memcmp(&cfgtbl->ct_uuid, &efi_memreserve, sizeof(struct uuid)) != 0)
			continue;

		/*
		 * cfgtbl points are either VA or PA, depending on the GUID of
		 * the table. memreserve GUID pointers are PA and not converted
		 * after a SetVirtualAddressMap(). The list's mr_next pointer
		 * is also a PA.
		 */
		mr = (struct linux_efi_memreserve *)PHYS_TO_DMAP(
			(vm_offset_t)cfgtbl->ct_data);
		while (true) {
			for (int j = 0; j < mr->mr_count; j++) {
				struct linux_efi_memreserve_entry *mre;

				mre = &mr->mr_entry[j];
				physmem_exclude_region(mre->mre_base, mre->mre_size,
				    EXFLAG_NODUMP | EXFLAG_NOALLOC);
			}
			if (mr->mr_next == 0)
				break;
			mr = (struct linux_efi_memreserve *)PHYS_TO_DMAP(mr->mr_next);
		};
	}

}

#ifdef FDT
static void
try_load_dtb(caddr_t kmdp)
{
	vm_offset_t dtbp;

	dtbp = MD_FETCH(kmdp, MODINFOMD_DTBP, vm_offset_t);
#if defined(FDT_DTB_STATIC)
	/*
	 * In case the device tree blob was not retrieved (from metadata) try
	 * to use the statically embedded one.
	 */
	if (dtbp == 0)
		dtbp = (vm_offset_t)&fdt_static_dtb;
#endif

	if (dtbp == (vm_offset_t)NULL) {
#ifndef TSLOG
		printf("ERROR loading DTB\n");
#endif
		return;
	}

	if (OF_install(OFW_FDT, 0) == FALSE)
		panic("Cannot install FDT");

	if (OF_init((void *)dtbp) != 0)
		panic("OF_init failed with the found device tree");

	parse_fdt_bootargs();
}
#endif

static bool
bus_probe(void)
{
	bool has_acpi, has_fdt;
	char *order, *env;

	has_acpi = has_fdt = false;

#ifdef FDT
	has_fdt = (OF_peer(0) != 0);
#endif
#ifdef DEV_ACPI
	has_acpi = (AcpiOsGetRootPointer() != 0);
#endif

	env = kern_getenv("kern.cfg.order");
	if (env != NULL) {
		order = env;
		while (order != NULL) {
			if (has_acpi &&
			    strncmp(order, "acpi", 4) == 0 &&
			    (order[4] == ',' || order[4] == '\0')) {
				arm64_bus_method = ARM64_BUS_ACPI;
				break;
			}
			if (has_fdt &&
			    strncmp(order, "fdt", 3) == 0 &&
			    (order[3] == ',' || order[3] == '\0')) {
				arm64_bus_method = ARM64_BUS_FDT;
				break;
			}
			order = strchr(order, ',');
			if (order != NULL)
				order++;	/* Skip comma */
		}
		freeenv(env);

		/* If we set the bus method it is valid */
		if (arm64_bus_method != ARM64_BUS_NONE)
			return (true);
	}
	/* If no order or an invalid order was set use the default */
	if (arm64_bus_method == ARM64_BUS_NONE) {
		if (has_fdt)
			arm64_bus_method = ARM64_BUS_FDT;
		else if (has_acpi)
			arm64_bus_method = ARM64_BUS_ACPI;
	}

	/*
	 * If no option was set the default is valid, otherwise we are
	 * setting one to get cninit() working, then calling panic to tell
	 * the user about the invalid bus setup.
	 */
	return (env == NULL);
}

static void
cache_setup(void)
{
	int dczva_line_shift;
	uint32_t dczid_el0;

	identify_cache(READ_SPECIALREG(ctr_el0));

	dczid_el0 = READ_SPECIALREG(dczid_el0);

	/* Check if dc zva is not prohibited */
	if (dczid_el0 & DCZID_DZP)
		dczva_line_size = 0;
	else {
		/* Same as with above calculations */
		dczva_line_shift = DCZID_BS_SIZE(dczid_el0);
		dczva_line_size = sizeof(int) << dczva_line_shift;

		/* Change pagezero function */
		pagezero = pagezero_cache;
	}
}

int
memory_mapping_mode(vm_paddr_t pa)
{
	struct efi_md *map, *p;
	size_t efisz;
	int ndesc, i;

	if (efihdr == NULL)
		return (VM_MEMATTR_WRITE_BACK);

	/*
	 * Memory map data provided by UEFI via the GetMemoryMap
	 * Boot Services API.
	 */
	efisz = (sizeof(struct efi_map_header) + 0xf) & ~0xf;
	map = (struct efi_md *)((uint8_t *)efihdr + efisz);

	if (efihdr->descriptor_size == 0)
		return (VM_MEMATTR_WRITE_BACK);
	ndesc = efihdr->memory_size / efihdr->descriptor_size;

	for (i = 0, p = map; i < ndesc; i++,
	    p = efi_next_descriptor(p, efihdr->descriptor_size)) {
		if (pa < p->md_phys ||
		    pa >= p->md_phys + p->md_pages * EFI_PAGE_SIZE)
			continue;
		if (p->md_type == EFI_MD_TYPE_IOMEM ||
		    p->md_type == EFI_MD_TYPE_IOPORT)
			return (VM_MEMATTR_DEVICE);
		else if ((p->md_attr & EFI_MD_ATTR_WB) != 0 ||
		    p->md_type == EFI_MD_TYPE_RECLAIM)
			return (VM_MEMATTR_WRITE_BACK);
		else if ((p->md_attr & EFI_MD_ATTR_WT) != 0)
			return (VM_MEMATTR_WRITE_THROUGH);
		else if ((p->md_attr & EFI_MD_ATTR_WC) != 0)
			return (VM_MEMATTR_WRITE_COMBINING);
		break;
	}

	return (VM_MEMATTR_DEVICE);
}

void
initarm(struct arm64_bootparams *abp)
{
	struct efi_fb *efifb;
	struct pcpu *pcpup;
	char *env;
#ifdef FDT
	struct mem_region mem_regions[FDT_MEM_REGIONS];
	int mem_regions_sz;
	phandle_t root;
	char dts_version[255];
#endif
	vm_offset_t lastaddr;
	caddr_t kmdp;
	bool valid;

	TSRAW(&thread0, TS_ENTER, __func__, NULL);

	boot_el = abp->boot_el;
	hcr_el2 = abp->hcr_el2;

	/* Parse loader or FDT boot parametes. Determine last used address. */
	lastaddr = parse_boot_param(abp);

	/* Find the kernel address */
	kmdp = preload_search_by_type("elf kernel");
	if (kmdp == NULL)
		kmdp = preload_search_by_type("elf64 kernel");

	identify_cpu(0);
	identify_hypervisor_smbios();

	update_special_regs(0);

	/* Set the pcpu data, this is needed by pmap_bootstrap */
	pcpup = &pcpu0;
	pcpu_init(pcpup, 0, sizeof(struct pcpu));

	/*
	 * Set the pcpu pointer with a backup in tpidr_el1 to be
	 * loaded when entering the kernel from userland.
	 */
	__asm __volatile(
	    "mov x18, %0 \n"
	    "msr tpidr_el1, %0" :: "r"(pcpup));

	/* locore.S sets sp_el0 to &thread0 so no need to set it here. */
	PCPU_SET(curthread, &thread0);
	PCPU_SET(midr, get_midr());

	link_elf_ireloc(kmdp);
#ifdef FDT
	try_load_dtb(kmdp);
#endif

	efi_systbl_phys = MD_FETCH(kmdp, MODINFOMD_FW_HANDLE, vm_paddr_t);

	/* Load the physical memory ranges */
	efihdr = (struct efi_map_header *)preload_search_info(kmdp,
	    MODINFO_METADATA | MODINFOMD_EFI_MAP);
	if (efihdr != NULL)
		add_efi_map_entries(efihdr);
#ifdef FDT
	else {
		/* Grab physical memory regions information from device tree. */
		if (fdt_get_mem_regions(mem_regions, &mem_regions_sz,
		    NULL) != 0)
			panic("Cannot get physical memory regions");
		physmem_hardware_regions(mem_regions, mem_regions_sz);
	}
	if (fdt_get_reserved_mem(mem_regions, &mem_regions_sz) == 0)
		physmem_exclude_regions(mem_regions, mem_regions_sz,
		    EXFLAG_NODUMP | EXFLAG_NOALLOC);
#endif

	/* Exclude the EFI framebuffer from our view of physical memory. */
	efifb = (struct efi_fb *)preload_search_info(kmdp,
	    MODINFO_METADATA | MODINFOMD_EFI_FB);
	if (efifb != NULL)
		physmem_exclude_region(efifb->fb_addr, efifb->fb_size,
		    EXFLAG_NOALLOC);

	/* Do basic tuning, hz etc */
	init_param1();

	cache_setup();
	pan_setup();

	/* Bootstrap enough of pmap  to enter the kernel proper */
	pmap_bootstrap(lastaddr - KERNBASE);
	/* Exclude entries needed in the DMAP region, but not phys_avail */
	if (efihdr != NULL)
		exclude_efi_map_entries(efihdr);
	/*  Do the same for reserve entries in the EFI MEMRESERVE table */
	if (efi_systbl_phys != 0)
		exclude_efi_memreserve(efi_systbl_phys);

	/*
	 * We carefully bootstrap the sanitizer map after we've excluded
	 * absolutely everything else that could impact phys_avail.  There's not
	 * always enough room for the initial shadow map after the kernel, so
	 * we'll end up searching for segments that we can safely use.  Those
	 * segments also get excluded from phys_avail.
	 */
#if defined(KASAN) || defined(KMSAN)
	pmap_bootstrap_san();
#endif

	physmem_init_kernel_globals();

	devmap_bootstrap(0, NULL);

	valid = bus_probe();

	cninit();
	set_ttbr0(abp->kern_ttbr0);
	cpu_tlb_flushID();

	if (!valid)
		panic("Invalid bus configuration: %s",
		    kern_getenv("kern.cfg.order"));

	/*
	 * Check if pointer authentication is available on this system, and
	 * if so enable its use. This needs to be called before init_proc0
	 * as that will configure the thread0 pointer authentication keys.
	 */
	ptrauth_init();

	/*
	 * Dump the boot metadata. We have to wait for cninit() since console
	 * output is required. If it's grossly incorrect the kernel will never
	 * make it this far.
	 */
	if (getenv_is_true("debug.dump_modinfo_at_boot"))
		preload_dump();

	init_proc0(abp->kern_stack);
	msgbufinit(msgbufp, msgbufsize);
	mutex_init();
	init_param2(physmem);

	dbg_init();
	kdb_init();
#ifdef KDB
	if ((boothowto & RB_KDB) != 0)
		kdb_enter(KDB_WHY_BOOTFLAGS, "Boot flags requested debugger");
#endif
	pan_enable();

	kcsan_cpu_init(0);
	kasan_init();
	kmsan_init();

	env = kern_getenv("kernelname");
	if (env != NULL)
		strlcpy(kernelname, env, sizeof(kernelname));

#ifdef FDT
	if (arm64_bus_method == ARM64_BUS_FDT) {
		root = OF_finddevice("/");
		if (OF_getprop(root, "freebsd,dts-version", dts_version, sizeof(dts_version)) > 0) {
			if (strcmp(LINUX_DTS_VERSION, dts_version) != 0)
				printf("WARNING: DTB version is %s while kernel expects %s, "
				    "please update the DTB in the ESP\n",
				    dts_version,
				    LINUX_DTS_VERSION);
		} else {
			printf("WARNING: Cannot find freebsd,dts-version property, "
			    "cannot check DTB compliance\n");
		}
	}
#endif

	if (boothowto & RB_VERBOSE) {
		if (efihdr != NULL)
			print_efi_map_entries(efihdr);
		physmem_print_tables();
	}

	early_boot = 0;

	if (bootverbose && kstack_pages != KSTACK_PAGES)
		printf("kern.kstack_pages = %d ignored for thread0\n",
		    kstack_pages);

	TSEXIT();
}

void
dbg_init(void)
{

	/* Clear OS lock */
	WRITE_SPECIALREG(oslar_el1, 0);

	/* This permits DDB to use debug registers for watchpoints. */
	dbg_monitor_init();

	/* TODO: Eventually will need to initialize debug registers here. */
}

#ifdef DDB
#include <ddb/ddb.h>

DB_SHOW_COMMAND(specialregs, db_show_spregs)
{
#define	PRINT_REG(reg)	\
    db_printf(__STRING(reg) " = %#016lx\n", READ_SPECIALREG(reg))

	PRINT_REG(actlr_el1);
	PRINT_REG(afsr0_el1);
	PRINT_REG(afsr1_el1);
	PRINT_REG(aidr_el1);
	PRINT_REG(amair_el1);
	PRINT_REG(ccsidr_el1);
	PRINT_REG(clidr_el1);
	PRINT_REG(contextidr_el1);
	PRINT_REG(cpacr_el1);
	PRINT_REG(csselr_el1);
	PRINT_REG(ctr_el0);
	PRINT_REG(currentel);
	PRINT_REG(daif);
	PRINT_REG(dczid_el0);
	PRINT_REG(elr_el1);
	PRINT_REG(esr_el1);
	PRINT_REG(far_el1);
#if 0
	/* ARM64TODO: Enable VFP before reading floating-point registers */
	PRINT_REG(fpcr);
	PRINT_REG(fpsr);
#endif
	PRINT_REG(id_aa64afr0_el1);
	PRINT_REG(id_aa64afr1_el1);
	PRINT_REG(id_aa64dfr0_el1);
	PRINT_REG(id_aa64dfr1_el1);
	PRINT_REG(id_aa64isar0_el1);
	PRINT_REG(id_aa64isar1_el1);
	PRINT_REG(id_aa64pfr0_el1);
	PRINT_REG(id_aa64pfr1_el1);
	PRINT_REG(id_afr0_el1);
	PRINT_REG(id_dfr0_el1);
	PRINT_REG(id_isar0_el1);
	PRINT_REG(id_isar1_el1);
	PRINT_REG(id_isar2_el1);
	PRINT_REG(id_isar3_el1);
	PRINT_REG(id_isar4_el1);
	PRINT_REG(id_isar5_el1);
	PRINT_REG(id_mmfr0_el1);
	PRINT_REG(id_mmfr1_el1);
	PRINT_REG(id_mmfr2_el1);
	PRINT_REG(id_mmfr3_el1);
#if 0
	/* Missing from llvm */
	PRINT_REG(id_mmfr4_el1);
#endif
	PRINT_REG(id_pfr0_el1);
	PRINT_REG(id_pfr1_el1);
	PRINT_REG(isr_el1);
	PRINT_REG(mair_el1);
	PRINT_REG(midr_el1);
	PRINT_REG(mpidr_el1);
	PRINT_REG(mvfr0_el1);
	PRINT_REG(mvfr1_el1);
	PRINT_REG(mvfr2_el1);
	PRINT_REG(revidr_el1);
	PRINT_REG(sctlr_el1);
	PRINT_REG(sp_el0);
	PRINT_REG(spsel);
	PRINT_REG(spsr_el1);
	PRINT_REG(tcr_el1);
	PRINT_REG(tpidr_el0);
	PRINT_REG(tpidr_el1);
	PRINT_REG(tpidrro_el0);
	PRINT_REG(ttbr0_el1);
	PRINT_REG(ttbr1_el1);
	PRINT_REG(vbar_el1);
#undef PRINT_REG
}

DB_SHOW_COMMAND(vtop, db_show_vtop)
{
	uint64_t phys;

	if (have_addr) {
		phys = arm64_address_translate_s1e1r(addr);
		db_printf("EL1 physical address reg (read):  0x%016lx\n", phys);
		phys = arm64_address_translate_s1e1w(addr);
		db_printf("EL1 physical address reg (write): 0x%016lx\n", phys);
		phys = arm64_address_translate_s1e0r(addr);
		db_printf("EL0 physical address reg (read):  0x%016lx\n", phys);
		phys = arm64_address_translate_s1e0w(addr);
		db_printf("EL0 physical address reg (write): 0x%016lx\n", phys);
	} else
		db_printf("show vtop <virt_addr>\n");
}
#endif