aboutsummaryrefslogtreecommitdiff
path: root/sys/kern/kern_clock.c
blob: 6fa2272ed54a930d9c0f9f6e7adbbfda03903bed (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
/*-
 * SPDX-License-Identifier: BSD-3-Clause
 *
 * Copyright (c) 1982, 1986, 1991, 1993
 *	The Regents of the University of California.  All rights reserved.
 * (c) UNIX System Laboratories, Inc.
 * All or some portions of this file are derived from material licensed
 * to the University of California by American Telephone and Telegraph
 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
 * the permission of UNIX System Laboratories, Inc.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. Neither the name of the University nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */

#include <sys/cdefs.h>
#include "opt_kdb.h"
#include "opt_device_polling.h"
#include "opt_hwpmc_hooks.h"
#include "opt_ntp.h"
#include "opt_watchdog.h"

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/callout.h>
#include <sys/epoch.h>
#include <sys/eventhandler.h>
#include <sys/gtaskqueue.h>
#include <sys/kdb.h>
#include <sys/kernel.h>
#include <sys/kthread.h>
#include <sys/ktr.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/resource.h>
#include <sys/resourcevar.h>
#include <sys/sched.h>
#include <sys/sdt.h>
#include <sys/signalvar.h>
#include <sys/sleepqueue.h>
#include <sys/smp.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#include <vm/vm_map.h>
#include <sys/sysctl.h>
#include <sys/bus.h>
#include <sys/interrupt.h>
#include <sys/limits.h>
#include <sys/timetc.h>

#ifdef HWPMC_HOOKS
#include <sys/pmckern.h>
PMC_SOFT_DEFINE( , , clock, hard);
PMC_SOFT_DEFINE( , , clock, stat);
PMC_SOFT_DEFINE_EX( , , clock, prof, \
    cpu_startprofclock, cpu_stopprofclock);
#endif

#ifdef DEVICE_POLLING
extern void hardclock_device_poll(void);
#endif /* DEVICE_POLLING */

/* Spin-lock protecting profiling statistics. */
static struct mtx time_lock;

SDT_PROVIDER_DECLARE(sched);
SDT_PROBE_DEFINE2(sched, , , tick, "struct thread *", "struct proc *");

static int
sysctl_kern_cp_time(SYSCTL_HANDLER_ARGS)
{
	int error;
	long cp_time[CPUSTATES];
#ifdef SCTL_MASK32
	int i;
	unsigned int cp_time32[CPUSTATES];
#endif

	read_cpu_time(cp_time);
#ifdef SCTL_MASK32
	if (req->flags & SCTL_MASK32) {
		if (!req->oldptr)
			return SYSCTL_OUT(req, 0, sizeof(cp_time32));
		for (i = 0; i < CPUSTATES; i++)
			cp_time32[i] = (unsigned int)cp_time[i];
		error = SYSCTL_OUT(req, cp_time32, sizeof(cp_time32));
	} else
#endif
	{
		if (!req->oldptr)
			return SYSCTL_OUT(req, 0, sizeof(cp_time));
		error = SYSCTL_OUT(req, cp_time, sizeof(cp_time));
	}
	return error;
}

SYSCTL_PROC(_kern, OID_AUTO, cp_time, CTLTYPE_LONG|CTLFLAG_RD|CTLFLAG_MPSAFE,
    0,0, sysctl_kern_cp_time, "LU", "CPU time statistics");

static long empty[CPUSTATES];

static int
sysctl_kern_cp_times(SYSCTL_HANDLER_ARGS)
{
	struct pcpu *pcpu;
	int error;
	int c;
	long *cp_time;
#ifdef SCTL_MASK32
	unsigned int cp_time32[CPUSTATES];
	int i;
#endif

