diff options
author | Dimitry Andric <dim@FreeBSD.org> | 2019-12-20 19:53:05 +0000 |
---|---|---|
committer | Dimitry Andric <dim@FreeBSD.org> | 2019-12-20 19:53:05 +0000 |
commit | 0b57cec536236d46e3dba9bd041533462f33dbb7 (patch) | |
tree | 56229dbdbbf76d18580f72f789003db17246c8d9 /contrib/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp | |
parent | 718ef55ec7785aae63f98f8ca05dc07ed399c16d (diff) |
Notes
Diffstat (limited to 'contrib/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp')
-rw-r--r-- | contrib/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp | 6923 |
1 files changed, 0 insertions, 6923 deletions
diff --git a/contrib/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp b/contrib/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp deleted file mode 100644 index 27a86c0bca91..000000000000 --- a/contrib/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp +++ /dev/null @@ -1,6923 +0,0 @@ -//===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -//===----------------------------------------------------------------------===// -// -// This pass implements the Bottom Up SLP vectorizer. It detects consecutive -// stores that can be put together into vector-stores. Next, it attempts to -// construct vectorizable tree using the use-def chains. If a profitable tree -// was found, the SLP vectorizer performs vectorization on the tree. -// -// The pass is inspired by the work described in the paper: -// "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. -// -//===----------------------------------------------------------------------===// - -#include "llvm/Transforms/Vectorize/SLPVectorizer.h" -#include "llvm/ADT/ArrayRef.h" -#include "llvm/ADT/DenseMap.h" -#include "llvm/ADT/DenseSet.h" -#include "llvm/ADT/MapVector.h" -#include "llvm/ADT/None.h" -#include "llvm/ADT/Optional.h" -#include "llvm/ADT/PostOrderIterator.h" -#include "llvm/ADT/STLExtras.h" -#include "llvm/ADT/SetVector.h" -#include "llvm/ADT/SmallPtrSet.h" -#include "llvm/ADT/SmallSet.h" -#include "llvm/ADT/SmallVector.h" -#include "llvm/ADT/Statistic.h" -#include "llvm/ADT/iterator.h" -#include "llvm/ADT/iterator_range.h" -#include "llvm/Analysis/AliasAnalysis.h" -#include "llvm/Analysis/CodeMetrics.h" -#include "llvm/Analysis/DemandedBits.h" -#include "llvm/Analysis/GlobalsModRef.h" -#include "llvm/Analysis/LoopAccessAnalysis.h" -#include "llvm/Analysis/LoopInfo.h" -#include "llvm/Analysis/MemoryLocation.h" -#include "llvm/Analysis/OptimizationRemarkEmitter.h" -#include "llvm/Analysis/ScalarEvolution.h" -#include "llvm/Analysis/ScalarEvolutionExpressions.h" -#include "llvm/Analysis/TargetLibraryInfo.h" -#include "llvm/Analysis/TargetTransformInfo.h" -#include "llvm/Analysis/ValueTracking.h" -#include "llvm/Analysis/VectorUtils.h" -#include "llvm/IR/Attributes.h" -#include "llvm/IR/BasicBlock.h" -#include "llvm/IR/Constant.h" -#include "llvm/IR/Constants.h" -#include "llvm/IR/DataLayout.h" -#include "llvm/IR/DebugLoc.h" -#include "llvm/IR/DerivedTypes.h" -#include "llvm/IR/Dominators.h" -#include "llvm/IR/Function.h" -#include "llvm/IR/IRBuilder.h" -#include "llvm/IR/InstrTypes.h" -#include "llvm/IR/Instruction.h" -#include "llvm/IR/Instructions.h" -#include "llvm/IR/IntrinsicInst.h" -#include "llvm/IR/Intrinsics.h" -#include "llvm/IR/Module.h" -#include "llvm/IR/NoFolder.h" -#include "llvm/IR/Operator.h" -#include "llvm/IR/PassManager.h" -#include "llvm/IR/PatternMatch.h" -#include "llvm/IR/Type.h" -#include "llvm/IR/Use.h" -#include "llvm/IR/User.h" -#include "llvm/IR/Value.h" -#include "llvm/IR/ValueHandle.h" -#include "llvm/IR/Verifier.h" -#include "llvm/Pass.h" -#include "llvm/Support/Casting.h" -#include "llvm/Support/CommandLine.h" -#include "llvm/Support/Compiler.h" -#include "llvm/Support/DOTGraphTraits.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/ErrorHandling.h" -#include "llvm/Support/GraphWriter.h" -#include "llvm/Support/KnownBits.h" -#include "llvm/Support/MathExtras.h" -#include "llvm/Support/raw_ostream.h" -#include "llvm/Transforms/Utils/LoopUtils.h" -#include "llvm/Transforms/Vectorize.h" -#include <algorithm> -#include <cassert> -#include <cstdint> -#include <iterator> -#include <memory> -#include <set> -#include <string> -#include <tuple> -#include <utility> -#include <vector> - -using namespace llvm; -using namespace llvm::PatternMatch; -using namespace slpvectorizer; - -#define SV_NAME "slp-vectorizer" -#define DEBUG_TYPE "SLP" - -STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); - -cl::opt<bool> - llvm::RunSLPVectorization("vectorize-slp", cl::init(false), cl::Hidden, - cl::desc("Run the SLP vectorization passes")); - -static cl::opt<int> - SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, - cl::desc("Only vectorize if you gain more than this " - "number ")); - -static cl::opt<bool> -ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, - cl::desc("Attempt to vectorize horizontal reductions")); - -static cl::opt<bool> ShouldStartVectorizeHorAtStore( - "slp-vectorize-hor-store", cl::init(false), cl::Hidden, - cl::desc( - "Attempt to vectorize horizontal reductions feeding into a store")); - -static cl::opt<int> -MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, - cl::desc("Attempt to vectorize for this register size in bits")); - -/// Limits the size of scheduling regions in a block. -/// It avoid long compile times for _very_ large blocks where vector -/// instructions are spread over a wide range. -/// This limit is way higher than needed by real-world functions. -static cl::opt<int> -ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, - cl::desc("Limit the size of the SLP scheduling region per block")); - -static cl::opt<int> MinVectorRegSizeOption( - "slp-min-reg-size", cl::init(128), cl::Hidden, - cl::desc("Attempt to vectorize for this register size in bits")); - -static cl::opt<unsigned> RecursionMaxDepth( - "slp-recursion-max-depth", cl::init(12), cl::Hidden, - cl::desc("Limit the recursion depth when building a vectorizable tree")); - -static cl::opt<unsigned> MinTreeSize( - "slp-min-tree-size", cl::init(3), cl::Hidden, - cl::desc("Only vectorize small trees if they are fully vectorizable")); - -static cl::opt<bool> - ViewSLPTree("view-slp-tree", cl::Hidden, - cl::desc("Display the SLP trees with Graphviz")); - -// Limit the number of alias checks. The limit is chosen so that -// it has no negative effect on the llvm benchmarks. -static const unsigned AliasedCheckLimit = 10; - -// Another limit for the alias checks: The maximum distance between load/store -// instructions where alias checks are done. -// This limit is useful for very large basic blocks. -static const unsigned MaxMemDepDistance = 160; - -/// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling -/// regions to be handled. -static const int MinScheduleRegionSize = 16; - -/// Predicate for the element types that the SLP vectorizer supports. -/// -/// The most important thing to filter here are types which are invalid in LLVM -/// vectors. We also filter target specific types which have absolutely no -/// meaningful vectorization path such as x86_fp80 and ppc_f128. This just -/// avoids spending time checking the cost model and realizing that they will -/// be inevitably scalarized. -static bool isValidElementType(Type *Ty) { - return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && - !Ty->isPPC_FP128Ty(); -} - -/// \returns true if all of the instructions in \p VL are in the same block or -/// false otherwise. -static bool allSameBlock(ArrayRef<Value *> VL) { - Instruction *I0 = dyn_cast<Instruction>(VL[0]); - if (!I0) - return false; - BasicBlock *BB = I0->getParent(); - for (int i = 1, e = VL.size(); i < e; i++) { - Instruction *I = dyn_cast<Instruction>(VL[i]); - if (!I) - return false; - - if (BB != I->getParent()) - return false; - } - return true; -} - -/// \returns True if all of the values in \p VL are constants. -static bool allConstant(ArrayRef<Value *> VL) { - for (Value *i : VL) - if (!isa<Constant>(i)) - return false; - return true; -} - -/// \returns True if all of the values in \p VL are identical. -static bool isSplat(ArrayRef<Value *> VL) { - for (unsigned i = 1, e = VL.size(); i < e; ++i) - if (VL[i] != VL[0]) - return false; - return true; -} - -/// \returns True if \p I is commutative, handles CmpInst as well as Instruction. -static bool isCommutative(Instruction *I) { - if (auto *IC = dyn_cast<CmpInst>(I)) - return IC->isCommutative(); - return I->isCommutative(); -} - -/// Checks if the vector of instructions can be represented as a shuffle, like: -/// %x0 = extractelement <4 x i8> %x, i32 0 -/// %x3 = extractelement <4 x i8> %x, i32 3 -/// %y1 = extractelement <4 x i8> %y, i32 1 -/// %y2 = extractelement <4 x i8> %y, i32 2 -/// %x0x0 = mul i8 %x0, %x0 -/// %x3x3 = mul i8 %x3, %x3 -/// %y1y1 = mul i8 %y1, %y1 -/// %y2y2 = mul i8 %y2, %y2 -/// %ins1 = insertelement <4 x i8> undef, i8 %x0x0, i32 0 -/// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 -/// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 -/// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 -/// ret <4 x i8> %ins4 -/// can be transformed into: -/// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, -/// i32 6> -/// %2 = mul <4 x i8> %1, %1 -/// ret <4 x i8> %2 -/// We convert this initially to something like: -/// %x0 = extractelement <4 x i8> %x, i32 0 -/// %x3 = extractelement <4 x i8> %x, i32 3 -/// %y1 = extractelement <4 x i8> %y, i32 1 -/// %y2 = extractelement <4 x i8> %y, i32 2 -/// %1 = insertelement <4 x i8> undef, i8 %x0, i32 0 -/// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 -/// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 -/// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 -/// %5 = mul <4 x i8> %4, %4 -/// %6 = extractelement <4 x i8> %5, i32 0 -/// %ins1 = insertelement <4 x i8> undef, i8 %6, i32 0 -/// %7 = extractelement <4 x i8> %5, i32 1 -/// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 -/// %8 = extractelement <4 x i8> %5, i32 2 -/// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 -/// %9 = extractelement <4 x i8> %5, i32 3 -/// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 -/// ret <4 x i8> %ins4 -/// InstCombiner transforms this into a shuffle and vector mul -/// TODO: Can we split off and reuse the shuffle mask detection from -/// TargetTransformInfo::getInstructionThroughput? -static Optional<TargetTransformInfo::ShuffleKind> -isShuffle(ArrayRef<Value *> VL) { - auto *EI0 = cast<ExtractElementInst>(VL[0]); - unsigned Size = EI0->getVectorOperandType()->getVectorNumElements(); - Value *Vec1 = nullptr; - Value *Vec2 = nullptr; - enum ShuffleMode { Unknown, Select, Permute }; - ShuffleMode CommonShuffleMode = Unknown; - for (unsigned I = 0, E = VL.size(); I < E; ++I) { - auto *EI = cast<ExtractElementInst>(VL[I]); - auto *Vec = EI->getVectorOperand(); - // All vector operands must have the same number of vector elements. - if (Vec->getType()->getVectorNumElements() != Size) - return None; - auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); - if (!Idx) - return None; - // Undefined behavior if Idx is negative or >= Size. - if (Idx->getValue().uge(Size)) - continue; - unsigned IntIdx = Idx->getValue().getZExtValue(); - // We can extractelement from undef vector. - if (isa<UndefValue>(Vec)) - continue; - // For correct shuffling we have to have at most 2 different vector operands - // in all extractelement instructions. - if (!Vec1 || Vec1 == Vec) - Vec1 = Vec; - else if (!Vec2 || Vec2 == Vec) - Vec2 = Vec; - else - return None; - if (CommonShuffleMode == Permute) - continue; - // If the extract index is not the same as the operation number, it is a - // permutation. - if (IntIdx != I) { - CommonShuffleMode = Permute; - continue; - } - CommonShuffleMode = Select; - } - // If we're not crossing lanes in different vectors, consider it as blending. - if (CommonShuffleMode == Select && Vec2) - return TargetTransformInfo::SK_Select; - // If Vec2 was never used, we have a permutation of a single vector, otherwise - // we have permutation of 2 vectors. - return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc - : TargetTransformInfo::SK_PermuteSingleSrc; -} - -namespace { - -/// Main data required for vectorization of instructions. -struct InstructionsState { - /// The very first instruction in the list with the main opcode. - Value *OpValue = nullptr; - - /// The main/alternate instruction. - Instruction *MainOp = nullptr; - Instruction *AltOp = nullptr; - - /// The main/alternate opcodes for the list of instructions. - unsigned getOpcode() const { - return MainOp ? MainOp->getOpcode() : 0; - } - - unsigned getAltOpcode() const { - return AltOp ? AltOp->getOpcode() : 0; - } - - /// Some of the instructions in the list have alternate opcodes. - bool isAltShuffle() const { return getOpcode() != getAltOpcode(); } - - bool isOpcodeOrAlt(Instruction *I) const { - unsigned CheckedOpcode = I->getOpcode(); - return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; - } - - InstructionsState() = delete; - InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) - : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} -}; - -} // end anonymous namespace - -/// Chooses the correct key for scheduling data. If \p Op has the same (or -/// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p -/// OpValue. -static Value *isOneOf(const InstructionsState &S, Value *Op) { - auto *I = dyn_cast<Instruction>(Op); - if (I && S.isOpcodeOrAlt(I)) - return Op; - return S.OpValue; -} - -/// \returns analysis of the Instructions in \p VL described in -/// InstructionsState, the Opcode that we suppose the whole list -/// could be vectorized even if its structure is diverse. -static InstructionsState getSameOpcode(ArrayRef<Value *> VL, - unsigned BaseIndex = 0) { - // Make sure these are all Instructions. - if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) - return InstructionsState(VL[BaseIndex], nullptr, nullptr); - - bool IsCastOp = isa<CastInst>(VL[BaseIndex]); - bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); - unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); - unsigned AltOpcode = Opcode; - unsigned AltIndex = BaseIndex; - - // Check for one alternate opcode from another BinaryOperator. - // TODO - generalize to support all operators (types, calls etc.). - for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { - unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); - if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { - if (InstOpcode == Opcode || InstOpcode == AltOpcode) - continue; - if (Opcode == AltOpcode) { - AltOpcode = InstOpcode; - AltIndex = Cnt; - continue; - } - } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { - Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); - Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); - if (Ty0 == Ty1) { - if (InstOpcode == Opcode || InstOpcode == AltOpcode) - continue; - if (Opcode == AltOpcode) { - AltOpcode = InstOpcode; - AltIndex = Cnt; - continue; - } - } - } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) - continue; - return InstructionsState(VL[BaseIndex], nullptr, nullptr); - } - - return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), - cast<Instruction>(VL[AltIndex])); -} - -/// \returns true if all of the values in \p VL have the same type or false -/// otherwise. -static bool allSameType(ArrayRef<Value *> VL) { - Type *Ty = VL[0]->getType(); - for (int i = 1, e = VL.size(); i < e; i++) - if (VL[i]->getType() != Ty) - return false; - - return true; -} - -/// \returns True if Extract{Value,Element} instruction extracts element Idx. -static Optional<unsigned> getExtractIndex(Instruction *E) { - unsigned Opcode = E->getOpcode(); - assert((Opcode == Instruction::ExtractElement || - Opcode == Instruction::ExtractValue) && - "Expected extractelement or extractvalue instruction."); - if (Opcode == Instruction::ExtractElement) { - auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); - if (!CI) - return None; - return CI->getZExtValue(); - } - ExtractValueInst *EI = cast<ExtractValueInst>(E); - if (EI->getNumIndices() != 1) - return None; - return *EI->idx_begin(); -} - -/// \returns True if in-tree use also needs extract. This refers to -/// possible scalar operand in vectorized instruction. -static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, - TargetLibraryInfo *TLI) { - unsigned Opcode = UserInst->getOpcode(); - switch (Opcode) { - case Instruction::Load: { - LoadInst *LI = cast<LoadInst>(UserInst); - return (LI->getPointerOperand() == Scalar); - } - case Instruction::Store: { - StoreInst *SI = cast<StoreInst>(UserInst); - return (SI->getPointerOperand() == Scalar); - } - case Instruction::Call: { - CallInst *CI = cast<CallInst>(UserInst); - Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); - for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { - if (hasVectorInstrinsicScalarOpd(ID, i)) - return (CI->getArgOperand(i) == Scalar); - } - LLVM_FALLTHROUGH; - } - default: - return false; - } -} - -/// \returns the AA location that is being access by the instruction. -static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) { - if (StoreInst *SI = dyn_cast<StoreInst>(I)) - return MemoryLocation::get(SI); - if (LoadInst *LI = dyn_cast<LoadInst>(I)) - return MemoryLocation::get(LI); - return MemoryLocation(); -} - -/// \returns True if the instruction is not a volatile or atomic load/store. -static bool isSimple(Instruction *I) { - if (LoadInst *LI = dyn_cast<LoadInst>(I)) - return LI->isSimple(); - if (StoreInst *SI = dyn_cast<StoreInst>(I)) - return SI->isSimple(); - if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) - return !MI->isVolatile(); - return true; -} - -namespace llvm { - -namespace slpvectorizer { - -/// Bottom Up SLP Vectorizer. -class BoUpSLP { - struct TreeEntry; - -public: - using ValueList = SmallVector<Value *, 8>; - using InstrList = SmallVector<Instruction *, 16>; - using ValueSet = SmallPtrSet<Value *, 16>; - using StoreList = SmallVector<StoreInst *, 8>; - using ExtraValueToDebugLocsMap = - MapVector<Value *, SmallVector<Instruction *, 2>>; - - BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, - TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li, - DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, - const DataLayout *DL, OptimizationRemarkEmitter *ORE) - : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), - DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { - CodeMetrics::collectEphemeralValues(F, AC, EphValues); - // Use the vector register size specified by the target unless overridden - // by a command-line option. - // TODO: It would be better to limit the vectorization factor based on - // data type rather than just register size. For example, x86 AVX has - // 256-bit registers, but it does not support integer operations - // at that width (that requires AVX2). - if (MaxVectorRegSizeOption.getNumOccurrences()) - MaxVecRegSize = MaxVectorRegSizeOption; - else - MaxVecRegSize = TTI->getRegisterBitWidth(true); - - if (MinVectorRegSizeOption.getNumOccurrences()) - MinVecRegSize = MinVectorRegSizeOption; - else - MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); - } - - /// Vectorize the tree that starts with the elements in \p VL. - /// Returns the vectorized root. - Value *vectorizeTree(); - - /// Vectorize the tree but with the list of externally used values \p - /// ExternallyUsedValues. Values in this MapVector can be replaced but the - /// generated extractvalue instructions. - Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); - - /// \returns the cost incurred by unwanted spills and fills, caused by - /// holding live values over call sites. - int getSpillCost() const; - - /// \returns the vectorization cost of the subtree that starts at \p VL. - /// A negative number means that this is profitable. - int getTreeCost(); - - /// Construct a vectorizable tree that starts at \p Roots, ignoring users for - /// the purpose of scheduling and extraction in the \p UserIgnoreLst. - void buildTree(ArrayRef<Value *> Roots, - ArrayRef<Value *> UserIgnoreLst = None); - - /// Construct a vectorizable tree that starts at \p Roots, ignoring users for - /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking - /// into account (anf updating it, if required) list of externally used - /// values stored in \p ExternallyUsedValues. - void buildTree(ArrayRef<Value *> Roots, - ExtraValueToDebugLocsMap &ExternallyUsedValues, - ArrayRef<Value *> UserIgnoreLst = None); - - /// Clear the internal data structures that are created by 'buildTree'. - void deleteTree() { - VectorizableTree.clear(); - ScalarToTreeEntry.clear(); - MustGather.clear(); - ExternalUses.clear(); - NumOpsWantToKeepOrder.clear(); - NumOpsWantToKeepOriginalOrder = 0; - for (auto &Iter : BlocksSchedules) { - BlockScheduling *BS = Iter.second.get(); - BS->clear(); - } - MinBWs.clear(); - } - - unsigned getTreeSize() const { return VectorizableTree.size(); } - - /// Perform LICM and CSE on the newly generated gather sequences. - void optimizeGatherSequence(); - - /// \returns The best order of instructions for vectorization. - Optional<ArrayRef<unsigned>> bestOrder() const { - auto I = std::max_element( - NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(), - [](const decltype(NumOpsWantToKeepOrder)::value_type &D1, - const decltype(NumOpsWantToKeepOrder)::value_type &D2) { - return D1.second < D2.second; - }); - if (I == NumOpsWantToKeepOrder.end() || - I->getSecond() <= NumOpsWantToKeepOriginalOrder) - return None; - - return makeArrayRef(I->getFirst()); - } - - /// \return The vector element size in bits to use when vectorizing the - /// expression tree ending at \p V. If V is a store, the size is the width of - /// the stored value. Otherwise, the size is the width of the largest loaded - /// value reaching V. This method is used by the vectorizer to calculate - /// vectorization factors. - unsigned getVectorElementSize(Value *V) const; - - /// Compute the minimum type sizes required to represent the entries in a - /// vectorizable tree. - void computeMinimumValueSizes(); - - // \returns maximum vector register size as set by TTI or overridden by cl::opt. - unsigned getMaxVecRegSize() const { - return MaxVecRegSize; - } - - // \returns minimum vector register size as set by cl::opt. - unsigned getMinVecRegSize() const { - return MinVecRegSize; - } - - /// Check if ArrayType or StructType is isomorphic to some VectorType. - /// - /// \returns number of elements in vector if isomorphism exists, 0 otherwise. - unsigned canMapToVector(Type *T, const DataLayout &DL) const; - - /// \returns True if the VectorizableTree is both tiny and not fully - /// vectorizable. We do not vectorize such trees. - bool isTreeTinyAndNotFullyVectorizable() const; - - OptimizationRemarkEmitter *getORE() { return ORE; } - - /// This structure holds any data we need about the edges being traversed - /// during buildTree_rec(). We keep track of: - /// (i) the user TreeEntry index, and - /// (ii) the index of the edge. - struct EdgeInfo { - EdgeInfo() = default; - EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) - : UserTE(UserTE), EdgeIdx(EdgeIdx) {} - /// The user TreeEntry. - TreeEntry *UserTE = nullptr; - /// The operand index of the use. - unsigned EdgeIdx = UINT_MAX; -#ifndef NDEBUG - friend inline raw_ostream &operator<<(raw_ostream &OS, - const BoUpSLP::EdgeInfo &EI) { - EI.dump(OS); - return OS; - } - /// Debug print. - void dump(raw_ostream &OS) const { - OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") - << " EdgeIdx:" << EdgeIdx << "}"; - } - LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } -#endif - }; - - /// A helper data structure to hold the operands of a vector of instructions. - /// This supports a fixed vector length for all operand vectors. - class VLOperands { - /// For each operand we need (i) the value, and (ii) the opcode that it - /// would be attached to if the expression was in a left-linearized form. - /// This is required to avoid illegal operand reordering. - /// For example: - /// \verbatim - /// 0 Op1 - /// |/ - /// Op1 Op2 Linearized + Op2 - /// \ / ----------> |/ - /// - - - /// - /// Op1 - Op2 (0 + Op1) - Op2 - /// \endverbatim - /// - /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. - /// - /// Another way to think of this is to track all the operations across the - /// path from the operand all the way to the root of the tree and to - /// calculate the operation that corresponds to this path. For example, the - /// path from Op2 to the root crosses the RHS of the '-', therefore the - /// corresponding operation is a '-' (which matches the one in the - /// linearized tree, as shown above). - /// - /// For lack of a better term, we refer to this operation as Accumulated - /// Path Operation (APO). - struct OperandData { - OperandData() = default; - OperandData(Value *V, bool APO, bool IsUsed) - : V(V), APO(APO), IsUsed(IsUsed) {} - /// The operand value. - Value *V = nullptr; - /// TreeEntries only allow a single opcode, or an alternate sequence of - /// them (e.g, +, -). Therefore, we can safely use a boolean value for the - /// APO. It is set to 'true' if 'V' is attached to an inverse operation - /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise - /// (e.g., Add/Mul) - bool APO = false; - /// Helper data for the reordering function. - bool IsUsed = false; - }; - - /// During operand reordering, we are trying to select the operand at lane - /// that matches best with the operand at the neighboring lane. Our - /// selection is based on the type of value we are looking for. For example, - /// if the neighboring lane has a load, we need to look for a load that is - /// accessing a consecutive address. These strategies are summarized in the - /// 'ReorderingMode' enumerator. - enum class ReorderingMode { - Load, ///< Matching loads to consecutive memory addresses - Opcode, ///< Matching instructions based on opcode (same or alternate) - Constant, ///< Matching constants - Splat, ///< Matching the same instruction multiple times (broadcast) - Failed, ///< We failed to create a vectorizable group - }; - - using OperandDataVec = SmallVector<OperandData, 2>; - - /// A vector of operand vectors. - SmallVector<OperandDataVec, 4> OpsVec; - - const DataLayout &DL; - ScalarEvolution &SE; - - /// \returns the operand data at \p OpIdx and \p Lane. - OperandData &getData(unsigned OpIdx, unsigned Lane) { - return OpsVec[OpIdx][Lane]; - } - - /// \returns the operand data at \p OpIdx and \p Lane. Const version. - const OperandData &getData(unsigned OpIdx, unsigned Lane) const { - return OpsVec[OpIdx][Lane]; - } - - /// Clears the used flag for all entries. - void clearUsed() { - for (unsigned OpIdx = 0, NumOperands = getNumOperands(); - OpIdx != NumOperands; ++OpIdx) - for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; - ++Lane) - OpsVec[OpIdx][Lane].IsUsed = false; - } - - /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. - void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { - std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); - } - - // Search all operands in Ops[*][Lane] for the one that matches best - // Ops[OpIdx][LastLane] and return its opreand index. - // If no good match can be found, return None. - Optional<unsigned> - getBestOperand(unsigned OpIdx, int Lane, int LastLane, - ArrayRef<ReorderingMode> ReorderingModes) { - unsigned NumOperands = getNumOperands(); - - // The operand of the previous lane at OpIdx. - Value *OpLastLane = getData(OpIdx, LastLane).V; - - // Our strategy mode for OpIdx. - ReorderingMode RMode = ReorderingModes[OpIdx]; - - // The linearized opcode of the operand at OpIdx, Lane. - bool OpIdxAPO = getData(OpIdx, Lane).APO; - - const unsigned BestScore = 2; - const unsigned GoodScore = 1; - - // The best operand index and its score. - // Sometimes we have more than one option (e.g., Opcode and Undefs), so we - // are using the score to differentiate between the two. - struct BestOpData { - Optional<unsigned> Idx = None; - unsigned Score = 0; - } BestOp; - - // Iterate through all unused operands and look for the best. - for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { - // Get the operand at Idx and Lane. - OperandData &OpData = getData(Idx, Lane); - Value *Op = OpData.V; - bool OpAPO = OpData.APO; - - // Skip already selected operands. - if (OpData.IsUsed) - continue; - - // Skip if we are trying to move the operand to a position with a - // different opcode in the linearized tree form. This would break the - // semantics. - if (OpAPO != OpIdxAPO) - continue; - - // Look for an operand that matches the current mode. - switch (RMode) { - case ReorderingMode::Load: - if (isa<LoadInst>(Op)) { - // Figure out which is left and right, so that we can check for - // consecutive loads - bool LeftToRight = Lane > LastLane; - Value *OpLeft = (LeftToRight) ? OpLastLane : Op; - Value *OpRight = (LeftToRight) ? Op : OpLastLane; - if (isConsecutiveAccess(cast<LoadInst>(OpLeft), - cast<LoadInst>(OpRight), DL, SE)) - BestOp.Idx = Idx; - } - break; - case ReorderingMode::Opcode: - // We accept both Instructions and Undefs, but with different scores. - if ((isa<Instruction>(Op) && isa<Instruction>(OpLastLane) && - cast<Instruction>(Op)->getOpcode() == - cast<Instruction>(OpLastLane)->getOpcode()) || - (isa<UndefValue>(OpLastLane) && isa<Instruction>(Op)) || - isa<UndefValue>(Op)) { - // An instruction has a higher score than an undef. - unsigned Score = (isa<UndefValue>(Op)) ? GoodScore : BestScore; - if (Score > BestOp.Score) { - BestOp.Idx = Idx; - BestOp.Score = Score; - } - } - break; - case ReorderingMode::Constant: - if (isa<Constant>(Op)) { - unsigned Score = (isa<UndefValue>(Op)) ? GoodScore : BestScore; - if (Score > BestOp.Score) { - BestOp.Idx = Idx; - BestOp.Score = Score; - } - } - break; - case ReorderingMode::Splat: - if (Op == OpLastLane) - BestOp.Idx = Idx; - break; - case ReorderingMode::Failed: - return None; - } - } - - if (BestOp.Idx) { - getData(BestOp.Idx.getValue(), Lane).IsUsed = true; - return BestOp.Idx; - } - // If we could not find a good match return None. - return None; - } - - /// Helper for reorderOperandVecs. \Returns the lane that we should start - /// reordering from. This is the one which has the least number of operands - /// that can freely move about. - unsigned getBestLaneToStartReordering() const { - unsigned BestLane = 0; - unsigned Min = UINT_MAX; - for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; - ++Lane) { - unsigned NumFreeOps = getMaxNumOperandsThatCanBeReordered(Lane); - if (NumFreeOps < Min) { - Min = NumFreeOps; - BestLane = Lane; - } - } - return BestLane; - } - - /// \Returns the maximum number of operands that are allowed to be reordered - /// for \p Lane. This is used as a heuristic for selecting the first lane to - /// start operand reordering. - unsigned getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { - unsigned CntTrue = 0; - unsigned NumOperands = getNumOperands(); - // Operands with the same APO can be reordered. We therefore need to count - // how many of them we have for each APO, like this: Cnt[APO] = x. - // Since we only have two APOs, namely true and false, we can avoid using - // a map. Instead we can simply count the number of operands that - // correspond to one of them (in this case the 'true' APO), and calculate - // the other by subtracting it from the total number of operands. - for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) - if (getData(OpIdx, Lane).APO) - ++CntTrue; - unsigned CntFalse = NumOperands - CntTrue; - return std::max(CntTrue, CntFalse); - } - - /// Go through the instructions in VL and append their operands. - void appendOperandsOfVL(ArrayRef<Value *> VL) { - assert(!VL.empty() && "Bad VL"); - assert((empty() || VL.size() == getNumLanes()) && - "Expected same number of lanes"); - assert(isa<Instruction>(VL[0]) && "Expected instruction"); - unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); - OpsVec.resize(NumOperands); - unsigned NumLanes = VL.size(); - for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { - OpsVec[OpIdx].resize(NumLanes); - for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { - assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); - // Our tree has just 3 nodes: the root and two operands. - // It is therefore trivial to get the APO. We only need to check the - // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or - // RHS operand. The LHS operand of both add and sub is never attached - // to an inversese operation in the linearized form, therefore its APO - // is false. The RHS is true only if VL[Lane] is an inverse operation. - - // Since operand reordering is performed on groups of commutative - // operations or alternating sequences (e.g., +, -), we can safely - // tell the inverse operations by checking commutativity. - bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); - bool APO = (OpIdx == 0) ? false : IsInverseOperation; - OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), - APO, false}; - } - } - } - - /// \returns the number of operands. - unsigned getNumOperands() const { return OpsVec.size(); } - - /// \returns the number of lanes. - unsigned getNumLanes() const { return OpsVec[0].size(); } - - /// \returns the operand value at \p OpIdx and \p Lane. - Value *getValue(unsigned OpIdx, unsigned Lane) const { - return getData(OpIdx, Lane).V; - } - - /// \returns true if the data structure is empty. - bool empty() const { return OpsVec.empty(); } - - /// Clears the data. - void clear() { OpsVec.clear(); } - - /// \Returns true if there are enough operands identical to \p Op to fill - /// the whole vector. - /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. - bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { - bool OpAPO = getData(OpIdx, Lane).APO; - for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { - if (Ln == Lane) - continue; - // This is set to true if we found a candidate for broadcast at Lane. - bool FoundCandidate = false; - for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { - OperandData &Data = getData(OpI, Ln); - if (Data.APO != OpAPO || Data.IsUsed) - continue; - if (Data.V == Op) { - FoundCandidate = true; - Data.IsUsed = true; - break; - } - } - if (!FoundCandidate) - return false; - } - return true; - } - - public: - /// Initialize with all the operands of the instruction vector \p RootVL. - VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, - ScalarEvolution &SE) - : DL(DL), SE(SE) { - // Append all the operands of RootVL. - appendOperandsOfVL(RootVL); - } - - /// \Returns a value vector with the operands across all lanes for the - /// opearnd at \p OpIdx. - ValueList getVL(unsigned OpIdx) const { - ValueList OpVL(OpsVec[OpIdx].size()); - assert(OpsVec[OpIdx].size() == getNumLanes() && - "Expected same num of lanes across all operands"); - for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) - OpVL[Lane] = OpsVec[OpIdx][Lane].V; - return OpVL; - } - - // Performs operand reordering for 2 or more operands. - // The original operands are in OrigOps[OpIdx][Lane]. - // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. - void reorder() { - unsigned NumOperands = getNumOperands(); - unsigned NumLanes = getNumLanes(); - // Each operand has its own mode. We are using this mode to help us select - // the instructions for each lane, so that they match best with the ones - // we have selected so far. - SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); - - // This is a greedy single-pass algorithm. We are going over each lane - // once and deciding on the best order right away with no back-tracking. - // However, in order to increase its effectiveness, we start with the lane - // that has operands that can move the least. For example, given the - // following lanes: - // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd - // Lane 1 : A[1] = C[1] - B[1] // Visited 1st - // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd - // Lane 3 : A[3] = C[3] - B[3] // Visited 4th - // we will start at Lane 1, since the operands of the subtraction cannot - // be reordered. Then we will visit the rest of the lanes in a circular - // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. - - // Find the first lane that we will start our search from. - unsigned FirstLane = getBestLaneToStartReordering(); - - // Initialize the modes. - for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { - Value *OpLane0 = getValue(OpIdx, FirstLane); - // Keep track if we have instructions with all the same opcode on one - // side. - if (isa<LoadInst>(OpLane0)) - ReorderingModes[OpIdx] = ReorderingMode::Load; - else if (isa<Instruction>(OpLane0)) { - // Check if OpLane0 should be broadcast. - if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) - ReorderingModes[OpIdx] = ReorderingMode::Splat; - else - ReorderingModes[OpIdx] = ReorderingMode::Opcode; - } - else if (isa<Constant>(OpLane0)) - ReorderingModes[OpIdx] = ReorderingMode::Constant; - else if (isa<Argument>(OpLane0)) - // Our best hope is a Splat. It may save some cost in some cases. - ReorderingModes[OpIdx] = ReorderingMode::Splat; - else - // NOTE: This should be unreachable. - ReorderingModes[OpIdx] = ReorderingMode::Failed; - } - - // If the initial strategy fails for any of the operand indexes, then we - // perform reordering again in a second pass. This helps avoid assigning - // high priority to the failed strategy, and should improve reordering for - // the non-failed operand indexes. - for (int Pass = 0; Pass != 2; ++Pass) { - // Skip the second pass if the first pass did not fail. - bool StrategyFailed = false; - // Mark all operand data as free to use. - clearUsed(); - // We keep the original operand order for the FirstLane, so reorder the - // rest of the lanes. We are visiting the nodes in a circular fashion, - // using FirstLane as the center point and increasing the radius - // distance. - for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { - // Visit the lane on the right and then the lane on the left. - for (int Direction : {+1, -1}) { - int Lane = FirstLane + Direction * Distance; - if (Lane < 0 || Lane >= (int)NumLanes) - continue; - int LastLane = Lane - Direction; - assert(LastLane >= 0 && LastLane < (int)NumLanes && - "Out of bounds"); - // Look for a good match for each operand. - for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { - // Search for the operand that matches SortedOps[OpIdx][Lane-1]. - Optional<unsigned> BestIdx = - getBestOperand(OpIdx, Lane, LastLane, ReorderingModes); - // By not selecting a value, we allow the operands that follow to - // select a better matching value. We will get a non-null value in - // the next run of getBestOperand(). - if (BestIdx) { - // Swap the current operand with the one returned by - // getBestOperand(). - swap(OpIdx, BestIdx.getValue(), Lane); - } else { - // We failed to find a best operand, set mode to 'Failed'. - ReorderingModes[OpIdx] = ReorderingMode::Failed; - // Enable the second pass. - StrategyFailed = true; - } - } - } - } - // Skip second pass if the strategy did not fail. - if (!StrategyFailed) - break; - } - } - -#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) - LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { - switch (RMode) { - case ReorderingMode::Load: - return "Load"; - case ReorderingMode::Opcode: - return "Opcode"; - case ReorderingMode::Constant: - return "Constant"; - case ReorderingMode::Splat: - return "Splat"; - case ReorderingMode::Failed: - return "Failed"; - } - llvm_unreachable("Unimplemented Reordering Type"); - } - - LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, - raw_ostream &OS) { - return OS << getModeStr(RMode); - } - - /// Debug print. - LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { - printMode(RMode, dbgs()); - } - - friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { - return printMode(RMode, OS); - } - - LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { - const unsigned Indent = 2; - unsigned Cnt = 0; - for (const OperandDataVec &OpDataVec : OpsVec) { - OS << "Operand " << Cnt++ << "\n"; - for (const OperandData &OpData : OpDataVec) { - OS.indent(Indent) << "{"; - if (Value *V = OpData.V) - OS << *V; - else - OS << "null"; - OS << ", APO:" << OpData.APO << "}\n"; - } - OS << "\n"; - } - return OS; - } - - /// Debug print. - LLVM_DUMP_METHOD void dump() const { print(dbgs()); } -#endif - }; - -private: - /// Checks if all users of \p I are the part of the vectorization tree. - bool areAllUsersVectorized(Instruction *I) const; - - /// \returns the cost of the vectorizable entry. - int getEntryCost(TreeEntry *E); - - /// This is the recursive part of buildTree. - void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, - const EdgeInfo &EI); - - /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can - /// be vectorized to use the original vector (or aggregate "bitcast" to a - /// vector) and sets \p CurrentOrder to the identity permutation; otherwise - /// returns false, setting \p CurrentOrder to either an empty vector or a - /// non-identity permutation that allows to reuse extract instructions. - bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, - SmallVectorImpl<unsigned> &CurrentOrder) const; - - /// Vectorize a single entry in the tree. - Value *vectorizeTree(TreeEntry *E); - - /// Vectorize a single entry in the tree, starting in \p VL. - Value *vectorizeTree(ArrayRef<Value *> VL); - - /// \returns the scalarization cost for this type. Scalarization in this - /// context means the creation of vectors from a group of scalars. - int getGatherCost(Type *Ty, const DenseSet<unsigned> &ShuffledIndices) const; - - /// \returns the scalarization cost for this list of values. Assuming that - /// this subtree gets vectorized, we may need to extract the values from the - /// roots. This method calculates the cost of extracting the values. - int getGatherCost(ArrayRef<Value *> VL) const; - - /// Set the Builder insert point to one after the last instruction in - /// the bundle - void setInsertPointAfterBundle(ArrayRef<Value *> VL, - const InstructionsState &S); - - /// \returns a vector from a collection of scalars in \p VL. - Value *Gather(ArrayRef<Value *> VL, VectorType *Ty); - - /// \returns whether the VectorizableTree is fully vectorizable and will - /// be beneficial even the tree height is tiny. - bool isFullyVectorizableTinyTree() const; - - /// Reorder commutative or alt operands to get better probability of - /// generating vectorized code. - static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, - SmallVectorImpl<Value *> &Left, - SmallVectorImpl<Value *> &Right, - const DataLayout &DL, - ScalarEvolution &SE); - struct TreeEntry { - using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; - TreeEntry(VecTreeTy &Container) : Container(Container) {} - - /// \returns true if the scalars in VL are equal to this entry. - bool isSame(ArrayRef<Value *> VL) const { - if (VL.size() == Scalars.size()) - return std::equal(VL.begin(), VL.end(), Scalars.begin()); - return VL.size() == ReuseShuffleIndices.size() && - std::equal( - VL.begin(), VL.end(), ReuseShuffleIndices.begin(), - [this](Value *V, unsigned Idx) { return V == Scalars[Idx]; }); - } - - /// A vector of scalars. - ValueList Scalars; - - /// The Scalars are vectorized into this value. It is initialized to Null. - Value *VectorizedValue = nullptr; - - /// Do we need to gather this sequence ? - bool NeedToGather = false; - - /// Does this sequence require some shuffling? - SmallVector<unsigned, 4> ReuseShuffleIndices; - - /// Does this entry require reordering? - ArrayRef<unsigned> ReorderIndices; - - /// Points back to the VectorizableTree. - /// - /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has - /// to be a pointer and needs to be able to initialize the child iterator. - /// Thus we need a reference back to the container to translate the indices - /// to entries. - VecTreeTy &Container; - - /// The TreeEntry index containing the user of this entry. We can actually - /// have multiple users so the data structure is not truly a tree. - SmallVector<EdgeInfo, 1> UserTreeIndices; - - /// The index of this treeEntry in VectorizableTree. - int Idx = -1; - - private: - /// The operands of each instruction in each lane Operands[op_index][lane]. - /// Note: This helps avoid the replication of the code that performs the - /// reordering of operands during buildTree_rec() and vectorizeTree(). - SmallVector<ValueList, 2> Operands; - - public: - /// Set this bundle's \p OpIdx'th operand to \p OpVL. - void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL, - ArrayRef<unsigned> ReuseShuffleIndices) { - if (Operands.size() < OpIdx + 1) - Operands.resize(OpIdx + 1); - assert(Operands[OpIdx].size() == 0 && "Already resized?"); - Operands[OpIdx].resize(Scalars.size()); - for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane) - Operands[OpIdx][Lane] = (!ReuseShuffleIndices.empty()) - ? OpVL[ReuseShuffleIndices[Lane]] - : OpVL[Lane]; - } - - /// If there is a user TreeEntry, then set its operand. - void trySetUserTEOperand(const EdgeInfo &UserTreeIdx, - ArrayRef<Value *> OpVL, - ArrayRef<unsigned> ReuseShuffleIndices) { - if (UserTreeIdx.UserTE) - UserTreeIdx.UserTE->setOperand(UserTreeIdx.EdgeIdx, OpVL, - ReuseShuffleIndices); - } - - /// \returns the \p OpIdx operand of this TreeEntry. - ValueList &getOperand(unsigned OpIdx) { - assert(OpIdx < Operands.size() && "Off bounds"); - return Operands[OpIdx]; - } - - /// \return the single \p OpIdx operand. - Value *getSingleOperand(unsigned OpIdx) const { - assert(OpIdx < Operands.size() && "Off bounds"); - assert(!Operands[OpIdx].empty() && "No operand available"); - return Operands[OpIdx][0]; - } - -#ifndef NDEBUG - /// Debug printer. - LLVM_DUMP_METHOD void dump() const { - dbgs() << Idx << ".\n"; - for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { - dbgs() << "Operand " << OpI << ":\n"; - for (const Value *V : Operands[OpI]) - dbgs().indent(2) << *V << "\n"; - } - dbgs() << "Scalars: \n"; - for (Value *V : Scalars) - dbgs().indent(2) << *V << "\n"; - dbgs() << "NeedToGather: " << NeedToGather << "\n"; - dbgs() << "VectorizedValue: "; - if (VectorizedValue) - dbgs() << *VectorizedValue; - else - dbgs() << "NULL"; - dbgs() << "\n"; - dbgs() << "ReuseShuffleIndices: "; - if (ReuseShuffleIndices.empty()) - dbgs() << "Emtpy"; - else - for (unsigned Idx : ReuseShuffleIndices) - dbgs() << Idx << ", "; - dbgs() << "\n"; - dbgs() << "ReorderIndices: "; - for (unsigned Idx : ReorderIndices) - dbgs() << Idx << ", "; - dbgs() << "\n"; - dbgs() << "UserTreeIndices: "; - for (const auto &EInfo : UserTreeIndices) - dbgs() << EInfo << ", "; - dbgs() << "\n"; - } -#endif - }; - - /// Create a new VectorizableTree entry. - TreeEntry *newTreeEntry(ArrayRef<Value *> VL, bool Vectorized, - const EdgeInfo &UserTreeIdx, - ArrayRef<unsigned> ReuseShuffleIndices = None, - ArrayRef<unsigned> ReorderIndices = None) { - VectorizableTree.push_back(llvm::make_unique<TreeEntry>(VectorizableTree)); - TreeEntry *Last = VectorizableTree.back().get(); - Last->Idx = VectorizableTree.size() - 1; - Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); - Last->NeedToGather = !Vectorized; - Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), - ReuseShuffleIndices.end()); - Last->ReorderIndices = ReorderIndices; - if (Vectorized) { - for (int i = 0, e = VL.size(); i != e; ++i) { - assert(!getTreeEntry(VL[i]) && "Scalar already in tree!"); - ScalarToTreeEntry[VL[i]] = Last->Idx; - } - } else { - MustGather.insert(VL.begin(), VL.end()); - } - - if (UserTreeIdx.UserTE) - Last->UserTreeIndices.push_back(UserTreeIdx); - - Last->trySetUserTEOperand(UserTreeIdx, VL, ReuseShuffleIndices); - return Last; - } - - /// -- Vectorization State -- - /// Holds all of the tree entries. - TreeEntry::VecTreeTy VectorizableTree; - -#ifndef NDEBUG - /// Debug printer. - LLVM_DUMP_METHOD void dumpVectorizableTree() const { - for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { - VectorizableTree[Id]->dump(); - dbgs() << "\n"; - } - } -#endif - - TreeEntry *getTreeEntry(Value *V) { - auto I = ScalarToTreeEntry.find(V); - if (I != ScalarToTreeEntry.end()) - return VectorizableTree[I->second].get(); - return nullptr; - } - - const TreeEntry *getTreeEntry(Value *V) const { - auto I = ScalarToTreeEntry.find(V); - if (I != ScalarToTreeEntry.end()) - return VectorizableTree[I->second].get(); - return nullptr; - } - - /// Maps a specific scalar to its tree entry. - SmallDenseMap<Value*, int> ScalarToTreeEntry; - - /// A list of scalars that we found that we need to keep as scalars. - ValueSet MustGather; - - /// This POD struct describes one external user in the vectorized tree. - struct ExternalUser { - ExternalUser(Value *S, llvm::User *U, int L) - : Scalar(S), User(U), Lane(L) {} - - // Which scalar in our function. - Value *Scalar; - - // Which user that uses the scalar. - llvm::User *User; - - // Which lane does the scalar belong to. - int Lane; - }; - using UserList = SmallVector<ExternalUser, 16>; - - /// Checks if two instructions may access the same memory. - /// - /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it - /// is invariant in the calling loop. - bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, - Instruction *Inst2) { - // First check if the result is already in the cache. - AliasCacheKey key = std::make_pair(Inst1, Inst2); - Optional<bool> &result = AliasCache[key]; - if (result.hasValue()) { - return result.getValue(); - } - MemoryLocation Loc2 = getLocation(Inst2, AA); - bool aliased = true; - if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { - // Do the alias check. - aliased = AA->alias(Loc1, Loc2); - } - // Store the result in the cache. - result = aliased; - return aliased; - } - - using AliasCacheKey = std::pair<Instruction *, Instruction *>; - - /// Cache for alias results. - /// TODO: consider moving this to the AliasAnalysis itself. - DenseMap<AliasCacheKey, Optional<bool>> AliasCache; - - /// Removes an instruction from its block and eventually deletes it. - /// It's like Instruction::eraseFromParent() except that the actual deletion - /// is delayed until BoUpSLP is destructed. - /// This is required to ensure that there are no incorrect collisions in the - /// AliasCache, which can happen if a new instruction is allocated at the - /// same address as a previously deleted instruction. - void eraseInstruction(Instruction *I) { - I->removeFromParent(); - I->dropAllReferences(); - DeletedInstructions.emplace_back(I); - } - - /// Temporary store for deleted instructions. Instructions will be deleted - /// eventually when the BoUpSLP is destructed. - SmallVector<unique_value, 8> DeletedInstructions; - - /// A list of values that need to extracted out of the tree. - /// This list holds pairs of (Internal Scalar : External User). External User - /// can be nullptr, it means that this Internal Scalar will be used later, - /// after vectorization. - UserList ExternalUses; - - /// Values used only by @llvm.assume calls. - SmallPtrSet<const Value *, 32> EphValues; - - /// Holds all of the instructions that we gathered. - SetVector<Instruction *> GatherSeq; - - /// A list of blocks that we are going to CSE. - SetVector<BasicBlock *> CSEBlocks; - - /// Contains all scheduling relevant data for an instruction. - /// A ScheduleData either represents a single instruction or a member of an - /// instruction bundle (= a group of instructions which is combined into a - /// vector instruction). - struct ScheduleData { - // The initial value for the dependency counters. It means that the - // dependencies are not calculated yet. - enum { InvalidDeps = -1 }; - - ScheduleData() = default; - - void init(int BlockSchedulingRegionID, Value *OpVal) { - FirstInBundle = this; - NextInBundle = nullptr; - NextLoadStore = nullptr; - IsScheduled = false; - SchedulingRegionID = BlockSchedulingRegionID; - UnscheduledDepsInBundle = UnscheduledDeps; - clearDependencies(); - OpValue = OpVal; - } - - /// Returns true if the dependency information has been calculated. - bool hasValidDependencies() const { return Dependencies != InvalidDeps; } - - /// Returns true for single instructions and for bundle representatives - /// (= the head of a bundle). - bool isSchedulingEntity() const { return FirstInBundle == this; } - - /// Returns true if it represents an instruction bundle and not only a - /// single instruction. - bool isPartOfBundle() const { - return NextInBundle != nullptr || FirstInBundle != this; - } - - /// Returns true if it is ready for scheduling, i.e. it has no more - /// unscheduled depending instructions/bundles. - bool isReady() const { - assert(isSchedulingEntity() && - "can't consider non-scheduling entity for ready list"); - return UnscheduledDepsInBundle == 0 && !IsScheduled; - } - - /// Modifies the number of unscheduled dependencies, also updating it for - /// the whole bundle. - int incrementUnscheduledDeps(int Incr) { - UnscheduledDeps += Incr; - return FirstInBundle->UnscheduledDepsInBundle += Incr; - } - - /// Sets the number of unscheduled dependencies to the number of - /// dependencies. - void resetUnscheduledDeps() { - incrementUnscheduledDeps(Dependencies - UnscheduledDeps); - } - - /// Clears all dependency information. - void clearDependencies() { - Dependencies = InvalidDeps; - resetUnscheduledDeps(); - MemoryDependencies.clear(); - } - - void dump(raw_ostream &os) const { - if (!isSchedulingEntity()) { - os << "/ " << *Inst; - } else if (NextInBundle) { - os << '[' << *Inst; - ScheduleData *SD = NextInBundle; - while (SD) { - os << ';' << *SD->Inst; - SD = SD->NextInBundle; - } - os << ']'; - } else { - os << *Inst; - } - } - - Instruction *Inst = nullptr; - - /// Points to the head in an instruction bundle (and always to this for - /// single instructions). - ScheduleData *FirstInBundle = nullptr; - - /// Single linked list of all instructions in a bundle. Null if it is a - /// single instruction. - ScheduleData *NextInBundle = nullptr; - - /// Single linked list of all memory instructions (e.g. load, store, call) - /// in the block - until the end of the scheduling region. - ScheduleData *NextLoadStore = nullptr; - - /// The dependent memory instructions. - /// This list is derived on demand in calculateDependencies(). - SmallVector<ScheduleData *, 4> MemoryDependencies; - - /// This ScheduleData is in the current scheduling region if this matches - /// the current SchedulingRegionID of BlockScheduling. - int SchedulingRegionID = 0; - - /// Used for getting a "good" final ordering of instructions. - int SchedulingPriority = 0; - - /// The number of dependencies. Constitutes of the number of users of the - /// instruction plus the number of dependent memory instructions (if any). - /// This value is calculated on demand. - /// If InvalidDeps, the number of dependencies is not calculated yet. - int Dependencies = InvalidDeps; - - /// The number of dependencies minus the number of dependencies of scheduled - /// instructions. As soon as this is zero, the instruction/bundle gets ready - /// for scheduling. - /// Note that this is negative as long as Dependencies is not calculated. - int UnscheduledDeps = InvalidDeps; - - /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for - /// single instructions. - int UnscheduledDepsInBundle = InvalidDeps; - - /// True if this instruction is scheduled (or considered as scheduled in the - /// dry-run). - bool IsScheduled = false; - - /// Opcode of the current instruction in the schedule data. - Value *OpValue = nullptr; - }; - -#ifndef NDEBUG - friend inline raw_ostream &operator<<(raw_ostream &os, - const BoUpSLP::ScheduleData &SD) { - SD.dump(os); - return os; - } -#endif - - friend struct GraphTraits<BoUpSLP *>; - friend struct DOTGraphTraits<BoUpSLP *>; - - /// Contains all scheduling data for a basic block. - struct BlockScheduling { - BlockScheduling(BasicBlock *BB) - : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} - - void clear() { - ReadyInsts.clear(); - ScheduleStart = nullptr; - ScheduleEnd = nullptr; - FirstLoadStoreInRegion = nullptr; - LastLoadStoreInRegion = nullptr; - - // Reduce the maximum schedule region size by the size of the - // previous scheduling run. - ScheduleRegionSizeLimit -= ScheduleRegionSize; - if (ScheduleRegionSizeLimit < MinScheduleRegionSize) - ScheduleRegionSizeLimit = MinScheduleRegionSize; - ScheduleRegionSize = 0; - - // Make a new scheduling region, i.e. all existing ScheduleData is not - // in the new region yet. - ++SchedulingRegionID; - } - - ScheduleData *getScheduleData(Value *V) { - ScheduleData *SD = ScheduleDataMap[V]; - if (SD && SD->SchedulingRegionID == SchedulingRegionID) - return SD; - return nullptr; - } - - ScheduleData *getScheduleData(Value *V, Value *Key) { - if (V == Key) - return getScheduleData(V); - auto I = ExtraScheduleDataMap.find(V); - if (I != ExtraScheduleDataMap.end()) { - ScheduleData *SD = I->second[Key]; - if (SD && SD->SchedulingRegionID == SchedulingRegionID) - return SD; - } - return nullptr; - } - - bool isInSchedulingRegion(ScheduleData *SD) { - return SD->SchedulingRegionID == SchedulingRegionID; - } - - /// Marks an instruction as scheduled and puts all dependent ready - /// instructions into the ready-list. - template <typename ReadyListType> - void schedule(ScheduleData *SD, ReadyListType &ReadyList) { - SD->IsScheduled = true; - LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); - - ScheduleData *BundleMember = SD; - while (BundleMember) { - if (BundleMember->Inst != BundleMember->OpValue) { - BundleMember = BundleMember->NextInBundle; - continue; - } - // Handle the def-use chain dependencies. - for (Use &U : BundleMember->Inst->operands()) { - auto *I = dyn_cast<Instruction>(U.get()); - if (!I) - continue; - doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { - if (OpDef && OpDef->hasValidDependencies() && - OpDef->incrementUnscheduledDeps(-1) == 0) { - // There are no more unscheduled dependencies after - // decrementing, so we can put the