diff options
| author | Dimitry Andric <dim@FreeBSD.org> | 2019-12-20 19:53:05 +0000 |
|---|---|---|
| committer | Dimitry Andric <dim@FreeBSD.org> | 2019-12-20 19:53:05 +0000 |
| commit | 0b57cec536236d46e3dba9bd041533462f33dbb7 (patch) | |
| tree | 56229dbdbbf76d18580f72f789003db17246c8d9 /contrib/llvm/lib/Transforms/Vectorize/LoopVectorizationLegality.cpp | |
| parent | 718ef55ec7785aae63f98f8ca05dc07ed399c16d (diff) | |
Notes
Diffstat (limited to 'contrib/llvm/lib/Transforms/Vectorize/LoopVectorizationLegality.cpp')
| -rw-r--r-- | contrib/llvm/lib/Transforms/Vectorize/LoopVectorizationLegality.cpp | 1250 |
1 files changed, 0 insertions, 1250 deletions
diff --git a/contrib/llvm/lib/Transforms/Vectorize/LoopVectorizationLegality.cpp b/contrib/llvm/lib/Transforms/Vectorize/LoopVectorizationLegality.cpp deleted file mode 100644 index 138f18e49c92..000000000000 --- a/contrib/llvm/lib/Transforms/Vectorize/LoopVectorizationLegality.cpp +++ /dev/null @@ -1,1250 +0,0 @@ -//===- LoopVectorizationLegality.cpp --------------------------------------===// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -//===----------------------------------------------------------------------===// -// -// This file provides loop vectorization legality analysis. Original code -// resided in LoopVectorize.cpp for a long time. -// -// At this point, it is implemented as a utility class, not as an analysis -// pass. It should be easy to create an analysis pass around it if there -// is a need (but D45420 needs to happen first). -// -#include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" -#include "llvm/Analysis/VectorUtils.h" -#include "llvm/IR/IntrinsicInst.h" - -using namespace llvm; - -#define LV_NAME "loop-vectorize" -#define DEBUG_TYPE LV_NAME - -extern cl::opt<bool> EnableVPlanPredication; - -static cl::opt<bool> - EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, - cl::desc("Enable if-conversion during vectorization.")); - -static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( - "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, - cl::desc("The maximum allowed number of runtime memory checks with a " - "vectorize(enable) pragma.")); - -static cl::opt<unsigned> VectorizeSCEVCheckThreshold( - "vectorize-scev-check-threshold", cl::init(16), cl::Hidden, - cl::desc("The maximum number of SCEV checks allowed.")); - -static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold( - "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden, - cl::desc("The maximum number of SCEV checks allowed with a " - "vectorize(enable) pragma")); - -/// Maximum vectorization interleave count. -static const unsigned MaxInterleaveFactor = 16; - -namespace llvm { - -#ifndef NDEBUG -static void debugVectorizationFailure(const StringRef DebugMsg, - Instruction *I) { - dbgs() << "LV: Not vectorizing: " << DebugMsg; - if (I != nullptr) - dbgs() << " " << *I; - else - dbgs() << '.'; - dbgs() << '\n'; -} -#endif - -OptimizationRemarkAnalysis createLVMissedAnalysis(const char *PassName, - StringRef RemarkName, - Loop *TheLoop, - Instruction *I) { - Value *CodeRegion = TheLoop->getHeader(); - DebugLoc DL = TheLoop->getStartLoc(); - - if (I) { - CodeRegion = I->getParent(); - // If there is no debug location attached to the instruction, revert back to - // using the loop's. - if (I->getDebugLoc()) - DL = I->getDebugLoc(); - } - - OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion); - R << "loop not vectorized: "; - return R; -} - -bool LoopVectorizeHints::Hint::validate(unsigned Val) { - switch (Kind) { - case HK_WIDTH: - return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth; - case HK_UNROLL: - return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; - case HK_FORCE: - return (Val <= 1); - case HK_ISVECTORIZED: - return (Val == 0 || Val == 1); - } - return false; -} - -LoopVectorizeHints::LoopVectorizeHints(const Loop *L, - bool InterleaveOnlyWhenForced, - OptimizationRemarkEmitter &ORE) - : Width("vectorize.width", VectorizerParams::VectorizationFactor, HK_WIDTH), - Interleave("interleave.count", InterleaveOnlyWhenForced, HK_UNROLL), - Force("vectorize.enable", FK_Undefined, HK_FORCE), - IsVectorized("isvectorized", 0, HK_ISVECTORIZED), TheLoop(L), ORE(ORE) { - // Populate values with existing loop metadata. - getHintsFromMetadata(); - - // force-vector-interleave overrides DisableInterleaving. - if (VectorizerParams::isInterleaveForced()) - Interleave.Value = VectorizerParams::VectorizationInterleave; - - if (IsVectorized.Value != 1) - // If the vectorization width and interleaving count are both 1 then - // consider the loop to have been already vectorized because there's - // nothing more that we can do. - IsVectorized.Value = Width.Value == 1 && Interleave.Value == 1; - LLVM_DEBUG(if (InterleaveOnlyWhenForced && Interleave.Value == 1) dbgs() - << "LV: Interleaving disabled by the pass manager\n"); -} - -void LoopVectorizeHints::setAlreadyVectorized() { - LLVMContext &Context = TheLoop->getHeader()->getContext(); - - MDNode *IsVectorizedMD = MDNode::get( - Context, - {MDString::get(Context, "llvm.loop.isvectorized"), - ConstantAsMetadata::get(ConstantInt::get(Context, APInt(32, 1)))}); - MDNode *LoopID = TheLoop->getLoopID(); - MDNode *NewLoopID = - makePostTransformationMetadata(Context, LoopID, - {Twine(Prefix(), "vectorize.").str(), - Twine(Prefix(), "interleave.").str()}, - {IsVectorizedMD}); - TheLoop->setLoopID(NewLoopID); - - // Update