	if (!req->oldptr) {
#ifdef SCTL_MASK32
		if (req->flags & SCTL_MASK32)
			return SYSCTL_OUT(req, 0, sizeof(cp_time32) * (mp_maxid + 1));
		else
#endif
			return SYSCTL_OUT(req, 0, sizeof(long) * CPUSTATES * (mp_maxid + 1));
	}
	for (error = 0, c = 0; error == 0 && c <= mp_maxid; c++) {
		if (!CPU_ABSENT(c)) {
			pcpu = pcpu_find(c);
			cp_time = pcpu->pc_cp_time;
		} else {
			cp_time = empty;
		}
#ifdef SCTL_MASK32
		if (req->flags & SCTL_MASK32) {
			for (i = 0; i < CPUSTATES; i++)
				cp_time32[i] = (unsigned int)cp_time[i];
			error = SYSCTL_OUT(req, cp_time32, sizeof(cp_time32));
		} else
#endif
			error = SYSCTL_OUT(req, cp_time, sizeof(long) * CPUSTATES);
	}
	return error;
}

SYSCTL_PROC(_kern, OID_AUTO, cp_times, CTLTYPE_LONG|CTLFLAG_RD|CTLFLAG_MPSAFE,
    0,0, sysctl_kern_cp_times, "LU", "per-CPU time statistics");

#ifdef DEADLKRES
static const char *blessed[] = {
	"getblk",
	"so_snd_sx",
	"so_rcv_sx",
	NULL
};
static int slptime_threshold = 1800;
static int blktime_threshold = 900;
static int sleepfreq = 3;

static void
deadlres_td_on_lock(struct proc *p, struct thread *td, int blkticks)
{
	int tticks;

	sx_assert(&allproc_lock, SX_LOCKED);
	PROC_LOCK_ASSERT(p, MA_OWNED);
	THREAD_LOCK_ASSERT(td, MA_OWNED);
	/*
	 * The thread should be blocked on a turnstile, simply check
	 * if the turnstile channel is in good state.
	 */
	MPASS(td->td_blocked != NULL);

	tticks = ticks - td->td_blktick;
	if (tticks > blkticks)
		/*
		 * Accordingly with provided thresholds, this thread is stuck
		 * for too long on a turnstile.
		 */
		panic("%s: possible deadlock detected for %p (%s), "
		    "blocked for %d ticks\n", __func__,
		    td, sched_tdname(td), tticks);
}

static void
deadlres_td_sleep_q(struct proc *p, struct thread *td, int slpticks)
{
	const void *wchan;
	int i, slptype, tticks;

	sx_assert(&allproc_lock, SX_LOCKED);
	PROC_LOCK_ASSERT(p, MA_OWNED);
	THREAD_LOCK_ASSERT(td, MA_OWNED);
	/*
	 * Check if the thread is sleeping on a lock, otherwise skip the check.
	 * Drop the thread lock in order to avoid a LOR with the sleepqueue
	 * spinlock.
	 */
	wchan = td->td_wchan;
	tticks = ticks - td->td_slptick;
	slptype = sleepq_type(wchan);
	if ((slptype == SLEEPQ_SX || slptype == SLEEPQ_LK) &&
	    tticks > slpticks) {
		/*
		 * Accordingly with provided thresholds, this thread is stuck
		 * for too long on a sleepqueue.
		 * However, being on a sleepqueue, we might still check for the
		 * blessed list.
		 */
		for (i = 0; blessed[i] != NULL; i++)
			if (!strcmp(blessed[i], td->td_wmesg))
				return;

		panic("%s: possible deadlock detected for %p (%s), "
		    "blocked for %d ticks\n", __func__,
		    td, sched_tdname(td), tticks);
	}
}

static void
deadlkres(void)
{
	struct proc *p;
	struct thread *td;
	int blkticks, slpticks, tryl;

	tryl = 0;
	for (;;) {
		blkticks = blktime_threshold * hz;
		slpticks = slptime_threshold * hz;