dependent instruction - // into the ready list. - ScheduleData *DepBundle = OpDef->FirstInBundle; - assert(!DepBundle->IsScheduled && - "already scheduled bundle gets ready"); - ReadyList.insert(DepBundle); - LLVM_DEBUG(dbgs() - << "SLP: gets ready (def): " << *DepBundle << "\n"); - } - }); - } - // Handle the memory dependencies. - for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { - if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { - // There are no more unscheduled dependencies after decrementing, - // so we can put the dependent instruction into the ready list. - ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; - assert(!DepBundle->IsScheduled && - "already scheduled bundle gets ready"); - ReadyList.insert(DepBundle); - LLVM_DEBUG(dbgs() - << "SLP: gets ready (mem): " << *DepBundle << "\n"); - } - } - BundleMember = BundleMember->NextInBundle; - } - } - - void doForAllOpcodes(Value *V, - function_ref<void(ScheduleData *SD)> Action) { - if (ScheduleData *SD = getScheduleData(V)) - Action(SD); - auto I = ExtraScheduleDataMap.find(V); - if (I != ExtraScheduleDataMap.end()) - for (auto &P : I->second) - if (P.second->SchedulingRegionID == SchedulingRegionID) - Action(P.second); - } - - /// Put all instructions into the ReadyList which are ready for scheduling. - template <typename ReadyListType> - void initialFillReadyList(ReadyListType &ReadyList) { - for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { - doForAllOpcodes(I, [&](ScheduleData *SD) { - if (SD->isSchedulingEntity() && SD->isReady()) { - ReadyList.insert(SD); - LLVM_DEBUG(dbgs() - << "SLP: initially in ready list: " << *I << "\n"); - } - }); - } - } - - /// Checks if a bundle of instructions can be scheduled, i.e. has no - /// cyclic dependencies. This is only a dry-run, no instructions are - /// actually moved at this stage. - bool tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, - const InstructionsState &S); - - /// Un-bundles a group of instructions. - void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); - - /// Allocates schedule data chunk. - ScheduleData *allocateScheduleDataChunks(); - - /// Extends the scheduling region so that V is inside the region. - /// \returns true if the region size is within the limit. - bool extendSchedulingRegion(Value *V, const InstructionsState &S); - - /// Initialize the ScheduleData structures for new instructions in the - /// scheduling region. - void initScheduleData(Instruction *FromI, Instruction *ToI, - ScheduleData *PrevLoadStore, - ScheduleData *NextLoadStore); - - /// Updates the dependency information of a bundle and of all instructions/ - /// bundles which depend on the original bundle. - void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, - BoUpSLP *SLP); - - /// Sets all instruction in the scheduling region to un-scheduled. - void resetSchedule(); - - BasicBlock *BB; - - /// Simple memory allocation for ScheduleData. - std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; - - /// The size of a ScheduleData array in ScheduleDataChunks. - int ChunkSize; - - /// The allocator position in the current chunk, which is the last entry - /// of ScheduleDataChunks. - int ChunkPos; - - /// Attaches ScheduleData to Instruction. - /// Note that the mapping survives during all vectorization iterations, i.e. - /// ScheduleData structures are recycled. - DenseMap<Value *, ScheduleData *> ScheduleDataMap; - - /// Attaches ScheduleData to Instruction with the leading key. - DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> - ExtraScheduleDataMap; - - struct ReadyList : SmallVector<ScheduleData *, 8> { - void insert(ScheduleData *SD) { push_back(SD); } - }; - - /// The ready-list for scheduling (only used for the dry-run). - ReadyList ReadyInsts; - - /// The first instruction of the scheduling region. - Instruction *ScheduleStart = nullptr; - - /// The first instruction _after_ the scheduling region. - Instruction *ScheduleEnd = nullptr; - - /// The first memory accessing instruction in the scheduling region - /// (can be null). - ScheduleData *FirstLoadStoreInRegion = nullptr; - - /// The last memory accessing instruction in the scheduling region - /// (can be null). - ScheduleData *LastLoadStoreInRegion = nullptr; - - /// The current size of the scheduling region. - int ScheduleRegionSize = 0; - - /// The maximum size allowed for the scheduling region. - int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; - - /// The ID of the scheduling region. For a new vectorization iteration this - /// is incremented which "removes" all ScheduleData from the region. - // Make sure that the initial SchedulingRegionID is greater than the - // initial SchedulingRegionID in ScheduleData (which is 0). - int SchedulingRegionID = 1; - }; - - /// Attaches the BlockScheduling structures to basic blocks. - MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; - - /// Performs the "real" scheduling. Done before vectorization is actually - /// performed in a basic block. - void scheduleBlock(BlockScheduling *BS); - - /// List of users to ignore during scheduling and that don't need extracting. - ArrayRef<Value *> UserIgnoreList; - - using OrdersType = SmallVector<unsigned, 4>; - /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of - /// sorted SmallVectors of unsigned. - struct OrdersTypeDenseMapInfo { - static OrdersType getEmptyKey() { - OrdersType V; - V.push_back(~1U); - return V; - } - - static OrdersType getTombstoneKey() { - OrdersType V; - V.push_back(~2U); - return V; - } - - static unsigned getHashValue(const OrdersType &V) { - return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); - } - - static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { - return LHS == RHS; - } - }; - - /// Contains orders of operations along with the number of bundles that have - /// operations in this order. It stores only those orders that require - /// reordering, if reordering is not required it is counted using \a - /// NumOpsWantToKeepOriginalOrder. - DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> NumOpsWantToKeepOrder; - /// Number of bundles that do not require reordering. - unsigned NumOpsWantToKeepOriginalOrder = 0; - - // Analysis and block reference. - Function *F; - ScalarEvolution *SE; - TargetTransformInfo *TTI; - TargetLibraryInfo *TLI; - AliasAnalysis *AA; - LoopInfo *LI; - DominatorTree *DT; - AssumptionCache *AC; - DemandedBits *DB; - const DataLayout *DL; - OptimizationRemarkEmitter *ORE; - - unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. - unsigned MinVecRegSize; // Set by cl::opt (default: 128). - - /// Instruction builder to construct the vectorized tree. - IRBuilder<> Builder; - - /// A map of scalar integer values to the smallest bit width with which they - /// can legally be represented. The values map to (width, signed) pairs, - /// where "width" indicates the minimum bit width and "signed" is True if the - /// value must be signed-extended, rather than zero-extended, back to its - /// original width. - MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; -}; - -} // end namespace slpvectorizer - -template <> struct GraphTraits<BoUpSLP *> { - using TreeEntry = BoUpSLP::TreeEntry; - - /// NodeRef has to be a pointer per the GraphWriter. - using NodeRef = TreeEntry *; - - using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; - - /// Add the VectorizableTree to the index iterator to be able to return - /// TreeEntry pointers. - struct ChildIteratorType - : public iterator_adaptor_base< - ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { - ContainerTy &VectorizableTree; - - ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, - ContainerTy &VT) - : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} - - NodeRef operator*() { return I->UserTE; } - }; - - static NodeRef getEntryNode(BoUpSLP &R) { - return R.VectorizableTree[0].get(); - } - - static ChildIteratorType child_begin(NodeRef N) { - return {N->UserTreeIndices.begin(), N->Container}; - } - - static ChildIteratorType child_end(NodeRef N) { - return {N->UserTreeIndices.end(), N->Container}; - } - - /// For the node iterator we just need to turn the TreeEntry iterator into a - /// TreeEntry* iterator so that it dereferences to NodeRef. - class nodes_iterator { - using ItTy = ContainerTy::iterator; - ItTy It; - - public: - nodes_iterator(const ItTy &It2) : It(It2) {} - NodeRef operator*() { return It->get(); } - nodes_iterator operator++() { - ++It; - return *this; - } - bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } - }; - - static nodes_iterator nodes_begin(BoUpSLP *R) { - return nodes_iterator(R->VectorizableTree.begin()); - } - - static nodes_iterator nodes_end(BoUpSLP *R) { - return nodes_iterator(R->VectorizableTree.end()); - } - - static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } -}; - -template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { - using TreeEntry = BoUpSLP::TreeEntry; - - DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} - - std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { - std::string Str; - raw_string_ostream OS(Str); - if (isSplat(Entry->Scalars)) { - OS << "<splat> " << *Entry->Scalars[0]; - return Str; - } - for (auto V : Entry->Scalars) { - OS << *V; - if (std::any_of( - R->ExternalUses.begin(), R->ExternalUses.end(), - [&](const BoUpSLP::ExternalUser &EU) { return EU.Scalar == V; })) - OS << " <extract>"; - OS << "\n"; - } - return Str; - } - - static std::string getNodeAttributes(const TreeEntry *Entry, - const BoUpSLP *) { - if (Entry->NeedToGather) - return "color=red"; - return ""; - } -}; - -} // end namespace llvm - -void BoUpSLP::buildTree(ArrayRef<Value *> Roots, - ArrayRef<Value *> UserIgnoreLst) { - ExtraValueToDebugLocsMap ExternallyUsedValues; - buildTree(Roots, ExternallyUsedValues, UserIgnoreLst); -} - -void BoUpSLP::buildTree(ArrayRef<Value *> Roots, - ExtraValueToDebugLocsMap &ExternallyUsedValues, - ArrayRef<Value *> UserIgnoreLst) { - deleteTree(); - UserIgnoreList = UserIgnoreLst; - if (!allSameType(Roots)) - return; - buildTree_rec(Roots, 0, EdgeInfo()); - - // Collect the values that we need to extract from the tree. - for (auto &TEPtr : VectorizableTree) { - TreeEntry *Entry = TEPtr.get(); - - // No need to handle users of gathered values. - if (Entry->NeedToGather) - continue; - - // For each lane: - for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { - Value *Scalar = Entry->Scalars[Lane]; - int FoundLane = Lane; - if (!Entry->ReuseShuffleIndices.empty()) { - FoundLane = - std::distance(Entry->ReuseShuffleIndices.begin(), - llvm::find(Entry->ReuseShuffleIndices, FoundLane)); - } - - // Check if the scalar is externally used as an extra arg. - auto ExtI = ExternallyUsedValues.find(Scalar); - if (ExtI != ExternallyUsedValues.end()) { - LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " - << Lane << " from " << *Scalar << ".\n"); - ExternalUses.emplace_back(Scalar, nullptr, FoundLane); - } - for (User *U : Scalar->users()) { - LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); - - Instruction *UserInst = dyn_cast<Instruction>(U); - if (!UserInst) - continue; - - // Skip in-tree scalars that become vectors - if (TreeEntry *UseEntry = getTreeEntry(U)) { - Value *UseScalar = UseEntry->Scalars[0]; - // Some in-tree scalars will remain as scalar in vectorized - // instructions. If that is the case, the one in Lane 0 will - // be used. - if (UseScalar != U || - !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { - LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U - << ".\n"); - assert(!UseEntry->NeedToGather && "Bad state"); - continue; - } - } - - // Ignore users in the user ignore list. - if (is_contained(UserIgnoreList, UserInst)) - continue; - - LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " - << Lane << " from " << *Scalar << ".\n"); - ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); - } - } - } -} - -void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, - const EdgeInfo &UserTreeIdx) { - assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); - - InstructionsState S = getSameOpcode(VL); - if (Depth == RecursionMaxDepth) { - LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); - newTreeEntry(VL, false, UserTreeIdx); - return; - } - - // Don't handle vectors. - if (S.OpValue->getType()->isVectorTy()) { - LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); - newTreeEntry(VL, false, UserTreeIdx); - return; - } - - if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) - if (SI->getValueOperand()->getType()->isVectorTy()) { - LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); - newTreeEntry(VL, false, UserTreeIdx); - return; - } - - // If all of the operands are identical or constant we have a simple solution. - if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode()) { - LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); - newTreeEntry(VL, false, UserTreeIdx); - return; - } - - // We now know that this is a vector of instructions of the same type from - // the same block. - - // Don't vectorize ephemeral values. - for (unsigned i = 0, e = VL.size(); i != e; ++i) { - if (EphValues.count(VL[i])) { - LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] - << ") is ephemeral.\n"); - newTreeEntry(VL, false, UserTreeIdx); - return; - } - } - - // Check if this is a duplicate of another entry. - if (TreeEntry *E = getTreeEntry(S.OpValue)) { - LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); - if (!E->isSame(VL)) { - LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); - newTreeEntry(VL, false, UserTreeIdx); - return; - } - // Record the reuse of the tree node. FIXME, currently this is only used to - // properly draw the graph rather than for the actual vectorization. - E->UserTreeIndices.push_back(UserTreeIdx); - LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue - << ".\n"); - E->trySetUserTEOperand(UserTreeIdx, VL, None); - return; - } - - // Check that none of the instructions in the bundle are already in the tree. - for (unsigned i = 0, e = VL.size(); i != e; ++i) { - auto *I = dyn_cast<Instruction>(VL[i]); - if (!I) - continue; - if (getTreeEntry(I)) { - LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] - << ") is already in tree.\n"); - newTreeEntry(VL, false, UserTreeIdx); - return; - } - } - - // If any of the scalars is marked as a value that needs to stay scalar, then - // we need to gather the scalars. - // The reduction nodes (stored in UserIgnoreList) also should stay scalar. - for (unsigned i = 0, e = VL.size(); i != e; ++i) { - if (MustGather.count(VL[i]) || is_contained(UserIgnoreList, VL[i])) { - LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); - newTreeEntry(VL, false, UserTreeIdx); - return; - } - } - - // Check that all of the users of the scalars that we want to vectorize are - // schedulable. - auto *VL0 = cast<Instruction>(S.OpValue); - BasicBlock *BB = VL0->getParent(); - - if (!DT->isReachableFromEntry(BB)) { - // Don't go into unreachable blocks. They may contain instructions with - // dependency cycles which confuse the final scheduling. - LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); - newTreeEntry(VL, false, UserTreeIdx); - return; - } - - // Check that every instruction appears once in this bundle. - SmallVector<unsigned, 4> ReuseShuffleIndicies; - SmallVector<Value *, 4> UniqueValues; - DenseMap<Value *, unsigned> UniquePositions; - for (Value *V : VL) { - auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); - ReuseShuffleIndicies.emplace_back(Res.first->second); - if (Res.second) - UniqueValues.emplace_back(V); - } - if (UniqueValues.size() == VL.size()) { - ReuseShuffleIndicies.clear(); - } else { - LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); - if (UniqueValues.size() <= 1 || !llvm::isPowerOf2_32(UniqueValues.size())) { - LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); - newTreeEntry(VL, false, UserTreeIdx); - return; - } - VL = UniqueValues; - } - - auto &BSRef = BlocksSchedules[BB]; - if (!BSRef) - BSRef = llvm::make_unique<BlockScheduling>(BB); - - BlockScheduling &BS = *BSRef.get(); - - if (!BS.tryScheduleBundle(VL, this, S)) { - LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); - assert((!BS.getScheduleData(VL0) || - !BS.getScheduleData(VL0)->isPartOfBundle()) && - "tryScheduleBundle should cancelScheduling on failure"); - newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); - return; - } - LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); - - unsigned ShuffleOrOp = S.isAltShuffle() ? - (unsigned) Instruction::ShuffleVector : S.getOpcode(); - switch (ShuffleOrOp) { - case Instruction::PHI: { - PHINode *PH = dyn_cast<PHINode>(VL0); - - // Check for terminator values (e.g. invoke). - for (unsigned j = 0; j < VL.size(); ++j) - for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { - Instruction *Term = dyn_cast<Instruction>( - cast<PHINode>(VL[j])->getIncomingValueForBlock( - PH->getIncomingBlock(i))); - if (Term && Term->isTerminator()) { - LLVM_DEBUG(dbgs() - << "SLP: Need to swizzle PHINodes (terminator use).\n"); - BS.cancelScheduling(VL, VL0); - newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); - return; - } - } - - auto *TE = newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); - LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); - - for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { - ValueList Operands; - // Prepare the operand vector. - for (Value *j : VL) - Operands.push_back(cast<PHINode>(j)->getIncomingValueForBlock( - PH->getIncomingBlock(i))); - - buildTree_rec(Operands, Depth + 1, {TE, i}); - } - return; - } - case Instruction::ExtractValue: - case Instruction::ExtractElement: { - OrdersType CurrentOrder; - bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); - if (Reuse) { - LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); - ++NumOpsWantToKeepOriginalOrder; - newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx, - ReuseShuffleIndicies); - // This is a special case, as it does not gather, but at the same time - // we are not extending buildTree_rec() towards the operands. - ValueList Op0; - Op0.assign(VL.size(), VL0->getOperand(0)); - VectorizableTree.back()->setOperand(0, Op0, ReuseShuffleIndicies); - return; - } - if (!CurrentOrder.empty()) { - LLVM_DEBUG({ - dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " - "with order"; - for (unsigned Idx : CurrentOrder) - dbgs() << " " << Idx; - dbgs() << "\n"; - }); - // Insert new order with initial value 0, if it does not exist, - // otherwise return the iterator to the existing one. - auto StoredCurrentOrderAndNum = - NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first; - ++StoredCurrentOrderAndNum->getSecond(); - newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx, ReuseShuffleIndicies, - StoredCurrentOrderAndNum->getFirst()); - // This is a special case, as it does not gather, but at the same time - // we are not extending buildTree_rec() towards the operands. - ValueList Op0; - Op0.assign(VL.size(), VL0->getOperand(0)); - VectorizableTree.back()->setOperand(0, Op0, ReuseShuffleIndicies); - return; - } - LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); - newTreeEntry(VL, /*Vectorized=*/false, UserTreeIdx, ReuseShuffleIndicies); - BS.cancelScheduling(VL, VL0); - return; - } - case Instruction::Load: { - // Check that a vectorized load would load the same memory as a scalar - // load. For example, we don't want to vectorize loads that are smaller - // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM - // treats loading/storing it as an i8 struct. If we vectorize loads/stores - // from such a struct, we read/write packed bits disagreeing with the - // unvectorized version. - Type *ScalarTy = VL0->getType(); - - if (DL->getTypeSizeInBits(ScalarTy) != - DL->getTypeAllocSizeInBits(ScalarTy)) { - BS.cancelScheduling(VL, VL0); - newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); - LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); - return; - } - - // Make sure all loads in the bundle are simple - we can't vectorize - // atomic or volatile loads. - SmallVector<Value *, 4> PointerOps(VL.size()); - auto POIter = PointerOps.begin(); - for (Value *V : VL) { - auto *L = cast<LoadInst>(V); - if (!L->isSimple()) { - BS.cancelScheduling(VL, VL0); - newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); - LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); - return; - } - *POIter = L->getPointerOperand(); - ++POIter; - } - - OrdersType CurrentOrder; - // Check the order of pointer operands. - if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { - Value *Ptr0; - Value *PtrN; - if (CurrentOrder.empty()) { - Ptr0 = PointerOps.front(); - PtrN = PointerOps.back(); - } else { - Ptr0 = PointerOps[CurrentOrder.front()]; - PtrN = PointerOps[CurrentOrder.back()]; - } - const SCEV *Scev0 = SE->getSCEV(Ptr0); - const SCEV *ScevN = SE->getSCEV(PtrN); - const auto *Diff = - dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0)); - uint64_t Size = DL->getTypeAllocSize(ScalarTy); - // Check that the sorted loads are consecutive. - if (Diff && Diff->getAPInt().getZExtValue() == (VL.size() - 1) * Size) { - if (CurrentOrder.empty()) { - // Original loads are consecutive and does not require reordering. - ++NumOpsWantToKeepOriginalOrder; - newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx, - ReuseShuffleIndicies); - LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); - } else { - // Need to reorder. - auto I = NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first; - ++I->getSecond(); - newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx, - ReuseShuffleIndicies, I->getFirst()); - LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); - } - return; - } - } - - LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); - BS.cancelScheduling(VL, VL0); - newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); - return; - } - case Instruction::ZExt: - case Instruction::SExt: - case Instruction::FPToUI: - case Instruction::FPToSI: - case Instruction::FPExt: - case Instruction::PtrToInt: - case Instruction::IntToPtr: - case Instruction::SIToFP: - case Instruction::UIToFP: - case Instruction::Trunc: - case Instruction::FPTrunc: - case Instruction::BitCast: { - Type *SrcTy = VL0->getOperand(0)->getType(); - for (unsigned i = 0; i < VL.size(); ++i) { - Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType(); - if (Ty != SrcTy || !isValidElementType(Ty)) { - BS.cancelScheduling(VL, VL0); - newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); - LLVM_DEBUG(dbgs() - << "SLP: Gathering casts with different src types.\n"); - return; - } - } - auto *TE = newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); - LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); - - for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { - ValueList Operands; - // Prepare the operand vector. - for (Value *j : VL) - Operands.push_back(cast<Instruction>(j)->getOperand(i)); - - buildTree_rec(Operands, Depth + 1, {TE, i}); - } - return; - } - case Instruction::ICmp: - case Instruction::FCmp: { - // Check that all of the compares have the same predicate. - CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); - CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); - Type *ComparedTy = VL0->getOperand(0)->getType(); - for (unsigned i = 1, e = VL.size(); i < e; ++i) { - CmpInst *Cmp = cast<CmpInst>(VL[i]); - if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || - Cmp->getOperand(0)->getType() != ComparedTy) { - BS.cancelScheduling(VL, VL0); - newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); - LLVM_DEBUG(dbgs() - << "SLP: Gathering cmp with different predicate.\n"); - return; - } - } - - auto *TE = newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); - LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); - - ValueList Left, Right; - if (cast<CmpInst>(VL0)->isCommutative()) { - // Commutative predicate - collect + sort operands of the instructions - // so that each side is more likely to have the same opcode. - assert(P0 == SwapP0 && "Commutative Predicate mismatch"); - reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE); - } else { - // Collect operands - commute if it uses the swapped predicate. - for (Value *V : VL) { - auto *Cmp = cast<CmpInst>(V); - Value *LHS = Cmp->getOperand(0); - Value *RHS = Cmp->getOperand(1); - if (Cmp->getPredicate() != P0) - std::swap(LHS, RHS); - Left.push_back(LHS); - Right.push_back(RHS); - } - } - - buildTree_rec(Left, Depth + 1, {TE, 0}); - buildTree_rec(Right, Depth + 1, {TE, 1}); - return; - } - case Instruction::Select: - case Instruction::FNeg: - case Instruction::Add: - case Instruction::FAdd: - case Instruction::Sub: - case Instruction::FSub: - case Instruction::Mul: - case Instruction::FMul: - case Instruction::UDiv: - case Instruction::SDiv: - case Instruction::FDiv: - case Instruction::URem: - case Instruction::SRem: - case Instruction::FRem: - case Instruction::Shl: - case Instruction::LShr: - case Instruction::AShr: - case Instruction::And: - case Instruction::Or: - case Instruction::Xor: { - auto *TE = newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); - LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); - - // Sort operands of the instructions so that each side is more likely to - // have the same opcode. - if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { - ValueList Left, Right; - reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE); - buildTree_rec(Left, Depth + 1, {TE, 0}); - buildTree_rec(Right, Depth + 1, {TE, 1}); - return; - } - - for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { - ValueList Operands; - // Prepare the operand vector. - for (Value *j : VL) - Operands.push_back(cast<Instruction>(j)->getOperand(i)); - - buildTree_rec(Operands, Depth + 1, {TE, i}); - } - return; - } - case Instruction::GetElementPtr: { - // We don't combine GEPs with complicated (nested) indexing. - for (unsigned j = 0; j < VL.size(); ++j) { - if (cast<Instruction>(VL[j])->getNumOperands() != 2) { - LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); - BS.cancelScheduling(VL, VL0); - newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); - return; - } - } - - // We can't combine several GEPs into one vector if they operate on - // different types. - Type *Ty0 = VL0->getOperand(0)->getType(); - for (unsigned j = 0; j < VL.size(); ++j) { - Type *CurTy = cast<Instruction>(VL[j])->getOperand(0)->getType(); - if (Ty0 != CurTy) { - LLVM_DEBUG(dbgs() - << "SLP: not-vectorizable GEP (different types).\n"); - BS.cancelScheduling(VL, VL0); - newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); - return; - } - } - - // We don't combine GEPs with non-constant indexes. - for (unsigned j = 0; j < VL.size(); ++j) { - auto Op = cast<Instruction>(VL[j])->getOperand(1); - if (!isa<ConstantInt>(Op)) { - LLVM_DEBUG(dbgs() - << "SLP: not-vectorizable GEP (non-constant indexes).\n"); - BS.cancelScheduling(VL, VL0); - newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); - return; - } - } - - auto *TE = newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); - LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); - for (unsigned i = 0, e = 2; i < e; ++i) { - ValueList Operands; - // Prepare the operand vector. - for (Value *j : VL) - Operands.push_back(cast<Instruction>(j)->getOperand(i)); - - buildTree_rec(Operands, Depth + 1, {TE, i}); - } - return; - } - case Instruction::Store: { - // Check if the stores are consecutive or of we need to swizzle them. - for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) - if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) { - BS.cancelScheduling(VL, VL0); - newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); - LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); - return; - } - - auto *TE = newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); - LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); - - ValueList Operands; - for (Value *j : VL) - Operands.push_back(cast<Instruction>(j)->getOperand(0)); - - buildTree_rec(Operands, Depth + 1, {TE, 0}); - return; - } - case Instruction::Call: { - // Check if the calls are all to the same vectorizable intrinsic. - CallInst *CI = cast<CallInst>(VL0); - // Check if this is an Intrinsic call or something that can be - // represented by an intrinsic call - Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); - if (!isTriviallyVectorizable(ID)) { - BS.cancelScheduling(VL, VL0); - newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); - LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); - return; - } - Function *Int = CI->getCalledFunction(); - unsigned NumArgs = CI->getNumArgOperands(); - SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); - for (unsigned j = 0; j != NumArgs; ++j) - if (hasVectorInstrinsicScalarOpd(ID, j)) - ScalarArgs[j] = CI->getArgOperand(j); - for (unsigned i = 1, e = VL.size(); i != e; ++i) { - CallInst *CI2 = dyn_cast<CallInst>(VL[i]); - if (!CI2 || CI2->getCalledFunction() != Int || - getVectorIntrinsicIDForCall(CI2, TLI) != ID || - !CI->hasIdenticalOperandBundleSchema(*CI2)) { - BS.cancelScheduling(VL, VL0); - newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); - LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *VL[i] - << "\n"); - return; - } - // Some intrinsics have scalar arguments and should be same in order for - // them to be vectorized. - for (unsigned j = 0; j != NumArgs; ++j) { - if (hasVectorInstrinsicScalarOpd(ID, j)) { - Value *A1J = CI2->getArgOperand(j); - if (ScalarArgs[j] != A1J) { - BS.cancelScheduling(VL, VL0); - newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); - LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI - << " argument " << ScalarArgs[j] << "!