internal cache. - IsVectorized.Value = 1; -} - -bool LoopVectorizeHints::allowVectorization( - Function *F, Loop *L, bool VectorizeOnlyWhenForced) const { - if (getForce() == LoopVectorizeHints::FK_Disabled) { - LLVM_DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); - emitRemarkWithHints(); - return false; - } - - if (VectorizeOnlyWhenForced && getForce() != LoopVectorizeHints::FK_Enabled) { - LLVM_DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); - emitRemarkWithHints(); - return false; - } - - if (getIsVectorized() == 1) { - LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); - // FIXME: Add interleave.disable metadata. This will allow - // vectorize.disable to be used without disabling the pass and errors - // to differentiate between disabled vectorization and a width of 1. - ORE.emit([&]() { - return OptimizationRemarkAnalysis(vectorizeAnalysisPassName(), - "AllDisabled", L->getStartLoc(), - L->getHeader()) - << "loop not vectorized: vectorization and interleaving are " - "explicitly disabled, or the loop has already been " - "vectorized"; - }); - return false; - } - - return true; -} - -void LoopVectorizeHints::emitRemarkWithHints() const { - using namespace ore; - - ORE.emit([&]() { - if (Force.Value == LoopVectorizeHints::FK_Disabled) - return OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled", - TheLoop->getStartLoc(), - TheLoop->getHeader()) - << "loop not vectorized: vectorization is explicitly disabled"; - else { - OptimizationRemarkMissed R(LV_NAME, "MissedDetails", - TheLoop->getStartLoc(), TheLoop->getHeader()); - R << "loop not vectorized"; - if (Force.Value == LoopVectorizeHints::FK_Enabled) { - R << " (Force=" << NV("Force", true); - if (Width.Value != 0) - R << ", Vector Width=" << NV("VectorWidth", Width.Value); - if (Interleave.Value != 0) - R << ", Interleave Count=" << NV("InterleaveCount", Interleave.Value); - R << ")"; - } - return R; - } - }); -} - -const char *LoopVectorizeHints::vectorizeAnalysisPassName() const { - if (getWidth() == 1) - return LV_NAME; - if (getForce() == LoopVectorizeHints::FK_Disabled) - return LV_NAME; - if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0) - return LV_NAME; - return OptimizationRemarkAnalysis::AlwaysPrint; -} - -void LoopVectorizeHints::getHintsFromMetadata() { - MDNode *LoopID = TheLoop->getLoopID(); - if (!LoopID) - return; - - // First operand should refer to the loop id itself. - assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); - assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); - - for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { - const MDString *S = nullptr; - SmallVector<Metadata *, 4> Args; - - // The expected hint is either a MDString or a MDNode with the first - // operand a MDString. - if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { - if (!MD || MD->getNumOperands() == 0) - continue; - S = dyn_cast<MDString>(MD->getOperand(0)); - for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) - Args.push_back(MD->getOperand(i)); - } else { - S = dyn_cast<MDString>(LoopID->getOperand(i)); - assert(Args.size() == 0 && "too many arguments for MDString"); - } - - if (!S) - continue; - - // Check if the hint starts with the loop metadata prefix. - StringRef Name = S->getString(); - if (Args.size() == 1) - setHint(Name, Args[0]); - } -} - -void LoopVectorizeHints::setHint(StringRef Name, Metadata *Arg) { - if (!Name.startswith(Prefix())) - return; - Name = Name.substr(Prefix().size(), StringRef::npos); - - const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg); - if (!C) - return; - unsigned Val = C->getZExtValue(); - - Hint *Hints[] = {&Width, &Interleave, &Force, &IsVectorized}; - for (auto H : Hints) { - if (Name == H->Name) { - if (H->validate(Val)) - H->Value = Val; - else - LLVM_DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); - break; - } - } -} - -bool LoopVectorizationRequirements::doesNotMeet( - Function *F, Loop *L, const LoopVectorizeHints &Hints) { - const char *PassName = Hints.vectorizeAnalysisPassName(); - bool Failed = false; - if (UnsafeAlgebraInst && !Hints.allowReordering()) { - ORE.emit([&]() { - return OptimizationRemarkAnalysisFPCommute( - PassName, "CantReorderFPOps", UnsafeAlgebraInst->getDebugLoc(), - UnsafeAlgebraInst->getParent()) - << "loop not vectorized: cannot prove it is safe to reorder " - "floating-point operations"; - }); - Failed = true; - } - - // Test if runtime memcheck thresholds are exceeded. - bool PragmaThresholdReached = - NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; - bool ThresholdReached = - NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; - if ((ThresholdReached && !Hints.allowReordering()) || - PragmaThresholdReached) { - ORE.emit([&]() { - return OptimizationRemarkAnalysisAliasing(PassName, "CantReorderMemOps", - L->getStartLoc(), - L->getHeader()) - << "loop not vectorized: cannot prove it is safe to reorder " - "memory operations"; - }); - LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); - Failed = true; - } - - return Failed; -} - -// Return true if the inner loop \p Lp is uniform with regard to the outer loop -// \p OuterLp (i.e., if the outer loop is vectorized, all the vector lanes -// executing the inner loop will execute the same iterations). This check is -// very constrained for now but it will be relaxed in the future. \p