		/*
		 * Avoid to sleep on the sx_lock in order to avoid a
		 * possible priority inversion problem leading to
		 * starvation.
		 * If the lock can't be held after 100 tries, panic.
		 */
		if (!sx_try_slock(&allproc_lock)) {
			if (tryl > 100)
				panic("%s: possible deadlock detected "
				    "on allproc_lock\n", __func__);
			tryl++;
			pause("allproc", sleepfreq * hz);
			continue;
		}
		tryl = 0;
		FOREACH_PROC_IN_SYSTEM(p) {
			PROC_LOCK(p);
			if (p->p_state == PRS_NEW) {
				PROC_UNLOCK(p);
				continue;
			}
			FOREACH_THREAD_IN_PROC(p, td) {
				thread_lock(td);
				if (TD_ON_LOCK(td))
					deadlres_td_on_lock(p, td,
					    blkticks);
				else if (TD_IS_SLEEPING(td))
					deadlres_td_sleep_q(p, td,
					    slpticks);
				thread_unlock(td);
			}
			PROC_UNLOCK(p);
		}
		sx_sunlock(&allproc_lock);

		/* Sleep for sleepfreq seconds. */
		pause("-", sleepfreq * hz);
	}
}

static struct kthread_desc deadlkres_kd = {
	"deadlkres",
	deadlkres,
	(struct thread **)NULL
};

SYSINIT(deadlkres, SI_SUB_CLOCKS, SI_ORDER_ANY, kthread_start, &deadlkres_kd);

static SYSCTL_NODE(_debug, OID_AUTO, deadlkres, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
    "Deadlock resolver");
SYSCTL_INT(_debug_deadlkres, OID_AUTO, slptime_threshold, CTLFLAG_RWTUN,
    &slptime_threshold, 0,
    "Number of seconds within is valid to sleep on a sleepqueue");
SYSCTL_INT(_debug_deadlkres, OID_AUTO, blktime_threshold, CTLFLAG_RWTUN,
    &blktime_threshold, 0,
    "Number of seconds within is valid to block on a turnstile");
SYSCTL_INT(_debug_deadlkres, OID_AUTO, sleepfreq, CTLFLAG_RWTUN, &sleepfreq, 0,
    "Number of seconds between any deadlock resolver thread run");
#endif	/* DEADLKRES */

void
read_cpu_time(long *cp_time)
{
	struct pcpu *pc;
	int i, j;

	/* Sum up global cp_time[]. */
	bzero(cp_time, sizeof(long) * CPUSTATES);
	CPU_FOREACH(i) {
		pc = pcpu_find(i);
		for (j = 0; j < CPUSTATES; j++)
			cp_time[j] += pc->pc_cp_time[j];
	}
}

#include <sys/watchdog.h>

static int watchdog_ticks;
static int watchdog_enabled;
static void watchdog_fire(void);
static void watchdog_config(void *, u_int, int *);

static void
watchdog_attach(void)
{
	EVENTHANDLER_REGISTER(watchdog_list, watchdog_config, NULL, 0);
}

/*
 * Clock handling routines.
 *
 * This code is written to operate with two timers that run independently of
 * each other.
 *
 * The main timer, running hz times per second, is used to trigger interval
 * timers, timeouts and rescheduling as needed.
 *
 * The second timer handles kernel and user profiling,
 * and does resource use estimation.  If the second timer is programmable,
 * it is randomized to avoid aliasing between the two clocks.  For example,
 * the randomization prevents an adversary from always giving up the cpu
 * just before its quantum expires.  Otherwise, it would never accumulate
 * cpu ticks.  The mean frequency of the second timer is stathz.
 *
 * If no second timer exists, stathz will be zero; in this case we drive
 * profiling and statistics off the main clock.  This WILL NOT be accurate;
 * do not do it unless absolutely necessary.
 *
 * The statistics clock may (or may not) be run at a higher rate while
 * profiling.  This profile clock runs at profhz.  We require that profhz
 * be an integral multiple of stathz.
 *
 * If the statistics clock is running fast, it must be divided by the ratio
 * profhz/stathz for statistics.  (For profiling, every tick counts.)
 *
 * Time-of-day is maintained using a "timecounter", which may or may
 * not be related to the hardware generating the above mentioned
 * interrupts.
 */

int	stathz;
int	profhz;
int	profprocs;
volatile int	ticks;
int	psratio;