=" << A1J - << "\n"); - return; - } - } - } - // Verify that the bundle operands are identical between the two calls. - if (CI->hasOperandBundles() && - !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), - CI->op_begin() + CI->getBundleOperandsEndIndex(), - CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { - BS.cancelScheduling(VL, VL0); - newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); - LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" - << *CI << "!=" << *VL[i] << '\n'); - return; - } - } - - auto *TE = newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); - for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { - ValueList Operands; - // Prepare the operand vector. - for (Value *j : VL) { - CallInst *CI2 = dyn_cast<CallInst>(j); - Operands.push_back(CI2->getArgOperand(i)); - } - buildTree_rec(Operands, Depth + 1, {TE, i}); - } - return; - } - case Instruction::ShuffleVector: { - // If this is not an alternate sequence of opcode like add-sub - // then do not vectorize this instruction. - if (!S.isAltShuffle()) { - BS.cancelScheduling(VL, VL0); - newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); - LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); - return; - } - auto *TE = newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); - LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); - - // Reorder operands if reordering would enable vectorization. - if (isa<BinaryOperator>(VL0)) { - ValueList Left, Right; - reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE); - buildTree_rec(Left, Depth + 1, {TE, 0}); - buildTree_rec(Right, Depth + 1, {TE, 1}); - return; - } - - for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { - ValueList Operands; - // Prepare the operand vector. - for (Value *j : VL) - Operands.push_back(cast<Instruction>(j)->getOperand(i)); - - buildTree_rec(Operands, Depth + 1, {TE, i}); - } - return; - } - default: - BS.cancelScheduling(VL, VL0); - newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); - LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); - return; - } -} - -unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { - unsigned N; - Type *EltTy; - auto *ST = dyn_cast<StructType>(T); - if (ST) { - N = ST->getNumElements(); - EltTy = *ST->element_begin(); - } else { - N = cast<ArrayType>(T)->getNumElements(); - EltTy = cast<ArrayType>(T)->getElementType(); - } - if (!isValidElementType(EltTy)) - return 0; - uint64_t VTSize = DL.getTypeStoreSizeInBits(VectorType::get(EltTy, N)); - if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) - return 0; - if (ST) { - // Check that struct is homogeneous. - for (const auto *Ty : ST->elements()) - if (Ty != EltTy) - return 0; - } - return N; -} - -bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, - SmallVectorImpl<unsigned> &CurrentOrder) const { - Instruction *E0 = cast<Instruction>(OpValue); - assert(E0->getOpcode() == Instruction::ExtractElement || - E0->getOpcode() == Instruction::ExtractValue); - assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode"); - // Check if all of the extracts come from the same vector and from the - // correct offset. - Value *Vec = E0->getOperand(0); - - CurrentOrder.clear(); - - // We have to extract from a vector/aggregate with the same number of elements. - unsigned NElts; - if (E0->getOpcode() == Instruction::ExtractValue) { - const DataLayout &DL = E0->getModule()->getDataLayout(); - NElts = canMapToVector(Vec->getType(), DL); - if (!NElts) - return false; - // Check if load can be rewritten as load of vector. - LoadInst *LI = dyn_cast<LoadInst>(Vec); - if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) - return false; - } else { - NElts = Vec->getType()->getVectorNumElements(); - } - - if (NElts != VL.size()) - return false; - - // Check that all of the indices extract from the correct offset. - bool ShouldKeepOrder = true; - unsigned E = VL.size(); - // Assign to all items the initial value E + 1 so we can check if the extract - // instruction index was used already. - // Also, later we can check that all the indices are used and we have a - // consecutive access in the extract instructions, by checking that no - // element of CurrentOrder still has value E + 1. - CurrentOrder.assign(E, E + 1); - unsigned I = 0; - for (; I < E; ++I) { - auto *Inst = cast<Instruction>(VL[I]); - if (Inst->getOperand(0) != Vec) - break; - Optional<unsigned> Idx = getExtractIndex(Inst); - if (!Idx) - break; - const unsigned ExtIdx = *Idx; - if (ExtIdx != I) { - if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1) - break; - ShouldKeepOrder = false; - CurrentOrder[ExtIdx] = I; - } else { - if (CurrentOrder[I] != E + 1) - break; - CurrentOrder[I] = I; - } - } - if (I < E) { - CurrentOrder.clear(); - return false; - } - - return ShouldKeepOrder; -} - -bool BoUpSLP::areAllUsersVectorized(Instruction *I) const { - return I->hasOneUse() || - std::all_of(I->user_begin(), I->user_end(), [this](User *U) { - return ScalarToTreeEntry.count(U) > 0; - }); -} - -int BoUpSLP::getEntryCost(TreeEntry *E) { - ArrayRef<Value*> VL = E->Scalars; - - Type *ScalarTy = VL[0]->getType(); - if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) - ScalarTy = SI->getValueOperand()->getType(); - else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) - ScalarTy = CI->getOperand(0)->getType(); - VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); - - // If we have computed a smaller type for the expression, update VecTy so - // that the costs will be accurate. - if (MinBWs.count(VL[0])) - VecTy = VectorType::get( - IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); - - unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size(); - bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); - int ReuseShuffleCost = 0; - if (NeedToShuffleReuses) { - ReuseShuffleCost = - TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy); - } - if (E->NeedToGather) { - if (allConstant(VL)) - return 0; - if (isSplat(VL)) { - return ReuseShuffleCost + - TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0); - } - if (getSameOpcode(VL).getOpcode() == Instruction::ExtractElement && - allSameType(VL) && allSameBlock(VL)) { - Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = isShuffle(VL); - if (ShuffleKind.hasValue()) { - int Cost = TTI->getShuffleCost(ShuffleKind.getValue(), VecTy); - for (auto *V : VL) { - // If all users of instruction are going to be vectorized and this - // instruction itself is not going to be vectorized, consider this - // instruction as dead and remove its cost from the final cost of the - // vectorized tree. - if (areAllUsersVectorized(cast<Instruction>(V)) && - !ScalarToTreeEntry.count(V)) { - auto *IO = cast<ConstantInt>( - cast<ExtractElementInst>(V)->getIndexOperand()); - Cost -= TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, - IO->getZExtValue()); - } - } - return ReuseShuffleCost + Cost; - } - } - return ReuseShuffleCost + getGatherCost(VL); - } - InstructionsState S = getSameOpcode(VL); - assert(S.getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); - Instruction *VL0 = cast<Instruction>(S.OpValue); - unsigned ShuffleOrOp = S.isAltShuffle() ? - (unsigned) Instruction::ShuffleVector : S.getOpcode(); - switch (ShuffleOrOp) { - case Instruction::PHI: - return 0; - - case Instruction::ExtractValue: - case Instruction::ExtractElement: - if (NeedToShuffleReuses) { - unsigned Idx = 0; - for (unsigned I : E->ReuseShuffleIndices) { - if (ShuffleOrOp == Instruction::ExtractElement) { - auto *IO = cast<ConstantInt>( - cast<ExtractElementInst>(VL[I])->getIndexOperand()); - Idx = IO->getZExtValue(); - ReuseShuffleCost -= TTI->getVectorInstrCost( - Instruction::ExtractElement, VecTy, Idx); - } else { - ReuseShuffleCost -= TTI->getVectorInstrCost( - Instruction::ExtractElement, VecTy, Idx); - ++Idx; - } - } - Idx = ReuseShuffleNumbers; - for (Value *V : VL) { - if (ShuffleOrOp == Instruction::ExtractElement) { - auto *IO = cast<ConstantInt>( - cast<ExtractElementInst>(V)->getIndexOperand()); - Idx = IO->getZExtValue(); - } else { - --Idx; - } - ReuseShuffleCost += - TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, Idx); - } - } - if (!E->NeedToGather) { - int DeadCost = ReuseShuffleCost; - if (!E->ReorderIndices.empty()) { - // TODO: Merge this shuffle with the ReuseShuffleCost. - DeadCost += TTI->getShuffleCost( - TargetTransformInfo::SK_PermuteSingleSrc, VecTy); - } - for (unsigned i = 0, e = VL.size(); i < e; ++i) { - Instruction *E = cast<Instruction>(VL[i]); - // If all users are going to be vectorized, instruction can be - // considered as dead. - // The same, if have only one user, it will be vectorized for sure. - if (areAllUsersVectorized(E)) { - // Take credit for instruction that will become dead. - if (E->hasOneUse()) { - Instruction *Ext = E->user_back(); - if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && - all_of(Ext->users(), - [](User *U) { return isa<GetElementPtrInst>(U); })) { - // Use getExtractWithExtendCost() to calculate the cost of - // extractelement/ext pair. - DeadCost -= TTI->getExtractWithExtendCost( - Ext->getOpcode(), Ext->getType(), VecTy, i); - // Add back the cost of s|zext which is subtracted separately. - DeadCost += TTI->getCastInstrCost( - Ext->getOpcode(), Ext->getType(), E->getType(), Ext); - continue; - } - } - DeadCost -= - TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i); - } - } - return DeadCost; - } - return ReuseShuffleCost + getGatherCost(VL); - - case Instruction::ZExt: - case Instruction::SExt: - case Instruction::FPToUI: - case Instruction::FPToSI: - case Instruction::FPExt: - case Instruction::PtrToInt: - case Instruction::IntToPtr: - case Instruction::SIToFP: - case Instruction::UIToFP: - case Instruction::Trunc: - case Instruction::FPTrunc: - case Instruction::BitCast: { - Type *SrcTy = VL0->getOperand(0)->getType(); - int ScalarEltCost = - TTI->getCastInstrCost(S.getOpcode(), ScalarTy, SrcTy, VL0); - if (NeedToShuffleReuses) { - ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; - } - - // Calculate the cost of this instruction. - int ScalarCost = VL.size() * ScalarEltCost; - - VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size()); - int VecCost = 0; - // Check if the values are candidates to demote. - if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { - VecCost = ReuseShuffleCost + - TTI->getCastInstrCost(S.getOpcode(), VecTy, SrcVecTy, VL0); - } - return VecCost - ScalarCost; - } - case Instruction::FCmp: - case Instruction::ICmp: - case Instruction::Select: { - // Calculate the cost of this instruction. - int ScalarEltCost = TTI->getCmpSelInstrCost(S.getOpcode(), ScalarTy, - Builder.getInt1Ty(), VL0); - if (NeedToShuffleReuses) { - ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; - } - VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size()); - int ScalarCost = VecTy->getNumElements() * ScalarEltCost; - int VecCost = TTI->getCmpSelInstrCost(S.getOpcode(), VecTy, MaskTy, VL0); - return ReuseShuffleCost + VecCost - ScalarCost; - } - case Instruction::FNeg: - case Instruction::Add: - case Instruction::FAdd: - case Instruction::Sub: - case Instruction::FSub: - case Instruction::Mul: - case Instruction::FMul: - case Instruction::UDiv: - case Instruction::SDiv: - case Instruction::FDiv: - case Instruction::URem: - case Instruction::SRem: - case Instruction::FRem: - case Instruction::Shl: - case Instruction::LShr: - case Instruction::AShr: - case Instruction::And: - case Instruction::Or: - case Instruction::Xor: { - // Certain instructions can be cheaper to vectorize if they have a - // constant second vector operand. - TargetTransformInfo::OperandValueKind Op1VK = - TargetTransformInfo::OK_AnyValue; - TargetTransformInfo::OperandValueKind Op2VK = - TargetTransformInfo::OK_UniformConstantValue; - TargetTransformInfo::OperandValueProperties Op1VP = - TargetTransformInfo::OP_None; - TargetTransformInfo::OperandValueProperties Op2VP = - TargetTransformInfo::OP_PowerOf2; - - // If all operands are exactly the same ConstantInt then set the - // operand kind to OK_UniformConstantValue. - // If instead not all operands are constants, then set the operand kind - // to OK_AnyValue. If all operands are constants but not the same, - // then set the operand kind to OK_NonUniformConstantValue. - ConstantInt *CInt0 = nullptr; - for (unsigned i = 0, e = VL.size(); i < e; ++i) { - const Instruction *I = cast<Instruction>(VL[i]); - unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; - ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); - if (!CInt) { - Op2VK = TargetTransformInfo::OK_AnyValue; - Op2VP = TargetTransformInfo::OP_None; - break; - } - if (Op2VP == TargetTransformInfo::OP_PowerOf2 && - !CInt->getValue().isPowerOf2()) - Op2VP = TargetTransformInfo::OP_None; - if (i == 0) { - CInt0 = CInt; - continue; - } - if (CInt0 != CInt) - Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; - } - - SmallVector<const Value *, 4> Operands(VL0->operand_values()); - int ScalarEltCost = TTI->getArithmeticInstrCost( - S.getOpcode(), ScalarTy, Op1VK, Op2VK, Op1VP, Op2VP, Operands); - if (NeedToShuffleReuses) { - ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; - } - int ScalarCost = VecTy->getNumElements() * ScalarEltCost; - int VecCost = TTI->getArithmeticInstrCost(S.getOpcode(), VecTy, Op1VK, - Op2VK, Op1VP, Op2VP, Operands); - return ReuseShuffleCost + VecCost - ScalarCost; - } - case Instruction::GetElementPtr: { - TargetTransformInfo::OperandValueKind Op1VK = - TargetTransformInfo::OK_AnyValue; - TargetTransformInfo::OperandValueKind Op2VK = - TargetTransformInfo::OK_UniformConstantValue; - - int ScalarEltCost = - TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK); - if (NeedToShuffleReuses) { - ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; - } - int ScalarCost = VecTy->getNumElements() * ScalarEltCost; - int VecCost = - TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK); - return ReuseShuffleCost + VecCost - ScalarCost; - } - case Instruction::Load: { - // Cost of wide load - cost of scalar loads. - unsigned alignment = cast<LoadInst>(VL0)->getAlignment(); - int ScalarEltCost = - TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0, VL0); - if (NeedToShuffleReuses) { - ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; - } - int ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; - int VecLdCost = - TTI->getMemoryOpCost(Instruction::Load, VecTy, alignment, 0, VL0); - if (!E->ReorderIndices.empty()) { - // TODO: Merge this shuffle with the ReuseShuffleCost. - VecLdCost += TTI->getShuffleCost( - TargetTransformInfo::SK_PermuteSingleSrc, VecTy); - } - return ReuseShuffleCost + VecLdCost - ScalarLdCost; - } - case Instruction::Store: { - // We know that we can merge the stores. Calculate the cost. - unsigned alignment = cast<StoreInst>(VL0)->getAlignment(); - int ScalarEltCost = - TTI->getMemoryOpCost(Instruction::Store, ScalarTy, alignment, 0, VL0); - if (NeedToShuffleReuses) { - ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; - } - int ScalarStCost = VecTy->getNumElements() * ScalarEltCost; - int VecStCost = - TTI->getMemoryOpCost(Instruction::Store, VecTy, alignment, 0, VL0); - return ReuseShuffleCost + VecStCost - ScalarStCost; - } - case Instruction::Call: { - CallInst *CI = cast<CallInst>(VL0); - Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); - - // Calculate the cost of the scalar and vector calls. - SmallVector<Type *, 4> ScalarTys; - for (unsigned op = 0, opc = CI->getNumArgOperands(); op != opc; ++op) - ScalarTys.push_back(CI->getArgOperand(op)->getType()); - - FastMathFlags FMF; - if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) - FMF = FPMO->getFastMathFlags(); - - int ScalarEltCost = - TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys, FMF); - if (NeedToShuffleReuses) { - ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; - } - int ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; - - SmallVector<Value *, 4> Args(CI->arg_operands()); - int VecCallCost = TTI->getIntrinsicInstrCost(ID, CI->getType(), Args, FMF, - VecTy->getNumElements()); - - LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost - << " (" << VecCallCost << "-" << ScalarCallCost << ")" - << " for " << *CI << "\n"); - - return ReuseShuffleCost + VecCallCost - ScalarCallCost; - } - case Instruction::ShuffleVector: { - assert(S.isAltShuffle() && - ((Instruction::isBinaryOp(S.getOpcode()) && - Instruction::isBinaryOp(S.getAltOpcode())) || - (Instruction::isCast(S.getOpcode()) && - Instruction::isCast(S.getAltOpcode()))) && - "Invalid Shuffle Vector Operand"); - int ScalarCost = 0; - if (NeedToShuffleReuses) { - for (unsigned Idx : E->ReuseShuffleIndices) { - Instruction *I = cast<Instruction>(VL[Idx]); - ReuseShuffleCost -= TTI->getInstructionCost( - I, TargetTransformInfo::TCK_RecipThroughput); - } - for (Value *V : VL) { - Instruction *I = cast<Instruction>(V); - ReuseShuffleCost += TTI->getInstructionCost( - I, TargetTransformInfo::TCK_RecipThroughput); - } - } - for (Value *i : VL) { - Instruction *I = cast<Instruction>(i); - assert(S.isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); - ScalarCost += TTI->getInstructionCost( - I, TargetTransformInfo::TCK_RecipThroughput); - } - // VecCost is equal to sum of the cost of creating 2 vectors - // and the cost of creating shuffle. - int VecCost = 0; - if (Instruction::isBinaryOp(S.getOpcode())) { - VecCost = TTI->getArithmeticInstrCost(S.getOpcode(), VecTy); - VecCost += TTI->getArithmeticInstrCost(S.getAltOpcode(), VecTy); - } else { - Type *Src0SclTy = S.MainOp->getOperand(0)->getType(); - Type *Src1SclTy = S.AltOp->getOperand(0)->getType(); - VectorType *Src0Ty = VectorType::get(Src0SclTy, VL.size()); - VectorType *Src1Ty = VectorType::get(Src1SclTy, VL.size()); - VecCost = TTI->getCastInstrCost(S.getOpcode(), VecTy, Src0Ty); - VecCost += TTI->getCastInstrCost(S.getAltOpcode(), VecTy, Src1Ty); - } - VecCost += TTI->getShuffleCost(TargetTransformInfo::SK_Select, VecTy, 0); - return ReuseShuffleCost + VecCost - ScalarCost; - } - default: - llvm_unreachable("Unknown instruction"); - } -} - -bool BoUpSLP::isFullyVectorizableTinyTree() const { - LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " - << VectorizableTree.size() << " is fully vectorizable .\n"); - - // We only handle trees of heights 1 and 2. - if (VectorizableTree.size() == 1 && !VectorizableTree[0]->NeedToGather) - return true; - - if (VectorizableTree.size() != 2) - return false; - - // Handle splat and all-constants stores. - if (!VectorizableTree[0]->NeedToGather && - (allConstant(VectorizableTree[1]->Scalars) || - isSplat(VectorizableTree[1]->Scalars))) - return true; - - // Gathering cost would be too much for tiny trees. - if (VectorizableTree[0]->NeedToGather || VectorizableTree[1]->NeedToGather) - return false; - - return true; -} - -bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() const { - // We can vectorize the tree if its size is greater than or equal to the - // minimum size specified by the MinTreeSize command line option. - if (VectorizableTree.size() >= MinTreeSize) - return false; - - // If we have a tiny tree (a tree whose size is less than MinTreeSize), we - // can vectorize it if we can prove it fully vectorizable. - if (isFullyVectorizableTinyTree()) - return false; - - assert(VectorizableTree.empty() - ? ExternalUses.empty() - : true && "We shouldn't have any external users"); - - // Otherwise, we can't vectorize the tree. It is both tiny and not fully - // vectorizable. - return true; -} - -int BoUpSLP::getSpillCost() const { - // Walk from the bottom of the tree to the top, tracking which values are - // live. When we see a call instruction that is not part of our tree, - // query TTI to see if there is a cost to keeping values live over it - // (for example, if spills and fills are required). - unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); - int Cost = 0; - - SmallPtrSet<Instruction*, 4> LiveValues; - Instruction *PrevInst = nullptr; - - for (const auto &TEPtr : VectorizableTree) { - Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); - if (!Inst) - continue; - - if (!PrevInst) { - PrevInst = Inst; - continue; - } - - // Update LiveValues. - LiveValues.erase(PrevInst); - for (auto &J : PrevInst->operands()) { - if (isa<Instruction>(&*J) && getTreeEntry(&*J)) - LiveValues.insert(cast<Instruction>(&*J)); - } - - LLVM_DEBUG({ - dbgs() << "SLP: #LV: " << LiveValues.size(); - for (auto *X : LiveValues) - dbgs() << " " << X->getName(); - dbgs() << ", Looking at "; - Inst->dump(); - }); - - // Now find the sequence of instructions between PrevInst and Inst. - unsigned NumCalls = 0; - BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), - PrevInstIt = - PrevInst->getIterator().getReverse(); - while (InstIt != PrevInstIt) { - if (PrevInstIt == PrevInst->getParent()->rend()) { - PrevInstIt = Inst->getParent()->rbegin(); - continue; - } - - // Debug informations don't impact spill cost. - if ((isa<CallInst>(&*PrevInstIt) && - !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && - &*PrevInstIt != PrevInst) - NumCalls++; - - ++PrevInstIt; - } - - if (NumCalls) { - SmallVector<Type*, 4> V; - for (auto *II : LiveValues) - V.push_back(VectorType::get(II->getType(), BundleWidth)); - Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); - } - - PrevInst = Inst; - } - - return Cost; -} - -int BoUpSLP::getTreeCost() { - int Cost = 0; - LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " - << VectorizableTree.size() << ".\n"); - - unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); - - for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { - TreeEntry &TE = *VectorizableTree[I].get(); - - // We create duplicate tree entries for gather sequences that have multiple - // uses. However, we should not compute the cost of duplicate sequences. - // For example, if we have a build vector (i.e., insertelement sequence) - // that is used by more than one vector instruction, we only need to - // compute the cost of the insertelement instructions once. The redundant - // instructions will be eliminated by CSE. - // - // We should consider not creating duplicate tree entries for gather - // sequences, and instead add additional edges to the tree representing - // their uses. Since such an approach results in fewer total entries, - // existing heuristics based on tree size may yield different results. - // - if (TE.NeedToGather && - std::any_of( - std::next(VectorizableTree.begin(), I + 1), VectorizableTree.end(), - [TE](const std::unique_ptr<TreeEntry> &EntryPtr) { - return EntryPtr->NeedToGather && EntryPtr->isSame(TE.Scalars); - })) - continue; - - int C = getEntryCost(&TE); - LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C - << " for bundle that starts with " << *TE.Scalars[0] - << ".\n"); - Cost += C; - } - - SmallPtrSet<Value *, 16> ExtractCostCalculated; - int ExtractCost = 0; - for (ExternalUser &EU : ExternalUses) { - // We only add extract cost once for the same scalar. - if (!ExtractCostCalculated.insert(EU.Scalar).second) - continue; - - // Uses by ephemeral values are free (because the ephemeral value will be - // removed prior to code generation, and so the extraction will be - // removed as well). - if (EphValues.count(EU.User)) - continue; - - // If we plan to rewrite the tree in a smaller type, we will need to sign - // extend the extracted value back to the original type. Here, we account - // for the extract and the added cost of the sign extend if needed. - auto *VecTy = VectorType::get(EU.Scalar->getType(), BundleWidth); - auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; - if (MinBWs.count(ScalarRoot)) { - auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); - auto Extend = - MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; - VecTy = VectorType::get(MinTy, BundleWidth); - ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), - VecTy, EU.Lane); - } else { - ExtractCost += - TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); - } - } - - int SpillCost = getSpillCost(); - Cost += SpillCost + ExtractCost; - - std::string Str; - { - raw_string_ostream OS(Str); - OS << "SLP: Spill Cost = " << SpillCost << ".\n" - << "SLP: Extract Cost = " << ExtractCost << ".\n" - << "SLP: Total Cost = " << Cost << ".