Lp is -// considered uniform if it meets all the following conditions: -// 1) it has a canonical IV (starting from 0 and with stride 1), -// 2) its latch terminator is a conditional branch and, -// 3) its latch condition is a compare instruction whose operands are the -// canonical IV and an OuterLp invariant. -// This check doesn't take into account the uniformity of other conditions not -// related to the loop latch because they don't affect the loop uniformity. -// -// NOTE: We decided to keep all these checks and its associated documentation -// together so that we can easily have a picture of the current supported loop -// nests. However, some of the current checks don't depend on \p OuterLp and -// would be redundantly executed for each \p Lp if we invoked this function for -// different candidate outer loops. This is not the case for now because we -// don't currently have the infrastructure to evaluate multiple candidate outer -// loops and \p OuterLp will be a fixed parameter while we only support explicit -// outer loop vectorization. It's also very likely that these checks go away -// before introducing the aforementioned infrastructure. However, if this is not -// the case, we should move the \p OuterLp independent checks to a separate -// function that is only executed once for each \p Lp. -static bool isUniformLoop(Loop *Lp, Loop *OuterLp) { - assert(Lp->getLoopLatch() && "Expected loop with a single latch."); - - // If Lp is the outer loop, it's uniform by definition. - if (Lp == OuterLp) - return true; - assert(OuterLp->contains(Lp) && "OuterLp must contain Lp."); - - // 1. - PHINode *IV = Lp->getCanonicalInductionVariable(); - if (!IV) { - LLVM_DEBUG(dbgs() << "LV: Canonical IV not found.\n"); - return false; - } - - // 2. - BasicBlock *Latch = Lp->getLoopLatch(); - auto *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator()); - if (!LatchBr || LatchBr->isUnconditional()) { - LLVM_DEBUG(dbgs() << "LV: Unsupported loop latch branch.\n"); - return false; - } - - // 3. - auto *LatchCmp = dyn_cast<CmpInst>(LatchBr->getCondition()); - if (!LatchCmp) { - LLVM_DEBUG( - dbgs() << "LV: Loop latch condition is not a compare instruction.\n"); - return false; - } - - Value *CondOp0 = LatchCmp->getOperand(0); - Value *CondOp1 = LatchCmp->getOperand(1); - Value *IVUpdate = IV->getIncomingValueForBlock(Latch); - if (!(CondOp0 == IVUpdate && OuterLp->isLoopInvariant(CondOp1)) && - !(CondOp1 == IVUpdate && OuterLp->isLoopInvariant(CondOp0))) { - LLVM_DEBUG(dbgs() << "LV: Loop latch condition is not uniform.\n"); - return false; - } - - return true; -} - -// Return true if \p Lp and all its nested loops are uniform with regard to \p -// OuterLp. -static bool isUniformLoopNest(Loop *Lp, Loop *OuterLp) { - if (!isUniformLoop(Lp, OuterLp)) - return false; - - // Check if nested loops are uniform. - for (Loop *SubLp : *Lp) - if (!isUniformLoopNest(SubLp, OuterLp)) - return false; - - return true; -} - -/// Check whether it is safe to if-convert this phi node. -/// -/// Phi nodes with constant expressions that can trap are not safe to if -/// convert. -static bool canIfConvertPHINodes(BasicBlock *BB) { - for (PHINode &Phi : BB->phis()) { - for (Value *V : Phi.incoming_values()) - if (auto *C = dyn_cast<Constant>(V)) - if (C->canTrap()) - return false; - } - return true; -} - -static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { - if (Ty->isPointerTy()) - return DL.getIntPtrType(Ty); - - // It is possible that char's or short's overflow when we ask for the loop's - // trip count, work around this by changing the type size. - if (Ty->getScalarSizeInBits() < 32) - return Type::getInt32Ty(Ty->getContext()); - - return Ty; -} - -static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { - Ty0 = convertPointerToIntegerType(DL, Ty0); - Ty1 = convertPointerToIntegerType(DL, Ty1); - if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) - return Ty0; - return Ty1; -} - -/// Check that the instruction has outside loop users and is not an -/// identified reduction variable. -static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, - SmallPtrSetImpl<Value *> &AllowedExit) { - // Reductions, Inductions and non-header phis are allowed to have exit users. All - // other instructions must not have external users. - if (!AllowedExit.count(Inst)) - // Check that all of the users of the loop are inside the BB. - for (User *U : Inst->users()) { - Instruction *UI = cast<Instruction>(U); - // This user may be a reduction exit value. - if (!TheLoop->contains(UI)) { - LLVM_DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); - return true; - } - } - return false; -} - -int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { - const ValueToValueMap &Strides = - getSymbolicStrides() ? *getSymbolicStrides() : ValueToValueMap(); - - int Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, true, false); - if (Stride == 1 || Stride == -1) - return Stride; - return 0; -} - -bool LoopVectorizationLegality::isUniform(Value *V) { - return LAI->isUniform(V); -} - -void LoopVectorizationLegality::reportVectorizationFailure( - const StringRef DebugMsg, const StringRef OREMsg, - const StringRef ORETag, Instruction *I) const { - LLVM_DEBUG(debugVectorizationFailure(DebugMsg, I)); - ORE->emit(createLVMissedAnalysis(Hints->vectorizeAnalysisPassName(), - ORETag, TheLoop, I) << OREMsg); -} - -bool