DPCPU_DEFINE_STATIC(int, pcputicks);	/* Per-CPU version of ticks. */
#ifdef DEVICE_POLLING
static int devpoll_run = 0;
#endif

static void
ast_oweupc(struct thread *td, int tda __unused)
{
	if ((td->td_proc->p_flag & P_PROFIL) == 0)
		return;
	addupc_task(td, td->td_profil_addr, td->td_profil_ticks);
	td->td_profil_ticks = 0;
	td->td_pflags &= ~TDP_OWEUPC;
}

static void
ast_alrm(struct thread *td, int tda __unused)
{
	struct proc *p;

	p = td->td_proc;
	PROC_LOCK(p);
	kern_psignal(p, SIGVTALRM);
	PROC_UNLOCK(p);
}

static void
ast_prof(struct thread *td, int tda __unused)
{
	struct proc *p;

	p = td->td_proc;
	PROC_LOCK(p);
	kern_psignal(p, SIGPROF);
	PROC_UNLOCK(p);
}

/*
 * Initialize clock frequencies and start both clocks running.
 */
static void
initclocks(void *dummy __unused)
{
	int i;

	/*
	 * Set divisors to 1 (normal case) and let the machine-specific
	 * code do its bit.
	 */
	mtx_init(&time_lock, "time lock", NULL, MTX_DEF);
	cpu_initclocks();

	/*
	 * Compute profhz/stathz, and fix profhz if needed.
	 */
	i = stathz ? stathz : hz;
	if (profhz == 0)
		profhz = i;
	psratio = profhz / i;

	ast_register(TDA_OWEUPC, ASTR_ASTF_REQUIRED, 0, ast_oweupc);
	ast_register(TDA_ALRM, ASTR_ASTF_REQUIRED, 0, ast_alrm);
	ast_register(TDA_PROF, ASTR_ASTF_REQUIRED, 0, ast_prof);

#ifdef SW_WATCHDOG
	/* Enable hardclock watchdog now, even if a hardware watchdog exists. */
	watchdog_attach();
#else
	/* Volunteer to run a software watchdog. */
	if (wdog_software_attach == NULL)
		wdog_software_attach = watchdog_attach;
#endif
}
SYSINIT(clocks, SI_SUB_CLOCKS, SI_ORDER_FIRST, initclocks, NULL);

static __noinline void
hardclock_itimer(struct thread *td, struct pstats *pstats, int cnt, int usermode)
{
	struct proc *p;
	int ast;

	ast = 0;
	p = td->td_proc;
	if (usermode &&
	    timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value)) {
		PROC_ITIMLOCK(p);
		if (itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL],
		    tick * cnt) == 0)
			ast |= TDAI(TDA_ALRM);
		PROC_ITIMUNLOCK(p);
	}
	if (timevalisset(&pstats->p_timer[ITIMER_PROF].it_value)) {
		PROC_ITIMLOCK(p);
		if (itimerdecr(&pstats->p_timer[ITIMER_PROF],
		    tick * cnt) == 0)
			ast |= TDAI(TDA_PROF);
		PROC_ITIMUNLOCK(p);
	}
	if (ast != 0)
		ast_sched_mask(td, ast);
}

void
hardclock(int cnt, int usermode)
{
	struct pstats *pstats;
	struct thread *td = curthread;
	struct proc *p = td->td_proc;
	int *t = DPCPU_PTR(pcputicks);
	int global, i, newticks;