\n"; - } - LLVM_DEBUG(dbgs() << Str); - - if (ViewSLPTree) - ViewGraph(this, "SLP" + F->getName(), false, Str); - - return Cost; -} - -int BoUpSLP::getGatherCost(Type *Ty, - const DenseSet<unsigned> &ShuffledIndices) const { - int Cost = 0; - for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i) - if (!ShuffledIndices.count(i)) - Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i); - if (!ShuffledIndices.empty()) - Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); - return Cost; -} - -int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { - // Find the type of the operands in VL. - Type *ScalarTy = VL[0]->getType(); - if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) - ScalarTy = SI->getValueOperand()->getType(); - VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); - // Find the cost of inserting/extracting values from the vector. - // Check if the same elements are inserted several times and count them as - // shuffle candidates. - DenseSet<unsigned> ShuffledElements; - DenseSet<Value *> UniqueElements; - // Iterate in reverse order to consider insert elements with the high cost. - for (unsigned I = VL.size(); I > 0; --I) { - unsigned Idx = I - 1; - if (!UniqueElements.insert(VL[Idx]).second) - ShuffledElements.insert(Idx); - } - return getGatherCost(VecTy, ShuffledElements); -} - -// Perform operand reordering on the instructions in VL and return the reordered -// operands in Left and Right. -void BoUpSLP::reorderInputsAccordingToOpcode( - ArrayRef<Value *> VL, SmallVectorImpl<Value *> &Left, - SmallVectorImpl<Value *> &Right, const DataLayout &DL, - ScalarEvolution &SE) { - if (VL.empty()) - return; - VLOperands Ops(VL, DL, SE); - // Reorder the operands in place. - Ops.reorder(); - Left = Ops.getVL(0); - Right = Ops.getVL(1); -} - -void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL, - const InstructionsState &S) { - // Get the basic block this bundle is in. All instructions in the bundle - // should be in this block. - auto *Front = cast<Instruction>(S.OpValue); - auto *BB = Front->getParent(); - assert(llvm::all_of(make_range(VL.begin(), VL.end()), [=](Value *V) -> bool { - auto *I = cast<Instruction>(V); - return !S.isOpcodeOrAlt(I) || I->getParent() == BB; - })); - - // The last instruction in the bundle in program order. - Instruction *LastInst = nullptr; - - // Find the last instruction. The common case should be that BB has been - // scheduled, and the last instruction is VL.back(). So we start with - // VL.back() and iterate over schedule data until we reach the end of the - // bundle. The end of the bundle is marked by null ScheduleData. - if (BlocksSchedules.count(BB)) { - auto *Bundle = - BlocksSchedules[BB]->getScheduleData(isOneOf(S, VL.back())); - if (Bundle && Bundle->isPartOfBundle()) - for (; Bundle; Bundle = Bundle->NextInBundle) - if (Bundle->OpValue == Bundle->Inst) - LastInst = Bundle->Inst; - } - - // LastInst can still be null at this point if there's either not an entry - // for BB in BlocksSchedules or there's no ScheduleData available for - // VL.back(). This can be the case if buildTree_rec aborts for various - // reasons (e.g., the maximum recursion depth is reached, the maximum region - // size is reached, etc.). ScheduleData is initialized in the scheduling - // "dry-run". - // - // If this happens, we can still find the last instruction by brute force. We - // iterate forwards from Front (inclusive) until we either see all - // instructions in the bundle or reach the end of the block. If Front is the - // last instruction in program order, LastInst will be set to Front, and we - // will visit all the remaining instructions in the block. - // - // One of the reasons we exit early from buildTree_rec is to place an upper - // bound on compile-time. Thus, taking an additional compile-time hit here is - // not ideal. However, this should be exceedingly rare since it requires that - // we both exit early from buildTree_rec and that the bundle be out-of-order - // (causing us to iterate all the way to the end of the block). - if (!LastInst) { - SmallPtrSet<Value *, 16> Bundle(VL.begin(), VL.end()); - for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { - if (Bundle.erase(&I) && S.isOpcodeOrAlt(&I)) - LastInst = &I; - if (Bundle.empty()) - break; - } - } - - // Set the insertion point after the last instruction in the bundle. Set the - // debug location to Front. - Builder.SetInsertPoint(BB, ++LastInst->getIterator()); - Builder.SetCurrentDebugLocation(Front->getDebugLoc()); -} - -Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) { - Value *Vec = UndefValue::get(Ty); - // Generate the 'InsertElement' instruction. - for (unsigned i = 0; i < Ty->getNumElements(); ++i) { - Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i)); - if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) { - GatherSeq.insert(Insrt); - CSEBlocks.insert(Insrt->getParent()); - - // Add to our 'need-to-extract' list. - if (TreeEntry *E = getTreeEntry(VL[i])) { - // Find which lane we need to extract. - int FoundLane = -1; - for (unsigned Lane = 0, LE = E->Scalars.size(); Lane != LE; ++Lane) { - // Is this the lane of the scalar that we are looking for ? - if (E->Scalars[Lane] == VL[i]) { - FoundLane = Lane; - break; - } - } - assert(FoundLane >= 0 && "Could not find the correct lane"); - if (!E->ReuseShuffleIndices.empty()) { - FoundLane = - std::distance(E->ReuseShuffleIndices.begin(), - llvm::find(E->ReuseShuffleIndices, FoundLane)); - } - ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane)); - } - } - } - - return Vec; -} - -Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { - InstructionsState S = getSameOpcode(VL); - if (S.getOpcode()) { - if (TreeEntry *E = getTreeEntry(S.OpValue)) { - if (E->isSame(VL)) { - Value *V = vectorizeTree(E); - if (VL.size() == E->Scalars.size() && !E->ReuseShuffleIndices.empty()) { - // We need to get the vectorized value but without shuffle. - if (auto *SV = dyn_cast<ShuffleVectorInst>(V)) { - V = SV->getOperand(0); - } else { - // Reshuffle to get only unique values. - SmallVector<unsigned, 4> UniqueIdxs; - SmallSet<unsigned, 4> UsedIdxs; - for(unsigned Idx : E->ReuseShuffleIndices) - if (UsedIdxs.insert(Idx).second) - UniqueIdxs.emplace_back(Idx); - V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), - UniqueIdxs); - } - } - return V; - } - } - } - - Type *ScalarTy = S.OpValue->getType(); - if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) - ScalarTy = SI->getValueOperand()->getType(); - - // Check that every instruction appears once in this bundle. - SmallVector<unsigned, 4> ReuseShuffleIndicies; - SmallVector<Value *, 4> UniqueValues; - if (VL.size() > 2) { - DenseMap<Value *, unsigned> UniquePositions; - for (Value *V : VL) { - auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); - ReuseShuffleIndicies.emplace_back(Res.first->second); - if (Res.second || isa<Constant>(V)) - UniqueValues.emplace_back(V); - } - // Do not shuffle single element or if number of unique values is not power - // of 2. - if (UniqueValues.size() == VL.size() || UniqueValues.size() <= 1 || - !llvm::isPowerOf2_32(UniqueValues.size())) - ReuseShuffleIndicies.clear(); - else - VL = UniqueValues; - } - VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); - - Value *V = Gather(VL, VecTy); - if (!ReuseShuffleIndicies.empty()) { - V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), - ReuseShuffleIndicies, "shuffle"); - if (auto *I = dyn_cast<Instruction>(V)) { - GatherSeq.insert(I); - CSEBlocks.insert(I->getParent()); - } - } - return V; -} - -static void inversePermutation(ArrayRef<unsigned> Indices, - SmallVectorImpl<unsigned> &Mask) { - Mask.clear(); - const unsigned E = Indices.size(); - Mask.resize(E); - for (unsigned I = 0; I < E; ++I) - Mask[Indices[I]] = I; -} - -Value *BoUpSLP::vectorizeTree(TreeEntry *E) { - IRBuilder<>::InsertPointGuard Guard(Builder); - - if (E->VectorizedValue) { - LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); - return E->VectorizedValue; - } - - InstructionsState S = getSameOpcode(E->Scalars); - Instruction *VL0 = cast<Instruction>(S.OpValue); - Type *ScalarTy = VL0->getType(); - if (StoreInst *SI = dyn_cast<StoreInst>(VL0)) - ScalarTy = SI->getValueOperand()->getType(); - VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size()); - - bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); - - if (E->NeedToGather) { - setInsertPointAfterBundle(E->Scalars, S); - auto *V = Gather(E->Scalars, VecTy); - if (NeedToShuffleReuses) { - V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), - E->ReuseShuffleIndices, "shuffle"); - if (auto *I = dyn_cast<Instruction>(V)) { - GatherSeq.insert(I); - CSEBlocks.insert(I->getParent()); - } - } - E->VectorizedValue = V; - return V; - } - - unsigned ShuffleOrOp = S.isAltShuffle() ? - (unsigned) Instruction::ShuffleVector : S.getOpcode(); - switch (ShuffleOrOp) { - case Instruction::PHI: { - PHINode *PH = dyn_cast<PHINode>(VL0); - Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); - Builder.SetCurrentDebugLocation(PH->getDebugLoc()); - PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); - Value *V = NewPhi; - if (NeedToShuffleReuses) { - V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), - E->ReuseShuffleIndices, "shuffle"); - } - E->VectorizedValue = V; - - // PHINodes may have multiple entries from the same block. We want to - // visit every block once. - SmallPtrSet<BasicBlock*, 4> VisitedBBs; - - for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { - ValueList Operands; - BasicBlock *IBB = PH->getIncomingBlock(i); - - if (!VisitedBBs.insert(IBB).second) { - NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); - continue; - } - - Builder.SetInsertPoint(IBB->getTerminator()); - Builder.SetCurrentDebugLocation(PH->getDebugLoc()); - Value *Vec = vectorizeTree(E->getOperand(i)); - NewPhi->addIncoming(Vec, IBB); - } - - assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && - "Invalid number of incoming values"); - return V; - } - - case Instruction::ExtractElement: { - if (!E->NeedToGather) { - Value *V = E->getSingleOperand(0); - if (!E->ReorderIndices.empty()) { - OrdersType Mask; - inversePermutation(E->ReorderIndices, Mask); - Builder.SetInsertPoint(VL0); - V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), Mask, - "reorder_shuffle"); - } - if (NeedToShuffleReuses) { - // TODO: Merge this shuffle with the ReorderShuffleMask. - if (E->ReorderIndices.empty()) - Builder.SetInsertPoint(VL0); - V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), - E->ReuseShuffleIndices, "shuffle"); - } - E->VectorizedValue = V; - return V; - } - setInsertPointAfterBundle(E->Scalars, S); - auto *V = Gather(E->Scalars, VecTy); - if (NeedToShuffleReuses) { - V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), - E->ReuseShuffleIndices, "shuffle"); - if (auto *I = dyn_cast<Instruction>(V)) { - GatherSeq.insert(I); - CSEBlocks.insert(I->getParent()); - } - } - E->VectorizedValue = V; - return V; - } - case Instruction::ExtractValue: { - if (!E->NeedToGather) { - LoadInst *LI = cast<LoadInst>(E->getSingleOperand(0)); - Builder.SetInsertPoint(LI); - PointerType *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); - Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); - LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlignment()); - Value *NewV = propagateMetadata(V, E->Scalars); - if (!E->ReorderIndices.empty()) { - OrdersType Mask; - inversePermutation(E->ReorderIndices, Mask); - NewV = Builder.CreateShuffleVector(NewV, UndefValue::get(VecTy), Mask, - "reorder_shuffle"); - } - if (NeedToShuffleReuses) { - // TODO: Merge this shuffle with the ReorderShuffleMask. - NewV = Builder.CreateShuffleVector( - NewV, UndefValue::get(VecTy), E->ReuseShuffleIndices, "shuffle"); - } - E->VectorizedValue = NewV; - return NewV; - } - setInsertPointAfterBundle(E->Scalars, S); - auto *V = Gather(E->Scalars, VecTy); - if (NeedToShuffleReuses) { - V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), - E->ReuseShuffleIndices, "shuffle"); - if (auto *I = dyn_cast<Instruction>(V)) { - GatherSeq.insert(I); - CSEBlocks.insert(I->getParent()); - } - } - E->VectorizedValue = V; - return V; - } - case Instruction::ZExt: - case Instruction::SExt: - case Instruction::FPToUI: - case Instruction::FPToSI: - case Instruction::FPExt: - case Instruction::PtrToInt: - case Instruction::IntToPtr: - case Instruction::SIToFP: - case Instruction::UIToFP: - case Instruction::Trunc: - case Instruction::FPTrunc: - case Instruction::BitCast: { - setInsertPointAfterBundle(E->Scalars, S); - - Value *InVec = vectorizeTree(E->getOperand(0)); - - if (E->VectorizedValue) { - LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); - return E->VectorizedValue; - } - - CastInst *CI = dyn_cast<CastInst>(VL0); - Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); - if (NeedToShuffleReuses) { - V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), - E->ReuseShuffleIndices, "shuffle"); - } - E->VectorizedValue = V; - ++NumVectorInstructions; - return V; - } - case Instruction::FCmp: - case Instruction::ICmp: { - setInsertPointAfterBundle(E->Scalars, S); - - Value *L = vectorizeTree(E->getOperand(0)); - Value *R = vectorizeTree(E->getOperand(1)); - - if (E->VectorizedValue) { - LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); - return E->VectorizedValue; - } - - CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); - Value *V; - if (S.getOpcode() == Instruction::FCmp) - V = Builder.CreateFCmp(P0, L, R); - else - V = Builder.CreateICmp(P0, L, R); - - propagateIRFlags(V, E->Scalars, VL0); - if (NeedToShuffleReuses) { - V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), - E->ReuseShuffleIndices, "shuffle"); - } - E->VectorizedValue = V; - ++NumVectorInstructions; - return V; - } - case Instruction::Select: { - setInsertPointAfterBundle(E->Scalars, S); - - Value *Cond = vectorizeTree(E->getOperand(0)); - Value *True = vectorizeTree(E->getOperand(1)); - Value *False = vectorizeTree(E->getOperand(2)); - - if (E->VectorizedValue) { - LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); - return E->VectorizedValue; - } - - Value *V = Builder.CreateSelect(Cond, True, False); - if (NeedToShuffleReuses) { - V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), - E->ReuseShuffleIndices, "shuffle"); - } - E->VectorizedValue = V; - ++NumVectorInstructions; - return V; - } - case Instruction::FNeg: { - setInsertPointAfterBundle(E->Scalars, S); - - Value *Op = vectorizeTree(E->getOperand(0)); - - if (E->VectorizedValue) { - LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); - return E->VectorizedValue; - } - - Value *V = Builder.CreateUnOp( - static_cast<Instruction::UnaryOps>(S.getOpcode()), Op); - propagateIRFlags(V, E->Scalars, VL0); - if (auto *I = dyn_cast<Instruction>(V)) - V = propagateMetadata(I, E->Scalars); - - if (NeedToShuffleReuses) { - V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), - E->ReuseShuffleIndices, "shuffle"); - } - E->VectorizedValue = V; - ++NumVectorInstructions; - - return V; - } - case Instruction::Add: - case Instruction::FAdd: - case Instruction::Sub: - case Instruction::FSub: - case Instruction::Mul: - case Instruction::FMul: - case Instruction::UDiv: - case Instruction::SDiv: - case Instruction::FDiv: - case Instruction::URem: - case Instruction::SRem: - case Instruction::FRem: - case Instruction::Shl: - case Instruction::LShr: - case Instruction::AShr: - case Instruction::And: - case Instruction::Or: - case Instruction::Xor: { - setInsertPointAfterBundle(E->Scalars, S); - - Value *LHS = vectorizeTree(E->getOperand(0)); - Value *RHS = vectorizeTree(E->getOperand(1)); - - if (E->VectorizedValue) { - LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); - return E->VectorizedValue; - } - - Value *V = Builder.CreateBinOp( - static_cast<Instruction::BinaryOps>(S.getOpcode()), LHS, RHS); - propagateIRFlags(V, E->Scalars, VL0); - if (auto *I = dyn_cast<Instruction>(V)) - V = propagateMetadata(I, E->Scalars); - - if (NeedToShuffleReuses) { - V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), - E->ReuseShuffleIndices, "shuffle"); - } - E->VectorizedValue = V; - ++NumVectorInstructions; - - return V; - } - case Instruction::Load: { - // Loads are inserted at the head of the tree because we don't want to - // sink them all the way down past store instructions. - bool IsReorder = !E->ReorderIndices.empty(); - if (IsReorder) { - S = getSameOpcode(E->Scalars, E->ReorderIndices.front()); - VL0 = cast<Instruction>(S.OpValue); - } - setInsertPointAfterBundle(E->Scalars, S); - - LoadInst *LI = cast<LoadInst>(VL0); - Type *ScalarLoadTy = LI->getType(); - unsigned AS = LI->getPointerAddressSpace(); - - Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(), - VecTy->getPointerTo(AS)); - - // The pointer operand uses an in-tree scalar so we add the new BitCast to - // ExternalUses list to make sure that an extract will be generated in the - // future. - Value *PO = LI->getPointerOperand(); - if (getTreeEntry(PO)) - ExternalUses.push_back(ExternalUser(PO, cast<User>(VecPtr), 0)); - - unsigned Alignment = LI->getAlignment(); - LI = Builder.CreateLoad(VecTy, VecPtr); - if (!Alignment) { - Alignment = DL->getABITypeAlignment(ScalarLoadTy); - } - LI->setAlignment(Alignment); - Value *V = propagateMetadata(LI, E->Scalars); - if (IsReorder) { - OrdersType Mask; - inversePermutation(E->ReorderIndices, Mask); - V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), - Mask, "reorder_shuffle"); - } - if (NeedToShuffleReuses) { - // TODO: Merge this shuffle with the ReorderShuffleMask. - V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), - E->ReuseShuffleIndices, "shuffle"); - } - E->VectorizedValue = V; - ++NumVectorInstructions; - return V; - } - case Instruction::Store: { - StoreInst *SI = cast<StoreInst>(VL0); - unsigned Alignment = SI->getAlignment(); - unsigned AS = SI->getPointerAddressSpace(); - - setInsertPointAfterBundle(E->Scalars, S); - - Value *VecValue = vectorizeTree(E->getOperand(0)); - Value *ScalarPtr = SI->getPointerOperand(); - Value *VecPtr = Builder.CreateBitCast(ScalarPtr, VecTy->getPointerTo(AS)); - StoreInst *ST = Builder.CreateStore(VecValue, VecPtr); - - // The pointer operand uses an in-tree scalar, so add the new BitCast to - // ExternalUses to make sure that an extract will be generated in the - // future. - if (getTreeEntry(ScalarPtr)) - ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0)); - - if (!Alignment) - Alignment = DL->getABITypeAlignment(SI->getValueOperand()->getType()); - - ST->setAlignment(Alignment); - Value *V = propagateMetadata(ST, E->Scalars); - if (NeedToShuffleReuses) { - V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), - E->ReuseShuffleIndices, "shuffle"); - } - E->VectorizedValue = V; - ++NumVectorInstructions; - return V; - } - case Instruction::GetElementPtr: { - setInsertPointAfterBundle(E->Scalars, S); - - Value *Op0 = vectorizeTree(E->getOperand(0)); - - std::vector<Value *> OpVecs; - for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; - ++j) { - Value *OpVec = vectorizeTree(E->getOperand(j)); - OpVecs.push_back(OpVec); - } - - Value *V = Builder.CreateGEP( - cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); - if (Instruction *I = dyn_cast<Instruction>(V)) - V = propagateMetadata(I, E->Scalars); - - if (NeedToShuffleReuses) { - V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), - E->ReuseShuffleIndices, "shuffle"); - } - E->VectorizedValue = V; - ++NumVectorInstructions; - - return V; - } - case Instruction::Call: { - CallInst *CI = cast<CallInst>(VL0); - setInsertPointAfterBundle(E->Scalars, S); - Function *FI; - Intrinsic::ID IID = Intrinsic::not_intrinsic; - Value *ScalarArg = nullptr; - if (CI && (FI = CI->getCalledFunction())) { - IID = FI->getIntrinsicID(); - } - std::vector<Value *> OpVecs; - for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { - ValueList OpVL; - // Some intrinsics have scalar arguments. This argument should not be - // vectorized. - if (hasVectorInstrinsicScalarOpd(IID, j)) { - CallInst *CEI = cast<CallInst>(VL0); - ScalarArg = CEI->getArgOperand(j); - OpVecs.push_back(CEI->getArgOperand(j)); - continue; - } - - Value *OpVec = vectorizeTree(E->getOperand(j)); - LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); - OpVecs.push_back(OpVec); - } - - Module *M = F->getParent(); - Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); - Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) }; - Function *CF = Intrinsic::getDeclaration(M, ID, Tys); - SmallVector<OperandBundleDef, 1> OpBundles; - CI->getOperandBundlesAsDefs(OpBundles); - Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); - - // The scalar argument uses an in-tree scalar so we add the new vectorized - // call to ExternalUses list to make sure that an extract will be - // generated in the future. - if (ScalarArg && getTreeEntry(ScalarArg)) - ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); - - propagateIRFlags(V, E->Scalars, VL0); - if (NeedToShuffleReuses) { - V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), - E->ReuseShuffleIndices, "shuffle"); - } - E->VectorizedValue = V; - ++NumVectorInstructions; - return V; - } - case Instruction::ShuffleVector: { - assert(S.isAltShuffle() && - ((Instruction::isBinaryOp(S.getOpcode()) && - Instruction::isBinaryOp(S.getAltOpcode())) || - (Instruction::isCast(S.getOpcode()) && - Instruction::isCast(S.getAltOpcode()))) && - "Invalid Shuffle Vector Operand"); - - Value *LHS, *RHS; - if (Instruction::isBinaryOp(S.getOpcode())) { - setInsertPointAfterBundle(E->Scalars, S); - LHS = vectorizeTree(E->getOperand(0)); - RHS = vectorizeTree(E->getOperand(1)); - } else { - setInsertPointAfterBundle(E->Scalars, S); - LHS = vectorizeTree(E->getOperand(0)); - } - - if (E->VectorizedValue) { - LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); - return E->VectorizedValue; - } - - Value *V0, *V1; - if (Instruction::isBinaryOp(S.getOpcode())) { - V0 = Builder.CreateBinOp( - static_cast<Instruction::BinaryOps>(S.getOpcode()), LHS, RHS); - V1 = Builder.CreateBinOp( - static_cast<Instruction::BinaryOps>(S.getAltOpcode()), LHS, RHS); - } else { - V0 = Builder.CreateCast( - static_cast<Instruction::CastOps>(S.getOpcode()), LHS, VecTy); - V1 = Builder.CreateCast( - static_cast<Instruction::CastOps>(S.getAltOpcode()), LHS, VecTy); - } - - // Create shuffle to take alternate operations from the vector. - // Also, gather up main and alt scalar ops to propagate IR flags to - // each vector operation. - ValueList OpScalars, AltScalars; - unsigned e = E->Scalars.size(); - SmallVector<Constant *, 8> Mask(e); - for (unsigned i = 0; i < e; ++i) { - auto *OpInst = cast<Instruction>(E->Scalars[i]); - assert(S.isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode"); - if (OpInst->getOpcode() == S.getAltOpcode()) { - Mask[i] = Builder.getInt32(e + i); - AltScalars.push_back(E->Scalars[i]); - } else { - Mask[i] = Builder.getInt32(i); - OpScalars.push_back(E->Scalars[i]); - } - } - - Value *ShuffleMask = ConstantVector::get(Mask); - propagateIRFlags(V0, OpScalars); - propagateIRFlags(V1, AltScalars); - - Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask); - if (Instruction *I = dyn_cast<Instruction>(V)) - V = propagateMetadata(I, E->Scalars); - if (NeedToShuffleReuses) { - V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), - E->ReuseShuffleIndices, "shuffle"); - } - E->VectorizedValue = V; - ++NumVectorInstructions; - - return V; - } - default: - llvm_unreachable("unknown inst"); - } - return nullptr; -} - -Value *BoUpSLP::vectorizeTree() { - ExtraValueToDebugLocsMap ExternallyUsedValues; - return vectorizeTree(ExternallyUsedValues); -} - -Value * -BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { - // All blocks must be scheduled before any instructions are inserted. - for (auto &BSIter : BlocksSchedules) { - scheduleBlock(BSIter.second.get()); - } - - Builder.SetInsertPoint(&F->getEntryBlock().front()); - auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); - - // If the vectorized tree can be rewritten in a smaller type, we truncate the - // vectorized root. InstCombine will then rewrite the entire expression. We - // sign extend the extracted values below. - auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; - if (MinBWs.count(ScalarRoot)) { - if (auto *I = dyn_cast<Instruction>(VectorRoot)) - Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); - auto BundleWidth = VectorizableTree[0]->Scalars.size(); - auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); - auto *VecTy = VectorType::get(MinTy, BundleWidth); - auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); - VectorizableTree[0]->VectorizedValue = Trunc; - } - - LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() - << " values .\n"); - - // If necessary, sign-extend or zero-extend ScalarRoot to the larger type - // specified by ScalarType. - auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) { - if (!MinBWs.count(ScalarRoot)) - return Ex; - if (MinBWs[ScalarRoot].second) - return Builder.CreateSExt(Ex, ScalarType); - return Builder.CreateZExt(Ex, ScalarType); - }; - - // Extract all of the elements with the external uses. - for (const auto &ExternalUse : ExternalUses) { - Value *Scalar = ExternalUse.Scalar; - llvm::User *User = ExternalUse.User; - - // Skip users that we already RAUW. This happens when one instruction - // has multiple uses of the same value. - if (User && !is_contained(Scalar->users(), User)) - continue; - TreeEntry *E = getTreeEntry(Scalar); - assert(E && "Invalid scalar"); - assert(!E->NeedToGather && "Extracting from a gather list"); - - Value *Vec = E->VectorizedValue; - assert(Vec && "Can't find vectorizable value"); - - Value *Lane = Builder.getInt32(ExternalUse.Lane); - // If User == nullptr, the Scalar is used as extra arg. Generate - // ExtractElement instruction and update the record for this scalar in - // ExternallyUsedValues. - if (!User) { - assert(ExternallyUsedValues.count(Scalar) && - "Scalar with nullptr as an external user must be registered in " - "ExternallyUsedValues map"); - if (auto *VecI = dyn_cast<Instruction>(Vec)) { - Builder.SetInsertPoint(VecI->getParent(), - std::next(VecI->getIterator())); - } else { - Builder.SetInsertPoint(&F->getEntryBlock().front()); - } - Value *Ex = Builder.CreateExtractElement(Vec, Lane); - Ex = extend(ScalarRoot, Ex, Scalar->getType()); - CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); - auto &Locs = ExternallyUsedValues[Scalar]; - ExternallyUsedValues.insert({Ex, Locs}); - ExternallyUsedValues.erase(Scalar); - // Required to update internally referenced instructions. - Scalar->replaceAllUsesWith(Ex); - continue; - } - - // Generate extracts for out-of-tree users. - // Find the insertion point for the extractelement lane. - if (auto *VecI = dyn_cast<Instruction>(Vec)) { - if (PHINode *PH = dyn_cast<PHINode>(User)) { - for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { - if (PH->getIncomingValue(i) == Scalar) { - Instruction *IncomingTerminator = - PH->getIncomingBlock(i)->getTerminator(); - if (isa<CatchSwitchInst>(IncomingTerminator)) { - Builder.SetInsertPoint(VecI->getParent(), - std::next(VecI->getIterator())); - } else { - Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); - } - Value *Ex = Builder.CreateExtractElement(Vec, Lane); - Ex = extend(ScalarRoot, Ex, Scalar->getType()); - CSEBlocks.insert(PH->getIncomingBlock(i)); - PH->setOperand(i, Ex); - } - } - } else { - Builder.SetInsertPoint(cast<Instruction>(User)); - Value *Ex = Builder.CreateExtractElement(Vec, Lane); - Ex = extend(ScalarRoot, Ex, Scalar->getType()); - CSEBlocks.insert(cast<Instruction>(User)->getParent()); - User->replaceUsesOfWith(Scalar, Ex); - } - } else { - Builder.SetInsertPoint(&F->getEntryBlock().front()); - Value *Ex = Builder.CreateExtractElement(Vec, Lane); - Ex = extend(ScalarRoot, Ex, Scalar->getType()); - CSEBlocks.insert(&F->getEntryBlock()); - User->replaceUsesOfWith(Scalar, Ex); - } - - LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); - } - - // For each vectorized value: - for (auto &TEPtr : VectorizableTree) { - TreeEntry *Entry = TEPtr.get(); - - // No need to handle users of gathered values. - if (Entry->NeedToGather) - continue; - - assert(Entry->VectorizedValue && "Can't find vectorizable value"); - - // For each lane: - for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { - Value *Scalar = Entry->Scalars[Lane]; - - Type *Ty = Scalar->getType(); - if (!Ty->isVoidTy()) { -#ifndef NDEBUG - for (User *U : Scalar->users()) { - LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); - - // It is legal to replace users in the ignorelist by undef. - assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) && - "Replacing out-of-tree value with undef"); - } -#endif - Value *Undef = UndefValue::get(Ty); - Scalar->replaceAllUsesWith(Undef); - } - LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); - eraseInstruction(cast<Instruction>(Scalar)); - } - } - - Builder.ClearInsertionPoint(); - - return VectorizableTree[0]->VectorizedValue; -} - -void BoUpSLP::optimizeGatherSequence() { - LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() - << " gather sequences instructions.