LoopVectorizationLegality::canVectorizeOuterLoop() { - assert(!TheLoop->empty() && "We are not vectorizing an outer loop."); - // Store the result and return it at the end instead of exiting early, in case - // allowExtraAnalysis is used to report multiple reasons for not vectorizing. - bool Result = true; - bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); - - for (BasicBlock *BB : TheLoop->blocks()) { - // Check whether the BB terminator is a BranchInst. Any other terminator is - // not supported yet. - auto *Br = dyn_cast<BranchInst>(BB->getTerminator()); - if (!Br) { - reportVectorizationFailure("Unsupported basic block terminator", - "loop control flow is not understood by vectorizer", - "CFGNotUnderstood"); - if (DoExtraAnalysis) - Result = false; - else - return false; - } - - // Check whether the BranchInst is a supported one. Only unconditional - // branches, conditional branches with an outer loop invariant condition or - // backedges are supported. - // FIXME: We skip these checks when VPlan predication is enabled as we - // want to allow divergent branches. This whole check will be removed - // once VPlan predication is on by default. - if (!EnableVPlanPredication && Br && Br->isConditional() && - !TheLoop->isLoopInvariant(Br->getCondition()) && - !LI->isLoopHeader(Br->getSuccessor(0)) && - !LI->isLoopHeader(Br->getSuccessor(1))) { - reportVectorizationFailure("Unsupported conditional branch", - "loop control flow is not understood by vectorizer", - "CFGNotUnderstood"); - if (DoExtraAnalysis) - Result = false; - else - return false; - } - } - - // Check whether inner loops are uniform. At this point, we only support - // simple outer loops scenarios with uniform nested loops. - if (!isUniformLoopNest(TheLoop /*loop nest*/, - TheLoop /*context outer loop*/)) { - reportVectorizationFailure("Outer loop contains divergent loops", - "loop control flow is not understood by vectorizer", - "CFGNotUnderstood"); - if (DoExtraAnalysis) - Result = false; - else - return false; - } - - // Check whether we are able to set up outer loop induction. - if (!setupOuterLoopInductions()) { - reportVectorizationFailure("Unsupported outer loop Phi(s)", - "Unsupported outer loop Phi(s)", - "UnsupportedPhi"); - if (DoExtraAnalysis) - Result = false; - else - return false; - } - - return Result; -} - -void LoopVectorizationLegality::addInductionPhi( - PHINode *Phi, const InductionDescriptor &ID, - SmallPtrSetImpl<Value *> &AllowedExit) { - Inductions[Phi] = ID; - - // In case this induction also comes with casts that we know we can ignore - // in the vectorized loop body, record them here. All casts could be recorded - // here for ignoring, but suffices to record only the first (as it is the - // only one that may bw used outside the cast sequence). - const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); - if (!Casts.empty()) - InductionCastsToIgnore.insert(*Casts.begin()); - - Type *PhiTy = Phi->getType(); - const DataLayout &DL = Phi->getModule()->getDataLayout(); - - // Get the widest type. - if (!PhiTy->isFloatingPointTy()) { - if (!WidestIndTy) - WidestIndTy = convertPointerToIntegerType(DL, PhiTy); - else - WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy); - } - - // Int inductions are special because we only allow one IV. - if (ID.getKind() == InductionDescriptor::IK_IntInduction && - ID.getConstIntStepValue() && ID.getConstIntStepValue()->isOne() && - isa<Constant>(ID.getStartValue()) && - cast<Constant>(ID.getStartValue())->isNullValue()) { - - // Use the phi node with the widest type as induction. Use the last - // one if there are multiple (no good reason for doing this other - // than it is expedient). We've checked that it begins at zero and - // steps by one, so this is a canonical induction variable. - if (!PrimaryInduction || PhiTy == WidestIndTy) - PrimaryInduction = Phi; - } - - // Both the PHI node itself, and the "post-increment" value feeding - // back into the PHI node may have external users. - // We can allow those uses, except if the SCEVs we have for them rely - // on predicates that only hold within the loop, since allowing the exit - // currently means re-using this SCEV outside the loop (see PR33706 for more - // details). - if (PSE.getUnionPredicate().isAlwaysTrue()) { - AllowedExit.insert(Phi); - AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch())); - } - - LLVM_DEBUG(dbgs() << "LV: Found an induction variable.\n"); -} - -bool LoopVectorizationLegality::setupOuterLoopInductions() { - BasicBlock *Header = TheLoop->getHeader(); - - // Returns true if a given Phi is a supported induction. - auto isSupportedPhi = [&](PHINode &Phi) -> bool { - InductionDescriptor ID; - if (InductionDescriptor::isInductionPHI(&Phi, TheLoop, PSE, ID) && - ID.getKind() == InductionDescriptor::IK_IntInduction) { - addInductionPhi(&Phi, ID, AllowedExit); - return true; - } else { - // Bail out for any Phi in the outer loop header that is not a supported - // induction. - LLVM_DEBUG( - dbgs() - << "LV: Found unsupported PHI for outer loop vectorization.