	/*
	 * Update per-CPU and possibly global ticks values.
	 */
	*t += cnt;
	global = ticks;
	do {
		newticks = *t - global;
		if (newticks <= 0) {
			if (newticks < -1)
				*t = global - 1;
			newticks = 0;
			break;
		}
	} while (!atomic_fcmpset_int(&ticks, &global, *t));

	/*
	 * Run current process's virtual and profile time, as needed.
	 */
	pstats = p->p_stats;
	if (__predict_false(
	    timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) ||
	    timevalisset(&pstats->p_timer[ITIMER_PROF].it_value)))
		hardclock_itimer(td, pstats, cnt, usermode);

#ifdef	HWPMC_HOOKS
	if (PMC_CPU_HAS_SAMPLES(PCPU_GET(cpuid)))
		PMC_CALL_HOOK_UNLOCKED(curthread, PMC_FN_DO_SAMPLES, NULL);
	if (td->td_intr_frame != NULL)
		PMC_SOFT_CALL_TF( , , clock, hard, td->td_intr_frame);
#endif
	/* We are in charge to handle this tick duty. */
	if (newticks > 0) {
		tc_ticktock(newticks);
#ifdef DEVICE_POLLING
		/* Dangerous and no need to call these things concurrently. */
		if (atomic_cmpset_acq_int(&devpoll_run, 0, 1)) {
			/* This is very short and quick. */
			hardclock_device_poll();
			atomic_store_rel_int(&devpoll_run, 0);
		}
#endif /* DEVICE_POLLING */
		if (watchdog_enabled > 0) {
			i = atomic_fetchadd_int(&watchdog_ticks, -newticks);
			if (i > 0 && i <= newticks)
				watchdog_fire();
		}
		intr_event_handle(clk_intr_event, NULL);
	}
	if (curcpu == CPU_FIRST())
		cpu_tick_calibration();
	if (__predict_false(DPCPU_GET(epoch_cb_count)))
		GROUPTASK_ENQUEUE(DPCPU_PTR(epoch_cb_task));
}

void
hardclock_sync(int cpu)
{
	int *t;
	KASSERT(!CPU_ABSENT(cpu), ("Absent CPU %d", cpu));
	t = DPCPU_ID_PTR(cpu, pcputicks);

	*t = ticks;
}

/*
 * Regular integer scaling formula without losing precision:
 */
#define	TIME_INT_SCALE(value, mul, div) \
	(((value) / (div)) * (mul) + (((value) % (div)) * (mul)) / (div))

/*
 * Macro for converting seconds and microseconds into actual ticks,
 * based on the given hz value:
 */
#define	TIME_TO_TICKS(sec, usec, hz) \
	((sec) * (hz) + TIME_INT_SCALE(usec, hz, 1 << 6) / (1000000 >> 6))

#define	TIME_ASSERT_VALID_HZ(hz)	\
	_Static_assert(TIME_TO_TICKS(INT_MAX / (hz) - 1, 999999, hz) >= 0 && \
		       TIME_TO_TICKS(INT_MAX / (hz) - 1, 999999, hz) < INT_MAX,	\
		       "tvtohz() can overflow the regular integer type")

/*
 * Compile time assert the maximum and minimum values to fit into a
 * regular integer when computing TIME_TO_TICKS():
 */
TIME_ASSERT_VALID_HZ(HZ_MAXIMUM);
TIME_ASSERT_VALID_HZ(HZ_MINIMUM);

/*
 * The formula is mostly linear, but test some more common values just
 * in case:
 */
TIME_ASSERT_VALID_HZ(1024);
TIME_ASSERT_VALID_HZ(1000);
TIME_ASSERT_VALID_HZ(128);
TIME_ASSERT_VALID_HZ(100);

/*
 * Compute number of ticks representing the specified amount of time.
 * If the specified time is negative, a value of 1 is returned. This
 * function returns a value from 1 up to and including INT_MAX.
 */
int
tvtohz(struct timeval *tv)
{
	int retval;

	/*
	 * The values passed here may come from user-space and these
	 * checks ensure "tv_usec" is within its allowed range:
	 */

	/* check for tv_usec underflow */
	if (__predict_false(tv->tv_usec < 0)) {
		tv->tv_sec += tv->tv_usec / 1000000;
		tv->tv_usec = tv->tv_usec % 1000000;
		/* convert tv_usec to a positive value */
		if (__predict_true(tv->tv_usec < 0)) {
			tv->tv_usec += 1000000;
			tv->tv_sec -= 1;
		}
	/* check for tv_usec overflow */
	} else if (__predict_false(tv->tv_usec >= 1000000)) {
		tv->tv_sec += tv->tv_usec / 1000000;
		tv->tv_usec = tv->tv_usec % 1000000;
	}

	/* check for tv_sec underflow */
	if (__predict_false(tv->tv_sec < 0))
		return (1);
	/* check for tv_sec overflow (including room for the tv_usec part) */
	else if (__predict_false(tv->tv_sec >= tick_seconds_max))
		return (INT_MAX);

	/* cast to "int" to avoid platform differences */
	retval = TIME_TO_TICKS((int)tv->tv_sec, (int)tv->tv_usec, hz);

	/* add one additional tick */
	return (retval + 1);
}

/*
 * Start profiling on a process.
 *
 * Kernel profiling passes proc0 which never exits and hence
 * keeps the profile clock running constantly.
 */
void
startprofclock(struct proc *p)
{

	PROC_LOCK_ASSERT(p, MA_OWNED);
	if (p->p_flag & P_STOPPROF)
		return;
	if ((p->p_flag & P_PROFIL) == 0) {
		p->p_flag |= P_PROFIL;
		mtx_lock(&time_lock);
		if (++profprocs == 1)
			cpu_startprofclock();
		mtx_unlock(&time_lock);
	}
}

/*
 * Stop profiling on a process.
 */
void
stopprofclock(struct proc *p)
{

	PROC_LOCK_ASSERT(p, MA_OWNED);
	if (p->p_flag & P_PROFIL) {
		if (p->p_profthreads != 0) {
			while (p->p_profthreads != 0) {
				p->p_flag |= P_STOPPROF;
				msleep(&p->p_profthreads, &p->p_mtx, PPAUSE,
				    "stopprof", 0);
			}
		}
		if ((p->p_flag & P_PROFIL) == 0)
			return;
		p->p_flag &= ~P_PROFIL;
		mtx_lock(&time_lock);
		if (--profprocs == 0)
			cpu_stopprofclock();
		mtx_unlock(&time_lock);
	}
}

/*
 * Statistics clock.  Updates rusage information and calls the scheduler
 * to adjust priorities of the active thread.
 *
 * This should be called by all active processors.
 */
void
statclock(int cnt, int usermode)
{
	struct rusage *ru;
	struct vmspace *vm;
	struct thread *td;
	struct proc *p;
	long rss;
	long *cp_time;
	uint64_t runtime, new_switchtime;

	td = curthread;
	p = td->td_proc;

	cp_time = (long *)PCPU_PTR(cp_time);
	if (usermode) {
		/*
		 * Charge the time as appropriate.
		 */
		td->td_uticks += cnt;
		if (p->p_nice > NZERO)
			cp_time[CP_NICE] += cnt;
		else
			cp_time[CP_USER] += cnt;
	} else {
		/*
		 * Came from kernel mode, so we were:
		 * - handling an interrupt,
		 * - doing syscall or trap work on behalf of the current
		 *   user process, or
		 * - spinning in the idle loop.
		 * Whichever it is, charge the time as appropriate.
		 * Note that we charge interrupts to the current process,
		 * regardless of whether they are ``for'' that process,
		 * so that we know how much of its real time was spent
		 * in ``non-process'' (i.e., interrupt) work.
		 */
		if ((td->td_pflags & TDP_ITHREAD) ||
		    td->td_intr_nesting_level >= 2) {
			td->td_iticks += cnt;
			cp_time[CP_INTR] += cnt;
		} else {
			td->td_pticks += cnt;
			td->td_sticks += cnt;
			if (!TD_IS_IDLETHREAD(td))
				cp_time[CP_SYS] += cnt;
			else
				cp_time[CP_IDLE] += cnt;
		}
	}