\n"); - // LICM InsertElementInst sequences. - for (Instruction *I : GatherSeq) { - if (!isa<InsertElementInst>(I) && !isa<ShuffleVectorInst>(I)) - continue; - - // Check if this block is inside a loop. - Loop *L = LI->getLoopFor(I->getParent()); - if (!L) - continue; - - // Check if it has a preheader. - BasicBlock *PreHeader = L->getLoopPreheader(); - if (!PreHeader) - continue; - - // If the vector or the element that we insert into it are - // instructions that are defined in this basic block then we can't - // hoist this instruction. - auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); - auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); - if (Op0 && L->contains(Op0)) - continue; - if (Op1 && L->contains(Op1)) - continue; - - // We can hoist this instruction. Move it to the pre-header. - I->moveBefore(PreHeader->getTerminator()); - } - - // Make a list of all reachable blocks in our CSE queue. - SmallVector<const DomTreeNode *, 8> CSEWorkList; - CSEWorkList.reserve(CSEBlocks.size()); - for (BasicBlock *BB : CSEBlocks) - if (DomTreeNode *N = DT->getNode(BB)) { - assert(DT->isReachableFromEntry(N)); - CSEWorkList.push_back(N); - } - - // Sort blocks by domination. This ensures we visit a block after all blocks - // dominating it are visited. - llvm::stable_sort(CSEWorkList, - [this](const DomTreeNode *A, const DomTreeNode *B) { - return DT->properlyDominates(A, B); - }); - - // Perform O(N^2) search over the gather sequences and merge identical - // instructions. TODO: We can further optimize this scan if we split the - // instructions into different buckets based on the insert lane. - SmallVector<Instruction *, 16> Visited; - for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { - assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && - "Worklist not sorted properly!"); - BasicBlock *BB = (*I)->getBlock(); - // For all instructions in blocks containing gather sequences: - for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { - Instruction *In = &*it++; - if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) - continue; - - // Check if we can replace this instruction with any of the - // visited instructions. - for (Instruction *v : Visited) { - if (In->isIdenticalTo(v) && - DT->dominates(v->getParent(), In->getParent())) { - In->replaceAllUsesWith(v); - eraseInstruction(In); - In = nullptr; - break; - } - } - if (In) { - assert(!is_contained(Visited, In)); - Visited.push_back(In); - } - } - } - CSEBlocks.clear(); - GatherSeq.clear(); -} - -// Groups the instructions to a bundle (which is then a single scheduling entity) -// and schedules instructions until the bundle gets ready. -bool BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, - BoUpSLP *SLP, - const InstructionsState &S) { - if (isa<PHINode>(S.OpValue)) - return true; - - // Initialize the instruction bundle. - Instruction *OldScheduleEnd = ScheduleEnd; - ScheduleData *PrevInBundle = nullptr; - ScheduleData *Bundle = nullptr; - bool ReSchedule = false; - LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); - - // Make sure that the scheduling region contains all - // instructions of the bundle. - for (Value *V : VL) { - if (!extendSchedulingRegion(V, S)) - return false; - } - - for (Value *V : VL) { - ScheduleData *BundleMember = getScheduleData(V); - assert(BundleMember && - "no ScheduleData for bundle member (maybe not in same basic block)"); - if (BundleMember->IsScheduled) { - // A bundle member was scheduled as single instruction before and now - // needs to be scheduled as part of the bundle. We just get rid of the - // existing schedule. - LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember - << " was already scheduled\n"); - ReSchedule = true; - } - assert(BundleMember->isSchedulingEntity() && - "bundle member already part of other bundle"); - if (PrevInBundle) { - PrevInBundle->NextInBundle = BundleMember; - } else { - Bundle = BundleMember; - } - BundleMember->UnscheduledDepsInBundle = 0; - Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; - - // Group the instructions to a bundle. - BundleMember->FirstInBundle = Bundle; - PrevInBundle = BundleMember; - } - if (ScheduleEnd != OldScheduleEnd) { - // The scheduling region got new instructions at the lower end (or it is a - // new region for the first bundle). This makes it necessary to - // recalculate all dependencies. - // It is seldom that this needs to be done a second time after adding the - // initial bundle to the region. - for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { - doForAllOpcodes(I, [](ScheduleData *SD) { - SD->clearDependencies(); - }); - } - ReSchedule = true; - } - if (ReSchedule) { - resetSchedule(); - initialFillReadyList(ReadyInsts); - } - - LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block " - << BB->getName() << "\n"); - - calculateDependencies(Bundle, true, SLP); - - // Now try to schedule the new bundle. As soon as the bundle is "ready" it - // means that there are no cyclic dependencies and we can schedule it. - // Note that's important that we don't "schedule" the bundle yet (see - // cancelScheduling). - while (!Bundle->isReady() && !ReadyInsts.empty()) { - - ScheduleData *pickedSD = ReadyInsts.back(); - ReadyInsts.pop_back(); - - if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) { - schedule(pickedSD, ReadyInsts); - } - } - if (!Bundle->isReady()) { - cancelScheduling(VL, S.OpValue); - return false; - } - return true; -} - -void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, - Value *OpValue) { - if (isa<PHINode>(OpValue)) - return; - - ScheduleData *Bundle = getScheduleData(OpValue); - LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); - assert(!Bundle->IsScheduled && - "Can't cancel bundle which is already scheduled"); - assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && - "tried to unbundle something which is not a bundle"); - - // Un-bundle: make single instructions out of the bundle. - ScheduleData *BundleMember = Bundle; - while (BundleMember) { - assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); - BundleMember->FirstInBundle = BundleMember; - ScheduleData *Next = BundleMember->NextInBundle; - BundleMember->NextInBundle = nullptr; - BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; - if (BundleMember->UnscheduledDepsInBundle == 0) { - ReadyInsts.insert(BundleMember); - } - BundleMember = Next; - } -} - -BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { - // Allocate a new ScheduleData for the instruction. - if (ChunkPos >= ChunkSize) { - ScheduleDataChunks.push_back(llvm::make_unique<ScheduleData[]>(ChunkSize)); - ChunkPos = 0; - } - return &(ScheduleDataChunks.back()[ChunkPos++]); -} - -bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, - const InstructionsState &S) { - if (getScheduleData(V, isOneOf(S, V))) - return true; - Instruction *I = dyn_cast<Instruction>(V); - assert(I && "bundle member must be an instruction"); - assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled"); - auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool { - ScheduleData *ISD = getScheduleData(I); - if (!ISD) - return false; - assert(isInSchedulingRegion(ISD) && - "ScheduleData not in scheduling region"); - ScheduleData *SD = allocateScheduleDataChunks(); - SD->Inst = I; - SD->init(SchedulingRegionID, S.OpValue); - ExtraScheduleDataMap[I][S.OpValue] = SD; - return true; - }; - if (CheckSheduleForI(I)) - return true; - if (!ScheduleStart) { - // It's the first instruction in the new region. - initScheduleData(I, I->getNextNode(), nullptr, nullptr); - ScheduleStart = I; - ScheduleEnd = I->getNextNode(); - if (isOneOf(S, I) != I) - CheckSheduleForI(I); - assert(ScheduleEnd && "tried to vectorize a terminator?"); - LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); - return true; - } - // Search up and down at the same time, because we don't know if the new - // instruction is above or below the existing scheduling region. - BasicBlock::reverse_iterator UpIter = - ++ScheduleStart->getIterator().getReverse(); - BasicBlock::reverse_iterator UpperEnd = BB->rend(); - BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); - BasicBlock::iterator LowerEnd = BB->end(); - while (true) { - if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { - LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); - return false; - } - - if (UpIter != UpperEnd) { - if (&*UpIter == I) { - initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); - ScheduleStart = I; - if (isOneOf(S, I) != I) - CheckSheduleForI(I); - LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I - << "\n"); - return true; - } - ++UpIter; - } - if (DownIter != LowerEnd) { - if (&*DownIter == I) { - initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, - nullptr); - ScheduleEnd = I->getNextNode(); - if (isOneOf(S, I) != I) - CheckSheduleForI(I); - assert(ScheduleEnd && "tried to vectorize a terminator?"); - LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I - << "\n"); - return true; - } - ++DownIter; - } - assert((UpIter != UpperEnd || DownIter != LowerEnd) && - "instruction not found in block"); - } - return true; -} - -void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, - Instruction *ToI, - ScheduleData *PrevLoadStore, - ScheduleData *NextLoadStore) { - ScheduleData *CurrentLoadStore = PrevLoadStore; - for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { - ScheduleData *SD = ScheduleDataMap[I]; - if (!SD) { - SD = allocateScheduleDataChunks(); - ScheduleDataMap[I] = SD; - SD->Inst = I; - } - assert(!isInSchedulingRegion(SD) && - "new ScheduleData already in scheduling region"); - SD->init(SchedulingRegionID, I); - - if (I->mayReadOrWriteMemory() && - (!isa<IntrinsicInst>(I) || - cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect)) { - // Update the linked list of memory accessing instructions. - if (CurrentLoadStore) { - CurrentLoadStore->NextLoadStore = SD; - } else { - FirstLoadStoreInRegion = SD; - } - CurrentLoadStore = SD; - } - } - if (NextLoadStore) { - if (CurrentLoadStore) - CurrentLoadStore->NextLoadStore = NextLoadStore; - } else { - LastLoadStoreInRegion = CurrentLoadStore; - } -} - -void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, - bool InsertInReadyList, - BoUpSLP *SLP) { - assert(SD->isSchedulingEntity()); - - SmallVector<ScheduleData *, 10> WorkList; - WorkList.push_back(SD); - - while (!WorkList.empty()) { - ScheduleData *SD = WorkList.back(); - WorkList.pop_back(); - - ScheduleData *BundleMember = SD; - while (BundleMember) { - assert(isInSchedulingRegion(BundleMember)); - if (!BundleMember->hasValidDependencies()) { - - LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember - << "\n"); - BundleMember->Dependencies = 0; - BundleMember->resetUnscheduledDeps(); - - // Handle def-use chain dependencies. - if (BundleMember->OpValue != BundleMember->Inst) { - ScheduleData *UseSD = getScheduleData(BundleMember->Inst); - if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { - BundleMember->Dependencies++; - ScheduleData *DestBundle = UseSD->FirstInBundle; - if (!DestBundle->IsScheduled) - BundleMember->incrementUnscheduledDeps(1); - if (!DestBundle->hasValidDependencies()) - WorkList.push_back(DestBundle); - } - } else { - for (User *U : BundleMember->Inst->users()) { - if (isa<Instruction>(U)) { - ScheduleData *UseSD = getScheduleData(U); - if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { - BundleMember->Dependencies++; - ScheduleData *DestBundle = UseSD->FirstInBundle; - if (!DestBundle->IsScheduled) - BundleMember->incrementUnscheduledDeps(1); - if (!DestBundle->hasValidDependencies()) - WorkList.push_back(DestBundle); - } - } else { - // I'm not sure if this can ever happen. But we need to be safe. - // This lets the instruction/bundle never be scheduled and - // eventually disable vectorization. - BundleMember->Dependencies++; - BundleMember->incrementUnscheduledDeps(1); - } - } - } - - // Handle the memory dependencies. - ScheduleData *DepDest = BundleMember->NextLoadStore; - if (DepDest) { - Instruction *SrcInst = BundleMember->Inst; - MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); - bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); - unsigned numAliased = 0; - unsigned DistToSrc = 1; - - while (DepDest) { - assert(isInSchedulingRegion(DepDest)); - - // We have two limits to reduce the complexity: - // 1) AliasedCheckLimit: It's a small limit to reduce calls to - // SLP->isAliased (which is the expensive part in this loop). - // 2) MaxMemDepDistance: It's for very large blocks and it aborts - // the whole loop (even if the loop is fast, it's quadratic). - // It's important for the loop break condition (see below) to - // check this limit even between two read-only instructions. - if (DistToSrc >= MaxMemDepDistance || - ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && - (numAliased >= AliasedCheckLimit || - SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { - - // We increment the counter only if the locations are aliased - // (instead of counting all alias checks). This gives a better - // balance between reduced runtime and accurate dependencies. - numAliased++; - - DepDest->MemoryDependencies.push_back(BundleMember); - BundleMember->Dependencies++; - ScheduleData *DestBundle = DepDest->FirstInBundle; - if (!DestBundle->IsScheduled) { - BundleMember->incrementUnscheduledDeps(1); - } - if (!DestBundle->hasValidDependencies()) { - WorkList.push_back(DestBundle); - } - } - DepDest = DepDest->NextLoadStore; - - // Example, explaining the loop break condition: Let's assume our - // starting instruction is i0 and MaxMemDepDistance = 3. - // - // +--------v--v--v - // i0,i1,i2,i3,i4,i5,i6,i7,i8 - // +--------^--^--^ - // - // MaxMemDepDistance let us stop alias-checking at i3 and we add - // dependencies from i0 to i3,i4,.. (even if they are not aliased). - // Previously we already added dependencies from i3 to i6,i7,i8 - // (because of MaxMemDepDistance). As we added a dependency from - // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 - // and we can abort this loop at i6. - if (DistToSrc >= 2 * MaxMemDepDistance) - break; - DistToSrc++; - } - } - } - BundleMember = BundleMember->NextInBundle; - } - if (InsertInReadyList && SD->isReady()) { - ReadyInsts.push_back(SD); - LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst - << "\n"); - } - } -} - -void BoUpSLP::BlockScheduling::resetSchedule() { - assert(ScheduleStart && - "tried to reset schedule on block which has not been scheduled"); - for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { - doForAllOpcodes(I, [&](ScheduleData *SD) { - assert(isInSchedulingRegion(SD) && - "ScheduleData not in scheduling region"); - SD->IsScheduled = false; - SD->resetUnscheduledDeps(); - }); - } - ReadyInsts.clear(); -} - -void BoUpSLP::scheduleBlock(BlockScheduling *BS) { - if (!BS->ScheduleStart) - return; - - LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); - - BS->resetSchedule(); - - // For the real scheduling we use a more sophisticated ready-list: it is - // sorted by the original instruction location. This lets the final schedule - // be as close as possible to the original instruction order. - struct ScheduleDataCompare { - bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { - return SD2->SchedulingPriority < SD1->SchedulingPriority; - } - }; - std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; - - // Ensure that all dependency data is updated and fill the ready-list with - // initial instructions. - int Idx = 0; - int NumToSchedule = 0; - for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; - I = I->getNextNode()) { - BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { - assert(SD->isPartOfBundle() == - (getTreeEntry(SD->Inst) != nullptr) && - "scheduler and vectorizer bundle mismatch"); - SD->FirstInBundle->SchedulingPriority = Idx++; - if (SD->isSchedulingEntity()) { - BS->calculateDependencies(SD, false, this); - NumToSchedule++; - } - }); - } - BS->initialFillReadyList(ReadyInsts); - - Instruction *LastScheduledInst = BS->ScheduleEnd; - - // Do the "real" scheduling. - while (!ReadyInsts.empty()) { - ScheduleData *picked = *ReadyInsts.begin(); - ReadyInsts.erase(ReadyInsts.begin()); - - // Move the scheduled instruction(s) to their dedicated places, if not - // there yet. - ScheduleData *BundleMember = picked; - while (BundleMember) { - Instruction *pickedInst = BundleMember->Inst; - if (LastScheduledInst->getNextNode() != pickedInst) { - BS->BB->getInstList().remove(pickedInst); - BS->BB->getInstList().insert(LastScheduledInst->getIterator(), - pickedInst); - } - LastScheduledInst = pickedInst; - BundleMember = BundleMember->NextInBundle; - } - - BS->schedule(picked, ReadyInsts); - NumToSchedule--; - } - assert(NumToSchedule == 0 && "could not schedule all instructions"); - - // Avoid duplicate scheduling of the block. - BS->ScheduleStart = nullptr; -} - -unsigned BoUpSLP::getVectorElementSize(Value *V) const { - // If V is a store, just return the width of the stored value without - // traversing the expression tree. This is the common case. - if (auto *Store = dyn_cast<StoreInst>(V)) - return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); - - // If V is not a store, we can traverse the expression tree to find loads - // that feed it. The type of the loaded value may indicate a more suitable - // width than V's type. We want to base the vector element size on the width - // of memory operations where possible. - SmallVector<Instruction *, 16> Worklist; - SmallPtrSet<Instruction *, 16> Visited; - if (auto *I = dyn_cast<Instruction>(V)) - Worklist.push_back(I); - - // Traverse the expression tree in bottom-up order looking for loads. If we - // encounter an instruction we don't yet handle, we give up. - auto MaxWidth = 0u; - auto FoundUnknownInst = false; - while (!Worklist.empty() && !FoundUnknownInst) { - auto *I = Worklist.pop_back_val(); - Visited.insert(I); - - // We should only be looking at scalar instructions here. If the current - // instruction has a vector type, give up. - auto *Ty = I->getType(); - if (isa<VectorType>(Ty)) - FoundUnknownInst = true; - - // If the current instruction is a load, update MaxWidth to reflect the - // width of the loaded value. - else if (isa<LoadInst>(I)) - MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty)); - - // Otherwise, we need to visit the operands of the instruction. We only - // handle the interesting cases from buildTree here. If an operand is an - // instruction we haven't yet visited, we add it to the worklist. - else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || - isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) { - for (Use &U : I->operands()) - if (auto *J = dyn_cast<Instruction>(U.get())) - if (!Visited.count(J)) - Worklist.push_back(J); - } - - // If we don't yet handle the instruction, give up. - else - FoundUnknownInst = true; - } - - // If we didn't encounter a memory access in the expression tree, or if we - // gave up for some reason, just return the width of V. - if (!MaxWidth || FoundUnknownInst) - return DL->getTypeSizeInBits(V->getType()); - - // Otherwise, return the maximum width we found. - return MaxWidth; -} - -// Determine if a value V in a vectorizable expression Expr can be demoted to a -// smaller type with a truncation. We collect the values that will be demoted -// in ToDemote and additional roots that require investigating in Roots. -static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, - SmallVectorImpl<Value *> &ToDemote, - SmallVectorImpl<Value *> &Roots) { - // We can always demote constants. - if (isa<Constant>(V)) { - ToDemote.push_back(V); - return true; - } - - // If the value is not an instruction in the expression with only one use, it - // cannot be demoted. - auto *I = dyn_cast<Instruction>(V); - if (!I || !I->hasOneUse() || !Expr.count(I)) - return false; - - switch (I->getOpcode()) { - - // We can always demote truncations and extensions. Since truncations can - // seed additional demotion, we save the truncated value. - case Instruction::Trunc: - Roots.push_back(I->getOperand(0)); - break; - case Instruction::ZExt: - case Instruction::SExt: - break; - - // We can demote certain binary operations if we can demote both of their - // operands. - case Instruction::Add: - case Instruction::Sub: - case Instruction::Mul: - case Instruction::And: - case Instruction::Or: - case Instruction::Xor: - if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || - !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) - return false; - break; - - // We can demote selects if we can demote their true and false values. - case Instruction::Select: { - SelectInst *SI = cast<SelectInst>(I); - if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || - !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) - return false; - break; - } - - // We can demote phis if we can demote all their incoming operands. Note that - // we don't need to worry about cycles since we ensure single use above. - case Instruction::PHI: { - PHINode *PN = cast<PHINode>(I); - for (Value *IncValue : PN->incoming_values()) - if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) - return false; - break; - } - - // Otherwise, conservatively give up. - default: - return false; - } - - // Record the value that we can demote. - ToDemote.push_back(V); - return true; -} - -void BoUpSLP::computeMinimumValueSizes() { - // If there are no external uses, the expression tree must be rooted by a - // store. We can't demote in-memory values, so there is nothing to do here. - if (ExternalUses.empty()) - return; - - // We only attempt to truncate integer expressions. - auto &TreeRoot = VectorizableTree[0]->Scalars; - auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); - if (!TreeRootIT) - return; - - // If the expression is not rooted by a store, these roots should have - // external uses. We will rely on InstCombine to rewrite the expression in - // the narrower type. However, InstCombine only rewrites single-use values. - // This means that if a tree entry other than a root is used externally, it - // must have multiple uses and InstCombine will not rewrite it. The code - // below ensures that only the roots are used externally. - SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); - for (auto &EU : ExternalUses) - if (!Expr.erase(EU.Scalar)) - return; - if (!Expr.empty()) - return; - - // Collect the scalar values of the vectorizable expression. We will use this - // context to determine which values can be demoted. If we see a truncation, - // we mark it as seeding another demotion. - for (auto &EntryPtr : VectorizableTree) - Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); - - // Ensure the roots of the vectorizable tree don't form a cycle. They must - // have a single external user that is not in the vectorizable tree. - for (auto *Root : TreeRoot) - if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) - return; - - // Conservatively determine if we can actually truncate the roots of the - // expression. Collect the values that can be demoted in ToDemote and - // additional roots that require investigating in Roots. - SmallVector<Value *, 32> ToDemote; - SmallVector<Value *, 4> Roots; - for (auto *Root : TreeRoot) - if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) - return; - - // The maximum bit width required to represent all the values that can be - // demoted without loss of precision. It would be safe to truncate the roots - // of the expression to this width. - auto MaxBitWidth = 8u; - - // We first check if all the bits of the roots are demanded. If they're not, - // we can truncate the roots to this narrower type. - for (auto *Root : TreeRoot) { - auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); - MaxBitWidth = std::max<unsigned>( - Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); - } - - // True if the roots can be zero-extended back to their original type, rather - // than sign-extended. We know that if the leading bits are not demanded, we - // can safely zero-extend. So we initialize IsKnownPositive to True. - bool IsKnownPositive = true; - - // If all the bits of the roots are demanded, we can try a little harder to - // compute a narrower type. This can happen, for example, if the roots are - // getelementptr indices. InstCombine promotes these indices to the pointer - // width. Thus, all their bits are technically demanded even though the - // address computation might be vectorized in a smaller type. - // - // We start by looking at each entry that can be demoted. We compute the - // maximum bit width required to store the scalar by using ValueTracking to - // compute the number of high-order bits we can truncate. - if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && - llvm::all_of(TreeRoot, [](Value *R) { - assert(R->hasOneUse() && "Root should have only one use!"); - return isa<GetElementPtrInst>(R->user_back()); - })) { - MaxBitWidth = 8u; - - // Determine if the sign bit of all the roots is known to be zero. If not, - // IsKnownPositive is set to False. - IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { - KnownBits Known = computeKnownBits(R, *DL); - return Known.isNonNegative(); - }); - - // Determine the maximum number of bits required to store the scalar - // values. - for (auto *Scalar : ToDemote) { - auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); - auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); - MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); - } - - // If we can't prove that the sign bit is zero, we must add one to the - // maximum bit width to account for the unknown sign bit. This preserves - // the existing sign bit so we can safely sign-extend the root back to the - // original type. Otherwise, if we know the sign bit is zero, we will - // zero-extend the root instead. - // - // FIXME: This is somewhat suboptimal, as there will be cases where adding - // one to the maximum bit width will yield a larger-than-necessary - // type. In general, we need to add an extra bit only if we can't - // prove that the upper bit of the original type is equal to the - // upper bit of the proposed smaller type. If these two bits are the - // same (either zero or one) we know that sign-extending from the - // smaller type will result in the same value. Here, since we can't - // yet prove this, we are just making the proposed smaller type - // larger to ensure correctness. - if (!IsKnownPositive) - ++MaxBitWidth; - } - - // Round MaxBitWidth up to the next power-of-two. - if (!isPowerOf2_64(MaxBitWidth)) - MaxBitWidth = NextPowerOf2(MaxBitWidth); - - // If the maximum bit width we compute is less than the with of the roots' - // type, we can proceed with the narrowing. Otherwise, do nothing. - if (MaxBitWidth >= TreeRootIT->getBitWidth()) - return; - - // If we can truncate the root, we must collect additional values that might - // be demoted as a result. That is, those seeded by truncations we will - // modify. - while (!Roots.empty()) - collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); - - // Finally, map the values we can demote to the maximum bit with we computed. - for (auto *Scalar : ToDemote) - MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); -} - -namespace { - -/// The SLPVectorizer Pass. -struct SLPVectorizer : public FunctionPass { - SLPVectorizerPass Impl; - - /// Pass identification, replacement for typeid - static char ID; - - explicit SLPVectorizer() : FunctionPass(ID) { - initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); - } - - bool doInitialization(Module &M) override { - return false; - } - - bool runOnFunction(Function &F) override { - if (skipFunction(F)) - return false; - - auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); - auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); - auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); - auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; - auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); - auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); - auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); - auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); - auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); - auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); - - return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); - } - - void getAnalysisUsage(AnalysisUsage &AU) const override { - FunctionPass::getAnalysisUsage(AU); - AU.addRequired<AssumptionCacheTracker>(); - AU.addRequired<ScalarEvolutionWrapperPass>(); - AU.addRequired<AAResultsWrapperPass>(); - AU.addRequired<TargetTransformInfoWrapperPass>(); - AU.addRequired<LoopInfoWrapperPass>(); - AU.addRequired<DominatorTreeWrapperPass>(); - AU.addRequired<DemandedBitsWrapperPass>(); - AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); - AU.addPreserved<LoopInfoWrapperPass>(); - AU.addPreserved<DominatorTreeWrapperPass>(); - AU.addPreserved<AAResultsWrapperPass>(); - AU.addPreserved<GlobalsAAWrapperPass>(); - AU.setPreservesCFG(); - } -}; - -} // end anonymous namespace - -PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { - auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); - auto *TTI = &AM.getResult<TargetIRAnalysis>(F); - auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); - auto *AA = &AM.getResult<AAManager>(F); - auto *LI = &AM.getResult<LoopAnalysis>(F); - auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); - auto *AC = &AM.getResult<AssumptionAnalysis>(F); - auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); - auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); - - bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); - if (!Changed) - return PreservedAnalyses::all(); - - PreservedAnalyses PA; - PA.preserveSet<CFGAnalyses>(); - PA.preserve<AAManager>(); - PA.preserve<GlobalsAA>(); - return PA; -} - -bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, - TargetTransformInfo *TTI_, - TargetLibraryInfo *TLI_, AliasAnalysis *AA_, - LoopInfo *LI_, DominatorTree *DT_, - AssumptionCache *AC_, DemandedBits *DB_, - OptimizationRemarkEmitter *ORE_) { - SE = SE_; - TTI = TTI_; - TLI = TLI_; - AA = AA_; - LI = LI_; - DT = DT_; - AC = AC_; - DB = DB_; - DL = &F.getParent()->getDataLayout(); - - Stores.clear(); - GEPs.clear(); - bool Changed = false; - - // If the target claims to have no vector registers don't attempt - // vectorization. - if (!TTI->getNumberOfRegisters(true)) - return false; - - // Don't vectorize when the attribute NoImplicitFloat is used. - if (F.hasFnAttribute(Attribute::NoImplicitFloat)) - return false; - - LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); - - // Use the bottom up slp vectorizer to construct chains that start with - // store instructions. - BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); - - // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to - // delete instructions. - - // Scan the blocks in the function in post order. - for (auto BB : post_order(&F.getEntryBlock())) { - collectSeedInstructions(BB); - - // Vectorize trees that end at stores. - if (!Stores.empty()) { - LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() - << " underlying objects.\n"); - Changed |= vectorizeStoreChains(R); - } - - // Vectorize trees that end at reductions. - Changed |= vectorizeChainsInBlock(BB, R); - - // Vectorize the index computations of getelementptr instructions. This - // is primarily intended to catch gather-like idioms ending at - // non-consecutive loads. - if (!GEPs.empty()) { - LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() - << " underlying objects.