\n"); - return false; - } - }; - - if (llvm::all_of(Header->phis(), isSupportedPhi)) - return true; - else - return false; -} - -bool LoopVectorizationLegality::canVectorizeInstrs() { - BasicBlock *Header = TheLoop->getHeader(); - - // Look for the attribute signaling the absence of NaNs. - Function &F = *Header->getParent(); - HasFunNoNaNAttr = - F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; - - // For each block in the loop. - for (BasicBlock *BB : TheLoop->blocks()) { - // Scan the instructions in the block and look for hazards. - for (Instruction &I : *BB) { - if (auto *Phi = dyn_cast<PHINode>(&I)) { - Type *PhiTy = Phi->getType(); - // Check that this PHI type is allowed. - if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() && - !PhiTy->isPointerTy()) { - reportVectorizationFailure("Found a non-int non-pointer PHI", - "loop control flow is not understood by vectorizer", - "CFGNotUnderstood"); - return false; - } - - // If this PHINode is not in the header block, then we know that we - // can convert it to select during if-conversion. No need to check if - // the PHIs in this block are induction or reduction variables. - if (BB != Header) { - // Non-header phi nodes that have outside uses can be vectorized. Add - // them to the list of allowed exits. - // Unsafe cyclic dependencies with header phis are identified during - // legalization for reduction, induction and first order - // recurrences. - AllowedExit.insert(&I); - continue; - } - - // We only allow if-converted PHIs with exactly two incoming values. - if (Phi->getNumIncomingValues() != 2) { - reportVectorizationFailure("Found an invalid PHI", - "loop control flow is not understood by vectorizer", - "CFGNotUnderstood", Phi); - return false; - } - - RecurrenceDescriptor RedDes; - if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes, DB, AC, - DT)) { - if (RedDes.hasUnsafeAlgebra()) - Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst()); - AllowedExit.insert(RedDes.getLoopExitInstr()); - Reductions[Phi] = RedDes; - continue; - } - - // TODO: Instead of recording the AllowedExit, it would be good to record the - // complementary set: NotAllowedExit. These include (but may not be - // limited to): - // 1. Reduction phis as they represent the one-before-last value, which - // is not available when vectorized - // 2. Induction phis and increment when SCEV predicates cannot be used - // outside the loop - see addInductionPhi - // 3. Non-Phis with outside uses when SCEV predicates cannot be used - // outside the loop - see call to hasOutsideLoopUser in the non-phi - // handling below - // 4. FirstOrderRecurrence phis that can possibly be handled by - // extraction. - // By recording these, we can then reason about ways to vectorize each - // of these NotAllowedExit. - InductionDescriptor ID; - if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) { - addInductionPhi(Phi, ID, AllowedExit); - if (ID.hasUnsafeAlgebra() && !HasFunNoNaNAttr) - Requirements->addUnsafeAlgebraInst(ID.getUnsafeAlgebraInst()); - continue; - } - - if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop, - SinkAfter, DT)) { - FirstOrderRecurrences.insert(Phi); - continue; - } - - // As a last resort, coerce the PHI to a AddRec expression - // and re-try classifying it a an induction PHI. - if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) { - addInductionPhi(Phi, ID, AllowedExit); - continue; - } - - reportVectorizationFailure("Found an unidentified PHI", - "value that could not be identified as " - "reduction is used outside the loop", - "NonReductionValueUsedOutsideLoop", Phi); - return false; - } // end of PHI handling - - // We handle calls that: - // * Are debug info intrinsics. - // * Have a mapping to an IR intrinsic. - // * Have a vector version available. - auto *CI = dyn_cast<CallInst>(&I); - if (CI && !getVectorIntrinsicIDForCall(CI, TLI) && - !isa<DbgInfoIntrinsic>(CI) && - !(CI->getCalledFunction() && TLI && - TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) { - // If the call is a recognized math libary call, it is likely that - // we can vectorize it given loosened floating-point constraints. - LibFunc Func; - bool IsMathLibCall = - TLI && CI->getCalledFunction() && - CI->getType()->isFloatingPointTy() && - TLI->getLibFunc(CI->getCalledFunction()->getName(), Func) && - TLI->hasOptimizedCodeGen(Func); - - if (IsMathLibCall) { - // TODO: Ideally, we should not use clang-specific language here, - // but it's hard to provide meaningful yet generic advice. - // Also, should this be guarded by allowExtraAnalysis() and/or be part - // of the returned info from isFunctionVectorizable()? - reportVectorizationFailure("Found a non-intrinsic callsite", - "library call cannot be vectorized. " - "Try compiling with -fno-math-errno, -ffast-math, " - "or similar flags", - "CantVectorizeLibcall", CI); - } else { - reportVectorizationFailure("Found a non-intrinsic callsite", - "call instruction cannot be vectorized", - "CantVectorizeLibcall", CI); - } - return false; - } - - // Some intrinsics have scalar arguments and should be same in order for - // them to be vectorized (i.e. loop invariant). - if (CI) { - auto *SE = PSE.getSE(); - Intrinsic::ID IntrinID = getVectorIntrinsicIDForCall(CI, TLI); - for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) - if (hasVectorInstrinsicScalarOpd(IntrinID, i)) { - if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(i)), TheLoop)) { - reportVectorizationFailure("Found unvectorizable intrinsic", - "intrinsic instruction cannot be vectorized", - "CantVectorizeIntrinsic", CI); - return false; - } - } - } - - // Check that the instruction return type is vectorizable. - // Also, we can't vectorize extractelement instructions. - if ((!VectorType::isValidElementType(I.getType()) && - !I.getType()->isVoidTy()) || - isa<ExtractElementInst>(I)) { - reportVectorizationFailure("Found unvectorizable type", - "instruction return type cannot be vectorized", - "CantVectorizeInstructionReturnType", &I); - return false; - } - - // Check that the stored type is vectorizable. - if (auto *ST = dyn_cast<StoreInst>(&I)) { - Type *T = ST->getValueOperand()->getType(); - if (!VectorType::isValidElementType(T)) { - reportVectorizationFailure("Store instruction cannot be vectorized", - "store instruction cannot be vectorized", - "CantVectorizeStore", ST); - return false; - } - - // For nontemporal stores, check that a nontemporal vector version is - // supported on the target. - if (ST->getMetadata(LLVMContext::MD_nontemporal)) { - // Arbitrarily try a vector of 2 elements. - Type *VecTy = VectorType::get(T, /*NumElements=*/2); - assert(VecTy && "did not find vectorized version of stored type"); - unsigned Alignment = getLoadStoreAlignment(ST); - if (!TTI->isLegalNTStore(VecTy, Alignment)) { - reportVectorizationFailure( - "nontemporal store instruction cannot be vectorized", - "nontemporal store instruction cannot be vectorized", - "CantVectorizeNontemporalStore", ST); - return false; - } - } - - } else if (auto *LD = dyn_cast<LoadInst>(&I)) { - if (LD->getMetadata(LLVMContext::MD_nontemporal)) { - // For nontemporal loads, check that a nontemporal vector version is - // supported on the target (arbitrarily try a vector of 2 elements). - Type *VecTy = VectorType::get(I.getType(), /*NumElements=*/2); - assert(VecTy && "did not find vectorized version of load type"); - unsigned Alignment = getLoadStoreAlignment(LD); - if (!TTI->isLegalNTLoad(VecTy, Alignment)) { - reportVectorizationFailure( - "nontemporal load instruction cannot be vectorized", - "nontemporal load instruction cannot be vectorized", - "CantVectorizeNontemporalLoad", LD); - return false; - } - } - - // FP instructions can allow unsafe algebra, thus vectorizable by - // non-IEEE-754 compliant SIMD units. - // This applies to floating-point math operations and calls, not memory - // operations, shuffles, or casts, as they don't change precision or - // semantics. - } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) && - !I.isFast()) { - LLVM_DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n"); - Hints->setPotentiallyUnsafe(); - } - - // Reduction instructions are allowed to have exit users. - // All other instructions must not have external users. - if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) { - // We can safely vectorize loops where instructions within the loop are - // used outside the loop only if the SCEV predicates within the loop is - // same as outside the loop. Allowing the exit means reusing the SCEV - // outside the loop. - if (PSE.getUnionPredicate().isAlwaysTrue()) { - AllowedExit.insert(&I); - continue; - } - reportVectorizationFailure("Value cannot be used outside the loop", - "value cannot be used outside the loop", - "ValueUsedOutsideLoop", &I); - return false; - } - } // next instr. - } - - if (!PrimaryInduction) { - if (Inductions.empty()) { - reportVectorizationFailure("Did not find one integer induction var", - "loop induction variable could not be identified", - "NoInductionVariable"); - return false; - } else if (!WidestIndTy) { - reportVectorizationFailure("Did not find one integer induction var", - "integer loop induction variable could not be identified", - "NoIntegerInductionVariable"); - return false; - } else { - LLVM_DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); - } - } - - // Now we know the widest induction type, check if our found induction - // is the same size. If it's not, unset it here and InnerLoopVectorizer - // will create another. - if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType()) - PrimaryInduction = nullptr; - - return true; -} - -bool LoopVectorizationLegality::canVectorizeMemory() { - LAI = &(*GetLAA)(*TheLoop); - const OptimizationRemarkAnalysis *LAR = LAI->getReport(); - if (LAR) { - ORE->emit([&]() { - return OptimizationRemarkAnalysis(Hints->vectorizeAnalysisPassName(), - "loop not vectorized: ", *LAR); - }); - } - if (!LAI->canVectorizeMemory()) - return false; - - if (LAI->hasDependenceInvolvingLoopInvariantAddress()) { - reportVectorizationFailure("Stores to a uniform address", - "write to a loop invariant address could not be vectorized", - "CantVectorizeStoreToLoopInvariantAddress"); - return false; - } - Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks()); - PSE.addPredicate(LAI->getPSE().getUnionPredicate()); - - return true; -} - -bool LoopVectorizationLegality::isInductionPhi(const Value *V) { - Value *In0 = const_cast<Value *>(V); - PHINode *PN = dyn_cast_or_null<PHINode>(In0); - if (!PN) - return false; - - return Inductions.count(PN); -} - -bool LoopVectorizationLegality::isCastedInductionVariable(const Value *V) { - auto *Inst = dyn_cast<Instruction>(V); - return (Inst && InductionCastsToIgnore.count(Inst)); -} - -bool LoopVectorizationLegality::isInductionVariable(const Value *V) { - return isInductionPhi(V) || isCastedInductionVariable(V); -} - -bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) { - return FirstOrderRecurrences.count(Phi); -} - -bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { - return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); -} - -bool