	/* Update resource usage integrals and maximums. */
	MPASS(p->p_vmspace != NULL);
	vm = p->p_vmspace;
	ru = &td->td_ru;
	ru->ru_ixrss += pgtok(vm->vm_tsize) * cnt;
	ru->ru_idrss += pgtok(vm->vm_dsize) * cnt;
	ru->ru_isrss += pgtok(vm->vm_ssize) * cnt;
	rss = pgtok(vmspace_resident_count(vm));
	if (ru->ru_maxrss < rss)
		ru->ru_maxrss = rss;
	KTR_POINT2(KTR_SCHED, "thread", sched_tdname(td), "statclock",
	    "prio:%d", td->td_priority, "stathz:%d", (stathz)?stathz:hz);
	SDT_PROBE2(sched, , , tick, td, td->td_proc);
	thread_lock_flags(td, MTX_QUIET);

	/*
	 * Compute the amount of time during which the current
	 * thread was running, and add that to its total so far.
	 */
	new_switchtime = cpu_ticks();
	runtime = new_switchtime - PCPU_GET(switchtime);
	td->td_runtime += runtime;
	td->td_incruntime += runtime;
	PCPU_SET(switchtime, new_switchtime);

	sched_clock(td, cnt);
	thread_unlock(td);
#ifdef HWPMC_HOOKS
	if (td->td_intr_frame != NULL)
		PMC_SOFT_CALL_TF( , , clock, stat, td->td_intr_frame);
#endif
}

void
profclock(int cnt, int usermode, uintfptr_t pc)
{
	struct thread *td;

	td = curthread;
	if (usermode) {
		/*
		 * Came from user mode; CPU was in user state.
		 * If this process is being profiled, record the tick.
		 * if there is no related user location yet, don't
		 * bother trying to count it.
		 */
		if (td->td_proc->p_flag & P_PROFIL)
			addupc_intr(td, pc, cnt);
	}
#ifdef HWPMC_HOOKS
	if (td->td_intr_frame != NULL)
		PMC_SOFT_CALL_TF( , , clock, prof, td->td_intr_frame);
#endif
}

/*
 * Return information about system clocks.
 */
static int
sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS)
{
	struct clockinfo clkinfo;
	/*
	 * Construct clockinfo structure.
	 */
	bzero(&clkinfo, sizeof(clkinfo));
	clkinfo.hz = hz;
	clkinfo.tick = tick;
	clkinfo.profhz = profhz;
	clkinfo.stathz = stathz ? stathz : hz;
	return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req));
}

SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate,
	CTLTYPE_STRUCT|CTLFLAG_RD|CTLFLAG_MPSAFE,
	0, 0, sysctl_kern_clockrate, "S,clockinfo",
	"Rate and period of various kernel clocks");

static void
watchdog_config(void *unused __unused, u_int cmd, int *error)
{
	u_int u;

	u = cmd & WD_INTERVAL;
	if (u >= WD_TO_1SEC) {
		watchdog_ticks = (1 << (u - WD_TO_1SEC)) * hz;
		watchdog_enabled = 1;
		*error = 0;
	} else {
		watchdog_enabled = 0;
	}
}

/*
 * Handle a watchdog timeout by dropping to DDB or panicking.
 */
static void
watchdog_fire(void)
{

#if defined(KDB) && !defined(KDB_UNATTENDED)
	kdb_backtrace();
	kdb_enter(KDB_WHY_WATCHDOG, "watchdog timeout");
#else
	panic("watchdog timeout");
#endif
}