\n"); - Changed |= vectorizeGEPIndices(BB, R); - } - } - - if (Changed) { - R.optimizeGatherSequence(); - LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); - LLVM_DEBUG(verifyFunction(F)); - } - return Changed; -} - -/// Check that the Values in the slice in VL array are still existent in -/// the WeakTrackingVH array. -/// Vectorization of part of the VL array may cause later values in the VL array -/// to become invalid. We track when this has happened in the WeakTrackingVH -/// array. -static bool hasValueBeenRAUWed(ArrayRef<Value *> VL, - ArrayRef<WeakTrackingVH> VH, unsigned SliceBegin, - unsigned SliceSize) { - VL = VL.slice(SliceBegin, SliceSize); - VH = VH.slice(SliceBegin, SliceSize); - return !std::equal(VL.begin(), VL.end(), VH.begin()); -} - -bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, - unsigned VecRegSize) { - const unsigned ChainLen = Chain.size(); - LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen - << "\n"); - const unsigned Sz = R.getVectorElementSize(Chain[0]); - const unsigned VF = VecRegSize / Sz; - - if (!isPowerOf2_32(Sz) || VF < 2) - return false; - - // Keep track of values that were deleted by vectorizing in the loop below. - const SmallVector<WeakTrackingVH, 8> TrackValues(Chain.begin(), Chain.end()); - - bool Changed = false; - // Look for profitable vectorizable trees at all offsets, starting at zero. - for (unsigned i = 0, e = ChainLen; i + VF <= e; ++i) { - - // Check that a previous iteration of this loop did not delete the Value. - if (hasValueBeenRAUWed(Chain, TrackValues, i, VF)) - continue; - - LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i - << "\n"); - ArrayRef<Value *> Operands = Chain.slice(i, VF); - - R.buildTree(Operands); - if (R.isTreeTinyAndNotFullyVectorizable()) - continue; - - R.computeMinimumValueSizes(); - - int Cost = R.getTreeCost(); - - LLVM_DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF - << "\n"); - if (Cost < -SLPCostThreshold) { - LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n"); - - using namespace ore; - - R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", - cast<StoreInst>(Chain[i])) - << "Stores SLP vectorized with cost " << NV("Cost", Cost) - << " and with tree size " - << NV("TreeSize", R.getTreeSize())); - - R.vectorizeTree(); - - // Move to the next bundle. - i += VF - 1; - Changed = true; - } - } - - return Changed; -} - -bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, - BoUpSLP &R) { - SetVector<StoreInst *> Heads; - SmallDenseSet<StoreInst *> Tails; - SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain; - - // We may run into multiple chains that merge into a single chain. We mark the - // stores that we vectorized so that we don't visit the same store twice. - BoUpSLP::ValueSet VectorizedStores; - bool Changed = false; - - auto &&FindConsecutiveAccess = - [this, &Stores, &Heads, &Tails, &ConsecutiveChain] (int K, int Idx) { - if (!isConsecutiveAccess(Stores[K], Stores[Idx], *DL, *SE)) - return false; - - Tails.insert(Stores[Idx]); - Heads.insert(Stores[K]); - ConsecutiveChain[Stores[K]] = Stores[Idx]; - return true; - }; - - // Do a quadratic search on all of the given stores in reverse order and find - // all of the pairs of stores that follow each other. - int E = Stores.size(); - for (int Idx = E - 1; Idx >= 0; --Idx) { - // If a store has multiple consecutive store candidates, search according - // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... - // This is because usually pairing with immediate succeeding or preceding - // candidate create the best chance to find slp vectorization opportunity. - for (int Offset = 1, F = std::max(E - Idx, Idx + 1); Offset < F; ++Offset) - if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || - (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) - break; - } - - // For stores that start but don't end a link in the chain: - for (auto *SI : llvm::reverse(Heads)) { - if (Tails.count(SI)) - continue; - - // We found a store instr that starts a chain. Now follow the chain and try - // to vectorize it. - BoUpSLP::ValueList Operands; - StoreInst *I = SI; - // Collect the chain into a list. - while ((Tails.count(I) || Heads.count(I)) && !VectorizedStores.count(I)) { - Operands.push_back(I); - // Move to the next value in the chain. - I = ConsecutiveChain[I]; - } - - // FIXME: Is division-by-2 the correct step? Should we assert that the - // register size is a power-of-2? - for (unsigned Size = R.getMaxVecRegSize(); Size >= R.getMinVecRegSize(); - Size /= 2) { - if (vectorizeStoreChain(Operands, R, Size)) { - // Mark the vectorized stores so that we don't vectorize them again. - VectorizedStores.insert(Operands.begin(), Operands.end()); - Changed = true; - break; - } - } - } - - return Changed; -} - -void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { - // Initialize the collections. We will make a single pass over the block. - Stores.clear(); - GEPs.clear(); - - // Visit the store and getelementptr instructions in BB and organize them in - // Stores and GEPs according to the underlying objects of their pointer - // operands. - for (Instruction &I : *BB) { - // Ignore store instructions that are volatile or have a pointer operand - // that doesn't point to a scalar type. - if (auto *SI = dyn_cast<StoreInst>(&I)) { - if (!SI->isSimple()) - continue; - if (!isValidElementType(SI->getValueOperand()->getType())) - continue; - Stores[GetUnderlyingObject(SI->getPointerOperand(), *DL)].push_back(SI); - } - - // Ignore getelementptr instructions that have more than one index, a - // constant index, or a pointer operand that doesn't point to a scalar - // type. - else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { - auto Idx = GEP->idx_begin()->get(); - if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) - continue; - if (!isValidElementType(Idx->getType())) - continue; - if (GEP->getType()->isVectorTy()) - continue; - GEPs[GEP->getPointerOperand()].push_back(GEP); - } - } -} - -bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { - if (!A || !B) - return false; - Value *VL[] = { A, B }; - return tryToVectorizeList(VL, R, /*UserCost=*/0, true); -} - -bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, - int UserCost, bool AllowReorder) { - if (VL.size() < 2) - return false; - - LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " - << VL.size() << ".\n"); - - // Check that all of the parts are scalar instructions of the same type, - // we permit an alternate opcode via InstructionsState. - InstructionsState S = getSameOpcode(VL); - if (!S.getOpcode()) - return false; - - Instruction *I0 = cast<Instruction>(S.OpValue); - unsigned Sz = R.getVectorElementSize(I0); - unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz); - unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); - if (MaxVF < 2) { - R.getORE()->emit([&]() { - return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) - << "Cannot SLP vectorize list: vectorization factor " - << "less than 2 is not supported"; - }); - return false; - } - - for (Value *V : VL) { - Type *Ty = V->getType(); - if (!isValidElementType(Ty)) { - // NOTE: the following will give user internal llvm type name, which may - // not be useful. - R.getORE()->emit([&]() { - std::string type_str; - llvm::raw_string_ostream rso(type_str); - Ty->print(rso); - return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) - << "Cannot SLP vectorize list: type " - << rso.str() + " is unsupported by vectorizer"; - }); - return false; - } - } - - bool Changed = false; - bool CandidateFound = false; - int MinCost = SLPCostThreshold; - - // Keep track of values that were deleted by vectorizing in the loop below. - SmallVector<WeakTrackingVH, 8> TrackValues(VL.begin(), VL.end()); - - unsigned NextInst = 0, MaxInst = VL.size(); - for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; - VF /= 2) { - // No actual vectorization should happen, if number of parts is the same as - // provided vectorization factor (i.e. the scalar type is used for vector - // code during codegen). - auto *VecTy = VectorType::get(VL[0]->getType(), VF); - if (TTI->getNumberOfParts(VecTy) == VF) - continue; - for (unsigned I = NextInst; I < MaxInst; ++I) { - unsigned OpsWidth = 0; - - if (I + VF > MaxInst) - OpsWidth = MaxInst - I; - else - OpsWidth = VF; - - if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) - break; - - // Check that a previous iteration of this loop did not delete the Value. - if (hasValueBeenRAUWed(VL, TrackValues, I, OpsWidth)) - continue; - - LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " - << "\n"); - ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); - - R.buildTree(Ops); - Optional<ArrayRef<unsigned>> Order = R.bestOrder(); - // TODO: check if we can allow reordering for more cases. - if (AllowReorder && Order) { - // TODO: reorder tree nodes without tree rebuilding. - // Conceptually, there is nothing actually preventing us from trying to - // reorder a larger list. In fact, we do exactly this when vectorizing - // reductions. However, at this point, we only expect to get here when - // there are exactly two operations. - assert(Ops.size() == 2); - Value *ReorderedOps[] = {Ops[1], Ops[0]}; - R.buildTree(ReorderedOps, None); - } - if (R.isTreeTinyAndNotFullyVectorizable()) - continue; - - R.computeMinimumValueSizes(); - int Cost = R.getTreeCost() - UserCost; - CandidateFound = true; - MinCost = std::min(MinCost, Cost); - - if (Cost < -SLPCostThreshold) { - LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); - R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", - cast<Instruction>(Ops[0])) - << "SLP vectorized with cost " << ore::NV("Cost", Cost) - << " and with tree size " - << ore::NV("TreeSize", R.getTreeSize())); - - R.vectorizeTree(); - // Move to the next bundle. - I += VF - 1; - NextInst = I + 1; - Changed = true; - } - } - } - - if (!Changed && CandidateFound) { - R.getORE()->emit([&]() { - return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) - << "List vectorization was possible but not beneficial with cost " - << ore::NV("Cost", MinCost) << " >= " - << ore::NV("Treshold", -SLPCostThreshold); - }); - } else if (!Changed) { - R.getORE()->emit([&]() { - return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) - << "Cannot SLP vectorize list: vectorization was impossible" - << " with available vectorization factors"; - }); - } - return Changed; -} - -bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { - if (!I) - return false; - - if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) - return false; - - Value *P = I->getParent(); - - // Vectorize in current basic block only. - auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); - auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); - if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) - return false; - - // Try to vectorize V. - if (tryToVectorizePair(Op0, Op1, R)) - return true; - - auto *A = dyn_cast<BinaryOperator>(Op0); - auto *B = dyn_cast<BinaryOperator>(Op1); - // Try to skip B. - if (B && B->hasOneUse()) { - auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); - auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); - if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) - return true; - if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) - return true; - } - - // Try to skip A. - if (A && A->hasOneUse()) { - auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); - auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); - if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) - return true; - if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) - return true; - } - return false; -} - -/// Generate a shuffle mask to be used in a reduction tree. -/// -/// \param VecLen The length of the vector to be reduced. -/// \param NumEltsToRdx The number of elements that should be reduced in the -/// vector. -/// \param IsPairwise Whether the reduction is a pairwise or splitting -/// reduction. A pairwise reduction will generate a mask of -/// <0,2,...> or <1,3,..> while a splitting reduction will generate -/// <2,3, undef,undef> for a vector of 4 and NumElts = 2. -/// \param IsLeft True will generate a mask of even elements, odd otherwise. -static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx, - bool IsPairwise, bool IsLeft, - IRBuilder<> &Builder) { - assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask"); - - SmallVector<Constant *, 32> ShuffleMask( - VecLen, UndefValue::get(Builder.getInt32Ty())); - - if (IsPairwise) - // Build a mask of 0, 2, ... (left) or 1, 3, ... (right). - for (unsigned i = 0; i != NumEltsToRdx; ++i) - ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft); - else - // Move the upper half of the vector to the lower half. - for (unsigned i = 0; i != NumEltsToRdx; ++i) - ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i); - - return ConstantVector::get(ShuffleMask); -} - -namespace { - -/// Model horizontal reductions. -/// -/// A horizontal reduction is a tree of reduction operations (currently add and -/// fadd) that has operations that can be put into a vector as its leaf. -/// For example, this tree: -/// -/// mul mul mul mul -/// \ / \ / -/// + + -/// \ / -/// + -/// This tree has "mul" as its reduced values and "+" as its reduction -/// operations. A reduction might be feeding into a store or a binary operation -/// feeding a phi. -/// ... -/// \ / -/// + -/// | -/// phi += -/// -/// Or: -/// ... -/// \ / -/// + -/// | -/// *p = -/// -class HorizontalReduction { - using ReductionOpsType = SmallVector<Value *, 16>; - using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; - ReductionOpsListType ReductionOps; - SmallVector<Value *, 32> ReducedVals; - // Use map vector to make stable output. - MapVector<Instruction *, Value *> ExtraArgs; - - /// Kind of the reduction data. - enum ReductionKind { - RK_None, /// Not a reduction. - RK_Arithmetic, /// Binary reduction data. - RK_Min, /// Minimum reduction data. - RK_UMin, /// Unsigned minimum reduction data. - RK_Max, /// Maximum reduction data. - RK_UMax, /// Unsigned maximum reduction data. - }; - - /// Contains info about operation, like its opcode, left and right operands. - class OperationData { - /// Opcode of the instruction. - unsigned Opcode = 0; - - /// Left operand of the reduction operation. - Value *LHS = nullptr; - - /// Right operand of the reduction operation. - Value *RHS = nullptr; - - /// Kind of the reduction operation. - ReductionKind Kind = RK_None; - - /// True if float point min/max reduction has no NaNs. - bool NoNaN = false; - - /// Checks if the reduction operation can be vectorized. - bool isVectorizable() const { - return LHS && RHS && - // We currently only support add/mul/logical && min/max reductions. - ((Kind == RK_Arithmetic && - (Opcode == Instruction::Add || Opcode == Instruction::FAdd || - Opcode == Instruction::Mul || Opcode == Instruction::FMul || - Opcode == Instruction::And || Opcode == Instruction::Or || - Opcode == Instruction::Xor)) || - ((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && - (Kind == RK_Min || Kind == RK_Max)) || - (Opcode == Instruction::ICmp && - (Kind == RK_UMin || Kind == RK_UMax))); - } - - /// Creates reduction operation with the current opcode. - Value *createOp(IRBuilder<> &Builder, const Twine &Name) const { - assert(isVectorizable() && - "Expected add|fadd or min/max reduction operation."); - Value *Cmp; - switch (Kind) { - case RK_Arithmetic: - return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, LHS, RHS, - Name); - case RK_Min: - Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSLT(LHS, RHS) - : Builder.CreateFCmpOLT(LHS, RHS); - break; - case RK_Max: - Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSGT(LHS, RHS) - : Builder.CreateFCmpOGT(LHS, RHS); - break; - case RK_UMin: - assert(Opcode == Instruction::ICmp && "Expected integer types."); - Cmp = Builder.CreateICmpULT(LHS, RHS); - break; - case RK_UMax: - assert(Opcode == Instruction::ICmp && "Expected integer types."); - Cmp = Builder.CreateICmpUGT(LHS, RHS); - break; - case RK_None: - llvm_unreachable("Unknown reduction operation."); - } - return Builder.CreateSelect(Cmp, LHS, RHS, Name); - } - - public: - explicit OperationData() = default; - - /// Construction for reduced values. They are identified by opcode only and - /// don't have associated LHS/RHS values. - explicit OperationData(Value *V) { - if (auto *I = dyn_cast<Instruction>(V)) - Opcode = I->getOpcode(); - } - - /// Constructor for reduction operations with opcode and its left and - /// right operands. - OperationData(unsigned Opcode, Value *LHS, Value *RHS, ReductionKind Kind, - bool NoNaN = false) - : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind), NoNaN(NoNaN) { - assert(Kind != RK_None && "One of the reduction operations is expected."); - } - - explicit operator bool() const { return Opcode; } - - /// Get the index of the first operand. - unsigned getFirstOperandIndex() const { - assert(!!*this && "The opcode is not set."); - switch (Kind) { - case RK_Min: - case RK_UMin: - case RK_Max: - case RK_UMax: - return 1; - case RK_Arithmetic: - case RK_None: - break; - } - return 0; - } - - /// Total number of operands in the reduction operation. - unsigned getNumberOfOperands() const { - assert(Kind != RK_None && !!*this && LHS && RHS && - "Expected reduction operation."); - switch (Kind) { - case RK_Arithmetic: - return 2; - case RK_Min: - case RK_UMin: - case RK_Max: - case RK_UMax: - return 3; - case RK_None: - break; - } - llvm_unreachable("Reduction kind is not set"); - } - - /// Checks if the operation has the same parent as \p P. - bool hasSameParent(Instruction *I, Value *P, bool IsRedOp) const { - assert(Kind != RK_None && !!*this && LHS && RHS && - "Expected reduction operation."); - if (!IsRedOp) - return I->getParent() == P; - switch (Kind) { - case RK_Arithmetic: - // Arithmetic reduction operation must be used once only. - return I->getParent() == P; - case RK_Min: - case RK_UMin: - case RK_Max: - case RK_UMax: { - // SelectInst must be used twice while the condition op must have single - // use only. - auto *Cmp = cast<Instruction>(cast<SelectInst>(I)->getCondition()); - return I->getParent() == P && Cmp && Cmp->getParent() == P; - } - case RK_None: - break; - } - llvm_unreachable("Reduction kind is not set"); - } - /// Expected number of uses for reduction operations/reduced values. - bool hasRequiredNumberOfUses(Instruction *I, bool IsReductionOp) const { - assert(Kind != RK_None && !!*this && LHS && RHS && - "Expected reduction operation."); - switch (Kind) { - case RK_Arithmetic: - return I->hasOneUse(); - case RK_Min: - case RK_UMin: - case RK_Max: - case RK_UMax: - return I->hasNUses(2) && - (!IsReductionOp || - cast<SelectInst>(I)->getCondition()->hasOneUse()); - case RK_None: - break; - } - llvm_unreachable("Reduction kind is not set"); - } - - /// Initializes the list of reduction operations. - void initReductionOps(ReductionOpsListType &ReductionOps) { - assert(Kind != RK_None && !!*this && LHS && RHS && - "Expected reduction operation."); - switch (Kind) { - case RK_Arithmetic: - ReductionOps.assign(1, ReductionOpsType()); - break; - case RK_Min: - case RK_UMin: - case RK_Max: - case RK_UMax: - ReductionOps.assign(2, ReductionOpsType()); - break; - case RK_None: - llvm_unreachable("Reduction kind is not set"); - } - } - /// Add all reduction operations for the reduction instruction \p I. - void addReductionOps(Instruction *I, ReductionOpsListType &ReductionOps) { - assert(Kind != RK_None && !!*this && LHS && RHS && - "Expected reduction operation."); - switch (Kind) { - case RK_Arithmetic: - ReductionOps[0].emplace_back(I); - break; - case RK_Min: - case RK_UMin: - case RK_Max: - case RK_UMax: - ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); - ReductionOps[1].emplace_back(I); - break; - case RK_None: - llvm_unreachable("Reduction kind is not set"); - } - } - - /// Checks if instruction is associative and can be vectorized. - bool isAssociative(Instruction *I) const { - assert(Kind != RK_None && *this && LHS && RHS && - "Expected reduction operation."); - switch (Kind) { - case RK_Arithmetic: - return I->isAssociative(); - case RK_Min: - case RK_Max: - return Opcode == Instruction::ICmp || - cast<Instruction>(I->getOperand(0))->isFast(); - case RK_UMin: - case RK_UMax: - assert(Opcode == Instruction::ICmp && - "Only integer compare operation is expected."); - return true; - case RK_None: - break; - } - llvm_unreachable("Reduction kind is not set"); - } - - /// Checks if the reduction operation can be vectorized. - bool isVectorizable(Instruction *I) const { - return isVectorizable() && isAssociative(I); - } - - /// Checks if two operation data are both a reduction op or both a reduced - /// value. - bool operator==(const OperationData &OD) { - assert(((Kind != OD.Kind) || ((!LHS == !OD.LHS) && (!RHS == !OD.RHS))) && - "One of the comparing operations is incorrect."); - return this == &OD || (Kind == OD.Kind && Opcode == OD.Opcode); - } - bool operator!=(const OperationData &OD) { return !(*this == OD); } - void clear() { - Opcode = 0; - LHS = nullptr; - RHS = nullptr; - Kind = RK_None; - NoNaN = false; - } - - /// Get the opcode of the reduction operation. - unsigned getOpcode() const { - assert(isVectorizable() && "Expected vectorizable operation."); - return Opcode; - } - - /// Get kind of reduction data. - ReductionKind getKind() const { return Kind; } - Value *getLHS() const { return LHS; } - Value *getRHS() const { return RHS; } - Type *getConditionType() const { - switch (Kind) { - case RK_Arithmetic: - return nullptr; - case RK_Min: - case RK_Max: - case RK_UMin: - case RK_UMax: - return CmpInst::makeCmpResultType(LHS->getType()); - case RK_None: - break; - } - llvm_unreachable("Reduction kind is not set"); - } - - /// Creates reduction operation with the current opcode with the IR flags - /// from \p ReductionOps. - Value *createOp(IRBuilder<> &Builder, const Twine &Name, - const ReductionOpsListType &ReductionOps) const { - assert(isVectorizable() && - "Expected add|fadd or min/max reduction operation."); - auto *Op = createOp(Builder, Name); - switch (Kind) { - case RK_Arithmetic: - propagateIRFlags(Op, ReductionOps[0]); - return Op; - case RK_Min: - case RK_Max: - case RK_UMin: - case RK_UMax: - if (auto *SI = dyn_cast<SelectInst>(Op)) - propagateIRFlags(SI->getCondition(), ReductionOps[0]); - propagateIRFlags(Op, ReductionOps[1]); - return Op; - case RK_None: - break; - } - llvm_unreachable("Unknown reduction operation."); - } - /// Creates reduction operation with the current opcode with the IR flags - /// from \p I. - Value *createOp(IRBuilder<> &Builder, const Twine &Name, - Instruction *I) const { - assert(isVectorizable() && - "Expected add|fadd or min/max reduction operation."); - auto *Op = createOp(Builder, Name); - switch (Kind) { - case RK_Arithmetic: - propagateIRFlags(Op, I); - return Op; - case RK_Min: - case RK_Max: - case RK_UMin: - case RK_UMax: - if (auto *SI = dyn_cast<SelectInst>(Op)) { - propagateIRFlags(SI->getCondition(), - cast<SelectInst>(I)->getCondition()); - } - propagateIRFlags(Op, I); - return Op; - case RK_None: - break; - } - llvm_unreachable("Unknown reduction operation."); - } - - TargetTransformInfo::ReductionFlags getFlags() const { - TargetTransformInfo::ReductionFlags Flags; - Flags.NoNaN = NoNaN; - switch (Kind) { - case RK_Arithmetic: - break; - case RK_Min: - Flags.IsSigned = Opcode == Instruction::ICmp; - Flags.IsMaxOp = false; - break; - case RK_Max: - Flags.IsSigned = Opcode == Instruction::ICmp; - Flags.IsMaxOp = true; - break; - case RK_UMin: - Flags.IsSigned = false; - Flags.IsMaxOp = false; - break; - case RK_UMax: - Flags.IsSigned = false; - Flags.IsMaxOp = true; - break; - case RK_None: - llvm_unreachable("Reduction kind is not set"); - } - return Flags; - } - }; - - WeakTrackingVH ReductionRoot; - - /// The operation data of the reduction operation. - OperationData ReductionData; - - /// The operation data of the values we perform a reduction on. - OperationData ReducedValueData; - - /// Should we model this reduction as a pairwise reduction tree or a tree that - /// splits the vector in halves and adds those halves. - bool IsPairwiseReduction = false; - - /// Checks if the ParentStackElem.first should be marked as a reduction - /// operation with an extra argument or as extra argument itself. - void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, - Value *ExtraArg) { - if (ExtraArgs.count(ParentStackElem.first)) { - ExtraArgs[ParentStackElem.first] = nullptr; - // We ran into something like: - // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. - // The whole ParentStackElem.first should be considered as an extra value - // in this case. - // Do not perform analysis of remaining operands of ParentStackElem.first - // instruction, this whole instruction is an extra argument. - ParentStackElem.second = ParentStackElem.first->getNumOperands(); - } else { - // We ran into something like: - // ParentStackElem.first += ... + ExtraArg + ... - ExtraArgs[ParentStackElem.first] = ExtraArg; - } - } - - static OperationData getOperationData(Value *V) { - if (!V) - return OperationData(); - - Value *LHS; - Value *RHS; - if (m_BinOp(m_Value(LHS), m_Value(RHS)).match(V)) { - return OperationData(cast<BinaryOperator>(V)->getOpcode(), LHS, RHS, - RK_Arithmetic); - } - if (auto *Select = dyn_cast<SelectInst>(V)) { - // Look for a min/max pattern. - if (m_UMin(m_Value(LHS), m_Value(RHS)).match(Select)) { - return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin); - } else if (m_SMin(m_Value(LHS), m_Value(RHS)).match(Select)) { - return OperationData(Instruction::ICmp, LHS, RHS, RK_Min); - } else if (m_OrdFMin(m_Value(LHS), m_Value(RHS)).match(Select) || - m_UnordFMin(m_Value(LHS), m_Value(RHS)).match(Select)) { - return OperationData( - Instruction::FCmp, LHS, RHS, RK_Min, - cast<Instruction>(Select->getCondition())->hasNoNaNs()); - } else if (m_UMax(m_Value(LHS), m_Value(RHS)).match(Select)) { - return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax); - } else if (m_SMax(m_Value(LHS), m_Value(RHS)).match(Select)) { - return OperationData(Instruction::ICmp, LHS, RHS, RK_Max); - } else if (m_OrdFMax(m_Value(LHS), m_Value(RHS)).match(Select) || - m_UnordFMax(m_Value(LHS), m_Value(RHS)).match(Select)) { - return OperationData( - Instruction::FCmp, LHS, RHS, RK_Max, - cast<Instruction>(Select->getCondition())->hasNoNaNs()); - } else { - // Try harder: look for min/max pattern based on instructions producing - // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). - // During the intermediate stages of SLP, it's very common to have - // pattern like this (since optimizeGatherSequence is run only once - // at the end): - // %1 = extractelement <2 x i32> %a, i32 0 - // %2 = extractelement <2 x i32> %a, i32 1 - // %cond = icmp sgt i32 %1, %2 - // %3 = extractelement <2 x i32> %a, i32 0 - // %4 = extractelement <2 x i32> %a, i32 1 - // %select = select i1 %cond, i32 %3, i32 %4 - CmpInst::Predicate Pred; - Instruction *L1; - Instruction *L2; - - LHS = Select->getTrueValue(); - RHS = Select->getFalseValue(); - Value *Cond = Select->getCondition(); - - // TODO: Support inverse predicates. - if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { - if (!isa<ExtractElementInst>(RHS) || - !L2->isIdenticalTo(cast<Instruction>(RHS))) - return OperationData(V); - } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { - if (!isa<ExtractElementInst>(LHS) || - !L1->isIdenticalTo(cast<Instruction>(LHS))) - return OperationData(V); - } else { - if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) - return OperationData(V); - if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || - !L1->isIdenticalTo(cast<Instruction>(LHS)) || - !L2->isIdenticalTo(cast<Instruction>(RHS))) - return OperationData(V); - } - switch (Pred) { - default: - return OperationData(V); - - case CmpInst::ICMP_ULT: - case CmpInst::ICMP_ULE: - return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin); - - case CmpInst::ICMP_SLT: - case CmpInst::ICMP_SLE: - return OperationData(Instruction::ICmp, LHS, RHS, RK_Min); - - case CmpInst::FCMP_OLT: - case CmpInst::FCMP_OLE: - case CmpInst::FCMP_ULT: - case CmpInst::FCMP_ULE: - return OperationData(Instruction::FCmp, LHS, RHS, RK_Min, - cast<Instruction>(Cond)->hasNoNaNs()); - - case CmpInst::ICMP_UGT: - case CmpInst::ICMP_UGE: - return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax); - - case CmpInst::ICMP_SGT: - case CmpInst::ICMP_SGE: - return OperationData(Instruction::ICmp, LHS, RHS, RK_Max); - - case CmpInst::FCMP_OGT: - case CmpInst::FCMP_OGE: - case CmpInst::FCMP_UGT: - case CmpInst::FCMP_UGE: - return OperationData(Instruction::FCmp, LHS, RHS, RK_Max, - cast<Instruction>(Cond)->hasNoNaNs()); - } - } - } - return OperationData(V); - } - -public: - HorizontalReduction() = default; - - /// Try to find a reduction tree. - bool matchAssociativeReduction(PHINode *Phi, Instruction *B) { - assert((!Phi || is_contained(Phi->operands(), B)) && - "Thi phi needs to use the binary operator"); - - ReductionData = getOperationData(B); - - // We could have a initial reductions that is not an add. - // r *= v1 + v2 + v3 + v4 - // In such a case start looking for a tree rooted in the first '+'. - if (Phi) { - if (ReductionData.getLHS() == Phi) { - Phi = nullptr; - B = dyn_cast<Instruction>(ReductionData.getRHS()); - ReductionData = getOperationData(B); - } else if (ReductionData.getRHS() == Phi) { - Phi = nullptr; - B = dyn_cast<Instruction>(ReductionData.getLHS()); - ReductionData = getOperationData(B); - } - } - - if (!ReductionData.isVectorizable(B)) - return false; - - Type *Ty = B->getType(); - if (!isValidElementType(Ty)) - return false; - if (!Ty->isIntOrIntVectorTy() && !Ty->isFPOrFPVectorTy()) - return false; - - ReducedValueData.clear(); - ReductionRoot = B; - - // Post order traverse the reduction tree starting at B. We only handle true - // trees containing only binary operators. - SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; - Stack.push_back(std::make_pair(B, ReductionData.getFirstOperandIndex())); - ReductionData.initReductionOps(ReductionOps); - while (!Stack.empty()) { - Instruction *TreeN = Stack.back().first; - unsigned EdgeToVist = Stack.back().second++; - OperationData OpData = getOperationData(TreeN); - bool