LoopVectorizationLegality::blockCanBePredicated( - BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs) { - const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); - - for (Instruction &I : *BB) { - // Check that we don't have a constant expression that can trap as operand. - for (Value *Operand : I.operands()) { - if (auto *C = dyn_cast<Constant>(Operand)) - if (C->canTrap()) - return false; - } - // We might be able to hoist the load. - if (I.mayReadFromMemory()) { - auto *LI = dyn_cast<LoadInst>(&I); - if (!LI) - return false; - if (!SafePtrs.count(LI->getPointerOperand())) { - // !llvm.mem.parallel_loop_access implies if-conversion safety. - // Otherwise, record that the load needs (real or emulated) masking - // and let the cost model decide. - if (!IsAnnotatedParallel) - MaskedOp.insert(LI); - continue; - } - } - - if (I.mayWriteToMemory()) { - auto *SI = dyn_cast<StoreInst>(&I); - if (!SI) - return false; - // Predicated store requires some form of masking: - // 1) masked store HW instruction, - // 2) emulation via load-blend-store (only if safe and legal to do so, - // be aware on the race conditions), or - // 3) element-by-element predicate check and scalar store. - MaskedOp.insert(SI); - continue; - } - if (I.mayThrow()) - return false; - } - - return true; -} - -bool LoopVectorizationLegality::canVectorizeWithIfConvert() { - if (!EnableIfConversion) { - reportVectorizationFailure("If-conversion is disabled", - "if-conversion is disabled", - "IfConversionDisabled"); - return false; - } - - assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); - - // A list of pointers that we can safely read and write to. - SmallPtrSet<Value *, 8> SafePointes; - - // Collect safe addresses. - for (BasicBlock *BB : TheLoop->blocks()) { - if (blockNeedsPredication(BB)) - continue; - - for (Instruction &I : *BB) - if (auto *Ptr = getLoadStorePointerOperand(&I)) - SafePointes.insert(Ptr); - } - - // Collect the blocks that need predication. - BasicBlock *Header = TheLoop->getHeader(); - for (BasicBlock *BB : TheLoop->blocks()) { - // We don't support switch statements inside loops. - if (!isa<BranchInst>(BB->getTerminator())) { - reportVectorizationFailure("Loop contains a switch statement", - "loop contains a switch statement", - "LoopContainsSwitch", BB->getTerminator()); - return false; - } - - // We must be able to predicate all blocks that need to be predicated. - if (blockNeedsPredication(BB)) { - if (!blockCanBePredicated(BB, SafePointes)) { - reportVectorizationFailure( - "Control flow cannot be substituted for a select", - "control flow cannot be substituted for a select", - "NoCFGForSelect", BB->getTerminator()); - return false; - } - } else if (BB != Header && !canIfConvertPHINodes(BB)) { - reportVectorizationFailure( - "Control flow cannot be substituted for a select", - "control flow cannot be substituted for a select", - "NoCFGForSelect", BB->getTerminator()); - return false; - } - } - - // We can if-convert this loop. - return true; -} - -// Helper function to canVectorizeLoopNestCFG. -bool LoopVectorizationLegality::canVectorizeLoopCFG(Loop *Lp, - bool UseVPlanNativePath) { - assert((UseVPlanNativePath || Lp->empty()) && - "VPlan-native path is not enabled."); - - // TODO: ORE should be improved to show more accurate information when an - // outer loop can't be vectorized because a nested loop is not understood or - // legal. Something like: "outer_loop_location: loop not vectorized: - // (inner_loop_location) loop control flow is not understood by vectorizer". - - // Store the result and return it at the end instead of exiting early, in case - // allowExtraAnalysis is used to report multiple reasons for not vectorizing. - bool Result = true; - bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); - - // We must have a loop in canonical form. Loops with indirectbr in them cannot - // be canonicalized. - if (!Lp->getLoopPreheader()) { - reportVectorizationFailure("Loop doesn't have a legal pre-header", - "loop control flow is not understood by vectorizer", - "CFGNotUnderstood"); - if (DoExtraAnalysis) - Result = false; - else - return false; - } - - // We must have a single backedge. - if (Lp->getNumBackEdges() != 1) { - reportVectorizationFailure("The loop must have a single backedge", - "loop control flow is not understood by vectorizer", - "CFGNotUnderstood"); - if (DoExtraAnalysis) - Result = false; - else - return false; - } - - // We must have a single exiting block. - if (!Lp->getExitingBlock()) { - reportVectorizationFailure("The loop must have an exiting block", - "loop control flow is not understood by vectorizer", - "CFGNotUnderstood"); - if (DoExtraAnalysis) - Result = false; - else - return false; - } - - // We only handle bottom-tested loops, i.e. loop in which the condition is - // checked at the end of each iteration. With that we can assume that all - // instructions in the loop are executed the same number of times. - if (Lp->getExitingBlock() != Lp->getLoopLatch()) { - reportVectorizationFailure("The exiting block is not the loop latch", - "loop control flow is not understood by vectorizer", - "CFGNotUnderstood"); - if (DoExtraAnalysis) - Result = false; - else - return false; - } - - return Result; -} - -bool LoopVectorizationLegality::canVectorizeLoopNestCFG( - Loop *Lp, bool UseVPlanNativePath) { - // Store the result and return it at the end instead of exiting early, in case - // allowExtraAnalysis is used to report multiple reasons for not vectorizing. - bool Result = true; - bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); - if (!canVectorizeLoopCFG(Lp, UseVPlanNativePath)) { - if (DoExtraAnalysis) - Result = false; - else - return false; - } - - // Recursively check whether the loop control flow of nested loops is - // understood. - for (Loop *SubLp : *Lp) - if (!canVectorizeLoopNestCFG(SubLp, UseVPlanNativePath)) { - if (DoExtraAnalysis) - Result = false; - else - return false; - } - - return Result; -} - -bool LoopVectorizationLegality::canVectorize(bool UseVPlanNativePath) { - // Store the result and return it at the end instead of exiting early, in case - // allowExtraAnalysis is used to report multiple reasons for not vectorizing. - bool Result = true; - - bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); - // Check whether the loop-related control flow in the loop nest is expected by - // vectorizer. - if (!canVectorizeLoopNestCFG(TheLoop, UseVPlanNativePath)) { - if (DoExtraAnalysis) - Result = false; - else - return false; - } - - // We need to have a loop header. - LLVM_DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName() - << '\n'); - - // Specific checks for outer loops. We skip the remaining legal checks at this - // point because they don't support outer loops. - if (!TheLoop->empty()) { - assert(UseVPlanNativePath && "VPlan-native path is not enabled."); - - if (!canVectorizeOuterLoop()) { - reportVectorizationFailure("Unsupported outer loop", - "unsupported outer loop", - "UnsupportedOuterLoop"); - // TODO: Implement DoExtraAnalysis when subsequent legal checks support - // outer loops. - return false; - } - - LLVM_DEBUG(dbgs() << "LV: We can vectorize this outer loop!\n"); - return Result; - } - - assert(TheLoop->empty() && "Inner loop expected."); - // Check if we can if-convert non-single-bb loops. - unsigned NumBlocks = TheLoop->getNumBlocks(); - if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { - LLVM_DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); - if (DoExtraAnalysis) - Result = false; - else - return false; - } - - // Check if we can vectorize the instructions and CFG in this loop. - if (!canVectorizeInstrs()) { - LLVM_DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); - if (DoExtraAnalysis) - Result = false; - else - return false; - } - - // Go over each instruction and look at memory deps. - if (!canVectorizeMemory()) { - LLVM_DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); - if (DoExtraAnalysis) - Result = false; - else - return false; - } - - LLVM_DEBUG(dbgs() << "LV: We can vectorize this loop" - << (LAI->getRuntimePointerChecking()->Need - ? " (with a runtime bound check)" - : "") - << "!\n"); - - unsigned SCEVThreshold = VectorizeSCEVCheckThreshold; - if (Hints->getForce() == LoopVectorizeHints::FK_Enabled) - SCEVThreshold = PragmaVectorizeSCEVCheckThreshold; - - if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) { - reportVectorizationFailure("Too many SCEV checks needed", - "Too many SCEV assumptions need to be made and checked at runtime", - "TooManySCEVRunTimeChecks"); - if (DoExtraAnalysis) - Result = false; - else - return false; - } - - // Okay! We've done all the tests. If any have failed, return false. Otherwise - // we can vectorize, and at this point we don't have any other mem analysis - // which may limit our maximum vectorization factor, so just return true with - // no restrictions. - return Result; -} - -bool LoopVectorizationLegality::canFoldTailByMasking() { - - LLVM_DEBUG(dbgs() << "LV: checking if tail can be folded by masking.\n"); - - if (!PrimaryInduction) { - reportVectorizationFailure( - "No primary induction, cannot fold tail by masking", - "Missing a primary induction variable in the loop, which is " - "needed in order to fold tail by masking as required.", - "NoPrimaryInduction"); - return false; - } - - // TODO: handle reductions when tail is folded by masking. - if (!Reductions.empty()) { - reportVectorizationFailure( - "Loop has reductions, cannot fold tail by masking", - "Cannot fold tail by masking in the presence of reductions.", - "ReductionFoldingTailByMasking"); - return false; - } - - // TODO: handle outside users when tail is folded by masking. - for (auto *AE : AllowedExit) { - // Check that all users of allowed exit values are inside the loop. - for (User *U : AE->users()) { - Instruction *UI = cast<Instruction>(U); - if (TheLoop->contains(UI)) - continue; - reportVectorizationFailure( - "Cannot fold tail by masking, loop has an outside user for", - "Cannot fold tail by masking in the presence of live outs.", - "LiveOutFoldingTailByMasking", UI); - return false; - } - } - - // The list of pointers that we can safely read and write to remains empty. - SmallPtrSet<Value *, 8> SafePointers; - - // Check and mark all blocks for predication, including those that ordinarily - // do not need predication such as the header block. - for (BasicBlock *BB : TheLoop->blocks()) { - if (!blockCanBePredicated(BB, SafePointers)) { - reportVectorizationFailure( - "Cannot fold tail by masking as required", - "control flow cannot be substituted for a select", - "NoCFGForSelect", BB->getTerminator()); - return false; - } - } - - LLVM_DEBUG(dbgs() << "LV: can fold tail by masking.\n"); - return true; -} - -} // namespace llvm |