IsReducedValue = OpData != ReductionData; - - // Postorder vist. - if (IsReducedValue || EdgeToVist == OpData.getNumberOfOperands()) { - if (IsReducedValue) - ReducedVals.push_back(TreeN); - else { - auto I = ExtraArgs.find(TreeN); - if (I != ExtraArgs.end() && !I->second) { - // Check if TreeN is an extra argument of its parent operation. - if (Stack.size() <= 1) { - // TreeN can't be an extra argument as it is a root reduction - // operation. - return false; - } - // Yes, TreeN is an extra argument, do not add it to a list of - // reduction operations. - // Stack[Stack.size() - 2] always points to the parent operation. - markExtraArg(Stack[Stack.size() - 2], TreeN); - ExtraArgs.erase(TreeN); - } else - ReductionData.addReductionOps(TreeN, ReductionOps); - } - // Retract. - Stack.pop_back(); - continue; - } - - // Visit left or right. - Value *NextV = TreeN->getOperand(EdgeToVist); - if (NextV != Phi) { - auto *I = dyn_cast<Instruction>(NextV); - OpData = getOperationData(I); - // Continue analysis if the next operand is a reduction operation or - // (possibly) a reduced value. If the reduced value opcode is not set, - // the first met operation != reduction operation is considered as the - // reduced value class. - if (I && (!ReducedValueData || OpData == ReducedValueData || - OpData == ReductionData)) { - const bool IsReductionOperation = OpData == ReductionData; - // Only handle trees in the current basic block. - if (!ReductionData.hasSameParent(I, B->getParent(), - IsReductionOperation)) { - // I is an extra argument for TreeN (its parent operation). - markExtraArg(Stack.back(), I); - continue; - } - - // Each tree node needs to have minimal number of users except for the - // ultimate reduction. - if (!ReductionData.hasRequiredNumberOfUses(I, - OpData == ReductionData) && - I != B) { - // I is an extra argument for TreeN (its parent operation). - markExtraArg(Stack.back(), I); - continue; - } - - if (IsReductionOperation) { - // We need to be able to reassociate the reduction operations. - if (!OpData.isAssociative(I)) { - // I is an extra argument for TreeN (its parent operation). - markExtraArg(Stack.back(), I); - continue; - } - } else if (ReducedValueData && - ReducedValueData != OpData) { - // Make sure that the opcodes of the operations that we are going to - // reduce match. - // I is an extra argument for TreeN (its parent operation). - markExtraArg(Stack.back(), I); - continue; - } else if (!ReducedValueData) - ReducedValueData = OpData; - - Stack.push_back(std::make_pair(I, OpData.getFirstOperandIndex())); - continue; - } - } - // NextV is an extra argument for TreeN (its parent operation). - markExtraArg(Stack.back(), NextV); - } - return true; - } - - /// Attempt to vectorize the tree found by - /// matchAssociativeReduction. - bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { - if (ReducedVals.empty()) - return false; - - // If there is a sufficient number of reduction values, reduce - // to a nearby power-of-2. Can safely generate oversized - // vectors and rely on the backend to split them to legal sizes. - unsigned NumReducedVals = ReducedVals.size(); - if (NumReducedVals < 4) - return false; - - unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); - - Value *VectorizedTree = nullptr; - - // FIXME: Fast-math-flags should be set based on the instructions in the - // reduction (not all of 'fast' are required). - IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); - FastMathFlags Unsafe; - Unsafe.setFast(); - Builder.setFastMathFlags(Unsafe); - unsigned i = 0; - - BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; - // The same extra argument may be used several time, so log each attempt - // to use it. - for (auto &Pair : ExtraArgs) { - assert(Pair.first && "DebugLoc must be set."); - ExternallyUsedValues[Pair.second].push_back(Pair.first); - } - // The reduction root is used as the insertion point for new instructions, - // so set it as externally used to prevent it from being deleted. - ExternallyUsedValues[ReductionRoot]; - SmallVector<Value *, 16> IgnoreList; - for (auto &V : ReductionOps) - IgnoreList.append(V.begin(), V.end()); - while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { - auto VL = makeArrayRef(&ReducedVals[i], ReduxWidth); - V.buildTree(VL, ExternallyUsedValues, IgnoreList); - Optional<ArrayRef<unsigned>> Order = V.bestOrder(); - // TODO: Handle orders of size less than number of elements in the vector. - if (Order && Order->size() == VL.size()) { - // TODO: reorder tree nodes without tree rebuilding. - SmallVector<Value *, 4> ReorderedOps(VL.size()); - llvm::transform(*Order, ReorderedOps.begin(), - [VL](const unsigned Idx) { return VL[Idx]; }); - V.buildTree(ReorderedOps, ExternallyUsedValues, IgnoreList); - } - if (V.isTreeTinyAndNotFullyVectorizable()) - break; - - V.computeMinimumValueSizes(); - - // Estimate cost. - int TreeCost = V.getTreeCost(); - int ReductionCost = getReductionCost(TTI, ReducedVals[i], ReduxWidth); - int Cost = TreeCost + ReductionCost; - if (Cost >= -SLPCostThreshold) { - V.getORE()->emit([&]() { - return OptimizationRemarkMissed( - SV_NAME, "HorSLPNotBeneficial", cast<Instruction>(VL[0])) - << "Vectorizing horizontal reduction is possible" - << "but not beneficial with cost " - << ore::NV("Cost", Cost) << " and threshold " - << ore::NV("Threshold", -SLPCostThreshold); - }); - break; - } - - LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" - << Cost << ". (HorRdx)\n"); - V.getORE()->emit([&]() { - return OptimizationRemark( - SV_NAME, "VectorizedHorizontalReduction", cast<Instruction>(VL[0])) - << "Vectorized horizontal reduction with cost " - << ore::NV("Cost", Cost) << " and with tree size " - << ore::NV("TreeSize", V.getTreeSize()); - }); - - // Vectorize a tree. - DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); - Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); - - // Emit a reduction. - Builder.SetInsertPoint(cast<Instruction>(ReductionRoot)); - Value *ReducedSubTree = - emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); - if (VectorizedTree) { - Builder.SetCurrentDebugLocation(Loc); - OperationData VectReductionData(ReductionData.getOpcode(), - VectorizedTree, ReducedSubTree, - ReductionData.getKind()); - VectorizedTree = - VectReductionData.createOp(Builder, "op.rdx", ReductionOps); - } else - VectorizedTree = ReducedSubTree; - i += ReduxWidth; - ReduxWidth = PowerOf2Floor(NumReducedVals - i); - } - - if (VectorizedTree) { - // Finish the reduction. - for (; i < NumReducedVals; ++i) { - auto *I = cast<Instruction>(ReducedVals[i]); - Builder.SetCurrentDebugLocation(I->getDebugLoc()); - OperationData VectReductionData(ReductionData.getOpcode(), - VectorizedTree, I, - ReductionData.getKind()); - VectorizedTree = VectReductionData.createOp(Builder, "", ReductionOps); - } - for (auto &Pair : ExternallyUsedValues) { - // Add each externally used value to the final reduction. - for (auto *I : Pair.second) { - Builder.SetCurrentDebugLocation(I->getDebugLoc()); - OperationData VectReductionData(ReductionData.getOpcode(), - VectorizedTree, Pair.first, - ReductionData.getKind()); - VectorizedTree = VectReductionData.createOp(Builder, "op.extra", I); - } - } - // Update users. - ReductionRoot->replaceAllUsesWith(VectorizedTree); - } - return VectorizedTree != nullptr; - } - - unsigned numReductionValues() const { - return ReducedVals.size(); - } - -private: - /// Calculate the cost of a reduction. - int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal, - unsigned ReduxWidth) { - Type *ScalarTy = FirstReducedVal->getType(); - Type *VecTy = VectorType::get(ScalarTy, ReduxWidth); - - int PairwiseRdxCost; - int SplittingRdxCost; - switch (ReductionData.getKind()) { - case RK_Arithmetic: - PairwiseRdxCost = - TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, - /*IsPairwiseForm=*/true); - SplittingRdxCost = - TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, - /*IsPairwiseForm=*/false); - break; - case RK_Min: - case RK_Max: - case RK_UMin: - case RK_UMax: { - Type *VecCondTy = CmpInst::makeCmpResultType(VecTy); - bool IsUnsigned = ReductionData.getKind() == RK_UMin || - ReductionData.getKind() == RK_UMax; - PairwiseRdxCost = - TTI->getMinMaxReductionCost(VecTy, VecCondTy, - /*IsPairwiseForm=*/true, IsUnsigned); - SplittingRdxCost = - TTI->getMinMaxReductionCost(VecTy, VecCondTy, - /*IsPairwiseForm=*/false, IsUnsigned); - break; - } - case RK_None: - llvm_unreachable("Expected arithmetic or min/max reduction operation"); - } - - IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost; - int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost; - - int ScalarReduxCost; - switch (ReductionData.getKind()) { - case RK_Arithmetic: - ScalarReduxCost = - TTI->getArithmeticInstrCost(ReductionData.getOpcode(), ScalarTy); - break; - case RK_Min: - case RK_Max: - case RK_UMin: - case RK_UMax: - ScalarReduxCost = - TTI->getCmpSelInstrCost(ReductionData.getOpcode(), ScalarTy) + - TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, - CmpInst::makeCmpResultType(ScalarTy)); - break; - case RK_None: - llvm_unreachable("Expected arithmetic or min/max reduction operation"); - } - ScalarReduxCost *= (ReduxWidth - 1); - - LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost - << " for reduction that starts with " << *FirstReducedVal - << " (It is a " - << (IsPairwiseReduction ? "pairwise" : "splitting") - << " reduction)\n"); - - return VecReduxCost - ScalarReduxCost; - } - - /// Emit a horizontal reduction of the vectorized value. - Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, - unsigned ReduxWidth, const TargetTransformInfo *TTI) { - assert(VectorizedValue && "Need to have a vectorized tree node"); - assert(isPowerOf2_32(ReduxWidth) && - "We only handle power-of-two reductions for now"); - - if (!IsPairwiseReduction) { - // FIXME: The builder should use an FMF guard. It should not be hard-coded - // to 'fast'. - assert(Builder.getFastMathFlags().isFast() && "Expected 'fast' FMF"); - return createSimpleTargetReduction( - Builder, TTI, ReductionData.getOpcode(), VectorizedValue, - ReductionData.getFlags(), ReductionOps.back()); - } - - Value *TmpVec = VectorizedValue; - for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) { - Value *LeftMask = - createRdxShuffleMask(ReduxWidth, i, true, true, Builder); - Value *RightMask = - createRdxShuffleMask(ReduxWidth, i, true, false, Builder); - - Value *LeftShuf = Builder.CreateShuffleVector( - TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l"); - Value *RightShuf = Builder.CreateShuffleVector( - TmpVec, UndefValue::get(TmpVec->getType()), (RightMask), - "rdx.shuf.r"); - OperationData VectReductionData(ReductionData.getOpcode(), LeftShuf, - RightShuf, ReductionData.getKind()); - TmpVec = VectReductionData.createOp(Builder, "op.rdx", ReductionOps); - } - - // The result is in the first element of the vector. - return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); - } -}; - -} // end anonymous namespace - -/// Recognize construction of vectors like -/// %ra = insertelement <4 x float> undef, float %s0, i32 0 -/// %rb = insertelement <4 x float> %ra, float %s1, i32 1 -/// %rc = insertelement <4 x float> %rb, float %s2, i32 2 -/// %rd = insertelement <4 x float> %rc, float %s3, i32 3 -/// starting from the last insertelement instruction. -/// -/// Returns true if it matches -static bool findBuildVector(InsertElementInst *LastInsertElem, - TargetTransformInfo *TTI, - SmallVectorImpl<Value *> &BuildVectorOpds, - int &UserCost) { - UserCost = 0; - Value *V = nullptr; - do { - if (auto *CI = dyn_cast<ConstantInt>(LastInsertElem->getOperand(2))) { - UserCost += TTI->getVectorInstrCost(Instruction::InsertElement, - LastInsertElem->getType(), - CI->getZExtValue()); - } - BuildVectorOpds.push_back(LastInsertElem->getOperand(1)); - V = LastInsertElem->getOperand(0); - if (isa<UndefValue>(V)) - break; - LastInsertElem = dyn_cast<InsertElementInst>(V); - if (!LastInsertElem || !LastInsertElem->hasOneUse()) - return false; - } while (true); - std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end()); - return true; -} - -/// Like findBuildVector, but looks for construction of aggregate. -/// -/// \return true if it matches. -static bool findBuildAggregate(InsertValueInst *IV, - SmallVectorImpl<Value *> &BuildVectorOpds) { - Value *V; - do { - BuildVectorOpds.push_back(IV->getInsertedValueOperand()); - V = IV->getAggregateOperand(); - if (isa<UndefValue>(V)) - break; - IV = dyn_cast<InsertValueInst>(V); - if (!IV || !IV->hasOneUse()) - return false; - } while (true); - std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end()); - return true; -} - -static bool PhiTypeSorterFunc(Value *V, Value *V2) { - return V->getType() < V2->getType(); -} - -/// Try and get a reduction value from a phi node. -/// -/// Given a phi node \p P in a block \p ParentBB, consider possible reductions -/// if they come from either \p ParentBB or a containing loop latch. -/// -/// \returns A candidate reduction value if possible, or \code nullptr \endcode -/// if not possible. -static Value *getReductionValue(const DominatorTree *DT, PHINode *P, - BasicBlock *ParentBB, LoopInfo *LI) { - // There are situations where the reduction value is not dominated by the - // reduction phi. Vectorizing such cases has been reported to cause - // miscompiles. See PR25787. - auto DominatedReduxValue = [&](Value *R) { - return isa<Instruction>(R) && - DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); - }; - - Value *Rdx = nullptr; - - // Return the incoming value if it comes from the same BB as the phi node. - if (P->getIncomingBlock(0) == ParentBB) { - Rdx = P->getIncomingValue(0); - } else if (P->getIncomingBlock(1) == ParentBB) { - Rdx = P->getIncomingValue(1); - } - - if (Rdx && DominatedReduxValue(Rdx)) - return Rdx; - - // Otherwise, check whether we have a loop latch to look at. - Loop *BBL = LI->getLoopFor(ParentBB); - if (!BBL) - return nullptr; - BasicBlock *BBLatch = BBL->getLoopLatch(); - if (!BBLatch) - return nullptr; - - // There is a loop latch, return the incoming value if it comes from - // that. This reduction pattern occasionally turns up. - if (P->getIncomingBlock(0) == BBLatch) { - Rdx = P->getIncomingValue(0); - } else if (P->getIncomingBlock(1) == BBLatch) { - Rdx = P->getIncomingValue(1); - } - - if (Rdx && DominatedReduxValue(Rdx)) - return Rdx; - - return nullptr; -} - -/// Attempt to reduce a horizontal reduction. -/// If it is legal to match a horizontal reduction feeding the phi node \a P -/// with reduction operators \a Root (or one of its operands) in a basic block -/// \a BB, then check if it can be done. If horizontal reduction is not found -/// and root instruction is a binary operation, vectorization of the operands is -/// attempted. -/// \returns true if a horizontal reduction was matched and reduced or operands -/// of one of the binary instruction were vectorized. -/// \returns false if a horizontal reduction was not matched (or not possible) -/// or no vectorization of any binary operation feeding \a Root instruction was -/// performed. -static bool tryToVectorizeHorReductionOrInstOperands( - PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, - TargetTransformInfo *TTI, - const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { - if (!ShouldVectorizeHor) - return false; - - if (!Root) - return false; - - if (Root->getParent() != BB || isa<PHINode>(Root)) - return false; - // Start analysis starting from Root instruction. If horizontal reduction is - // found, try to vectorize it. If it is not a horizontal reduction or - // vectorization is not possible or not effective, and currently analyzed - // instruction is a binary operation, try to vectorize the operands, using - // pre-order DFS traversal order. If the operands were not vectorized, repeat - // the same procedure considering each operand as a possible root of the - // horizontal reduction. - // Interrupt the process if the Root instruction itself was vectorized or all - // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. - SmallVector<std::pair<WeakTrackingVH, unsigned>, 8> Stack(1, {Root, 0}); - SmallPtrSet<Value *, 8> VisitedInstrs; - bool Res = false; - while (!Stack.empty()) { - Value *V; - unsigned Level; - std::tie(V, Level) = Stack.pop_back_val(); - if (!V) - continue; - auto *Inst = dyn_cast<Instruction>(V); - if (!Inst) - continue; - auto *BI = dyn_cast<BinaryOperator>(Inst); - auto *SI = dyn_cast<SelectInst>(Inst); - if (BI || SI) { - HorizontalReduction HorRdx; - if (HorRdx.matchAssociativeReduction(P, Inst)) { - if (HorRdx.tryToReduce(R, TTI)) { - Res = true; - // Set P to nullptr to avoid re-analysis of phi node in - // matchAssociativeReduction function unless this is the root node. - P = nullptr; - continue; - } - } - if (P && BI) { - Inst = dyn_cast<Instruction>(BI->getOperand(0)); - if (Inst == P) - Inst = dyn_cast<Instruction>(BI->getOperand(1)); - if (!Inst) { - // Set P to nullptr to avoid re-analysis of phi node in - // matchAssociativeReduction function unless this is the root node. - P = nullptr; - continue; - } - } - } - // Set P to nullptr to avoid re-analysis of phi node in - // matchAssociativeReduction function unless this is the root node. - P = nullptr; - if (Vectorize(Inst, R)) { - Res = true; - continue; - } - - // Try to vectorize operands. - // Continue analysis for the instruction from the same basic block only to - // save compile time. - if (++Level < RecursionMaxDepth) - for (auto *Op : Inst->operand_values()) - if (VisitedInstrs.insert(Op).second) - if (auto *I = dyn_cast<Instruction>(Op)) - if (!isa<PHINode>(I) && I->getParent() == BB) - Stack.emplace_back(Op, Level); - } - return Res; -} - -bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, - BasicBlock *BB, BoUpSLP &R, - TargetTransformInfo *TTI) { - if (!V) - return false; - auto *I = dyn_cast<Instruction>(V); - if (!I) - return false; - - if (!isa<BinaryOperator>(I)) - P = nullptr; - // Try to match and vectorize a horizontal reduction. - auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { - return tryToVectorize(I, R); - }; - return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, - ExtraVectorization); -} - -bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, - BasicBlock *BB, BoUpSLP &R) { - const DataLayout &DL = BB->getModule()->getDataLayout(); - if (!R.canMapToVector(IVI->getType(), DL)) - return false; - - SmallVector<Value *, 16> BuildVectorOpds; - if (!findBuildAggregate(IVI, BuildVectorOpds)) - return false; - - LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); - // Aggregate value is unlikely to be processed in vector register, we need to - // extract scalars into scalar registers, so NeedExtraction is set true. - return tryToVectorizeList(BuildVectorOpds, R); -} - -bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, - BasicBlock *BB, BoUpSLP &R) { - int UserCost; - SmallVector<Value *, 16> BuildVectorOpds; - if (!findBuildVector(IEI, TTI, BuildVectorOpds, UserCost) || - (llvm::all_of(BuildVectorOpds, - [](Value *V) { return isa<ExtractElementInst>(V); }) && - isShuffle(BuildVectorOpds))) - return false; - - // Vectorize starting with the build vector operands ignoring the BuildVector - // instructions for the purpose of scheduling and user extraction. - return tryToVectorizeList(BuildVectorOpds, R, UserCost); -} - -bool SLPVectorizerPass::vectorizeCmpInst(CmpInst *CI, BasicBlock *BB, - BoUpSLP &R) { - if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) - return true; - - bool OpsChanged = false; - for (int Idx = 0; Idx < 2; ++Idx) { - OpsChanged |= - vectorizeRootInstruction(nullptr, CI->getOperand(Idx), BB, R, TTI); - } - return OpsChanged; -} - -bool SLPVectorizerPass::vectorizeSimpleInstructions( - SmallVectorImpl<WeakVH> &Instructions, BasicBlock *BB, BoUpSLP &R) { - bool OpsChanged = false; - for (auto &VH : reverse(Instructions)) { - auto *I = dyn_cast_or_null<Instruction>(VH); - if (!I) - continue; - if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) - OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); - else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) - OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); - else if (auto *CI = dyn_cast<CmpInst>(I)) - OpsChanged |= vectorizeCmpInst(CI, BB, R); - } - Instructions.clear(); - return OpsChanged; -} - -bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { - bool Changed = false; - SmallVector<Value *, 4> Incoming; - SmallPtrSet<Value *, 16> VisitedInstrs; - - bool HaveVectorizedPhiNodes = true; - while (HaveVectorizedPhiNodes) { - HaveVectorizedPhiNodes = false; - - // Collect the incoming values from the PHIs. - Incoming.clear(); - for (Instruction &I : *BB) { - PHINode *P = dyn_cast<PHINode>(&I); - if (!P) - break; - - if (!VisitedInstrs.count(P)) - Incoming.push_back(P); - } - - // Sort by type. - llvm::stable_sort(Incoming, PhiTypeSorterFunc); - - // Try to vectorize elements base on their type. - for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), - E = Incoming.end(); - IncIt != E;) { - - // Look for the next elements with the same type. - SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; - while (SameTypeIt != E && - (*SameTypeIt)->getType() == (*IncIt)->getType()) { - VisitedInstrs.insert(*SameTypeIt); - ++SameTypeIt; - } - - // Try to vectorize them. - unsigned NumElts = (SameTypeIt - IncIt); - LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs (" - << NumElts << ")\n"); - // The order in which the phi nodes appear in the program does not matter. - // So allow tryToVectorizeList to reorder them if it is beneficial. This - // is done when there are exactly two elements since tryToVectorizeList - // asserts that there are only two values when AllowReorder is true. - bool AllowReorder = NumElts == 2; - if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R, - /*UserCost=*/0, AllowReorder)) { - // Success start over because instructions might have been changed. - HaveVectorizedPhiNodes = true; - Changed = true; - break; - } - - // Start over at the next instruction of a different type (or the end). - IncIt = SameTypeIt; - } - } - - VisitedInstrs.clear(); - - SmallVector<WeakVH, 8> PostProcessInstructions; - SmallDenseSet<Instruction *, 4> KeyNodes; - for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { - // We may go through BB multiple times so skip the one we have checked. - if (!VisitedInstrs.insert(&*it).second) { - if (it->use_empty() && KeyNodes.count(&*it) > 0 && - vectorizeSimpleInstructions(PostProcessInstructions, BB, R)) { - // We would like to start over since some instructions are deleted - // and the iterator may become invalid value. - Changed = true; - it = BB->begin(); - e = BB->end(); - } - continue; - } - - if (isa<DbgInfoIntrinsic>(it)) - continue; - - // Try to vectorize reductions that use PHINodes. - if (PHINode *P = dyn_cast<PHINode>(it)) { - // Check that the PHI is a reduction PHI. - if (P->getNumIncomingValues() != 2) - return Changed; - - // Try to match and vectorize a horizontal reduction. - if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, - TTI)) { - Changed = true; - it = BB->begin(); - e = BB->end(); - continue; - } - continue; - } - - // Ran into an instruction without users, like terminator, or function call - // with ignored return value, store. Ignore unused instructions (basing on - // instruction type, except for CallInst and InvokeInst). - if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || - isa<InvokeInst>(it))) { - KeyNodes.insert(&*it); - bool OpsChanged = false; - if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { - for (auto *V : it->operand_values()) { - // Try to match and vectorize a horizontal reduction. - OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); - } - } - // Start vectorization of post-process list of instructions from the - // top-tree instructions to try to vectorize as many instructions as - // possible. - OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R); - if (OpsChanged) { - // We would like to start over since some instructions are deleted - // and the iterator may become invalid value. - Changed = true; - it = BB->begin(); - e = BB->end(); - continue; - } - } - - if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || - isa<InsertValueInst>(it)) - PostProcessInstructions.push_back(&*it); - } - - return Changed; -} - -bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { - auto Changed = false; - for (auto &Entry : GEPs) { - // If the getelementptr list has fewer than two elements, there's nothing - // to do. - if (Entry.second.size() < 2) - continue; - - LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " - << Entry.second.size() << ".\n"); - - // We process the getelementptr list in chunks of 16 (like we do for - // stores) to minimize compile-time. - for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += 16) { - auto Len = std::min<unsigned>(BE - BI, 16); - auto GEPList = makeArrayRef(&Entry.second[BI], Len); - - // Initialize a set a candidate getelementptrs. Note that we use a - // SetVector here to preserve program order. If the index computations - // are vectorizable and begin with loads, we want to minimize the chance - // of having to reorder them later. - SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); - - // Some of the candidates may have already been vectorized after we - // initially collected them. If so, the WeakTrackingVHs will have - // nullified the - // values, so remove them from the set of candidates. - Candidates.remove(nullptr); - - // Remove from the set of candidates all pairs of getelementptrs with - // constant differences. Such getelementptrs are likely not good - // candidates for vectorization in a bottom-up phase since one can be - // computed from the other. We also ensure all candidate getelementptr - // indices are unique. - for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { - auto *GEPI = cast<GetElementPtrInst>(GEPList[I]); - if (!Candidates.count(GEPI)) - continue; - auto *SCEVI = SE->getSCEV(GEPList[I]); - for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { - auto *GEPJ = cast<GetElementPtrInst>(GEPList[J]); - auto *SCEVJ = SE->getSCEV(GEPList[J]); - if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { - Candidates.remove(GEPList[I]); - Candidates.remove(GEPList[J]); - } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { - Candidates.remove(GEPList[J]); - } - } - } - - // We break out of the above computation as soon as we know there are - // fewer than two candidates remaining. - if (Candidates.size() < 2) - continue; - - // Add the single, non-constant index of each candidate to the bundle. We - // ensured the indices met these constraints when we originally collected - // the getelementptrs. - SmallVector<Value *, 16> Bundle(Candidates.size()); - auto BundleIndex = 0u; - for (auto *V : Candidates) { - auto *GEP = cast<GetElementPtrInst>(V); - auto *GEPIdx = GEP->idx_begin()->get(); - assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); - Bundle[BundleIndex++] = GEPIdx; - } - - // Try and vectorize the indices. We are currently only interested in - // gather-like cases of the form: - // - // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... - // - // where the loads of "a", the loads of "b", and the subtractions can be - // performed in parallel. It's likely that detecting this pattern in a - // bottom-up phase will be simpler and less costly than building a - // full-blown top-down phase beginning at the consecutive loads. - Changed |= tryToVectorizeList(Bundle, R); - } - } - return Changed; -} - -bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { - bool Changed = false; - // Attempt to sort and vectorize each of the store-groups. - for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e; - ++it) { - if (it->second.size() < 2) - continue; - - LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " - << it->second.size() << ".\n"); - - // Process the stores in chunks of 16. - // TODO: The limit of 16 inhibits greater vectorization factors. - // For example, AVX2 supports v32i8. Increasing this limit, however, - // may cause a significant compile-time increase. - for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI += 16) { - unsigned Len = std::min<unsigned>(CE - CI, 16); - Changed |= vectorizeStores(makeArrayRef(&it->second[CI], Len), R); - } - } - return Changed; -} - -char SLPVectorizer::ID = 0; - -static const char lv_name[] = "SLP Vectorizer"; - -INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) -INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) -INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) -INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) -INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) -INITIALIZE_PASS_DEPENDENCY(LoopSimplify) -INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) -INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) -INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) - -Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } |